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Abstract. We propose and analyze spectral direction splitting schemes for the incom-

pressible Navier-Stokes equations. The schemes combine a Legendre-spectral method

for the spatial discretization and a pressure-stabilization/direction splitting scheme for

the temporal discretization, leading to a sequence of one-dimensional elliptic equations

at each time step while preserving the same order of accuracy as the usual pressure-

stabilization schemes. We prove that these schemes are unconditionally stable, and

present numerical results which demonstrate the stability, accuracy, and efficiency of

the proposed methods.
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1. Introduction

A main difficulty in solving the incompressible Navier-Stokes equations is how to deal

with the divergence-free constraint which couples the velocity and the pressure. There

exists an enormous amount of literature on this subject. A popular and efficient approach

is to use a projection type method which was originated from the pioneering works of

Chorin [2] and Temam [9]. This type of methods decouples the computation of pressure

from that of velocity, and only requires to solve a sequence of Poisson type equations at

each time step. We refer to [5] for an overview of the projection type methods.

Recently, Guermond and Minev [4] (see also [6]) proposed to combine the pressure-

stabilization method (cf. [3, 10]) and the direction splitting technique [7] for the time

discretization of the incompressible Navier-Stokes equations, leading to a sequence of

one-dimensional problems at each time step. In [4] and [6], it is shown that these

semi-discretized pressure-stabilization/direction splitting schemes are unconditionally sta-

ble and have the same order of accuracy as the usual projection schemes without spatial

discretization.
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In this paper, we consider the stability of the spatial discretization of the pressure-

stabilization/direction splitting schemes by using a Legendre-spectral method. It turns out

that a usual Legendre-Galerkin or Legendre-collocation method will not lead to uncon-

ditionally stable schemes as in the semi-discretized case. To overcome this difficulty, we

construct a hybrid of Legendre-Galerkin and Legendre-collocation methods which is easy

to implement and enables us to prove the unconditional stability. We also construct a

pressure-stabilization/direction splitting scheme for problems with variable viscosity and

prove that a semi-discretized version is unconditionally stable.

The outline of the paper is as follows. In the next section we construct a fully discretized

direction splitting scheme by using a hybrid of Legendre-collocation and Legendre-Galerkin

methods. In Section 3, we carry out a stability analysis for the fully discretized schemes for

both the standard and rotational versions. We present in Section 4 a generalization of the

spectral direction splitting scheme to the Navier-Stokes equations with variable viscosity

and prove a stability result in a simplified semi-discrete case. We present numerical results

and discussions in Section 5.

2. Spectral Direction Splitting Schemes

The direction splitting schemes are usually applied to separable domains. We shall re-

strict our attention in this paper to Ω = (−1,1)2, and consider the time-dependent Navier-

Stokes equations:



















∂ u

∂ t
− ν∆u + u · ∇u +∇p = f , in Ω× (0, T],

∇ · u = 0, in Ω× [0, T],

u|∂Ω = 0, in [0, T],

u|t=0 = u0, in Ω,

(2.1)

where ν is the viscosity coefficient, u and p stand for the velocity vector and the pressure

respectively. Since the treatment of the nonlinear term does not have an essential impact

on the pressure-stabilization and direction splitting. We shall restrict our attention in this

paper to the Stokes case, i.e., (2.1) without the nonlinear term.

2.1. Direction splitting scheme

We start with a second-order pressure-stabilization scheme:







1

△t
(un+1 − un)− ν∆un+1 + un

2
+∇pn = f n+ 1

2 , in Ω,

un+1|∂Ω = 0,

(2.2)
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1

△t
∇ · un+1 +∆φn+1 = 0, in Ω,

∂ φn+1

∂ n

�

�

�

∂Ω
= 0,

(2.3)

pn+1 = φn+1 + pn −χν∇ · un+1. (2.4)

The above scheme with χ = 0 was studied in [8], and it was shown that the scheme is

second-order accurate for the velocity and first-order accurate for the pressure in the L2-

norm. The case with 0 < χ ≤ 1 is related to the scheme introduced in [10], and it can

be shown that the scheme is second-order accurate for the velocity and 3/2-order accurate

for the pressure in the L2-norm. We shall adopt the classification in [5] and refer the case

with χ = 0 as the standard form and the case with 0< χ ≤ 1 as the rotational form.

While it is easy to write down a direction splitting (or the ADI) scheme for the step

(2.2), how to deal with (2.3) is not obvious. It was observed in [4] that the order of

accuracy for the scheme (2.2)-(2.4) remains the same if the Laplace operator in (2.3)

is replaced by a more general operator A defined by a bilinear form a(·, ·) satisfying the

following properties:

a(·, ·) is symmetric, and ‖∇ψ‖2
L2 ≤ a(ψ,ψ), ∀ψ ∈ D(A),

a(φ,ψ) =

∫

Ω

ψAφdx , ∀φ,ψ ∈ D(A), (2.5)

where D(A) is the domain of A.

The operator A used in [4] is the following:

A := (1− ∂x x)(1− ∂y y ), (2.6)

with the domain

D(A) := {ψ, (1− ∂y y)ψ,Aψ ∈ L2(Ω),∂yψ|y=±1 = 0,∂x ((1− ∂y y)ψ)|x=±1 = 0}.
The associated bilinear form a(·, ·) is given by

a(φ,ψ) = (φ,ψ) + (∇φ,∇ψ) + (∂x yφ,∂x yψ), (2.7)

where (·, ·) means the standard L2-inner product. It is an easy matter to verify that such a

A and a(·, ·) satisfy the property (2.5).

The following direction splitting scheme is proposed in [4].

Setting u0 = u|t=0, p−
1

2 = p|t=0 and φ−
1

2 = 0.

For n≥ 0, we look for (un+ 1

2 , un+1, pn+ 1

2 ) as follows:

• Velocity splitting:






un+ 1

2 − un

1

2
∆t

− ν
�

∂x x un+ 1

2 + ∂y y un
�

+∇p∗,n+
1

2 = f n+ 1

2 ,

un+ 1

2 |x=±1 = 0,

(2.8)



218 L. Chen, J. Shen and C. Xu







un+1 − un+ 1

2

1

2
∆t

− ν
�

∂x x un+ 1

2 + ∂y y un+1
�

+∇p∗,n+
1

2 = f n+ 1

2 ,

un+1|y=±1 = 0,

(2.9)

where

p∗,n+
1

2 = pn− 1

2 +φn− 1

2 . (2.10)

• Pressure splitting:

ψn+ 1

2 − ∂x xψ
n+ 1

2 = −∇ · u
n+1

∆t
, ∂xψ

n+ 1

2 |x=±1 = 0, (2.11)

φn+ 1

2 − ∂y yφ
n+ 1

2 =ψn+ 1

2 , ∂yφ
n+ 1

2 |y=±1 = 0; (2.12)

and

pn+ 1

2 = pn− 1

2 +φn+ 1

2 −χν∇ ·
�1

2
(un+1 + un)
�

. (2.13)

We observe that each of the substeps (2.8), (2.9), (2.11) and (2.12) is a sequence of one-

dimensional elliptic problems. Therefore, the overall scheme is extremely efficient. It has

been shown in [4, 6] that the above scheme is unconditionally stable and preserve the

temporal accuracy of the scheme (2.2)-(2.4).

2.2. Full discretization by a Legendre-spectral method

We now construct a full discretization scheme by using a Legendre-spectral method

which would preserve the stability of the semi-discretized scheme (2.8)-(2.13).

It turns out that a straightforward spatial discretization of (2.8)-(2.13) by using a

Legendre-Galerkin method or a Legendre-collocation method does not preserve the uncon-

ditional stability of the semi-discretized scheme (2.8)-(2.13). Therefore, we shall construct

a hybrid of the Legendre-Galerkin and Legendre-collocation methods which will allow us

to prove the unconditional stability while preserving the time accuracy.

We now introduce some basic notations which will be used hereafter. Let N be the set

of all non-negative integers and Λ = (−1,1). For any N ∈ N, we denote by PN (Λ) the set of

all polynomials of degree ≤ N defined in Λ, and set P0
N (Λ) := {φ ∈ PN (Λ) : φ(±1) = 0},

PN (Ω) = PN (Λ)⊗ PN (Λ), P
0
N (Ω) := {φ ∈ PN (Ω) : φ|∂ Ω = 0}.

Let x i and ωi or y j and ω j for 0 ≤ i, j ≤ N be the nodes and associated weights of

the Legendre-Gauss-Lobatto quadrature in Λ. Let Σ be the set of all collocation points

(x i, y j)
N

i, j=0
, and ΣI the set of all interior collocation points, i.e. ΣI := {x i j = (x i, y j), 1 ≤

i, j ≤ N − 1}. We denote by IN the polynomial interpolation operator based on the set Σ.

We define the discrete inner product:

(u, v)N ,Ω :=

N
∑

i, j=0

u(x i j)v(x i j)ωiω j,∀u, v ∈ C0(Ω̄), (2.14)
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and its associated norm

‖v‖N ,Ω := (v, v)
1/2
N ,Ω.

It is well known (cf. [1]) that

‖uN‖L2 ≤ ‖uN‖N ,Ω ≤
p

3‖uN‖L2 ,∀uN ∈ PN (Ω). (2.15)

For any fixed y ∈ Λ, we define the discrete scalar product with respect to x direction,

(·, ·)x ,N ,Λ, by

(u, v)x ,N ,Λ :=

N
∑

i=0

u(x i, y)v(x i, y)ωi ,∀u, v ∈ C0(Ω̄).

The notation (·, ·)y,N ,Λ can be defined similarly.

In cases where no confusion would arise, Ω and Λ may be dropped from the notations.

We consider the following full discretized version of the scheme (2.8)-(2.13).

Setting u0
N = IN u|t=0, p

− 1

2

N = IN p|t=0 and φ
− 1

2

N = 0. For n≥ 0, we look for (u
n+ 1

2

N , un+1
N ,

p
n+ 1

2

N ) as follows:

• Velocity splitting:

Find u
n+ 1

2

N ∈ PN (Ω) such that for each j ∈ {0,1, · · · , N}, u
n+ 1

2

N (·, y j) satisfies

u
n+ 1

2

N (x i, y j)− un
N (x i, y j)

1

2
∆t

− ν
�

∂x x u
n+ 1

2

N (x i, y j) + ∂y y un
N (x i, y j)
�

+∇p
∗,n+ 1

2

N (x i, y j) = f n+ 1

2 (x i, y j), i = 1,2, · · · , N − 1,

u
n+ 1

2

N (±1, y j) = 0; (2.16)

Find un+1
N ∈ P0

N (Ω) such that for each i ∈ {1,2, . . . , N − 1}, un+1
N (x i, ·) satisfies

un+1
N (x i, y j)− u

n+ 1

2

N (x i, y j)

1

2
∆t

− ν
�

∂x x u
n+ 1

2

N (x i, y j) + ∂y y un+1
N (x i, y j)
�

+∇p
∗,n+ 1

2

N (x i, y j) = f n+ 1

2 (x i, y j), j = 1,2, · · · , N − 1,

un+1
N (x i,±1) = 0. (2.17)

In the above,

p
∗,n+ 1

2

N = p
n− 1

2

N +φ
n− 1

2

N . (2.18)
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• Pressure splitting:

Find ψ
n+ 1

2

N ∈ PN (Ω), such that for each j ∈ {0,1, · · · , N}, ψn+ 1

2

N (x , y j) ∈ PN (Λ)

satisfies
�

ψ
n+ 1

2

N (x , y j),q1,N (x)
�

x ,N ,Λ
+
�

∂xψ
n+ 1

2

N (x , y j),∂xq1,N (x)
�

x ,N ,Λ

=
�

− ∇ · u
n+1
N (x , y j)

∆t
,q1,N (x)
�

x ,N ,Λ
, ∀q1,N (x) ∈ PN (Λ); (2.19)

Find φ
n+ 1

2

N ∈ PN (Ω), such that for each i ∈ {0,1, · · · , N}, φn+ 1

2

N (x i, y) ∈ PN (Λ) satis-

fies
�

φ
n+ 1

2

N (x i, y),q2,N (y)
�

y,N ,Λ
+
�

∂yφ
n+ 1

2

N (x i, y),∂y q2,N (y)
�

y,N ,Λ

=
�

ψ
n+ 1

2

N (x i, y),q2,N (y)
�

y,N ,Λ
, ∀q2,N (y) ∈ PN (Λ); (2.20)

and

p
n+ 1

2

N = p
n− 1

2

N +φ
n+ 1

2

N −χν∇ ·
�1

2
(un+1

N + un
N )
�

. (2.21)

Remark 2.1. By integration by parts in the above weak formulation (2.19)-(2.20), we can

derive the following equivalent formulation:

Find ψ
n+ 1

2

N ∈ PN (Ω), such that for each y j , j = 0,1, · · · , N , ψ
n+ 1

2

N (x , y j) ∈ PN (Λ) satis-

fies

ψ
n+ 1

2

N (x i, y j)− ∂x xψ
n+ 1

2

N (x i, y j) = −
∇ · un+1

N (x i, y j)

∆t
, i = 1,2, · · · , N − 1,

∂xψ
n+ 1

2

N (−1, y j) =ω0

�

ψ
n+ 1

2

N (−1, y j)− ∂x xψ
n+ 1

2

N (−1, y j) +
∇ · un+1

N (−1, y j)

∆t

�

,

∂xψ
n+ 1

2

N (1, y j) = −ωN

�

ψ
n+ 1

2

N (1, y j)− ∂x xψ
n+ 1

2

N (1, y j) +
∇ · un+1

N (1, y j)

∆t

�

.

Findφ
n+ 1

2

N ∈ PN (Ω), such that for each x i, i = 0,1, · · · , N , φ
n+ 1

2

N (x i, y) ∈ PN (Λ) satisfies

φ
n+ 1

2

N (x i, y j)− ∂y yφ
n+ 1

2

N (x i, y j) =ψ
n+ 1

2

N (x i, y j), j = 1,2, · · · , N − 1,

∂yφ
n+ 1

2

N (x i,−1) =ω0

�

φ
n+ 1

2

N (x i,−1)− ∂y yφ
n+ 1

2

N (x i,−1)−ψn+ 1

2

N (x i,−1)
�

,

∂yφ
n+ 1

2

N (x i, 1) = −ωN

�

φ
n+ 1

2

N (x i, 1)− ∂y yφ
n+ 1

2

N (x i, 1)−ψ
n+ 1

2

N (x i, 1)
�

.

Note that in the above, ψ
n+1/2
N (resp. φ

n+1/2
N ) satisfies the differential equation (2.11)

(resp. (2.12)) exactly at all interior collocation points, while the homogeneous Neumann

boundary conditions are satisfied only approximately with the error being the residual of

the differential equation multiplied by the weight ω0 or ωN which goes zero as N tends to

infinity.
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3. Stability Analysis

We shall prove that the scheme (2.16)-(2.21) is unconditionally stable by following a

similar procedure as in [6].

We define the bilinear form aN (·, ·) by:

aN (pN ,qN ) =(pN ,qN )N ,Ω+ (∂x pN ,∂xqN )N ,Ω+ (∂y pN ,∂yqN )N ,Ω

+ (∂x y pN ,∂x yqN )N ,Ω, ∀pN ,qN ∈ PN (Ω). (3.1)

Then it is easy to verify that aN (·, ·) satisfies the following properties:

aN (·, ·) is symmetric, and ‖∇qN‖2N ≤ aN (qN ,qN ), ∀qN ∈ PN (Ω). (3.2)

We also introduce the A-norm ‖ · ‖A and AN -norm ‖ · ‖AN
defined by

‖p‖A := a(p, p)
1

2 , ‖pN‖AN
:= aN (pN , pN )

1

2 . (3.3)

By virtue of the definitions (2.7) and (3.1), it is readily seen that the two norms ‖ · ‖A and

‖ · ‖AN
are equivalent in PN (Ω).

We define the discrete operator δ by

δp
n+ 1

2

N := p
n+ 1

2

N − p
n− 1

2

N , δ2p
n+ 1

2

N := p
n+ 1

2

N − 2p
n− 1

2

N + p
n− 3

2

N .

We also use ūN to denote the sequence whose generic term is ū
n+ 1

2

N := 1

2
(un+1

N + un
N ).

For any norm ‖ · ‖E , we denote

‖u‖2
l2(0,T ;E)

=∆t

K
∑

n=1

‖u(tn, ·)‖2E , ‖u‖2
l∞(0,T ;E)

= max
0≤n≤K

‖u(tn, ·)‖2E .

We start by proving the following lemma.

Lemma 3.1. The pressure splitting scheme (2.19)-(2.20) is equivalent to:

Find φ
n+ 1

2

N ∈ PN (Ω), such that

aN (φ
n+ 1

2

N ,qN ) =
�

− ∇ · u
n+1
N

∆t
,qN

�

N ,Ω
, ∀qN ∈ PN (Ω). (3.4)

Proof. Note that for any q2,N (y) ∈ PN (Λ) both functions (φ
n+ 1

2

N (x , y),q2,N (y))y,N ,Λ +

(∂yφ
n+ 1

2

N (x , y),∂yq2,N (y))y,N ,Λ and (ψ
n+ 1

2

N (x , y),q2,N (y))y,N ,Λ are polynomials of degree

not exceeding N with respect to x , and they are equal at the N+1 Legendre-Gauss-Lobatto

points according to equation (2.20). As a result, the two polynomials are identical, i.e.,

�

φ
n+ 1

2

N (x , y),q2,N (y)
�

y,N ,Λ
+
�

∂yφ
n+ 1

2

N (x , y),∂yq2,N (y)
�

y,N ,Λ

=
�

ψ
n+ 1

2

N (x , y),q2,N (y)
�

y,N ,Λ
, ∀q2,N (y) ∈ PN (Λ), ∀x ∈ Λ. (3.5)
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Differentiating both sides with respect to x gives

�

∂xφ
n+ 1

2

N (x i, y),q2,N (y)
�

y,N ,Λ
+
�

∂x yφ
n+ 1

2

N (x i, y),∂y q2,N (y)
�

y,N ,Λ

=
�

∂xψ
n+ 1

2

N (x i, y),q2,N (y)
�

y,N ,Λ
, ∀q2,N (y) ∈ PN (Λ), ∀i = 0,1, · · · , N . (3.6)

For any q1,N (x) ∈ PN (Λ), multiplying both sides of equation (3.6) by ∂x q1,N (x i)ωi and

summing up from i = 0,1, · · · , N , we obtain

�

∂xφ
n+ 1

2

N (x , y),∂xq1,N (x)q2,N(y)
�

N ,Ω
+
�

∂x yφ
n+ 1

2

N (x , y),∂x q1,N (x)∂yq2,N (y)
�

N ,Ω

=
�

∂xψ
n+ 1

2

N (x , y),∂xq1,N (x)q2,N(y)
�

N ,Ω
, ∀q1,N (x),q2,N(y) ∈ PN (Λ). (3.7)

Similarly, multiplying (2.20) by q1,N (x i)ωi and summing up from i = 0,1, · · · , N , we get

�

φ
n+ 1

2

N (x , y),q1,N (x)q2,N(y)
�

N ,Ω
+
�

∂yφ
n+ 1

2

N (x , y),q1,N (x)∂yq2,N (y)
�

N ,Ω

=
�

ψ
n+ 1

2

N (x , y),q1,N (x)q2,N(y)
�

N ,Ω
, ∀q1,N (x),q2,N(y) ∈ PN (Λ). (3.8)

Combining (3.8) and (3.7) yields

aN

�

φ
n+ 1

2

N ,q1,N (x)q2,N(y)
�

=
�

ψ
n+ 1

2

N (x , y),q1,N (x)q2,N(y)
�

N ,Ω
+
�

∂xψ
n+ 1

2

N (x , y),∂xq1,N (x)q2,N(y)
�

N ,Ω
,

∀q1,N (x),q2,N (y) ∈ PN (Λ). (3.9)

Now we multiply (2.19) by q2,N (y j)ω j and sum up over j = 0,1, · · · , N to get

�

ψ
n+ 1

2

N (x , y),q1,N (x)q2,N(y)
�

N ,Ω
+
�

∂xψ
n+ 1

2

N (x , y),∂xq1,N (x)q2,N(y)
�

N ,Ω

=
�

− ∇ · u
n+1
N (x , y)

∆t
,q1,N (x)q2,N(y)

�

N ,Ω
, ∀q1,N (x),q2,N (y) ∈ PN (Λ). (3.10)

By comparing (3.10) with (3.9), we obtain

aN

�

φ
n+ 1

2

N ,q1,N (x)q2,N(y)
�

=
�

− ∇ · u
n+1
N

∆t
,q1,N (x)q2,N(y)

�

N ,Ω
, ∀q1,N (x),q2,N(y) ∈ PN (Λ),

which implies (3.4). �

We are now in positive to prove the stability of the scheme. We start with the standard

case, i.e., χ = 0. Without loss of generality, we assume f = 0.
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Theorem 3.1. The solution to (2.16)-(2.21) with f = 0 and χ = 0 satisfies the following

inequality:

‖uN‖2l∞(0,T ;L2)
+
ν

2
‖∇uN‖2l2(0,T ;L2)

+∆t‖pN‖2l2(−∆t

2
,T−∆t

2
;A)
+
∆tν2

4
‖∂x y un+1

N ‖2l2(0,T ;L2)

≤ c

�

‖u0‖2L2 +
ν

2
‖∇u0‖2L2 +∆t‖p0‖2A+

∆tν2

4
‖∂x y u0‖2L2

�

,

where c is a constant independent of discretization parameters.

Proof. Subtracting equation (2.17) from (2.16), we obtain the following expression for

the half-step discrete velocity:

u
n+ 1

2

N (x i j) =
un+1

N (x i j) + un
N (x i j)

2
− ∆tν

4
∂y y(u

n+1
N (x i j)− un

N (x i j)), ∀x i j ∈ ΣI . (3.11)

On the other hand, adding (2.17) to (2.16) with f = 0, we find that

un+1
N (x i j)− un

N (x i j)

∆t
− ν∂x x u

n+ 1

2

N (x i j)− ν∂y y ū
n+ 1

2

N (x i j) +∇p
∗,n+ 1

2

N (x i j) = 0, ∀x i j ∈ ΣI .

(3.12)

Note that the functions on both sides of (3.11) are polynomials of degree ≤ N with respect

to x , which are equal at N−1 interior nodes according to (3.11) and also at two end points

due to the fact that

u
n+ 1

2

N (±1, y j) = un
N (±1, y j) = 0, ∀n= 0,1, · · · , K .

Thus from (3.11), we obtain

u
n+ 1

2

N (x , y j) =
un+1

N (x , y j) + un
N (x , y j)

2
− ∆tν

4
∂y y(u

n+1
N (x , y j)− un

N (x , y j)),

∀x ∈ Λ, j = 1, · · · , N − 1.

Taking two derivatives w.r.t. x , we get

∂x x u
n+ 1

2

N (x i j) = ∂x x ū
n+ 1

2

N (x i j)−
∆tν

4
∂x x y y (u

n+1
N (x i j)− un

N (x i j)), ∀x i j ∈ ΣI . (3.13)

Plugging (3.13) into (3.12) leads to

un+1
N (x i j)− un

N (x i j)

∆t
− ν∆ū

n+ 1

2

N (x i j) +∇p
∗,n+ 1

2

N (x i j) +
∆tν2

4
∂x x y y(u

n+1
N (x i j)− un

N (x i j))

= 0, ∀ x i j ∈ ΣI . (3.14)
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We multiply (3.14) by un+1
N (x i j)ωiω j , and sum up over i, j from 1 to N − 1 to yield

�un+1
N − un

N

∆t
, un+1

N

�

N
− ν
�

∆ū
n+ 1

2

N , un+1
N

�

N
+
�

∇p
∗,n+ 1

2

N , un+1
N

�

N

+
∆tν2

4

�

∂x x y y(u
n+1
N − un

N ), u
n+1
N

�

N
= 0. (3.15)

Integrating by parts in the second term and the last term, thanks to the boundary conditions

and the exactness of the one-dimensional Legendre-Gauss-Lobatto quadrature, and using

the identity 2(a− b, a) = ‖a‖2 + ‖a− b‖2 −‖b‖2, we find

‖un+1
N ‖2N + ‖un+1

N − un
N‖2N +

∆tν

2

�

‖∇un+1
N ‖2N + ‖∇(un+1

N + un
N )‖2N
�

+ 2∆t(∇p
∗,n+ 1

2

N , un+1
N )N +

∆t2ν2

4
‖∂x y un+1

N ‖2N +
∆t2ν2

4
‖∂x y(u

n+1
N − un

N )‖2N

= ‖un
N‖2N +

∆tν

2
‖∇un

N‖2N +
∆t2ν2

4
‖∂x y un

N‖2N . (3.16)

On the other hand, from (2.21) with χ = 0, we have

φ
n+ 1

2

N = p
n+ 1

2

N − p
n− 1

2

N and p
∗,n+ 1

2

N = 2p
n− 1

2

N − p
n− 3

2

N . (3.17)

In virtue of (3.4), the function p
n+ 1

2

N − p
n− 1

2

N ∈ PN (Ω) satisfies: for n≥ 0,

aN (p
n+ 1

2

N − p
n− 1

2

N ,qN ) = −
1

∆t
(∇ · un+1

N ,qN )N , ∀qN ∈ PN (Ω). (3.18)

Taking qN = 2∆t2p
∗,n+ 1

2

N := 2∆t2(2p
n− 1

2

N − p
n− 3

2

N ) in the above, and using the fact that

aN (·, ·) is symmetric, we have

− 2∆t(∇ · un+1
N , p

∗,n+ 1

2

N )N

= 2∆t2aN (δp
n+ 1

2

N , 2p
n− 1

2

N − p
n− 3

2

N )

= 2∆t2aN (δp
n+ 1

2

N , p
n+ 1

2

N ) + 2∆t2aN (δp
n+ 1

2

N ,−δp
n+ 1

2

N + δp
n− 1

2

N )

= ∆t2
�‖pn+ 1

2

N ‖2AN
−‖pn− 1

2

N ‖2AN
+ ‖δp

n− 1

2

N ‖2AN
−‖δ2p

n+ 1

2

N ‖2AN

�

. (3.19)

Next we seek to bound the term ‖δ2p
n+ 1

2

N ‖2AN
. Applying the time increment operator δ to

(3.18) and taking qN =∆tδ2p
n+ 1

2

N in the resulting equation, we obtain

∆t‖δ2p
n+ 1

2

N ‖2AN
=− (∇ · (un+1

N − un
N ),δ

2p
n+ 1

2

N )N

=(un+1
N − un

N ,∇δ2p
n+ 1

2

N )N ≤ ‖un+1
N − un

N‖N‖∇δ2p
n+ 1

2

N ‖N .



Spectral direction splitting schemes 225

Then by using the coercivity (3.2), we obtain

∆t‖∇δ2p
n+ 1

2

N ‖2N ≤ ‖un+1
N − un

N‖N‖∇δ2p
n+ 1

2

N ‖AN
,

which results in

∆t2‖δ2p
n+ 1

2

N ‖2AN
≤ ‖un+1

N − un
N‖2N .

Inserting this bound into (3.19) gives

∆t2(‖pn+ 1

2

N ‖2AN
+ ‖δp

n− 1

2

N ‖2AN
−‖pn− 1

2

N ‖2AN
)

≤ −2∆t(∇ · un+1
N , p

∗,n+ 1

2

N )N + ‖un+1
N − un

N‖2N .

Then, combining the above estimate with (3.16), noticing that

(∇ · un+1
N , p

∗,n+ 1

2

N )N = −(∇p
∗,n+ 1

2

N , un+1
N )N ,

and dropping some unnecessary positive terms, we arrive at

‖un+1
N ‖2N +

∆tν

2
‖∇un+1

N ‖2N +∆t2‖pn+ 1

2

N ‖2AN
+
∆t2ν2

4
‖∂x y un+1

N ‖2N

≤ ‖un
N‖2N +

∆tν

2
‖∇un

N‖2N +∆t2‖pn− 1

2

N ‖2AN
+
∆t2ν2

4
‖∂x y un

N‖2N .

Finally, the desired result is obtained by summing up the above estimate and using the

norm equivalences between ‖ · ‖A and ‖ · ‖AN
, and between ‖ · ‖N and ‖ · ‖L2 . �

Next, we establish the stability for the scheme (2.18)-(2.21) in the rotational form, i.e.,

with χ 6= 0.

Theorem 3.2. The solution to (2.16)-(2.21) with f = 0 and 0< χ ≤ 1 satisfies the following

inequality:

‖δun+1
N ‖2l∞(0,T ;L2)

+
ν

2
‖∇× δun+1

N ‖2l2(0,T ;L2)
+
ν

2
(1−χ)‖∇ · δun+1

N ‖2l2(0,T ;L2)

+
∆tν2

4
‖∂x yδun+1

N ‖2l2(0,T ;L2)
+∆t‖φn+ 1

2

N ‖2
l2(−∆t

2
,T−∆t

2
;A)
+χν‖∇ · un+1

N ‖2l2(0,T ;L2)

≤ c
�‖δu1

N‖2L2 +
ν

2
‖∇× δu1

N‖2L2 +
ν

2
(1−χ)‖∇ ·δu1

N‖2L2

+
∆tν2

4
‖∂x yδu1

N‖2L2 +∆t‖φ
1

2

N‖2A+χν‖∇ · u1
N‖2L2

�

,

where c is a constant independent of discretization parameters.
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Proof. Applying the time increment operator δ to (3.14) and taking the discrete inner

product with δun+1
N , we obtain

�δun+1
N − δun

N

∆t
,δun+1

N

�

N
− ν
�

∆δū
n+ 1

2

N ,δun+1
N

�

N
+
�

∇δp
∗,n+ 1

2

N ,δun+1
N

�

N

+
∆tν2

4

�

∂x x y yδ(u
n+1
N − un

N ),δun+1
N

�

N
= 0. (3.20)

As in the proof of previous theorem, we integrate by parts in the second term and the last

term to obtain

‖δun+1
N ‖2N + ‖δ2un+1

N ‖2N +
∆tν

2

�

‖∇δun+1
N ‖2N + ‖∇δ(un+1

N + un
N )‖2N
�

+ 2∆t(∇δp
∗,n+ 1

2

N ,δun+1
N )N +

∆t2ν2

4
‖∂x yδun+1

N ‖2N +
∆t2ν2

4
‖∂x yδ(u

n+1
N − un

N )‖2N

= ‖δun
N‖2N +

∆tν

2
‖∇δun

N‖2N +
∆t2ν2

4
‖∂x yδun

N‖2N . (3.21)

Rewrite (2.21) as

φ
n+ 1

2

N = p
n+ 1

2

N − p
n− 1

2

N +χν∇ · �1
2
(un+1

N + un
N )
�

= δp
n+ 1

2

N +
1

2
χν∇ · (un+1

N + un
N ).

Applying the time increment operator δ to (3.4) and taking qN = 2∆t2φ
n+ 1

2

N , using the

above relation, we obtain

∆t2
�‖φn+ 1

2

N ‖2AN
+ ‖δφn+ 1

2

N ‖2AN
−‖φn− 1

2

N ‖2AN

�

= −2∆t(∇ · δun+1
N ,φ

n+ 1

2

N )N

= −2∆t(∇ · δun+1
N ,δp

n+ 1

2

N +
1

2
χν∇ · (un+1

N + un
N ))N , (3.22)

from which we derive

∆t2
�‖φn+ 1

2

N ‖2AN
+ ‖δφn+ 1

2

N ‖2AN

�

+χν∆t‖∇ · un+1
N ‖2N

=∆t2‖φn− 1

2

N ‖2AN
+χν∆t‖∇ · un

N‖2N + 2∆t(δun+1
N ,∇δp

n+ 1

2

N )N .

(3.23)

Applying the time increment operator δ to (3.18) and taking qN = −2∆t2δ2φ
n+ 1

2

N , we get

−∆t2
�‖δφn+ 1

2

N ‖2AN
+ ‖δ2φ

n+ 1

2

N ‖2AN
−‖δφn− 1

2

N ‖2AN

�

= −2∆t(δun+1
N ,∇δ2φ

n+ 1

2

N )N . (3.24)
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Summing up (3.21), (3.23) and (3.24), and using the following identities

δp
∗,n+ 1

2

N + δ2φ
n+ 1

2

N − δp
n+ 1

2

N = δφ
n− 1

2

N + δp
n− 1

2

N + δ2φ
n+ 1

2

N − δp
n+ 1

2

N

= δφ
n+ 1

2

N − δ2p
n+ 1

2

N =
1

2
χν∇ · δ(un+1

N + un
N ),

2∆t
�1

2
χν∇ ·δ(un+1

N + un
N ),∇ · δun+1

N

�

N

=
1

2
χν∆t
�‖∇ · δun+1

N ‖2N + ‖∇ ·δ(un+1
N + un

N )‖2N −‖∇ · δun
N‖2N
�

,

and

‖∇u‖2
L2(Ω)

= ‖∇× u‖2
L2(Ω)

+ ‖∇ · u‖2
L2(Ω)

∀u ∈ H1
0(Ω)

2,

we deduce that

‖δun+1
N ‖2N + ‖δ2un+1

N ‖2N +
∆tν

2
‖∇× δun+1

N ‖2N +
∆tν

2
(1−χ)‖∇ · δun+1

N ‖2N

+
∆tν

2
‖∇× δ(un+1

N + un
N )‖2N +

∆tν

2
(1−χ)‖∇ · δ(un+1

N + un
N )‖2N

+
∆t2ν2

4
‖∂x yδun+1

N ‖2N +
∆t2ν2

4
‖∂x yδ(u

n+1
N − un

N )‖2N

+∆t2‖φn+ 1

2

N ‖2AN
+χν∆t‖∇ · un+1

N ‖2N +∆t2‖δφn− 1

2

N ‖2AN

= ‖δun
N‖2N +

∆tν

2
‖∇× δun

N‖2N +
∆tν

2
(1−χ)‖∇ · δun

N‖2N

+
∆t2ν2

4
‖∂x yδun

N‖2N +∆t2‖φn− 1

2

N ‖2AN
+χν∆t‖∇ · un

N‖2N +∆t2‖δ2φ
n+ 1

2

N ‖2AN
.

It remains to estimate the last term. This can be done by applying the time increment

operator δ2 to (3.4) and taking qN =∆tδ2φn+1
N to obtain

∆t‖δ2φ
n+ 1

2

N ‖AN
≤ ‖δ2un+1

N ‖N .

Finally, the desired result is obtained by summing up in n and using the norm equivalences

between ‖ · ‖A and ‖ · ‖AN
, and between ‖ · ‖N and ‖ · ‖L2 . �

4. Navier-Stokes Equations with Variable Viscosity

The main advantage of this new direction splitting method for solving the incompress-

ible Navier-Stokes equations is that the scheme consists of solving a sequence of one-

dimensional elliptic problems, which can be solved in a very simple and efficient way. In

this section, we generalize the scheme to treat the case with variable viscosity.
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We consider the following Navier-Stokes equations with variable viscosity:























∂ u

∂ t
−∇ · (ν(x , y, t)∇u) + u · ∇u +∇p = f , in Ω× (0, T],

∇ · u = 0, in Ω× [0, T],

u|∂Ω = 0, in [0, T],

u|t=0 = u0, in Ω,

(4.1)

where ν(x , y, t) > 0 is the viscosity which can vary in time and in space. In real applica-

tions, the viscosity is usually determined by some other relations. While the above problem

by itself does not model any realistic situation, one often needs to solve such a system as

part of the solution process in multi-phase incompressible flows, Boussinesq flows, or the

Navier-Stokes equations under a domain mapping. Therefore, it is very beneficial to have

an efficient numerical method for (4.1).

We propose the following direction splitting scheme for solving (4.1). For the sake of

simplicity, we omit the treatment of the nonlinear term below.

Setting u0 = u|t=0, p−
1

2 = p|t=0 andφ−
1

2 = 0. For n≥ 0, we look for (un+ 1

2 , un+1, pn+ 1

2 )

as follows:

• Velocity splitting:

un+ 1

2 − un

1

2
∆t

− ∂x

�

νn+ 1

2 (x , y)∂x un+ 1

2

�

− ∂y

�

νn+ 1

2 (x , y)∂yun
�

+∇p∗,n+
1

2

= f n+ 1

2 , un+ 1

2 |x=±1 = 0,

un+1 − un+ 1

2

1

2
∆t

− ∂x

�

νn+ 1

2 (x , y)∂x un+ 1

2

�

− ∂y

�

νn+ 1

2 (x , y)∂y un+1
�

+∇p∗,n+
1

2

= f n+ 1

2 , un+1|y=±1 = 0, (4.2)

where νn+ 1

2 := ν(x , y, tn+ 1

2 ).

• Pressure splitting:

ψn+ 1

2 − ∂x xψ
n+ 1

2 = −∇ · u
n+1

∆t
; ∂xψ

n+ 1

2 |x=±1 = 0,

φn+ 1

2 − ∂y yφ
n+ 1

2 =ψn+ 1

2 ; ∂yφ
n+ 1

2 |y=±1 = 0; (4.3)

and

pn+ 1

2 = pn− 1

2 +φn+ 1

2 −χν∇ · (1
2
(un+1 + un)). (4.4)
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It is easy to see that the above scheme has the same order of accuracy as the scheme (2.8)-

(2.13). However, it appears not easy to prove its stability directly. Therefore, we shall

prove an intermediate result. Namely, we replace the velocity splitting step (4.2) by

un+1 − un

∆t
− 1

2
∇ ·
�

νn+ 1

2 (x , y)∇(un+1 + un)
�

+∇p∗,n+
1

2 = 0, (4.5)

un+1|∂Ω = 0,

and prove the following result:

Theorem 4.1. The solution to (4.2)-(4.4) with χ = 0 satisfies the following estimate for all

T ≥ 0:

‖u‖2
l∞(0,T ;L2)

+
1

2
‖pν∇u‖2

l2(0,T ;L2)
+∆t‖p‖l2(−∆t

2
,T−∆t

2
,A)

≤ ‖u0‖2L2 +
1

2
∆t‖pν∇u0‖2L2 +∆t2‖p0‖2A. (4.6)

Proof. Taking the inner product of (4.5) with 2∆tun+1, we obtain

‖un+1‖2
L2 + ‖un+1 − un‖2

L2 +
1

2
∆t‖
p

νn+ 1

2∇un+1‖2
L2

+
1

2
∆t‖
p

νn+ 1

2∇(un+1 + un)‖2
L2 + 2∆t(∇p∗,n+

1

2 , un+1)

= ‖un‖2
L2 +

1

2
∆t‖
p

νn+ 1

2∇un‖2
L2. (4.7)

For χ = 0, we deduce from the (4.3) and (4.4) that (pn+ 1

2 − pn− 1

2 ) ∈ D(A) solves the

following problem:

a(pn+ 1

2 − pn− 1

2 ,q) = −∆t−1(∇ · un+1,q), ∀q ∈ D(A). (4.8)

Taking q = 2∆t2p∗,n+
1

2 := 2∆t2(2pn− 1

2 − pn− 3

2 ) in the above and using the fact that a(·, ·)
is a symmetric and coercive in H1(Ω), we infer

− 2∆t(∇ · un+1, p∗,n+
1

2 )

= 2∆t2a(δpn+ 1

2 , 2pn− 1

2 − pn− 3

2 )

= 2∆t2a(δpn+ 1

2 , pn+ 1

2 ) + 2∆t2a(δpn+ 1

2 ,−δpn+ 1

2 + δpn− 1

2 )

= ∆t2
�‖pn+ 1

2 ‖2A−‖pn− 1

2 ‖2A+ ‖δpn− 1

2 ‖2A−‖δ2pn+ 1

2 ‖2A
�

. (4.9)

Subtracting (4.8) at time tn from (4.8) at time tn+1, and taking the inner product of the

resulting equation with ∆tδ2pn+ 1

2 , we find

∆t‖δ2pn+ 1

2 ‖2A = −(∇ · (un+1 − un),δ2pn+ 1

2 ) = (un+1 − un,∇δ2pn+ 1

2 )

≤ ‖un+1 − un‖L2‖∇δ2pn+ 1

2 ‖L2 .
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Then using the coercivity property of the bilinear form a(·, ·), we infer

∆t‖∇δ2pn+ 1

2 ‖L2‖δ2pn+ 1

2 ‖A ≤ ‖un+1 − un‖L2‖∇δ2pn+ 1

2 ‖L2 ,

which implies ∆t2‖δ2pn+ 1

2 ‖2A ≤ ‖un+1 − un‖2
L2 . Inserting this bound in (4.9), we obtain

∆t2
�

‖pn+ 1

2 ‖2A+ ‖δpn− 1

2 ‖2A−‖pn− 1

2 ‖2A
�

≤ −2∆t(∇ · un+1, p∗,n+
1

2 ) + ‖un+1 − un‖2
L2.

Combining the above and (4.7), dropping some unnecessary terms, we arrive at

‖un+1‖2
L2 +

1

2
∆t‖
p

νn+ 1

2∇un+1‖2
L2 +∆t2‖pn+ 1

2 ‖2A

≤ ‖un‖2
L2 +

1

2
∆t‖
p

νn+ 1

2∇un‖2
L2 +∆t2‖pn− 1

2 ‖2A.

Finally, we obtain the desired result by summing over n. �

5. Numerical Results and Discussions

In this section, we present numerical experiments to verify the stability and accuracy

of the proposed schemes.

Example 5.1. We consider the linearized Navier-Stokes equations (2.1) with the exact

solution

u(x , y, t) = π sin t(sin 2πy sin2πx ,− sin2πx sin2πy),

p(x , y, t) = sin t cosπx sinπy.

We have implemented the spectral direction splitting scheme (2.16)-(2.21), and for the

sake of comparison, the corresponding non-splitting version (2.2)-(2.4) with χ = 1/2.

In the computations reported herein, we take N = 64 so that the spatial discretization

errors are negligible compared with the time discretization errors.

In Fig. 1, we plot, in a log-log scale, the L2-velocity errors (the left figure) and the

H1-velocity errors (the right figure) at T = 1. The L2-pressure errors are presented in

Fig. 2. The figures show that our algorithm is of second-order accuracy in the L2-norm for

the velocity, almost second-order for the H1-norm of the velocity and for the L2-norm of

the pressure. The results by the non-splitting version are slightly better but with the same

order of accuracy.

Example 5.2. We consider the exact solution of the linearized Navier-Stokes equations

with variable viscosity (4.1) to be

u(x , y, t) = π sin t(sin 2πy sin2πx ,− sin2πx sin2πy),

p(x , y, t) = sin t cosπx sinπy,

ν(x , y, t) = (sin2 t + 1)(x + 2)(y + 2).
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Figure 1: Left: Veloity error in L2-norm; Right: Veloity error in H1-norm.
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Figure 2: Pressure error in L2-norm at T = 1.
We use the scheme (4.2)-(4.4) discretized with the Legendre-spectral method similar

to (2.16)-(2.21), and we take N = 128 for all computations in this example.

The velocity errors in the L2-norm and the H1-norm at T = 1 are shown in Fig. 3, while

the pressure errors in the L2-norm are shown in Fig. 4. We observe that the errors behave

similarly as in the first example.

Notice that we used the space PN for both the velocity and pressure approximations in

the scheme (2.16)-(2.21). It is well known that PN × PN does not satisfy the inf-sup con-

dition (cf. for instance [1]). Although our spectral direction splitting scheme, is uniquely

solvable without the inf-sup condition, the accuracy of the pressure approximation may

still be affected by the lack of inf-sup condition as other projectional type schemes (cf. [5]).

This can be checked by looking at the pressure convergence rate in N with a fixed but very
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Figure 3: L2-norm (left) and H1-norm (right) error on the veloity at T = 1.
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Figure 4: L2-norm error on the pressure at T = 1.
small time step. We show in Fig. 5 in log-log scale the error on the pressure measured

in the L2-norm as a function of the polynomial degree N at T = 1 with the time step

∆t = 10−4. It is observed that the pressure approximation converges algebraically in N ,

instead of exponentially which is typical for spectral methods to smooth solutions. This

indicates that the lack of inf-sup condition does affect the pressure convergence rate when

∆t ≪ 1. However, the velocity convergence rate is not affected.

5.1. Concluding remarks

We considered in this paper spectral direction splitting schemes for the incompressible

Navier-Stokes equations. We constructed a hybrid of Legendre-collocation and Legendre-

Galerkin methods for the space variables and a pressure-stabilization/direction splitting
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Figure 5: E�et of the inf-sup ondition: pressure error vs. N in log-log sale.
scheme for the temporal discretization, leading to a sequence of one-dimensional ellip-

tic equations at each time step while preserving the same-order of accuracy as the usual

pressure-stabilization schemes. We showed that these schemes were unconditionally sta-

ble. We also constructed a direction splitting scheme for the Navier-Stokes equations with

variable viscosity.

The proposed schemes are very efficient and have the same order of accuracy as their

non-splitting versions. They are particularly suitable for problems with variable viscosity

and for parallel computing.
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