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In this paper, we construct a positivity-preserving Gauge–Uzawa method for the semi-
discrete-in-time scheme of incompressible viscous flows with variable density, and
establish its stability and error estimates. We also construct and implement a fully
discrete scheme with finite elements in space and derive its positivity-preserving and
stability result.
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1. Introduction

This paper deals with the error estimates for a numerical approximation of the incompressible viscous flows with
variable density, which are governed by the time-dependent Navier–Stokes equations:

ρt + u · ∇ρ = 0, in Ω × (0, T ], (1.1)

ρ(ut + u · ∇u) + ∇p − µ∆u = f , in Ω × (0, T ], (1.2)

∇ · u = 0, in Ω × (0, T ], (1.3)

supplemented by the following initial and boundary conditions for u and ρ:

ρ(x, 0) = ρ0(x), ρ(x, t)|Γ−= a(x, t), (1.4)

u(x, 0) = u0(x), u(x, t)|Γ= b(x, t), (1.5)

and pressure mean-value
∫
Ω
p = 0 where Γ = ∂Ω and Γ − is the inflow boundary defined by Γ −

= {x ∈ Γ : u · n⃗ < 0}.
In the above, the primitive variables are the (vector) velocity u, the (scalar) pressure p and the (scalar) density ρ, µ is the
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dynamic viscosity, Ω is an open bounded polyhedral domain in Rd, with d = 2 or 3. As in [1], we shall assume that the
boundary is impermeable, i.e. Γ −

= φ and b(x, t) = 0.
It is challenging to construct stable and efficient numerical schemes for the system (1.1)–(1.3), since in addition to all

the difficulties with the incompressible flows with constant density, it involves a transport equation for the density ρ
which enforces that the mass density remains unchanged during the fluid motion [2] and preserves the positivity of the
density.

It is now well established [3] that the difficulties associated with the incompressibility can be effectively handled
by using a suitable projection type scheme, originally proposed by Chorin [4] and Temam [5], and very popular in the
computational fluid dynamics community. Over the years, a large amount of efforts have been devoted to develop more
accurate and efficient projection type schemes, we refer to [3] for comprehensive and up-to-date review on this subject.
This approach has also been used in [6], among others, for incompressible flows with variable density. However, for
the more accurate version which is based on the incremental projection scheme (i.e., the pressure-correction scheme)
presented in [6], two projection steps (i.e., two pressure-Poisson solvers) are needed to preserve the stability of the
scheme. Since the pressure-Poisson solver consumes a significant part of the total computational effort, this approach
could increase the total computational cost significantly as opposed to the schemes with only one projection step.

On the other hand, the Gauge–Uzawa method[GUM] has been constructed in [7] to solve Navier–Stokes equations
with variable density, through a Boussinesq approximation in [8] and directly in [9,10]. In [9] two Gauge–Uzawa schemes
for incompressible flows with variable density is presented. It is shown in [9] that the GUM has many advantages over
the original Gauge method and the pressure-correction method. More precisely, these two schemes only involve one
projection step and have been proved unconditionally stable.

While the error analysis for the incompressible flows with constant density has been well studied (cf., for instance, [3]
and the references therein), the case with variable densities is much more difficult and very few results are available. In
[1] the error estimates for the momentum equation (1.2) are obtained under the assumption that the numerical density
is obtained from another approach and remains to be bounded. On the other hand, no error estimates are given for the
schemes presented in [9] and no fully discrete scheme was constructed for the convective Gauge–Uzawa scheme in [9].

The aim of this paper is to provide an error analysis for the Gauge–Uzawa schemes introduced in [9] without making
bounded assumption on the numerical density. Based on the stability results for the two Gauge–Uzawa schemes for
incompressible flows with variable density [9], we prove the density approximations for the semi-discrete schemes is L∞

bounded and positivity-preserving, then we derive the corresponding error estimates for each variable (see Theorems 1
and 2). As far as we know, this is the first error estimates for the system (1.1)–(1.3). We also construct a new finite element
algorithm for the convective Gauge–Uzawa scheme in [9] and prove that it is positivity-preserving and unconditionally
stable (see Theorem 3).

The paper is organized as follows. In Section 2, we recall the convective GUM and the stability results in [9], then
we prove that the numerical density of the schemes is L∞ bounded and positivity-preserving. We will establish a first
error estimate for the velocity in Section 3, followed by an improved error estimate for the velocity in Section 4 which
allows us to derive an error estimate for the pressure in Section 5. In Section 6, we construct and analyze a new fully
discrete algorithm for the convective Gauge–Uzawa scheme in [9]. Finally, some numerical experiments will be presented
in Section 7.

We now describe some notations to be used hereafter. Let Ω be an open bounded domain in Rd (d = 2, 3). We denote
by Hs(Ω) and Hs

0(Ω) the usual Sobolev spaces. We set L2(Ω) := (L2(Ω))d and Hs(Ω) := (Hs(Ω))d, and denote by L20(Ω)
the subspace of L2(Ω) of functions with vanishing mean-value. We use ∥ · ∥s to denote the norm in Hs(Ω) and (·, ·) to
denote the L2 inner product. For any sequence {vn}, we denote Dτvn :=

vn−vn−1

τ
.

2. The convective Gauge–Uzawa scheme and its properties

We first recall the convective GUM presented in [9].
Set ρ0

= ρ0, u0
= u0, s0 = 0. Assuming ρn, un, sn are known, we determine ρn+1, un+1, sn+1 as follows:

Step 1. Find ρn+1 as the solution of

Dτρn+1
+ un

· ∇ρn+1
= 0. (2.1)

Step 2. Find ûn+1 as the solution of

ρn û
n+1

− un

τ
+ ρn+1(un

· ∇)ûn+1
+ µ∇sn − µ∆ûn+1

= f n+1, (2.2)

ûn+1
|Γ= 0. (2.3)

Step 3. Find φn+1 as the solution of

−∇ · (
1

ρn+1 ∇φn+1) = ∇ · ûn+1, (2.4)

∂nφ
n+1

|Γ= 0. (2.5)
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Step 4. Update un+1 and sn+1 by

un+1
= ûn+1

+
1

ρn+1 ∇φn+1, (2.6)

sn+1
= sn − ∇ · ûn+1. (2.7)

where

pn+1
= µsn+1

−
1
τ
φn+1. (2.8)

For the sake of simplicity, we shall consider only the homogeneous Dirichlet boundary condition for the velocity,
i.e. u|Γ= 0. It is shown in [9, Theorem 3.1] that the following results hold:

Lemma 1. The convective GUM (2.1)–(2.7) is unconditionally stable in the sense that, for all τ > 0 and 1 ≤ N ≤ T/τ , the
following a priori bounds hold:

∥ρN
∥
2
+

N−1∑
k=0

∥ρk+1
− ρk

∥
2

= ∥ρ0
∥
2, (2.9)

and

∥σN ûN
∥
2
+ µτ∥sN∥

2
+

N−1∑
k=0

(
∥σ k(ûk+1

− uk)∥2
+ ∥

1
σ k ∇φk

∥
2
+
µ

2
τ∥∇ûk+1

∥
2
)

≤ ∥σ 0û0
∥
2
+ Cµτ

N−1∑
k=0

∥f k+1
∥
2
−1, (2.10)

where σ =
√
ρ.

However, for the above results to make sense, it implicitly assumes that ρn > 0 for all n. Below, we shall first show
that this is indeed true.

Lemma 2. Assume that there exists two constants c, C > 0 such that c ≤ ρ0(x) ≤ C, ∀x ∈ Ω̄ . Then, the numerical density
ρn determined from (2.1) satisfies:

c ≤ ρn(x) ≤ C, ∀x ∈ Ω̄, ∀n. (2.11)

Proof. We prove the boundedness of ρn by mathematical induction. When n = 0, ρ0
= ρ0 satisfies (2.11). In the following

we shall prove that if (2.11) holds for 0 ≤ n ≤ m, then it also holds for n = m+1. On one hand, assume that ρm+1 achieves
the maximum at x∗

∈ Ω , then it follows that ∇ρm+1(x∗) = 0, which from (2.1) implies that

ρm+1(x∗) = ρm(x∗) ≤ C . (2.12)

Similarly it holds that if ρm+1 achieves the minimum at x∗∗
∈ Ω , then

ρm+1(x∗∗) ≥ c. (2.13)

On the other hand, if ρm+1 achieves the maximum at x∗
∈ Γ , it follows that the tangential component of ∇ρm+1(x∗)

and the normal component of um(x∗) both vanish by using (2.3), (2.5) and (2.6). Since we can divide both ∇ρm+1(x∗)
and um(x∗) into their tangential and normal components, by the computation of the inner product we further have(
um

· ∇ρm+1
)
(x∗) = 0. By (2.1) again, it implies (2.12) is still true. We then obtain (2.13) is also true if ρm+1 achieves the

minimum at x∗∗
∈ Γ . Consequently, this completes the mathematical induction and we have the desired result (2.11) for

any n. □

An immediate consequence of (2.10) and (2.11) is:

∥uN
∥ ≤ C ∀n. (2.14)

3. A first error estimate

Our purpose in this section is to show that un and ûn are both order 1/2 approximations to u(tn) in L2(Ω), which is
the same as the constant density case [7,11].

We first recall some inequalities that will be used in the sequel:

((u · ∇)v,w) ≤ C

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∥u∥1∥v∥1∥w∥1,

∥u∥2∥∇v∥∥w∥,

∥u∥∥v∥2∥∇w∥,

∥∇u∥∥v∥2∥w∥,

∥u∥2∥v∥∥∇w∥.

(3.1)
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∥ div v∥ ≤ ∥∇v∥ ∀v ∈ H1(Ω) and v · n|Γ= 0. (3.2)

(u · ∇v, v) = 0 ∀u ∈ H := {u ∈ L2(Ω)d : ∇ · u = 0, u · n|Γ= 0} and v ∈ H1(Ω)d. (3.3)

Let us denote

ênu = u(tn) − ûn, enu = u(tn) − un, enρ = ρ(tn) − ρn, enp = p(tn) − pn. (3.4)

Before showing the error estimates, we list the following useful formulae which can be proved directly using (2.3), (2.4)
and (2.6):

ênu = 0, on ∂Ω, (3.5)

div enu = 0, ên+1
u = en+1

u +
1

ρn+1 ∇φn+1, in Ω, (3.6)

(enu,∇φ
n) = 0, (ρn+1êmu , e

n
u) = (ρn+1emu , e

n
u), in Ω. (3.7)

Furthermore, we also have

∥en+1
u ∥

2
1 ≤ C

(
∥ên+1

u ∥
2
1 + ∥

1
ρn+1 ∇φn+1

∥
2
1

)
, (3.8)

∥σ nenu∥
2

= (ρnenu, e
n
u) = (ρnênu − ∇φn, enu) = (ρnênu, ê

n
u −

1
ρn ∇φn)

= ∥σ nênu∥
2
− (enu +

1
ρn ∇φn,∇φn) = ∥σ nênu∥

2
− ∥

1
σ n ∇φn

∥
2. (3.9)

We first show that the semi-discrete solution un+1 converges to u(tn+1) with order 1/2. More precisely, we have the
following lemma.

Lemma 3. Assuming the exact solutions of the problem (1.1)–(1.3) have the following regularity:

ρ ∈ L∞(W 1,∞) ∩ W 2,∞(L2), u ∈ L∞(H2) ∩ W 1,∞(L2) ∩ W 2,∞(H−1), p ∈ L∞(H1), (3.10)

we have

∥eNρ ∥
2
+ ∥êNu ∥

2
+ ∥eNu ∥

2
+ µτ∥sN∥

2
+ τµ

N−1∑
n=0

(
∥∇en+1

u ∥
2
+ ∥∇ ên+1

u ∥
2)

+

N−1∑
n=0

(
∥en+1
ρ − enρ∥

2
+ ∥en+1

u − enu∥
2
+ ∥

1
σ n+1 ∇φn+1

∥
2)

≤ Cτ , ∀1 ≤ N ≤ T/τ . (3.11)

Proof. Subtracting (2.1)–(2.2) from (1.1)–(1.2) respectively, it is easy to see that enρ, e
n
u satisfies

Dτ en+1
ρ = −un

· ∇en+1
ρ − ∇ρ(tn+1) · enu + Rn+1

ρ , (3.12)

and

ρn
(
ên+1
u − enu
τ

)
− µ∆ên+1

u = −u(tn+1) · ∇u(tn+1)en+1
ρ − ρn+1enu · ∇ûn+1

− ρn+1u(tn+1) · ∇ ên+1
u

+µ∇sn − ∇p(tn+1) − ρn+1(u(tn+1) − u(tn)
)
· ∇ûn+1

+ Rn+1
u (3.13)

where Rn
ρ and Rn

u are truncation errors which satisfy

∥Rn+1
ρ ∥ = ∥ − ∇ρ(tn+1) ·

(
u(tn+1) − u(tn)

)
+ Dτρ(tn+1) − ρt (tn+1)∥ ≤ Cτ , (3.14)

and

∥Rn+1
u ∥−1 = ∥ρnDτu(tn+1) − ρ(tn+1)ut (tn+1)∥−1 =∥ −(ρ(tn+1) − ρ(tn))ut (tn+1)

+ ρn(Dτu(tn+1) − ut (tn+1)) − enρut (tn+1) ∥−1≤ C(τ + ∥enρ∥). (3.15)

We now take inner product of (3.12) with 2τen+1
ρ and use the identity

(a − b, 2a) = |a|2 − |b|2 + |a − b|2. (3.16)
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Then from (3.3) we have

∥en+1
ρ ∥

2
− ∥enρ∥

2
+ ∥en+1

ρ − enρ∥
2

= −2τ (un
· ∇en+1

ρ , en+1
ρ ) − 2τ (∇ρ(tn+1) · enu, e

n+1
ρ ) + 2τ (Rn+1

ρ , en+1
ρ )

= −2τ (∇ρ(tn+1) · enu, e
n+1
ρ ) + 2τ (Rn+1

ρ , en+1
ρ ). (3.17)

Taking inner product of (3.13) with 2τ ên+1
u , then by (3.9) we derive

∥σ nên+1
u ∥

2
− ∥σ nenu∥

2
+ ∥σ n(ên+1

u − enu)∥
2
+ 2τµ∥∇ ên+1

u ∥
2

= −2τ
(
u(tn+1) · ∇u(tn+1)en+1

ρ , ên+1
u

)
− 2τ (ρn+1enu · ∇ûn+1, ên+1

u )

− 2τ (ρn+1u(tn+1) · ∇ ên+1
u , ên+1

u ) + 2µτ (∇sn, ên+1
u ) − 2τ (∇p(tn+1), ên+1

u )

− 2τ
(
ρn+1(u(tn+1) − u(tn)

)
· ∇ûn+1, ên+1

u

)
+ 2τ

(
Rn+1
u , ên+1

u

)
. (3.18)

We take the inner product of (2.1) with a scalar function τ ên+1
u · ên+1

u to get

(ρn+1
− ρn, ên+1

u · ên+1
u ) = −τ (∇ · (ρn+1un), ên+1

u · ên+1
u ), (3.19)

which can be rewritten as

∥σ n+1ên+1
u ∥

2
− ∥σ nên+1

u ∥
2
− 2τ (ρn+1un

· ∇ ên+1
u , ên+1

u ) = 0. (3.20)

We combine (3.17), (3.18) with (3.20) to obtain

∥en+1
ρ ∥

2
− ∥enρ∥

2
+ ∥en+1

ρ − enρ∥
2
+ ∥σ n+1ên+1

u ∥
2

−∥σ nenu∥
2
+ ∥σ n(ên+1

u − enu)∥
2
+ 2τµ∥∇ ên+1

u ∥
2

=

5∑
i=1

Ai, (3.21)

with

A1 = −2τ (∇ρ(tn+1) · enu, e
n+1
ρ ) − 2τ

(
u(tn+1) · ∇u(tn+1)en+1

ρ , ên+1
u

)
,

A2 = −2τ (∇p(tn+1), ên+1
u ),

A3 = 2τ (Rn+1
ρ , en+1

ρ ) + 2τ
(
Rn+1
u , ên+1

u

)
,

A4 = 2µτ (∇sn, ên+1
u ),

A5 = −2τ (ρn+1(u(tn+1) − u(tn)) · ∇u(tn+1), ên+1
u ) − 2τ (ρn+1enu · ∇u(tn+1), ên+1

u ).

We now analyze each term on the right hand side of (3.21) as follows. First, we have

A1 ≤ Cτ (∥enu∥
2
+ ∥en+1

ρ ∥
2) +

1
4
µτ∥∇ ên+1

u ∥
2.

From (3.6), we derive

A2 ≤ Cτ 2 + ε∥
1

ρn+1 ∇φn+1
∥
2.

By (3.14) and (3.15),

A3 ≤ Cτ 3 +
1
4
µτ∥∇ ên+1

u ∥
2
+ Cτ (∥enρ∥

2
+ ∥en+1

ρ ∥
2).

Making use of (2.7), (3.2) and (3.4),

A4 = 2µτ (∇sn, ên+1
u ) = −2µτ (sn,∇ · (u(tn+1) − ûn+1)) = 2µτ (sn,∇ · ûn+1)

= 2µτ (sn, sn − sn+1) = µτ
(
∥sn∥2

− ∥sn+1
∥
2
+ ∥sn − sn+1

∥
2)

≤ µτ (∥sn∥2
− ∥sn+1

∥
2) + µτ∥∇ ên+1

u ∥
2.

As a consequence of (2.11) and (3.1),

A5 ≤ Cτ 3 + Cτ∥enu∥
2
+

1
4
µτ∥∇ ên+1

u ∥
2.
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Inserting the above estimates for each term Ai, 1 ≤ i ≤ 5 into (3.21) and in view of (2.11) and (3.9), by choosing sufficiently
small ε we have

∥en+1
ρ ∥

2
− ∥enρ∥

2
+ ∥en+1

ρ − enρ∥
2
+ ∥σ n+1en+1

u ∥
2
− ∥σ nenu∥

2
+ ∥σ n(en+1

u − enu)∥
2

+ ∥
1

σ n+1 ∇φn+1
∥
2
+ µτ (∥sn+1

∥
2
− ∥sn∥2) +

1
4
τµ∥∇ ên+1

u ∥
2

≤ Cτ (∥enu∥
2
+ ∥en+1

ρ ∥
2
+ ∥enρ∥

2
+ ∥en+1

u ∥
2) + Cτ 2. (3.22)

Summing (3.22) over n from 0 to N − 1 gives

∥eNρ ∥
2
+ c∥eNu ∥

2
+ µτ∥sN∥

2
+

N−1∑
n=0

(
∥en+1
ρ − enρ∥

2
+ ∥en+1

u − enu∥
2

+ ∥
1

σ n+1 ∇φn+1
∥
2
+

1
2
τµ∥∇ ên+1

u ∥
2)

≤ ∥e0ρ∥
2
+ C∥e0u∥

2
+ µτ∥s0∥2

+ Cτ
N∑

n=0

(∥enu∥
2
+ ∥enρ∥

2) + Cτ , (3.23)

where we have used (2.11). If we choose the initial data as the time discrete approximation at the initial time, i.e. e0ρ =

e0u = 0, then by applying the discrete Gronwall lemma to (3.23), we have

∥eNρ ∥
2
+ ∥eNu ∥

2
+ µτ∥sN∥

2

+

N−1∑
n=0

(
∥en+1
ρ − enρ∥

2
+ ∥en+1

u − enu∥
2
+ ∥

1
σ n+1 ∇φn+1

∥
2
+

1
2
τµ∥∇ ên+1

u ∥
2)

≤ Cτ ,

for all 0 ≤ N ≤ T/τ . Finally, thanks to (3.8) and (3.9), we also have

∥êNu ∥
2
+ τ

N−1∑
n=0

µ∥∇en+1
u ∥

2
≤ Cτ , ∀1 ≤ N ≤ T/τ , (3.24)

which completes the proof. □

4. Optimal error estimate for velocity in L2(L2)

We first introduce the following subspace of H1(Ω):

V (Ω) := {z ∈ H1
0 (Ω) : div z = 0},

and denote by V (Ω)∗ the dual space of V (Ω) with ∥ · ∥∗ to be the corresponding norm. We consider the stationary Stokes
equations which will be used in a duality argument:

−∆v + ∇q = g, in Ω,

div v = 0, in Ω, (4.1)
v = 0, on ∂Ω.

In the following we assume that the unique solution (v, q) ∈ H1
0 (Ω) × L20(Ω) of the problem (4.1) satisfies

∥v∥2 + ∥q∥1 ≤ C∥g∥. (4.2)

We notice that this assumption is valid provided ∂Ω is of class C2, or if Ω is a convex polygonal domain [7]. Under this
assumption, it immediately follows that

∥g∥∗ ≤ sup
w∈V

(g, w)
∥w∥1

= sup
w∈V

(−∆v,w)
∥w∥1

≤ ∥∇v∥. (4.3)

Theorem 1. Under the same assumptions as Lemma 3, then there exists a constant C > 0 such that for all 1 ≤ N ≤ T/τ

∥eNu ∥
2
∗
+ ∥eNρ ∥

2
+

N−1∑
n=0

{
∥en+1

u − enu∥
2
∗
+ ∥en+1

ρ − enρ∥
2
+ τµ∥en+1

u ∥
2
+ τµ∥ên+1

u ∥
2}

≤ Cτ 2. (4.4)
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Proof. For all 1 ≤ n ≤ N , let (vn, qn) be solutions of the system (4.1) with g = ρnenu, then from (4.2) and (2.11) it follows
that

∥vn∥2 + ∥qn∥1 ≤ C∥ρnenu∥ ≤ C∥enu∥. (4.5)

Now taking 0 ≤ n ≤ N − 1, since vn+1 is divergence free, then we have from (3.6)

(ρn(ên+1
u − enu), v

n+1) = −((ρn+1
− ρn)ên+1

u , vn+1) + (ρn+1en+1
u − ρnenu, v

n+1)

= −((ρn+1
− ρn)ên+1

u , vn+1) + (∇(vn+1
− vn),∇vn+1), (4.6)

and

−µ(∆ên+1
u , vn+1) = −µ(ên+1

u ,∆vn+1) = −µ(ên+1
u ,−ρn+1en+1

u + ∇qn+1)

= µ(∥σ n+1en+1
u ∥

2
+ (en+1

u ,∇φn+1) − (en+1
u ,∇qn+1) − (

1
ρn+1 ∇φn+1,∇qn+1))

= µ(∥σ n+1en+1
u ∥

2
− (

1
ρn+1 ∇φn+1,∇qn+1)). (4.7)

Taking the inner product of (3.13) with 2τvn+1 and using (4.6)–(4.7), we combine the resultant equality with (3.17) to
get

∥∇vn+1
∥
2
− ∥∇vn∥2

+ ∥∇(vn+1
− vn)∥2

+ 2µτ∥σ n+1en+1
u ∥

2
+ ∥en+1

ρ ∥
2
− ∥enρ∥

2
+ ∥en+1

ρ − enρ∥
2

= 2µτ (
1

ρn+1 ∇φn+1,∇qn+1) +
(
2((ρn+1

− ρn)ên+1
u , vn+1) − 2τ

(
ρn+1u(tn+1) · ∇ ên+1

u , vn+1))
− 2τ

(
u(tn+1) · ∇u(tn+1)en+1

ρ , vn+1)
− 2τ

(
ρn+1enu · ∇ûn+1, vn+1)

−2τ
(
ρn+1(u(tn+1) − u(tn)

)
· ∇ûn+1, vn+1)

+ 2τ (Rn+1
u , vn+1)

− 2τ (∇ρ(tn+1) · enu, e
n+1
ρ ) + 2τ (Rn+1

ρ , en+1
ρ ) =

8∑
i=1

Bi. (4.8)

We now estimate B1 to B8 separately. First, from (2.11) and (4.5) we obtain

B1 ≤ Cµτ∥∇φn+1
∥
2
+
µτ

6
∥σ n+1en+1

u ∥
2.

In view of (2.1) and div un
= div u(tn) = 0, then by integration by parts we arrive at

B2 = −2τ
(
(un

· ∇ρn+1)ên+1
u , vn+1)

− 2τ (ρn+1u(tn+1) · ∇ ên+1
u , vn+1)

= −2τ (∇ · (ρn+1un)ên+1
u , vn+1) − 2τ (ρn+1u(tn+1) · ∇ ên+1

u , vn+1)
= 2τ (∇ · (ρn+1enu)ê

n+1
u , vn+1) − 2τ (∇ · (ρn+1u(tn))ên+1

u , vn+1)
− 2τ (ρn+1u(tn+1) · ∇ ên+1

u , vn+1)
= 2τ (∇ · (ρn+1enu)ê

n+1
u , vn+1) − 2τ

(
ρn+1(u(tn+1) − u(tn)) · ∇ ên+1

u , vn+1)
+ 2τ (ρn+1u(tn) · ∇vn+1, ên+1

u )
= −2τ ((ρn+1enu) · ∇ ên+1

u , vn+1) − 2τ ((ρn+1enu) · ∇vn+1, ên+1
u )

− 2τ
(
ρn+1(u(tn+1) − u(tn)) · ∇ ên+1

u , vn+1)
+ 2τ (ρn+1u(tn) · ∇vn+1, ên+1

u )

≤ Cτ (∥enu∥ + τ )∥∇ ên+1
u ∥∥vn+1

∥2 +
µτ

12
∥σ n+1en+1

u ∥
2
+ Cτ∥

1
σ n+1 ∇φn+1

∥
2
+ Cτ∥∇vn+1

∥
2

≤ Cτ 2∥∇ ên+1
u ∥

2
+
µτ

6
∥σ n+1en+1

u ∥
2
+ Cτ∥

1
σ n+1 ∇φn+1

∥
2
+ Cτ∥∇vn+1

∥
2,

where we have already used (2.11), (2.14), (3.1), (3.9), (3.11) and (4.5).
By (3.1) again,

B3 ≤ Cτ∥en+1
ρ ∥

2
+ Cτ∥∇vn+1

∥
2.

We further split B4 by

B4 = 2τ
(
ρn+1enu · ∇ ên+1

u , vn+1)
+ 2τ

(
ρn+1(en+1

u − enu) · ∇u(tn+1), vn+1)
− 2τ

(
ρn+1en+1

u · ∇u(tn+1), vn+1)
For the first term of B4, by (2.11) and (3.1) we have

τ (ρn+1enu · ∇ ên+1
u , vn+1) ≤ Cτ∥enu∥

2
∥∇ ên+1

u ∥
2
+ ϵτ∥vn+1

∥
2
2. (4.9)
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From (4.5), there exists a constant C1 such that

∥vn+1
∥
2
2 ≤ C1∥σ

n+1en+1
u ∥

2.

Then as a consequence of (3.11), it follows that ∥enu∥
2

≤ Cτ . Substituting the above two estimates into (4.9) and choosing
sufficiently small ϵ, we have ϵC1τ ≤

µτ

12 and thus

τ (ρn+1enu · ∇ ên+1
u , vn+1) ≤ Cτ 2∥∇ ên+1

u ∥
2
+
µτ

12
∥σ n+1en+1

u ∥
2.

We can obtain similar bounds for the rest terms in B4. Hence, we obtain

B4 ≤ Cτ 2∥∇ ên+1
u ∥

2
+
µτ

6
∥σ n+1en+1

u ∥
2
+ τ∥en+1

u − enu∥
2
+ Cτ∥∇vn+1

∥
2.

Thanks to (3.11) again,

∥∇ûn+1
∥ ≤ ∥∇u(tn+1)∥ + ∥∇ ên+1

u ∥ ≤ C, (4.10)

which together with (2.11), (4.5) and (3.1) implies

B5 ≤ Cτ 2
∫ tn+1

tn
∥ut∥

2dt +
µτ

6
∥σ n+1en+1

u ∥
2.

As a consequence of (3.15) and (3.11),

B6 ≤ Cτ 3 + Cτ∥enρ∥
2
+ Cτ∥∇vn+1

∥
2.

In light of (3.1),

B7 = 2τ (∇ρ(tn+1) · (en+1
u − enu), e

n+1
ρ ) − 2τ (∇ρ(tn+1) · en+1

u , en+1
ρ )

≤ τ∥en+1
u − enu∥

2
+
µτ

6
∥σ n+1en+1

u ∥
2
+ Cτ∥en+1

ρ ∥
2.

For the last term, (3.14) produces

B8 ≤ Cτ 3 + Cτ∥en+1
ρ ∥

2.

Inserting the above estimates for B1−B8 into (4.8) and summing over n from zero to N−1, we derive by discrete Gronwall
lemma and (3.11) that

∥∇vN∥
2
+ ∥eNρ ∥

2
+

N−1∑
n=0

∥∇(vn+1
− vn)∥2

+ µτ∥σ n+1en+1
u ∥

2
+ ∥en+1

ρ − enρ∥
2

≤ Cτ 2.

Hence we arrive at (4.4) upon invoking (4.3). Finally we can use the above and (3.11), (3.9) to derive the desired bound
for ênu. The proof is thus complete. □

5. Error estimate for the pressure

In this section, we shall derive an error estimate for the pressure, which is based on the following error estimate for
the difference of velocity.

5.1. Error estimate for the difference of velocity

From now on, for any function sequence vn we denote the difference by δvn = vn − vn−1.

Lemma 4. Under the same assumptions as Lemma 3, there exists a constant C > 0 such that for all 1 ≤ N ≤ T/τ , we have

∥δ(ρNeNu )∥
2
∗
+

N−1∑
n=0

{
∥δ(ρn+1en+1

u ) − δ(ρnenu)∥
2
∗
+ τµ∥δen+1

u ∥
2
+ τµ∥δên+1

u ∥
2}

≤ Cτ 2. (5.1)

Proof. Let (vn, qn) be solutions of the system (4.1) with g = ρnenu. From (4.5) and (2.11), it immediately follows that

∥δvn∥2 + ∥δqn∥1 ≤ C∥δ(ρnenu)∥ ≤ C(∥δenu∥ + ∥en−1
u ∥). (5.2)

Since by (3.6),

δ(ρn+1ên+1
u ) = δ(ρn+1en+1

u ) + ∇(δφn+1),
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it holds that

(ρn (
ên+1
u − enu

)
, δvn+1) − (ρn−1 (

ênu − en−1
u

)
, δvn+1) = −((ρn+1

− ρn)ên+1
u , δvn+1)

+ ((ρn
− ρn−1)ênu, δv

n+1) + (δ(ρn+1en+1
u ) − δ(ρnenu), δv

n+1) = −((ρn+1
− ρn)ên+1

u , δvn+1)
+ ((ρn

− ρn−1)ênu, δv
n+1) + (∇(δvn+1

− δvn),∇(δvn+1)),

and

(∆δên+1
u , δvn+1) = (δên+1

u ,∆(δvn+1)) = (δên+1
u ,−δ(ρn+1en+1

u ) + ∇δqn+1)

= −∥σ n+1δen+1
u ∥

2
− ((ρn+1

− ρn)enu, δe
n+1
u ) − (

ρn+1
− ρn

ρn+1 enu,∇φ
n+1) + (

ρn+1

ρn en+1
u ,∇φn)

+ (
1

ρn+1 ∇φn+1,∇δqn+1) − (
1
ρn ∇φn,∇δqn+1).

Subtracting two consecutive expressions in (3.13) yields

ρn
(
ên+1
u − enu
τ

)
− ρn−1

(
ênu − en−1

u

τ

)
− µ∆δên+1

u = −u(tn+1) · ∇u(tn+1)en+1
ρ − ρn+1enu · ∇ûn+1

− ρn+1u(tn+1) · ∇ ên+1
u + u(tn) · ∇u(tn)enρ + ρnen−1

u · ∇ûn
+ ρnu(tn) · ∇ ênu + µ∇δsn − ∇δp(tn+1)

− ρn+1(u(tn+1) − u(tn)
)
· ∇ûn+1

+ ρn(u(tn) − u(tn−1)
)
· ∇ûn

+ Rn+1
u − Rn

u. (5.3)

Taking inner product of (5.3) with 2τδvn+1, we arrive at

∥∇δvn+1
∥
2
− ∥∇δvn∥2

+ ∥∇δvn+1
− ∇δvn∥2

+ 2µτ∥σ n+1δen+1
u ∥

2

= 2((ρn+1
− ρn)ên+1

u , δvn+1) − 2((ρn
− ρn−1)ênu, δv

n+1) − 2µτ ((ρn+1
− ρn)enu, δe

n+1
u )

− 2µτ (
ρn+1

− ρn

ρn+1 enu,∇φ
n+1) + 2µτ (

ρn+1

ρn en+1
u ,∇φn) + 2µτ (

1
ρn+1 ∇φn+1,∇δqn+1)

− 2µτ (
1
ρn ∇φn,∇δqn+1) − 2τ (u(tn+1) · ∇u(tn+1)en+1

ρ , δvn+1)

− 2τ (ρn+1enu · ∇ûn+1, δvn+1) − 2τ (ρn+1u(tn+1) · ∇ ên+1
u , δvn+1)

+ 2τ (u(tn) · ∇u(tn)enρ, δv
n+1) + 2τ (ρnen−1

u · ∇ûn, δvn+1)

+ 2τ (ρnu(tn) · ∇ ênu, δv
n+1) + 2τ (µ∇δsn − ∇δp(tn+1), δvn+1)

− 2τ (ρn+1(u(tn+1) − u(tn)
)
· ∇ûn+1, δvn+1) + 2τ (ρn(u(tn) − u(tn−1)

)
· ∇ûn, δvn+1)

+ 2τ (Rn+1
u − Rn

u, δv
n+1) =

17∑
i=1

Mi.

Like (3.19), it easily holds that

M1 + M10 = −2τ (∇ · (ρn+1un) · ên+1
u , δvn+1) − 2τ (ρn+1u(tn+1) · ∇ ên+1

u , δvn+1)
= 2τ (∇ · (ρn+1enu), ê

n+1
u · δvn+1) − 2τ (ρn+1(u(tn+1) − u(tn)) · ∇ ên+1

u , δvn+1) + 2τ (ρn+1u(tn) · ∇δvn+1, ên+1
u )

≤ Cτ (τ + ∥enu∥)∥∇ ên+1
u ∥∥δvn+1

∥2 + Cτ∥ên+1
u ∥

2
+ Cτ∥∇δvn+1

∥
2

≤ Cτ 2∥∇ ên+1
u ∥

2
+ Cτ (∥ên+1

u ∥
2
+ ∥enu∥

2
+ ∥∇δvn+1

∥
2) +

µτ

6
∥σ n+1δen+1

u ∥
2

where we have already used (3.1), (2.11), (2.14), (3.11) and (5.2). Similarly, we can bound

M2 ≤ Cτ 2∥∇ ênu∥
2
+ Cτ (∥ênu∥

2
+ ∥enu∥

2
+ ∥∇δvn+1

∥
2) +

µτ

6
∥σ n+1δen+1

u ∥
2,

M3,M9 ≤ Cτ∥enu∥
2
+
µτ

6
∥σ n+1δen+1

u ∥
2, M4 ≤ Cτ∥enu∥

2
+ Cτ∥∇φn+1

∥
2,

M5 ≤ Cτ∥en+1
u ∥

2
+ Cτ∥∇φn

∥
2, M6 ≤ Cτ (∥∇φn+1

∥
2
+ ∥enu∥

2) +
µτ

6
∥σ n+1δen+1

u ∥
2,

M7 ≤ Cτ (∥∇φn
∥
2
+ ∥enu∥

2) +
µτ

6
∥σ n+1δen+1

u ∥
2, M8 ≤ Cτ (∥en+1

ρ ∥
2
+ ∥∇δvn+1

∥
2),

M11 ≤ Cτ (∥enρ∥
2
+ ∥∇δvn+1

∥
2), M12 ≤ Cτ (∥en−1

u ∥
2
+ ∥enu∥

2) +
µτ

6
∥σ n+1δen+1

u ∥
2,

M13 ≤ Cτ (∥ênu∥
2
+ ∥∇δvn+1

∥
2), M15,M16 ≤ Cτ 3 + Cτ∥∇δvn+1

∥
2,

M17 ≤ Cτ (τ 2 + ∥enρ∥
2
+ ∥en−1

ρ ∥
2) + Cτ∥∇δvn+1

∥
2,
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where we also used (4.10). Finally the only remaining term M14 vanishes since δvn+1 is divergence free. Combining all
the error estimates for Mi, 1 ≤ i ≤ 17, we get

∥∇δvn+1
∥
2
− ∥∇δvn∥2

+ ∥∇δvn+1
− ∇δvn∥2

+ 2µτ∥σ n+1δen+1
u ∥

2

≤ Cτ 3 + Cτ 2(∥∇ ênu∥
2
+ ∥∇ ên+1

u ∥
2) + Cτ (∥ênu∥

2
+ ∥ên+1

u ∥
2
+ ∥en−1

u ∥
2
+ ∥enu∥

2
+ ∥en+1

u ∥
2

+ ∥∇φn+1
∥
2
+ ∥∇φn

∥
2
+ ∥en−1

ρ ∥
2
+ ∥enρ∥

2
+ ∥en+1

ρ ∥
2
+ ∥∇δvn+1

∥
2) + µτ∥σ n+1δen+1

u ∥
2.

Then summing over n from zero to N − 1, thanks to (3.11), (3.24) and (4.4), we derive from the discrete Gronwall lemma
that

∥∇δvN∥
2
+

N−1∑
i=0

∥∇δvn+1
− ∇δvn∥2

+ µτ∥σ n+1δen+1
u ∥

2
≤ Cτ 2.

We derive from (3.6) that

δên+1
u = δen+1

u +
1

ρn+1 ∇φn+1
−

1
ρn ∇φn.

We derive from the above and (3.11) that

τ

N−1∑
n=0

∥δên+1
u ∥

2
≤ Cτ

N−1∑
n=0

(
∥δen+1

u ∥
2
+ ∥

1
ρn+1 ∇φn+1

∥
2
+ ∥

1
ρn ∇φn

∥
2
)

≤ Cτ 2.

Therefore we arrive at (5.1) thanks to (4.3). □

5.2. Error estimate for the pressure

We now estimate the pressure error in L2(0, T ; L2). This hinges on the error estimate for the time difference of velocity
in Lemma 4.

Theorem 2. Under the same assumptions as Lemma 3, there exists a constant C > 0 such that

τ

N−1∑
n=0

∥p(tn) − pn∥2
L2/R ≤ Cτ , ∀1 ≤ N ≤ T/τ . (5.4)

Proof. In view of (3.6), we replace enu in (3.13) by ênu −
1
ρn ∇φn to get

∇
(
p(tn) − pn

)
= −∇ (p(tn+1) − p(tn))− ρn

(
ên+1
u − ênu
τ

)
+ µ∆ên+1

u − u(tn+1) · ∇u(tn+1)en+1
ρ

− ρn+1enu · ∇ûn+1
− ρn+1u(tn+1) · ∇ ên+1

u − ρn+1(u(tn+1) − u(tn)
)
· ∇ûn+1

+ Rn+1
u , (5.5)

where we have used the definition (2.8), i.e. pn = µsn −
φn

τ
.

Since for all v ∈ V we have from (3.1)

(u(tn+1) · ∇u(tn+1)en+1
ρ , v) ≤ C∥en+1

ρ ∥∥v∥1,

(ρn+1enu · ∇ûn+1, v) ≤ ∥∇enu∥∥v∥1,

(ρn+1u(tn+1) · ∇ ên+1
u , v) ≤ C∥∇ ên+1

u ∥ ∥ ∥v∥1,

(ρn+1(u(tn+1) − u(tn)
)
· ∇ûn+1, v) ≤ Cτ∥v∥1,

(∇ (p(tn+1) − p(tn)) , v) ≤ Cτ∥v∥1.

We have also, for all v ∈ V ,

(−ρn
(
ên+1
u − ênu
τ

)
+ µ∆ên+1

u + Rn+1
u , v) ≤ (

1
τ

∥ên+1
u − ênu∥−1 + ∥Rn+1

u ∥−1 + µ∥∇ ên+1
u ∥)∥v∥1.

From (4.4) and (3.15) we derive

∥p(tn) − pn∥L2/R ≤ sup
v∈H1

0 (Ω)

(p(tn) − pn, div v)
∥∇v∥

≤ (
1
τ

∥ên+1
u − ênu∥−1 + ∥∇ ên+1

u ∥ + ∥∇enu∥) + Cτ .

What remains now is to square, multiply by τ , and sum over n from 0 to N−1. Recalling (3.11), (3.24) and (5.1), assertion
(5.4) follows immediately. This concludes the proof. □
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6. A finite element discretization and its stability

The scheme (2.1)–(2.8) in its semi-discrete form was introduced in [9]. However, it was mentioned in Remark 3.2
of [9] that ‘‘How to design a suitable space discretization and prove its stability is a more complicate issue’’. We shall
construct below a finite element method for the scheme (2.1)–(2.8).

Let Th = {K } be a shape regular quasi-uniform partition of Ω with mesh size h. We define

V k
h = {v ∈ C(Ω) : v|K∈ Pk, k ≥ 1, ∀K ∈ Th},

where Pk denotes the space consisting polynomials with order less or equal to k. Moreover, we denote the Raviart–
Thomas element ( or, Nédélec face element in 3D) and discontinuous element of degree k by RT k and DGk respectively,
which satisfies the discrete inf–sup condition for the mixed formulation of Laplacian [12–16]. We denote Vk

h := (V k
h )

d,
V̊k
h = Vk

h ∩ H1
0, and ˚RT k

:= RT k
∩ H0(div) where H0(div) = {v ∈ H(div) : v · n⃗ = 0 on ∂Ω}. Our finite element scheme is

described as follows:
FEM for convective GUM. Let ρ0h and u0h be a suitable approximation of ρ0 and u0 respectively. Take ρ0

h = ρ0h, u0
h =

u0h and s0h = 0; repeat for 0 ≤ n ≤ N − 1 (1 ≤ N ≤ T/τ ):
Step 1. Find ρn+1

h ∈ V 2k
h as the solution of

(Dτρn+1
h + un

h · ∇ρn+1
h , ψ) = 0, ∀ψ ∈ V 2k

h . (6.1)

Step 2. Find ûn+1
h ∈ V̊k

h as the solution of

(ρn
h
ûn+1
h − un

h

τ
,w) + (ρn+1

h (un
h · ∇)ûn+1

h , w) − (µsnh,∇ · w) + (µ∇ûn+1
h ,∇w) = (f n+1, w). ∀w ∈ V̊k

h. (6.2)

Step 3. Find ωn+1
h ∈ ˚RT k

, φn+1
h ∈ DGk as the solution of

(ρn+1
h ωn+1

h , χ ) − (φn+1
h ,∇ · χ ) = 0, ∀χ ∈ ˚RT k

, (6.3)

(∇ · ωn+1
h , ϑ) = (∇ · ûn+1

h , ϑ), ∀ϑ ∈ DGk. (6.4)

Step 4. Update un+1
h by

un+1
h = ûn+1

h − ωn+1
h , (6.5)

determine sn+1
h ∈ DGk from

(sn+1
h , v) = (snh − ∇ · ûn+1

h , v) ∀v ∈ DGk, (6.6)

and set

pn+1
h = µsn+1

h −
1
τ
φn+1
h . (6.7)

We shall first establish a result similar to Lemma 2.

Lemma 5. Assume that there exists two constants c, C > 0 such that c ≤ ρ0
h (x) ≤ C,∀x ∈ Ω̄ . Then, the numerical density ρn

h
determined from (6.1) satisfies:

c ≤ ρn
h (x) ≤ C ∀x ∈ Ω̄, ∀n. (6.8)

Proof. Let P2k
h : L2 → V 2k

h be the L2 projection operator. Since Dτρn+1
h + P2k

h (un
h · ∇ρn+1

h ) ∈ V 2k
h , we derive from (6.1) that

Dτρn+1
h + P2k

h (un
h · ∇ρn+1

h ) = 0.

Then, for any element K in Th, by using exactly the same argument as in Lemma 2, we can show c ≤ ρn
h (x) ≤ C ∀x ∈

K̄ , ∀n, which implies (6.8). □

Next, we prove the following stability result for the above FEM scheme.

Theorem 3. The Gauge–Uzawa Algorithm is unconditionally stable in the sense that, assuming that ρn
h > 0 then for all τ > 0

and 1 ≤ N ≤ T/τ the following a priori bounds hold:

∥ρN
h ∥

2
+

N−1∑
k=0

∥ρk+1
h − ρk

h∥
2

= ∥ρ0
h∥

2, (6.9)
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and

∥σN
h ûN

∥
2
+ µτ∥sNh ∥

2
+

N−1∑
k=0

(
∥σ k

h (û
k+1
h − uk

h)∥
2
+
µ

2
τ∥∇ûk+1

h ∥
2
)

≤ ∥σ 0
h û

0
h∥

2
+ Cµτ

N−1∑
k=0

∥f k+1
∥
2
−1, (6.10)

where σ n
h =

√
ρn
h .

Proof. Thanks to (6.4) and (6.5), it follows that

∇ · un
h = 0, ∀n. (6.11)

Taking the inner product of (6.1) with 2τρn+1
h to get

∥ρn+1
h ∥

2
− ∥ρn

h∥
2
+ ∥ρn+1

h − ρn
h∥

2
= 0,

where by (6.11) and un
h · n⃗ = 0 on ∂Ω we have used the fact

(un
h · ∇ρn+1

h , ρn+1
h ) = 0. (6.12)

Then summing up over n from 0 to N − 1 leads to (6.9).
Next, taking the inner product of (6.2) with 2τ ûn+1

h , we find

2(ρn
h (û

n+1
h − un

h), û
n+1
h ) + 2τ (ρn+1

h (un
h · ∇)ûn+1

h , ûn+1
h ) + 2τ (µ∇snh, û

n+1
h ) + 2τµ∥∇ûn+1

h ∥
2

= 2τ (f n+1, ûn+1
h ). (6.13)

Setting σ n
h =

√
ρn
h , we can rewrite the first term in the above as

2(ρn
h (û

n+1
h − un

h), û
n+1
h ) = ∥σ n

h û
n+1
h ∥

2
− ∥σ n

h u
n
h∥

2
+ ∥σ n

h (û
n+1
h − un

h)∥
2. (6.14)

Since by (6.3), (6.5), (6.11) and the fact that V̊k
h ⊂ ˚RT k [12,13] it holds that

∥σ n
h u

n
h∥

2
= (ρn

hu
n
h, u

n
h) = (ρn

h û
n
h − ρn

hω
n
h, u

n
h) = (ρn

h û
n
h, u

n
h) = (ρn

h û
n
h, û

n
h − ωn

h)

= ∥σ n
h û

n
h∥

2
− (ρn

hu
n
h + ρn

hω
n
h, ω

n
h) = ∥σ n

h û
n
h∥

2
− ∥σ n

hω
n
h∥

2, (6.15)

we only need to derive a suitable relation between ∥σ n
h û

n+1
h ∥

2 and ∥σ n+1
h ûn+1

h ∥
2. To this end, taking inner product of (6.1)

with τ ûn+1
h · ûn+1

h to get

(ρn+1
h − ρn

h , û
n+1
h · ûn+1

h ) + τ (un
h · ∇ρn+1

h , ûn+1
h · ûn+1

h )

= ∥σ n+1
h ûn+1

h ∥
2
− ∥σ n

h û
n+1
h ∥

2
− τ ((∇ · un

h)ρ
n+1
h , ûn+1

h · ûn+1
h ) − 2τ (ρn+1

h (un
h · ∇)ûn+1

h , ûn+1
h ) = 0. (6.16)

Due to (6.11) it holds that

((∇ · un
h)ρ

n+1
h , ûn+1

h · ûn+1
h ) = 0,

which together with (6.16) implies that

∥σ n+1
h ûn+1

h ∥
2
− ∥σ n

h û
n+1
h ∥

2
= 2τ (ρn+1

h (un
h · ∇)ûn+1

h , ûn+1
h ). (6.17)

Combining (6.17) and (6.15) with (6.14), we arrive at

2(ρn
h (û

n+1
h − un

h), û
n+1
h ) + 2τ (ρn+1

h (un
h · ∇)ûn+1

h , ûn+1
h )

= ∥σ n+1
h ûn+1

h ∥
2
− ∥σ n

h û
n
h∥

2
+ ∥σ n

h (û
n+1
h − un

h)∥
2
+ ∥σ n

hω
n
h∥

2. (6.18)

Then substituting (6.18) into (6.13), we have

∥σ n+1
h ûn+1

h ∥
2
− ∥σ n

h û
n
h∥

2
+ ∥σ n

h (û
n+1
h − un

h)∥
2
+ ∥σ n

hω
n
h∥

2
+ 2τµ∥∇ûn+1

h ∥
2

= 2τ (f n+1, ûn+1
h ) + 2τ (µsnh,∇ · ûn+1

h ) := Y1 + Y2. (6.19)

We can bound

Y1 ≤ Cτ∥f n+1
∥
2
−1 +

µτ

2
∥∇ûn+1

h ∥
2.
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Table 1
Error and convergence rate for convective GUM with k = 1.
τ ∥ρh − ρ∥L∞(L2) Rate ∥uh − u∥L2(L2) Rate

1.25E−02 4.59E−04 0.92 1.30E−06 0.83
6.25E−03 2.34E−04 0.97 6.84E−07 0.93
3.12E−03 1.18E−04 0.98 3.52E−07 0.96

Table 2
Error and convergence rate for convective GUM with k = 1.
τ ∥uh − u∥L2(H1) Rate ∥ph − p∥L2(L2) Rate

1.25E−02 2.18E−05 0.93 4.19E−05 0.82
6.25E−03 1.13E−05 0.94 2.24E−05 0.92
3.12E−03 5.71E−06 0.97 1.15E−05 0.96

Thanks to (3.2) and (6.6),

Y2 = −2µτ (sn+1
h − snh, s

n
h) = −µτ (∥sn+1

h ∥
2
− ∥sn+1

h − snh∥
2
− ∥snh∥

2)

= −µτ (∥sn+1
h ∥

2
− ∥snh∥

2) + µτ∥∇ · ûn+1
h ∥

2
≤ −µτ (∥sn+1

h ∥
2
− ∥snh∥

2) + µτ∥∇ûn+1
h ∥

2,

where from (6.6) we have used the fact that

−∇ · ûn+1
h = sn+1

h − snh.

Inserting the above estimates for Y1 and Y2 into (6.19) yields

∥σ n+1
h ûn+1

h ∥
2
− ∥σ n

h û
n
h∥

2
+ ∥σ n

h (û
n+1
h − un

h)∥
2
+ ∥σ n

hω
n
h∥

2
+ µτ (∥sn+1

h ∥
2
− ∥snh∥

2) +
τµ

2
∥∇ûn+1

h ∥
2

≤ Cτ∥f n+1
∥
2
−1.

Summing the above over n from 0 to N − 1 leads to (6.10). □

7. Numerical experiments

In this section, we present numerical examples to test the accuracy of the first-order algorithm proposed in Section 6.
We solve problem (1.1)–(1.3) using an analytical solution defined on the disk with a radius of 0.1:

Ω = {(x, y) ∈ R2
: x2 + y2 < 0.01}.

The exact solution is:⎧⎪⎨⎪⎩
ρ(x, y, t) = 2 + r cos(θ − sin(t)),
u1(x, y, t) = −y cos(t),
u2(x, y, t) = x cos(t),
p(x, y, t) = sin(t) sin(y) sin(t),

where r :=

√
x2 + y2 and θ := arctan(y/x). Note that the above exact solutions satisfy the mass conservation (1.1). We

set µ = 1 so that the corresponding right-hand side in the momentum equation (1.2) is

f (x, y, t) =

( (
y sin(t) − x cos2(t)

)
ρ(x, y, t) + cos(x) sin(y) sin(t)

−
(
x sin(t) + y cos2(t)

)
ρ(x, y, t) + sin(x) cos(y) sin(t)

)
.

Then we choose k = 1 in the algorithm of Section 6 which is related with the order of finite element space. Hence, the
mass conservation equation (1.1) is discretized in space using P2 continuous finite elements. To approximate the velocity
and pressure, we both use linear elements. To solve the problem (6.3)–(6.4) the mixed element ( ˚RT 1

,DG1) is used. We
perform the accuracy tests over the time interval [0,1] with respect to τ on a uniformly triangulation mesh with mesh
size h = τ/10.

In Tables 1 and 2, we display the errors and convergence rates in time for all variables. We observe that the errors
for all variables in the reported norms are of first-order which are consistent with our error estimates except that the
first-order convergence rate for the velocity error in L2(H1) is faster than the half-order proved in Lemma 3.

Then the same problem is solved using the algorithm of Section 6 again but now k = 2, which means the mass
conservation equation (1.1) is discretized in space using P4 continuous finite elements and the other equations are solved
using one order higher finite elements. We also perform the accuracy tests over the time interval [0,1] with respect to
τ on a uniformly triangulation mesh with mesh size τ = 30h2. The results are shown in Tables 3 and 4, from which we
observe that all the errors have the same order with respect to τ as in the first case.



14 H. Chen, J. Mao and J. Shen / Journal of Computational and Applied Mathematics 364 (2020) 112321

Table 3
Error and convergence rate for convective GUM with k = 2.
τ ∥ρh − ρ∥L2(L∞) Rate ∥uh − u∥L2(L2) Rate

6.25E−02 2.29E−04 0.96 6.51E−07 0.89
3.12E−02 1.17E−04 0.97 3.43E−07 0.93
1.56E−02 5.89E−05 0.99 1.77E−07 0.96

Table 4
Error and convergence rate for convective GUM with k = 2.
τ ∥uh − u∥L2(H1) Rate ∥ph − p∥L2(L2) Rate

6.25E−02 2.13E−05 0.91 2.22E−05 0.87
3.12E−02 1.12E−05 0.92 1.29E−05 0.91
1.56E−02 5.71E−06 0.97 6.78E−06 0.94
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