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Abstract
We studied the morphological evolution during spinodal phase separation
and subsequent coarsening in systems with a strong dependence of elastic
constants on the composition. An efficient numerical method is developed
for solving the two-dimensional inhomogeneous elastic equilibrium equations
by using the conjugate gradient method. A simple model binary system with
a symmetric miscibility gap is considered. It is shown that the early stages
of spinodal phase separation in a solid solution with a 50–50% composition
always result in an interconnected morphology, regardless of the degree of
elastic inhomogeneity. For systems with strong elastic inhomogeneity, particle
splitting and coalescence take place concurrently during coarsening. In the
late stages, the morphology has the characteristics that the hard phase forms
precipitates surrounded by the soft phase which forms the matrix, similar to that
predicted previously by others using first-order approximations. An analysis
of the coarsening kinetics shows that although the growth exponent decreases
with the increase in the degree of elastic inhomogeneity, there is no freezing
of the coarsening kinetics for all the cases that we studied, in contrast to that
predicted previously by others. The effect of an externally applied strain on the
two-phase morphology in the elastic regime is also discussed.

1. Introduction

Elastic strain energy is often generated during a solid-state phase transformation, and it plays
a critical role in determining the transformation path and the corresponding microstructure
evolution. Different theoretical approaches have been proposed for modelling the effects
of elastic energy on coherent precipitate morphology and coarsening during precipitation
reactions, including sharp-interface models, diffuse-interface models and discrete lattice
models, see [1, 2] for reviews. For simplicity, most existing models make the homogeneous
modulus approximation where the elastic moduli difference between different phases is
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neglected. In this approximation, it was shown long ago by Khachaturyan that the total
elastic energy for arbitrary coherent microstructure can be obtained in an analytical form in the
Fourier space if the microstructure is macroscopically homogeneous [3, 4]. Khachaturyan’s
approach has been extensively used in computer simulations of coherent phase transformation
and microstructure evolution using microscopic and continuum diffuse-interface field models
[5–17]. The homogeneous approximation has also generally been assumed in the sharp-
interface modelling of coherent precipitate morphologies and coarsening kinetics [18–23].
Many of the morphological transformations in coherent solids were satisfactorily explained
even with the homogeneous approximation.

It has long been recognized that elastic modulus inhomogeneity can also significantly
affect the coherent precipitate morphology. For example, it was shown by Eshelby that
an ellipsoid precipitate has less elastic energy than a spherical one if the precipitate is less
rigid than the matrix [24]. It was also noted by Johnson and Cahn that a softer domain
in a harder matrix changes its shape as its size grows [25]. However, the elastic solutions
become considerably more complicated for elastic inhomogeneous systems with arbitrary
microstructures. Different modelling techniques have been proposed in recent years with
which to study the microstructure evolution in elastically inhomogeneous systems. Schmidt
and Gross [26] and Schmidt et al [27] have investigated the effect of elastic inhomogeneity
on the equilibrium shape of a single particle as well as the interactions between two coherent
particles, using a boundary integral formulation with a sharp-interface description. However,
the temporal microstructure evolution through diffusional transport was not considered. Jou
et al [28] also used the boundary integral method to calculate the diffusion and elastic fields in
anisotropic and inhomogeneous systems by simultaneously solving the diffusion equation and
elasticity equation. Since the precipitate–matrix interfaces are assumed to be sharp, it is difficult
to handle certain morphological patterns which may occur during the initial stage of spinodal
phase separation and during precipitate coalescence or splitting. Lee proposed a discrete
atom method (DAM) which allowed rather arbitrary elastic inhomogeneity and precipitate
morphologies [29, 30]. The effect of elastic energy on coherent precipitate morphology in
elastically inhomogeneous systems has also been studied using the diffuse-interface approach
by solving the elastic equilibrium equation using the zeroth- or first-order approximations
[31–38]. It was shown by Onuki and Furukawa [38] that during spinodal decomposition
and the subsequent coarsening in an elastically isotropic system where the shear modulus
depends weakly on the local composition, the elastic misfit produces a percolated network of
anisotropically deformed softer regions wrapping elastically isotropic harder domains and the
coarsening rate is dramatically slowed down and even frozen. In a more recent attempt, Hu and
Chen developed an iterative approach to solve the elasticity equation for systems with strong
elastic inhomogeneity [39]. They showed that although prior calculations using first-order
approximations predicted qualitatively the correct morphology in an elastically inhomogeneous
two-phase system, the local stress distribution can be in serious error quantitatively if the
modulus inhomogeneity is large.

The purpose of this paper is to describe a diffuse-interface approach for studying the
coherent microstructural evolution in an elastically isotropic or anisotropic system with strong
elastic inhomogeneity. This approach is significantly different from the iterative approach
proposed by Hu and Chen [39]. Specifically, we propose to directly solve the inhomogeneous
elasticity equation at any given time using the so-called conjugate gradient method (CGM)
method, which provides higher accuracy than previous works using first-order or higher-order
approximations. A similar approach has been proposed by Leo et al [40]. The focus of
this work is on the influence of elastic inhomogeneity on the morphological evolution and the
coarsening kinetics as compared to those predicted previously using first-order approximations.
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The effects of an externally applied strain on the coarsening morphology in the elastic regime
are also investigated.

2. Elastic energy calculation

2.1. Elasticity equation

The description of microstructures in a diffuse-interface model considers field variables which
are functions of spatial coordinates. The simplest possible microstructure is an iso-structural
two-phase system which can be described by only one field variable, the composition field,
c(r). Within the bulk of the two phases, the composition assumes the equilibrium values c1,
c2, determined by the phase diagram. Across the interface from one phase to another, there
is a gradual change in composition. We assume the coherent condition at the interface, i.e.
the two lattice planes adjust to each other by elastic displacements of atoms from their regular
positions.

Let us consider a two-phase microstructure with inhomogeneous elastic moduli. For a
given composition distribution, we assume that the local elastic modulus tensor can be presented
in terms of the composition field in a linear form,

λijkl(r) = λ0
ijkl + λ1

ijklδc(r) (1)

where δc(r) = c(r)− c0, c0 is the average composition as the zero stress reference, and λ0
ijkl ,

λ1
ijkl are two constants. δc(r) can describe the spatial configuration of any arbitrary two-phase

mixture. Let λijkl and λ∗
ijkl be the elastic modulus tensors of the matrix phase and second

phase, respectively. Then, λ0
ijkl = ωλ∗

ijkl + (1 − ω)λijkl can be generally considered as an
arithmetically average modulus and ω is the volume fraction of the second phase. λ1

ijkl is a
constant proportional to the elastic moduli difference between the two phases λ∗

ijkl − λijkl .
In an inhomogeneous system, the stress-free lattice parameter depends on the local

composition. We consider a cubic material where the composition dependence of the lattice
parameter follows Vegard’s law, i.e. the lattice parameter varies linearly with the composition,

a(r) = a0 +
da

dc
δc(r) (2)

where a(r) and a0 are, respectively, the lattice parameters of the solid solution of the
composition c(r) and of the reference solution of the composition c0, and da/dc is the derivative
of the lattice parameter with respect to the local composition. The local stress-free strain ε0

kl(r),
which characterizes the lattice mismatch between the reference solution and a heterogeneity
of the local composition c(r), can be written as,

ε0
kl(r) = a(r)− a0

a0
= ε0δc(r)δkl (3)

where ε0 = (1/a0)(da/dc) is the composition expansion coefficient, and δkl is the Kronecker-
delta function.

The total strain εkl(r) can be written as a sum of the homogeneous strain ε̄kl , which
determines the macroscopic shape and volume change produced by internal stress and
externally applied stress, and an inhomogeneous local strain δεkl(r) defined by

εkl(r) = ε̄kl + δεkl(r) (4)

where the local strain δεkl(r) is related to the local displacement field u(r) by the usual
elasticity relation,

δεkl = 1
2 (uk,l + ul,k) (5)
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in which uk,l means ∂uk/∂ul . The elastic strain is the difference between the total strain and
the stress-free strain written as

εel
kl(r) = εkl(r)− ε0

kl(r). (6)

The stress tensor σij (r) is related to the elastic strain tensor by Hooke’s law according to
the linear elasticity theory, i.e.

σij (r) = λijkl(r)εel
kl(r)

= [λ0
ijkl + λ1

ijklδc(r)][ε̄kl + δεkl(r)− ε0
kl(r)] (7)

where (1), (4) and (6) are used. The mechanical equilibrium condition requires that
∂σij

∂rj
= 0. (8)

Substituting (3), (5) and (7) into (8), we obtain

∂

∂rj
[λ0
ijkl + λ1

ijklδc(r)]
∂uk

∂rl
= ∂δc(r)

∂rj
[(2λ1

ijklδc(r) + λ0
ijkl)ε0δkl − λ1

ijkl ε̄kl]. (9)

Equation (9) is the equilibrium equation of the elastic displacement fields that we need to
solve in order to calculate the elastic energy. Periodic boundary conditions are applied for all
dimensions in our study. All the partial derivatives in (9) can thus be conveniently calculated by
using fast Fourier transforms (FFT). For given elastic constants λ0

ijkl , λ
1
ijkl , homogeneous strain

ε̄kl , composition expansion coefficient ε0 and composition distribution δc(r) in the system, the
right-hand side of (9) can be evaluated as a function of the spatial coordinates which we have
denoted as fi(r).

2.2. Solution to the elasticity equation

The inhomogeneous elasticity, (9), can hardly be solved analytically due to its nonlinear nature.
Therefore accurate and efficient numerical algorithms need to be developed. To simplify the
mathematical problem, most existing methods have used either zeroth-order or first-order
approximations of (9) where an inaccuracy in the numerical solutions may exist, especially
for a strong inhomogeneous elasticity problem. Our aim is to solve (9) directly without
making the first-order or higher-order approximations. We want to address the effects of
elastic inhomogeneity by also considering the elastic anisotropy and an externally applied load.
Similar to the approach by Leo et al [40], we propose to use the conjugate gradient method
(CGM) which is effective for positive definite systems. It proceeds by generating vector
sequences of iterates (i.e. successive approximations of the solution), residuals corresponding
to the iterates, and search directions in updating the iterates and residuals [41]. The
convergence rate of the conjugate gradient method depends on the condition number κc of
the coefficient matrix. In fact, for a given tolerance, the conjugate gradient method converges
in O(

√
κc) iterations. In order to accelerate the convergence, it is a common practice to use a

preconditioner.
A preconditioner is a matrix that can transform the underlying linear system into an

equivalent one but with a smaller condition number. For example, let L be the operator on the
elastic displacement field u in (9). Therefore (9) can be written in a simple form as Lu = f .
If a preconditioning operator L approximates L in some way, then the transformed system

L−1Lu = L−1f (10)

has the same solutions as the original system Lu = f , but we expect the condition number of
L−1L to be much smaller than that of L, which can result in a faster convergence rate of the
solutions.
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We need to choose a preconditioner L that is a good approximation to L and also is easier
to solve than L. One good choice with which to approximate the operator L is to use the
operator L defined by

Lui = λ0
ijkl

∂2uk

∂rj ∂rl

where λ0
ijkl is a constant representing a certain average of λijkl . The operatorL can be explicitly

inverted in Fourier space with periodic boundary conditions. Indeed, by transforming uk and
δc into Fourier space, the approximate equation of (9)

Lui = λ0
ijkl

∂2uk

∂rj ∂rl
= σ 0

ij

∂δc(r)

∂rj
(11)

becomes, in Fourier space,

λ0
ijklgjgluk(g) = −iσ 0

ij gj δc(g) (12)

where g is the wavevector in Fourier space, gi is the ith component of g, and σ 0
ij =

(2λ1
ijklδc(r) + λ0

ijkl)ε0δkl − λ1
ijkl ε̄kl . For non-zero g, the solution of the displacement ui(g) in

Fourier space is

ui(g) = −iGij (g)σ
0
jkgkδc(g) (13)

where (G−1)ik(g) = λ0
ijklgjgl . The corresponding displacements ui in real space are then

obtained by inverse Fourier transform.
With a constant-coefficient operatorL as the preconditioner, we solve the inhomogeneous

elasticity equation using the conjugate gradient method, which is implemented by the sparse
linear algebra package (SLAP). The number of iterations for convergence needed for a given
accuracy depends mainly on the ratio of the elastic constants between the two phases, and in
a lesser context, on a number of other factors such as the stress-free strain, externally applied
strain and the anisotropy of the material. In most cases, it takes two or three iterations to obtain
a residual error of 10−7 if the elastic modulus difference between two phases is within the range
of ±100%. The larger the difference between the elastic constants between the two phases the
greater the number of iterations needed. The proposed method can be applied to a system with
good stability and accuracy where the elastic moduli between the phases can have a difference
as large as a factor of ten, which is significantly higher than that allowed by the first-order or
high-order approximations. A study of the convergence and accuracy of our preconditioned
CGM and the iterative techniques for high-order approximations proposed by Hu and Chen is
given in [39], where much higher accuracy is achieved in both the CGM method and iterative
techniques than in the first-order approximation. Theoretically the proposed CGM method
provides higher accuracy than any of the high-order approximations because the CGM method
solves the inhomogeneous elastic equilibrium equation directly.

Once the elastic displacement fields ui and the composition fields c(r) are known, the
elastic energy density can be calculated by

Eel = 1
2σij ε

el
ij = 1

2λijkl(r)ε
el
ij (r)ε

el
kl(r) (14)

where the elastic moduli λijkl(r) and the elastic strain tensor εel
ij (r) are evaluated by (1) and

(6), respectively.

3. Kinetic equations for microstructural evolution

In the phase-field modelling of phase separation and the subsequent coarsening in an iso-
structural two-phase system, the temporal evolution of a microstructure is determined by



504 J Zhu et al

solving the Cahn–Hilliard nonlinear diffusion equation [42],

∂c

∂t
= M∇2 δF

δc
(15)

whereM is the mobility and F is the total free energy, which includes the bulk chemical free
energy, the interfacial energy and the elastic strain energy. In the diffuse-interface model, the
interfacial energy is introduced through the gradient energy terms. The total free energy in an
inhomogeneous system is

F =
∫
V

[f (c) + Eel + 1
2κ(∇c)2] dV (16)

where f (c) is the local chemical free energy density,Eel is the elastic strain energy density, and
κ is the gradient energy coefficient which can be related to interatomic interaction parameters.
The variational derivative δF/δc can thus be written as

δF

δc
= δf

δc
+
δEel

δc
− κ∇2c. (17)

We choose the derivative δf/δc with a form δf/δc = 2(c − 0.5)
[−1 + 5(c − 0.5)2

]
which

has two equilibrium composition values of approximately 0.053 and 0.947. δEel/δc can be
calculated without much difficulty by taking the variational derivative of the elastic energy
density in (14) with respect to the composition field. Let us denote g(c) as the term
δf/δc+δEel/δc in (17). For a given composition distribution, g(c) can be computed explicitly
after the elastic equilibrium equation is solved. The nonlinear temporal evolution equation for
the composition field thus becomes

∂c

∂t
= M∇2[g(c)− κ∇2c]. (18)

Recently we have developed a semi-implicit Fourier spectral method for solving the Cahn–
Hilliard equation [43, 44]. Compared with the conventional forward Euler finite difference
method, our method is orders of magnitude more efficient and accurate. The first-order semi-
implicit Fourier spectral scheme for (18) is

(1 + tMκk4)c̃n+1(k) = c̃n(k)− tMk2{g̃(cn)}k (19)

where k = (k1, k2) is a vector in the Fourier space, k =
√
k2

1 + k2
2 is the magnitude of k, and

c̃(k) and {g̃(c)}k represent the Fourier transform of c(r) and g(c), respectively. The details of
this numerical approach can be found in [44].

At each time step, we solve the elastic equilibrium equation by the preconditioned
conjugate gradient method for a given composition field c(r). Then the evolution of the
microstructure is obtained by updating the composition field using (19).

4. Results and discussion

Our simulations were performed on a square domain discretized using a lattice of 256 × 256
grid points with periodic boundary conditions. To illustrate the inhomogeneous elasticity
effects, we select the average composition c0 = 0.5 (the critical composition), which will
result in equal volume fractions of the two phases in the equilibrium state as determined from
the phase diagram. Initially the system is prepared in a homogeneous state by assigning a
random number to each lattice site. The random numbers are uniformly distributed between
0.1 and −0.1 as the initial condition, corresponding to a high-temperature initial state where
the composition deviation from the average value is only caused by fluctuation.
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(a) (b) (c) (d)

Figure 1. Morphological patterns of coarsening in an elastically isotropic and homogeneous system
(KA = KB , µA = µB ). (a) t = 40; (b) t = 120; (c) t = 400; (d) t = 1000.

To simplify the computation, most input parameters are scaled in dimensionless units.
The typical parameters are: grid size  x = 1.0, time step  t = 0.2, gradient energy
coefficient κ = 1.0, mobilityM = 1.0, and the composition expansion coefficient ε0 = 0.07.
In comparison with the homogeneous elasticity equation (11), the inhomogeneous elasticity
equation (9) takes more computation time in the conjugate gradient iterations. For a two-phase
system where the elastic constants differ by 100% from each other, the total computation time
is about three times that for an elastically homogeneous system.

In order to illustrate the effects of inhomogeneous elasticity on the morphological pattern
evolution during phase separation and coarsening, we first studied a two-phase system with
isotropic and homogeneous elasticity as the reference system. Figure 1 shows a typical
example of its temporal evolution of morphological patterns during spinodal decomposition
and subsequent coarsening. The grey levels represent the local compositions, with white
representing high values and black representing low values. For the critical composition
c0 = 0.5, there is symmetry between the two phases forming interconnected domains. Shortly
after the quench, there are well defined interfaces separating regions of different phases. The
system evolves in such a way as to minimize the total free energy. Domain coarsening driven
by the reduction of interfacial area is evident in figure 1.

We want to see how these morphologies are altered in an elastically isotropic but
inhomogeneous system where the elastic constants of the two phases in equilibrium are
different. A system with equal bulk modulus but with different shear modulus ratios (µA/µB)
of the two phases is considered. In all of our later discussions, phase A always refers to the
phase with higher equilibrium composition value and phase B refers to the one with lower
equilibrium composition. An example of the microstructural evolution at four different times
is shown in figure 2 where µA = 3µB . As can be seen from figure 2, the microstructure no
longer has symmetry as in an interconnected morphology, but forms a pattern where particles
of phaseAwith higher shear modulus are surrounded by phaseB as the matrix with lower shear
modulus, especially in the later stages. If, on the contrary, µA is less than µB , the morphology
will be reversed where phase B forms isolated domains and phase A forms the matrix. These
morphologies generally agree with those from Onuki and Furukawa [38] in that an elastically
softer phase forms a percolated network and wraps the particles of the harder phase. The
coarsening microstructures strongly depend upon the interplay between the interfacial and
elastic energies. A minimization of the free energy requires that the elastically hard phase
deforms less than the soft phase. The elastic energy is less for hard precipitates in a soft matrix
than for soft precipitates in a hard matrix. Thus the morphology formed is such that most of
the elastic energy is stored in the matrix which is made up of the more deformable, elastically
softer phase wrapping the harder particles. The volume fraction of each phase is approximately
50% in our simulations. Nishimori and Onuki found that the soft phase could form the matrix
even at a relatively small volume fraction [45].
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(a) (b) (c) (d)

Figure 2. Morphological patterns of coarsening in an elastically isotropic and inhomogeneous
system (KA = KB , µA = 3µB ). (a) t = 40; (b) t = 120; (c) t = 400; (d) t = 1000.
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Figure 3. The average domain size Ravg as a function of time t for elastically isotropic
and inhomogeneous systems with different shear moduli. (a) µA = µB ; (b) µA = 1.3µB ;
(c) µA = 2µB ; (d) µA = 3µB .

Elastic inhomogeneity can also affect the coarsening kinetics when interfacial energy
becomes less important as the domain grows. A slowing down in coarsening may be expected
for alloys where the shear moduli in the matrix and precipitates are different. In figure 3 we
compare the measured average domain size Ravg (plotted by the open symbols) as a function
of time t at a relatively late stage of coarsening for isotropic and inhomogeneous systems with
different shear moduli ratios of the two phases. The average domain size is characterized by
the inverse of the first moment of the structure function as a function of the wavenumber [44].
As the coarsening continues, the typical length scale increases for all systems. Curves a, b, c,
and d represent the systems where µA/µB = 1, 1.3, 2 and 3, respectively. The higher the two
phase shear moduli ratio, the lower the typical domain size at the same coarsening time. It
was claimed by Onuki and Furukawa that domain growth could be frozen in cubic solids with
elastic misfit [38]. We have not observed domain freezing in the above simulations. However,
the coarsening does slow down due to the increase of elastic inhomogeneity.

It is usually observed that during the late stages of coarsening, two phase microstructures
exhibit dynamical scaling (or self-similarity). When the scaling regime is reached, the average
scale Ravg of the microstructure grows as a power law in time which can be written as

Ravg = R0 +Ktn (20)
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(a) (b) (c) (d)

Figure 4. Morphological patterns of coarsening in an elastically anisotropic and homogeneous
system (CAij = CBij ). (a) t = 40; (b) t = 100; (c) t = 400; (d) t = 1000.

whereK is called the coarsening rate,R0 is the initial length scale and n is the growth exponent.
In figure 3, a nonlinear fit in the form of (20) with different parameters ofR0,K and n is shown
by curves of different line types. Curve a is plotted for coarsening in an elastically homogeneous
system whereµA = µB . The fitted growth exponent n for curve a is approximately 0.33, which
is in good agreement with that in the LSW growth [46]. The coarsening rate constant K is
about 0.5 for curve a. According to our analysis results, the addition of elastic inhomogeneity
to the system only changes K by a small degree (±5%). However, the growth exponent n
depends strongly on µA/µB . The corresponding values of n for curves b, c and d are 0.32,
0.29 and 0.26, respectively. Therefore the growth exponent decreases with increasing elastic
inhomogeneity. The smaller the growth exponent is, the slower the coarsening occurs.

We also investigated the morphological evolution of an elastically anisotropic and homo-
geneous system. It was observed that an anisotropic system often develops strong spatial
correlations along elastically soft crystallographic directions during coarsening even though
the initial spatial configurations are nearly random. As coarsening continues, the matrix aligns
itself and reshapes the domains to reduce the elastic energy. We consider a cubic system with
a negative anisotropy ξa ≡ (C11 − C12 − 2C44)/C44 of −1. In figure 4 we display the time
evolution of the morphologies for a system where the two phases have equal elastic constants.
The elastic soft directions are [10] and [01] if no external stress is applied. Domains are inter-
connected rectangular stripes aligned in the soft directions. The characteristic microstructural
features were obtained by Nishimori and Onuki using a first-order approximation [32].

Figure 5 shows the microstructural patterns for an elastically anisotropic and
inhomogeneous system. The two phases have the same elastic anisotropy as in figure 4.
The elastic constants of phase A (displayed in white) are greater than those of phase B.
Instead of forming interconnected stripes, the hard phaseA forms many rectangular precipitates
surrounded by the soft phase at t = 400 and 1000. The hard precipitates align themselves along
the elastically soft directions [01] and [10] as shown in figure 4. If the system has a positive
anisotropy, the precipitates will then align along the [11] direction. Considering the effect of
elastic inhomogeneity on the morphology, a very important characteristic is that the hard phase
always forms the precipitate while the soft phase always forms the matrix, as demonstrated
clearly in both elastically isotropic and anisotropic systems. We simply define a parameter
θ = (CAij − CBij )/CAij to represent this elastic inhomogeneity in an anisotropic system. In
figure 5 where θ is about 30%, many hard precipitates are rectangular with a large aspect ratio
of the two sides in the early stages, as shown in figures 5(a) and 5(b). Accompanying the
microstructure coarsening, the coalescence and splitting of precipitates are also evident. Two
neighbouring hard precipitates will merge to form one large particle with the soft phase thin-
wall between them disappearing. As coarsening continues, it is also observed that a particle
with a rectangular stripe shape can possibly split into two particles with a smaller aspect
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(a) (b) (c) (d)

A A A1 A2

Figure 5. Morphological patterns of coarsening in an elastically anisotropic and inhomogeneous
system (CAij = 1.3CBij ). (a) t = 400; (b) t = 1000; (c) t = 3000; (d) t = 4000.

(a) (b) (c) (d)

B1 B2

B3 B4
B

c1

c2

Figure 6. Morphological patterns of coarsening in an elastically anisotropic and inhomogeneous
system (CAij = 2CBij ). (a) t = 400; (b) t = 1000; (c) t = 3000; (d) t = 4000.

ratio. For example, precipitate A in figure 5(b) eventually splits into A1 and A2 as shown in
figure 5(d). Necks are often formed in the middle of the long stripe during the splitting as
shown by the arrows. The occurrence of particle splitting can be understood in terms of the
competition between the elastic strain energy and the interfacial energy. The decrease in the
elastic energy resulting from the splitting compensates for the increase in the interfacial energy.
The particles are more square in form in the later stages than in the early stages of coarsening.
A similar particle splitting phenomenon has been observed by Lee using DAM [30].

The morphology evolutions in a system with a larger elastic inhomogeneity θ = 100% are
shown in figure 6. Compared with the corresponding patterns for a system with a smaller elastic
inhomogeneity shown in figure 5, the large inhomogeneity seems to produce more square-like
precipitates for the same evolution time. In the early stage, microstructure coarsening by
particle coalescence seems to be dominant, see for example, the merging of particles B1, B2,
B3 andB4 in figure 6(b) to form particleB in figure 6(c). At a late stage of coarsening, the system
average length scale increases resulting mainly from the dissolution of small domains with
high interfacial curvature and the growth of neighbouring large domains with low curvature.
For example, particles C1 and C2 in figure 6(c) later disappear and shrink, respectively, at
t = 4000. Comparing the microstructure at t = 3000 (figure 6(c)) with that at t = 4000
(figure 6(d)), we can see that the coarsening dramatically slows down in the later stage due
to the large elastic inhomogeneity, although freezing of the domains is not observed in our
simulations.

The microstructural features of an alloy system can be influenced by an applied stress.
Here we present our numerical simulations on phase separation and the subsequent coarsening
constrained by applying a constant uniaxial strain in the elastic regime where interfacial
dislocations and matrix plasticity are neglected. The total homogeneous strain is the applied
strain which determines the macroscopic deformation of the system. From (9), we can predict
that in an homogeneous elasticity system where the difference between the elastic constants
of the two phases is zero, i.e. λ1

ijkl = 0, the externally applied strain ε̄kl will not show any
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(a) (b) (c) (d)

Figure 7. Morphological patterns of coarsening in an elastically isotropic and inhomogeneous
system (KA = KB ,µA = 2µB ) with externally applied strain along the [10] direction (εa

11 = 0.02).
(a) t = 40; (b) t = 120; (c) t = 400; (d) t = 1000.

effect on the morphology. Therefore, there is no driving force for rafting under external
stress in the elastic regime if the matrix and precipitate have the same elastic constants [47].
However, for an elastically inhomogeneous system, an externally applied load can dramatically
influence the morphological pattern evolutions if the elastic inhomogeneity is significant.
Directional coarsening often occurs under applied stress which results in a strong anisotropy
of the microstructure. The direction of rafts is dependent on several factors including the
sign of the applied strain εa, the sign of the elastic lattice misfit ε0 and the sign of the elastic
inhomogeneity θ . The sign of the elastic inhomogeneity θ is defined as positive if elastic
moduli increase with the local composition. We define a parameter S ≡ θε0ε

a. It is predicted
that if S > 0, the orientation of rafts is parallel to the stress axis (type P) [47]. In contrast, if
S < 0, rafts are formed normal to the stress axis (type N).

Figure 7 shows the microstructures at four different times for an elastically isotropic sys-
tem with a tensile strain εa

11 = 0.02 applied. The shear modulus of the two phases differs from
100% (µA = 2µB). Both θ and ε0 are positive (ε0 = 0.07); thus S > 0. The hard phase formed
the precipitates which were stretched in the direction of the applied strain [10]. Driven by the
reduction of the total interfacial energy and elastic energy, the long stripe-shaped precipitates
grow at the expense of the shrinkage or dissolution of the small elliptically shaped particles.
However, coarsening in an elastically anisotropic system under an applied strain develops dif-
ferent morphologies. An example is shown in figure 8 for a system where the phases have the
anisotropy ξa = −1 and the elastic inhomogeneity θ is 200%. Initially both phases are intercon-
nected and stretched along the [10] direction, forming a lamellar pattern. During microstructure
coarsening, the disappearance of bottlenecks between two phases such asD andE in figure 8(c)
takes place. The bottlenecks are unstable because of the high stresses around them due to the
elastic inhomogeneity. Therefore microstructure will evolve in such a way as to eliminate
those bottlenecks. At later stages the morphology forms a parallel alignment of both phases.

Changing the sign of any one of the three, εa, θ and ε0, will change the rafting direction
with respect to the axis of the applied load. By using the system in figure 8(d) as the reference,
the corresponding morphologies of reversing the signs at t = 1000 are shown in figures 9(a)–
(c), respectively. Figure 9(a) is the morphology when a compressive strain εa

11 = −0.02 is
applied to the same system as in figure 8 with all other conditions the same. Figure 9(b)
shows the microstructure at the same time step if we only reverse the sign of the composition
expansion coefficient, i.e. ε0 = −0.07. It is interesting to note that figures 9(a) and 9(b) are
exactly the same. In figure 9(c) the sign of θ is reversed (θ < 0). In this case, phase A,
which has a higher equilibrium composition value than phase B, is actually a soft phase. If we
change the signs of two of the three parameters, εa, θ and ε0, the precipitates again will align
parallel to the axis of applied stress, since the sign of the parameter S is positive. As shown in
figure 9(d), the morphology where the signs of both εa and ε0 are reversed is exactly the same
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(a) (b) (c) (d)

D

E

Figure 8. Morphological patterns of coarsening in an elastically anisotropic and inhomogeneous
system (CAij = 2CBij ) with externally applied strain along the [10] direction (εa

11 = 0.02). (a)
t = 40; (b) t = 120; (c) t = 400; (d) t = 1000.

(a) (b) (c) (d)

Figure 9. Morphological patterns of coarsening in an elastically anisotropic and inhomogeneous
system with externally applied strain along the [10] direction at t = 1000 where the signs of the
parameters εa, ε0 and θ are reversed. Figure 8(d) is the reference microstructure. (a) Compressive
strain εa

11 = −0.02 (S < 0). (b) Negative composition expansion coefficient ε0 = −0.07 (S < 0).
(c) Negative elastic inhomogeneity θ = −100% (S < 0). (d) Compressive strain εa

11 = −0.02 and
negative composition expansion coefficient ε0 = −0.07 (S > 0).

as shown in figure 8(d). If a shear strain εa
11 is applied, we find that the precipitates will then

align along the [11] direction.

5. Conclusions

An efficient numerical approach coupling the conjugate gradient method and the Fourier-
spectral method has been developed to solve the two-dimensional inhomogeneous elasticity
equation and the Cahn–Hilliard equation, which allows very large elastic inhomogeneity.
The characteristics of a particular microstructure depend on the elastic properties such as
the elastic anisotropy, elastic inhomogeneity and externally applied strain. We have studied
the morphological evolution of coarsening for both elastically isotropic and anisotropic
systems. It is generally found that the hard phase tends to form precipitates surrounded
by the soft matrix phase to reduce the elastic energy, in agreement with prior studies using
first-order approximations. It is shown that particle coalescence and splitting may take place
simultaneously during coarsening. The growth exponent decreases with increasing elastic
inhomogeneity, indicating the slowing down of the coarsening. However, no coarsening
freezing is observed, contrary to some previous predictions using first-order approximations.
Finally, the effects of an externally applied strain in the elastic regime on the morphology
were studied. In an elastically inhomogeneous system, an applied strain can result in the
rafting of microstructures if the elastic inhomogeneity is sufficiently large. The orientation
of the rafts depends on the signs of the applied strain, composition expansion coefficient and
the elastic inhomogeneity. The proposed approach can be easily extended to the study of a
three-dimensional real system. In a forthcoming paper we will report on simulations in a real
alloy with strong elastic inhomogeneity in three dimensions.
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