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A SPECTRALLY ACCURATE APPROXIMATION TO
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Abstract. In this paper, we develop and analyze a spectral-Galerkin method for solving sub-
diffusion equations, which contain Caputo fractional derivatives with order \nu \in (0, 1). The basis
functions of our spectral method are constructed by applying a log mapping to Laguerre functions
and have already been proved to be suitable to approximate functions with fractional power singulari-
ties in [S. Chen and J. Shen, Log Orthogonal Functions: Approximation Properties and Applications,
preprint, arXiv:2003.01209[math.NA], 2020]. We provide rigorous regularity and error analysis which
show that the scheme is spectrally accurate, i.e., the convergence rate depends only on regularity
of problem data. The proof relies on the approximation properties of some reconstruction of the
basis functions as well as the sharp regularity estimate in some weighted Sobolev spaces. Numerical
experiments fully support the theoretical results and show the efficiency of the proposed spectral-
Galerkin method. We also develop a fully discrete scheme with the proposed spectral method in
time and the Galerkin finite element method in space, and apply the proposed techniques to subdif-
fusion equations with time-dependent diffusion coefficients as well as to the nonlinear time-fractional
Allen--Cahn equation.
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1. Introduction. Let \Omega \subset \BbbR d (d = 1, 2, 3) be a bounded domain with a convex
polygonal boundary \partial \Omega . Consider the following time-fractional evolution problem for
the function u(x, t) with \nu \in (0, 1):\left\{     

0
CD\nu 

t u(x, t) = Lu(x, t) + f(x, t), x \in \Omega , t \in \Lambda := (0, T ),

u(x, t) = 0, (x, t) \in \partial \Omega \times (0, T ],

u(x, 0) = u0(x), x \in \Omega ,

(1.1)
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A850 SHENG CHEN, JIE SHEN, ZHIMIN ZHANG, AND ZHI ZHOU

where T > 0 is a fixed final time, f and u0 are given source term and initial data,
respectively, and 0

CD\nu 
t denotes the Caputo fractional derivative with respect to t and

defined by [33, p. 70]

0
CD\nu 

t y(t) =
1

\Gamma (1 - \nu )

\int t

0

(t - \tau ) - \nu y\prime (\tau )d\tau ;

here Lu = \nabla \cdot (a(x)\nabla u) - b(x)u and a(x) is a symmetric d\times dmatrix-valued measurable
function on the domain \Omega with smooth entries, and b(x) \geq 0 is an L\infty (\Omega )-function.
We assume that

(1.2) c0| \xi | 2 \leq \xi Ta(x)\xi \leq c1| \xi | 2 for any \xi \in \BbbR d, x \in \Omega ,

where c0, c1 > 0 are constants. Then  - L is a symmetric and positive definite operator.
In recent years, the model (1.1) has received a growing interest in mathematical

analysis and numerical simulation, due to its capability to describe anomalous dif-
fusion processes, in which the mean square variance of particle displacements grows
sublinearly with the time, instead of the linear growth for a Gaussian process. Nowa-
days, the model has been successfully employed in many practical applications, e.g.,
diffusion in media with fractal geometry [48], ion transport in column experiments
[18], and non-Fickian transport in geological formation [6], to name but a few; see
[45] for an extensive list.

The literature on the numerical analysis of the subdiffusion problem is vast; see
[24, 31, 30, 62] for a rather incomplete list of the spatially semidiscrete scheme. In
contrast with the classical parabolic counterpart, the fractional differential operator
appearing in the diffusion model often leads to limited regularity of the solution,
which results in low accuracy of many popular time-stepping methods [56]. It has
been proved that the piecewise linear polynomial collocation method with uniform
meshes [37, 58] is only first-order accurate, due to the presence of the initial layer
caused by the fractional differential operator. Similarly, the convolution quadrature
[39, 12] generated by backward differential formulas (BDFs) for solving the model
(1.1) has only first-order accuracy [27], while the high-order convergence rates could
be restored by correcting the first several time steps. See also [57, 36, 34] for studies on
the L1 scheme with graded meshes, [63] for the analysis of the L1 scheme with initial
correction, [16, 5] for the convolution quadrature Runge--Kutta schemes, [43, 47, 44]
for the application of the discontinuous Galerkin method, and [3, 4, 22, 38, 60] for
some fast algorithms.

Compared with time-stepping schemes, spectral methods with specially construc-
ted basis functions (see [7, 9, 41, 8, 66, 21, 53, 68, 69]) could compensate for the weakly
singular behavior of functions and hence are expected to approximate the solution of
(1.1) accurately. Indeed, some efficient spectral/spectral collocation methods based
on the generalized Jacobi functions (or polyfractonomials) are proposed in [65, 66] for
some fractional models. In [10], Chen, Shen, and Wang studied approximation prop-
erties of generalized Jacobi polynomials in weighted Sobolev spaces and used them
to develop a spectral Petrov--Galerkin method for fractional ODEs without low-order
terms. Exponential convergence was theoretically confirmed, provided reasonable as-
sumptions on the smoothness of problem data. However, the analysis relies on the
fact that suitable fractional derivatives of the solution are smooth despite the solution
itself being nonsmooth, so it cannot be straightforwardly extended to the subdiffusion
equation (1.1). According to the singularity of the underlying fractional problems,
the M\"untz spectral method based on a nonlinear mapping to Jacobi polynomials was
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SPECTRAL APPROXIMATION TO SUBDIFFUSION EQUATIONS A851

proposed in [20, 21] to enhance the algebraic convergence rate. Our study is motivated
by a very recent work of Chen and Shen [9], where a spectral method was developed
by using novel log orthogonal functions (LOFs), which were constructed by applying a
log mapping to the Laguerre functions and can approximate weakly singular solutions
of fractional ODEs with spectral accuracy. This merit leads us to use LOFs to handle
the singularity that has arisen in the time direction of the time-fractional evolution
problem.

The main contribution of this paper is to develop a spectral-Galerkin method in
time with LOFs for solving the subdiffusion problem (1.1) and to show the spectral
accuracy, provided some reasonable assumptions on the smoothness of problem data.
In particular, we prove that if u0 \in \.H3(\Omega ) and for any fixed integer m
(1.3)\int T

0

t2j\| f (j)(t)\| 2H1
0 (\Omega )| log(t/T )| 

k dt <\infty for all 0 \leq j \leq k and k = 0, 1, . . . ,m,

then 0D
\nu 
2
t u(x, t) belongs to the nonuniformly weighted Sobolev space Am

\beta 
2 ,T

(\Lambda ;H1
0 (\Omega ))

with some mapping parameter \beta > 0 (defined in section 3.4), and there holds the
error estimate (Theorem 4.5)

\| uN  - u\| 2
H

\nu 
2 (\Lambda ;L2(\Omega ))

+ \| \nabla (uN  - u)\| 2L2(\Lambda ;L2(\Omega )) \leq cN - m,

where uN is the solution of the Galerkin spectral method using N basis functions
(LOFs), and the generic constant c is independent of N and u but may depend on
\nu , \beta ,m, T, u0, and f . We believe that this is the first such result with spectral accuracy
in time for weakly singular solutions of subdiffusion problem (1.1). Moreover, we
also study the fully discrete scheme with the proposed spectral method in time and
Galerkin finite element method in space, and develop a fast algorithm to solve the
matrix system.

It should be noted that the proposed approach is not limited to the linear sub-
diffusion problem with time-independent diffusion coefficients (1.1). Compared with
the high-order BDF schemes [27] and the Runge--Kutta schemes [16, 5], which require
that the source term is sufficiently smooth in the time direction, the current numerical
scheme allows singularity of the source term near t = 0 and hence performs well even
for solving linear subdiffusion equations with time-dependent diffusion coefficients as
well as nonlinear subdiffusion problems (see, e.g., section 5, Examples (b) and (c)).
We present numerical results to support our theoretical findings and to show the
significant advantages of the proposed method.

The rest of the paper is organized as follows. In section 2, we will provide some
background on fractional calculus and introduce the solution representation to (1.1)
by spectral decomposition. In section 3, we will introduce the LOFs and their approx-
imation properties. A spectral-Galerkin method using log orthogonal basis functions
will be developed in section 4, and the error analysis will be provided. A fully dis-
crete scheme and a fast algorithm to solve the matrix system will also be discussed.
In section 5, we will provide some numerical experiments to show the efficiency and
accuracy of the proposed spectral-Gakerkin method for solving the linear subdiffusion
equation (1.1) and apply the proposed techniques to solve subdiffusion equations with
time-dependent diffusion coefficients (5.6) and nonlinear subdiffusion models (5.14).

2. Preliminaries.

2.1. Fractional integrals and derivatives. To begin with, we shall review the
definitions of the fractional integrals and fractional derivatives and some important
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A852 SHENG CHEN, JIE SHEN, ZHIMIN ZHANG, AND ZHI ZHOU

basic properties. We recommend that potential readers refer to [49, 51], [35, Lemma
2.6 and Lemma 2.8], and [15, Corollary 2.15] for the details of the following results.

Definition 2.1 (fractional integrals and derivatives). For t \in \Lambda = (0, T ) and
\rho \in \BbbR +, the left and right fractional integrals are respectively defined as

0I
\rho 
t f(t) =

1

\Gamma (\rho )

\int t

0

f(\tau )

(t - \tau )1 - \rho 
dy, tI

\rho 
T f(t) =

1

\Gamma (\rho )

\int T

t

f(\tau )

(\tau  - t)1 - \rho 
d\tau .

For real s \in [k  - 1, k) with k \in \BbbN , the Riemann--Liouville fractional derivatives are
defined by

0D
s
tf(t) = \partial kt \{ 0Ik - s

t f(t)\} , tD
s
T f(t) = ( - 1)k\partial kt \{ tIk - s

T f(t)\} .

The Caputo fractional derivative of order s is defined by

0
CDs

tf(x) = 0I
k - s
t \{ \partial kt f(t)\} , t

CDs
1f(t) = ( - 1)ktI

k - s
T \{ \partial kt f(t)\} .

The derivative operator \partial kt := dk

dtk
, for notational simplicity, will be used throughout

this paper.

If f(0) = 0, then it holds that

(2.1) 0
CD\nu 

t f(t) = 0D
\nu 
t f(t), 0 < \nu < 1.

To establish a variational formula for (1.1), we introduce some fractional Hilbert
spaces. For any \beta \geq 0, we denote H\beta (\Lambda ) to be the Sobolev space of order \beta on the

interval \Lambda (see [1]), and H\beta 
0 (\Lambda ) the set of functions f in H\beta (\Lambda ) whose extension by

zero to \BbbR is in H\beta (\BbbR ), with the seminorm | f | H\beta 
0 (\Lambda ) = | \widetilde f | H\beta (\BbbR ). For 0 \leq \beta < 1/2, it is

well known that H\beta 
0 (\Lambda ) coincides with H

\beta (\Lambda ).

In [23, Theorems 2.1 and 3.1], it has been proved that for any f \in H\beta 
0 (\Lambda ) with

\beta \in (0, 1), there exist c\beta ,1 and c\beta ,2 such that

(2.2) c\beta ,1\| 0D\beta 
t f\| L2(\Lambda ) \leq | f | H\beta 

0 (\Lambda ) \leq c\beta ,2\| 0D\beta 
t f\| L2(\Lambda ).

Moreover, for any f, g \in H\beta 
0 (\Lambda ) with 0 \leq \beta < 1/2, it has been proved in [35, Lemma

2.8] that

(2.3) (0D
2\beta 
t f, g)\Lambda = (0D

\beta 
t f, tD

\beta 
T g)\Lambda ,

where (\cdot , \cdot )\Lambda denotes the inner product of L2(\Lambda ) or the duality between Hs
0(\Lambda ) and

its dual space (Hs
0(\Lambda ))

\ast = H - s(\Lambda ) with s \in [0, 1]. Note that the fractional operator

0D
\beta 
t f is defined in the distribution sense as in [35], or 0D

2\beta 
t f is not well defined for

f \in H\beta 
0 (\Lambda ). In addition, given f \in H\beta 

0 (\Lambda ), the following coercivity is valid:

(2.4) (0D
\beta 
t f, tD

\beta 
T f)\Lambda \geq c\beta | f | 2H\beta 

0 (\Lambda )
.

We shall use extensively Bochner--Sobolev spaces H\beta 
0 (\Lambda ;L

2(\Omega )). For any \beta \in 
(0, 1), we denote by H\beta 

0 (\Lambda ;L
2(\Omega )) the space of functions u with the norm defined as

| u| 2
H\beta 

0 (\Lambda ;L2(\Omega ))
=

\int 
\BbbR 

\int 
\BbbR 

\| \widetilde u(t) - \widetilde u(s)\| 2L2(\Omega )

| t - s| 1+2\beta 
dsdt.

Besides, we recall the important equivalence inequality that for \beta \in (0, 1/2)

(2.5) c\beta ,1\| 0D\beta 
t u\| 2L2(\Lambda ;L2(\Omega )) \leq | u| 2

H\beta 
0 (\Lambda ;L2(\Omega ))

\leq c\beta ,2\| 0D\beta 
t u\| 2L2(\Lambda ;L2(\Omega )).
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SPECTRAL APPROXIMATION TO SUBDIFFUSION EQUATIONS A853

2.2. Reformulation of original problem. In our paper, we shall study an
equivalent reformulation of the original subdiffusion problem (1.1). In case that u0 \in 
H2(\Omega ) \cap H1

0 (\Omega ), we let w = u - u0 and observe that w satisfies\left\{     
0
CD\nu 

tw(x, t) = Lw(x, t) + F (x, t), x \in \Omega , t \in \Lambda := (0, T ),

w(x, t) = 0, (x, t) \in \partial \Omega \times (0, T ],

w(x, 0) = 0, x \in \Omega ,

with F (x, t) = f(x, t) + Lu0. Since w(0) = 0, we have 0
CD\nu 

tw(t) = 0D
\nu 
tw(t) by (2.1).

Then, without loss of generality, we only consider the following subdiffusion problem
with trivial initial data:\left\{     

0D
\nu 
t u(x, t) = Lu(x, t) + f(x, t), x \in \Omega , t \in \Lambda := (0, T ),

u(x, t) = 0, (x, t) \in \partial \Omega \times (0, T ],

u(x, 0) = 0, x \in \Omega .

(2.6)

The case of a nonsmooth initial condition, e.g., u0 \in L2(\Omega ), requires new techniques
and is out of the scope of the current paper.

2.3. Solutions to subdiffusion equations. In this section, we introduce a rep-
resentation of the solution to (1.1) by spectral decomposition, which will be intensively
used in the error analysis. To this end, we consider the eigenvalue problem

 - L\varphi = \lambda \varphi in \Omega and \varphi n = 0 on \partial \Omega .

Since  - L is a symmetric uniformly elliptic operator, it admits a nondecreasing se-
quence \{ \lambda j\} \infty j=1 of positive eigenvalues, which tend to \infty with j \rightarrow \infty , and a corre-

sponding sequence \{ \varphi j\} \infty j=1 of eigenfunctions, \varphi j \in Dom(L) = H1
0 (\Omega )\cap H2(\Omega ), forms

an orthonormal basis in L2(\Omega ), whose inner product is denoted by (\cdot , \cdot )\Omega . Further,

\| v\| \.H0(\Omega ) = \| v\| L2(\Omega ) = (v, v)
1/2
\Omega is the norm in L2(\Omega ). Besides, it is easy to verify

that \| v\| \.H1(\Omega ) = \| \nabla v\| L2(\Omega ) is also the norm in H1
0 (\Omega ) and \| v\| \.H2(\Omega ) = \| \Delta v\| L2(\Omega ) is

equivalent to the norm in H2(\Omega ) \cap H1
0 (\Omega ) (cf. [59, Lemma 3.1]).

Next, we represent the solution to problem (2.6) using the eigenpairs \{ (\lambda j , \varphi j)\} \infty j=1.

Define an operator E(t) for v \in L2(\Omega ) by

E(t)v(x) =

\infty \sum 
j=1

t\nu  - 1E\nu ,\nu ( - \lambda jt\nu ) (v, \varphi j)\Omega \varphi j(x),

where Ea,b(z) denotes the two-parameter Mittag--Leffler function:

Ea,b(z) =

\infty \sum 
j=0

zj

\Gamma (aj + b)
, z \in \BbbC , a > 0, b \in \BbbR .

The Mittag--Leffler function plays a crucial role in solving fractional differential equa-
tions. A lot of useful properties can be found in [19, 33, 49]. For clarity, here we list
some results which will be used in the subsequent sections below.

Lemma 2.2. Let 0 < a < 2, b \in \BbbR , and a\pi /2 < \mu < min(\pi , a\pi ). There exists a
constant C = C(a, b, \mu ) > 0 such that

| Ea,b(z)| \leq 
C

1 + | z| 
, \mu \leq | arg(z)| \leq \pi .
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Lemma 2.3. For \lambda > 0, a > 0, and b \in \BbbR and fixed positive integer k, we have

(2.7) \partial kt \{ tb - 1Ea,b( - \lambda ta)\} = tb - k - 1Ea,b - k( - \lambda ta), t > 0.

In particular, for b = 1 and b = a, there exists

\partial kt Ea,1( - \lambda ta) =  - \lambda ta - kEa,a - k+1( - \lambda ta),
\partial kt \{ ta - 1Ea,a( - \lambda ta)\} = ta - k - 1Ea,a - k( - \lambda ta),

where \partial kt := dk

dtk
is the k-fold derivative with respect to t.

Proof. The proof can be ended by the following relation:

\partial kt \{ tb - 1Ea,b( - \lambda ta)\} = \partial kt

\infty \sum 
j=0

( - \lambda )jtja+b - 1

\Gamma (ja+ b)
= tb - k - 1Ea,b - k( - \lambda ta)

for any t > 0.

Then the solution to (2.6) could be expressed as (see [50, Theorem 2.1])
(2.8)

u(x, t) =

\int t

0

E(t - s)f(s) ds :=

\infty \sum 
n=1

\int t

0

\tau \nu  - 1E\nu ,\nu ( - \lambda n\tau \nu )
\bigl( 
f(\cdot , t - \tau ), \varphi n

\bigr) 
\Omega 
\varphi n(x)d\tau .

Remark 2.1. From the series expansion of the Mittag--Leffler function, it is easy
to observe that the solution (2.8) is weakly singular near t = 0. This leads to low
accuracy of many popular time-stepping methods. For example, in the case where
f(x, t) \equiv f(x), the solution can be written as

u(x, t) =

\infty \sum 
n=1

\int t

0

\tau \nu  - 1E\nu ,\nu ( - \lambda n\tau \nu )d\tau 
\bigl( 
f, \varphi n

\bigr) 
\Omega 
\varphi n(x)

=

\infty \sum 
n=1

1

\lambda n
E\nu ,1( - \lambda n\tau \nu )

\bigl( 
f, \varphi n

\bigr) 
\Omega 
\varphi n(x).

In fact, Lemma 2.3 indicates that, for m \geq 1, the m-fold derivative \partial mt E\nu ,1( - \lambda t\nu ) /\in 
L1(0, T ). As a result, the solution of the subdiffusion model fails to meet the regularity
assumptions of many existing algorithms. In order to get rid of this dilemma, we
introduce the following log orthogonal functions, which can approximate the Mittag--
Leffler functions with an exponential convergence rate.

3. Log orthogonal functions (LOFs). In order to design an efficient spectral
method in the time direction of the subdiffusion equation, we shall use the following
LOFs:

\scrS n(t) := \scrS n(t;\beta ) = t\beta /2Ln( - (\beta + 1) log t), t \in (0, 1),

where Ln(x) = Ln( - (\beta +1) log t) is the classical Laguerre polynomial of the variable
x \in (0,\infty ). The mapping parameter \beta is designed for handling functions with distinct
singular behavior when t is close to 0 (see [9]).

The LOFs were proposed by Chen and Shen [9] very recently for solving ODEs
with one point singularity. We will see in subsequent sections that the new method
based on LOFs perfectly circumvents the obstacle caused by the singularity of the
solution of the subdiffusion equations.
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3.1. Basic properties. Various properties of LOFs can be found in [9]. For
clarity, here we just list some useful results:

\bullet Orthogonality: Owing to the orthogonality of Laguerre polynomials, there
exists \int 1

0

\scrS n(t) \scrS m(t) dt = (\beta + 1) - 1\delta mn, t \in I := (0, 1).

\bullet Gauss-LOFs quadrature: Let \{ xj , \omega j\} Nj=0 be the Gauss nodes and weights of
Laguerre polynomial LN+1(x). Denote\bigl\{ 

tj = e - xj/(\beta +1), \chi j = \omega jt
 - \beta 
j /(\beta + 1)\} Nj=0.

Then, for any p \in \scrP \beta ,log t
2N+1 , there exists

(3.1)

\int 1

0

p(t)dx =

N\sum 
j=0

p(tj) \chi j ,

where the approximation space

\scrP \beta ,log t
K := span\{ t\beta , t\beta log t, t\beta (log t)2, . . . , t\beta (log t)K\} .

\bullet Closed form: The closed form can be read as

\scrS n(t) =

n\sum 
k=0

( - 1)k

k!

\biggl( 
n

n - k

\biggr) 
t
\beta 
2 [ - (\beta + 1) log t]k.

In particular, \scrS n(1) = 1.

\bullet Generalized derivative relation: Define the generalized derivative

\partial \gamma ,tu := t\gamma +1\partial t\{ t - \gamma u\} = t\partial tu - \gamma u.

For parameter \gamma = \beta /2, it holds that

\partial \gamma ,t \scrS n(t) = \partial \beta 
2 ,t \scrS n(t) = (\beta + 1)

n - 1\sum 
l=0

\scrS l(t).

Then, combining the above equalities, it holds that

\partial t \scrS n(t) = t - 1

\biggl( 
\beta 

2
\scrS n(t) + (\beta + 1)

n - 1\sum 
l=0

\scrS l(t)

\biggr) 
.

3.2. Approximation properties by LOFs. Here we shall introduce the ap-
proximation properties of the LOFs, which will be intensively used in the subsequent

section. To this end, we denote the L2-projection \Pi Nu from L2(I) to \scrP 
\beta 
2 ,log t

N by
satisfying

(3.2)

\int 1

0

(u - \Pi Nu)v dt = 0 \forall v \in \scrP 
\beta 
2 ,log t

N .
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A856 SHENG CHEN, JIE SHEN, ZHIMIN ZHANG, AND ZHI ZHOU

Owing to the orthogonality of the LOFs, it holds that

\Pi Nu(t) =

N\sum 
n=0

\^un \scrS n(t), with \^un = (\beta + 1)

\int 1

0

u(t)\scrS n(t) dt.

Moreover, for describing the approximability of the projection \Pi Nu, we define
the following nonuniformly weighted Sobolev space:

Am
\gamma (I) := \{ v \in L2(I) : \partial k

\gamma ,tv \in L2
\chi k(I), k = 1, 2, . . . ,m\} , with \chi (t) := | log t| 

equipped with seminorm and norm

| v| Am
\gamma (I) := \| \partial m

\gamma ,tv\| L2
\chi m (I), \| v\| Am

a (I) :=

\Biggl( 
m\sum 

k=0

| v| 2Ak
a(I)

\Biggr) 1/2

.

Here L2
w(I) denotes the weighted L2(I) space with norm \| u\| 2L2

w(I) =
\int 
I
| u(t)| 2w(t) dt.

Lemma 3.1 (see [9, Theorem 2.1]). Let m, N, k \in \BbbN , and let \beta >  - 1. For any
u \in Am

\beta /2(I) and 0 \leq k \leq \widetilde m, \widetilde m = min\{ m,N + 1\} , we have

(3.3) | u - \Pi Nu| Ak
\beta /2

(I) \leq 

\sqrt{} 
(\beta + 1)k - \widetilde m(N  - \widetilde m+ 1)!

(N  - k + 1)!
| u| A\widetilde m

\beta /2
(I).

In particular, for fixed m < N , there exists

(3.4) | u - \Pi Nu| Ak
\beta /2

(I) \leq cN (k - m)/2 | u| Am
\beta /2

(I),

where the constant c depends on \beta , k, and m.

3.3. Approximation to Mittag--Leffler functions. Recalling the solution
representation given in (2.8) and Remark 2.1, the main part in the time direction
consists of Mittag--Leffler functions E\nu ,1( - \lambda t\nu ), which are weakly singular near t =
0. This fact leads to the ineffectiveness of many numerical methods for solving the
subdiffusion model.

However, for any fixed integer m, it is easy to observe that for any \beta > 0 and
\nu \in (0, 1)

\partial m\beta 
2 ,t
E\nu ,1( - \lambda t\nu ) =

\sum \infty 

j=0

(\nu j  - \beta 
2 )

m

\Gamma (\nu j + 1)
( - \lambda t\nu )j ,

which is still in C[0, 1]. Therefore, E\nu ,1( - \lambda t\nu ) \in Am
\beta /2(I) for any \beta > 0, and the

bound of the seminorm is independent of \lambda . This observation together with the ap-
proximation properties given in Lemma 3.1 indicates that the Mittag--Leffler functions
E\nu ,1( - \lambda t\nu ) can be approximated efficiently by using LOFs and hence motivates us to
use LOF spectral methods to solve the subdiffusion equation (2.6).

To see this, we test the approximation to the Mittag--Leffler function E\nu ,1( - \lambda t\nu )
on the unit interval I = (0, 1), using the LOFs \{ Sn(t;\beta )\} Nn=0 as basis functions. We
evaluate the L2-error

eN = \| (\Pi N  - I)E\nu ,1( - \lambda t\nu )\| L2(I).

In Figure 1 (left), we plot the numerical error curves for different \nu , where we
fixed \beta = 6 and \lambda = 5. The numerical results demonstrate that the numerical approx-
imation of LOFs exponentially converges to the Mittag--Leffler function. Moreover,
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Fig. 1. Left: plot of eN for E\nu ,1( - 5t\nu ) with different \nu . Right: plot of eN for E0.7,1( - \lambda t0.7)
with different \lambda .

since the solution (2.8) consists of Mittag--Leffler functions with different eigenvalues
\lambda 1 < \lambda 2 < \cdot \cdot \cdot < \lambda n < \cdot \cdot \cdot , we also check the error eN with different \lambda , in order to
verify that LOFs are efficient for approximating Mittag--Leffler functions with a large
eigenvalue. In Figure 1 (right), we draw the numerical error curves, with fixed \beta = 6
and \nu = 0.7, for different \lambda . Our numerical results show that the value of \lambda does
not significantly affect the projection error which decays exponentially. Those nu-
merical results indicate that the LOFs are suitable for approximating Mittag--Leffler
functions with different parameters and hence also proper for solving fractional sub-
diffusion equation (2.6).

3.4. Shifted generalized LOFs. In the preceding section, we discussed the
approximation to Mittag--Leffler functions on the unit interval by using the LOFs.
Next, we shall consider the general interval \Lambda = (0, T ) and the solution of subdiffusion
equation (2.6). To this end, with a slight modification, we define a new class of LOFs
as

(3.5) \widehat \scrS \nu 
n(t) := (t/T )

\nu 
2 \scrS n(t/T ;\beta ), t \in (0, T ),

and an L2-projection \widehat \Pi N from L2(\Lambda ) onto the space spanned by \{ \scrS n(t/T )\} Nn=0 by

\widehat \Pi Nu(t) := \Pi Nu(T\tau ), with \tau \in (0, 1).

Remark 3.1. The modified basis functions \widehat \scrS \nu 
n(t) coincide with a special case of

the shifted generalized LOFs (SGLOFs) [9]. The power functions (t/T )
\nu 
2 multiplying

the shifted LOFs \scrS n(t/T ;\beta ) is for the convenience of the error analysis. Hereafter,
for simplicity, we still call the modified basis LOFs.

Besides, we shall also define the shifted weighted Sobolev space Am
\gamma ,T (\Lambda ):

Am
\gamma ,T (I) := \{ v \in L2(\Lambda ) : \partial k

\gamma ,tv \in L2
\chi k
T
(\Lambda ), k = 1, 2, . . . ,m\} , with \chi T (t) := | log(t/T )| .

Then we have the following approximation properties of SGLOFs.

Lemma 3.2. Let 0 < \nu < 1, \beta > 0, and \Lambda = (0, T ). For any u \in H
\nu 
2
0 (\Lambda ) and

0D
\nu 
2
t u \in Am

\beta 
2 ,T

(\Lambda ), the global-in-time projection

\Pi t
Nu(t) := 0I

\nu 
2
t
\widehat \Pi N 0D

\nu 
2
t u
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A858 SHENG CHEN, JIE SHEN, ZHIMIN ZHANG, AND ZHI ZHOU

belongs to the linear vector space spanned by \{ \widehat \scrS \nu 
n\} Nn=0 and satisfying

(3.6) \| \Pi t
Nu - u\| 

H
\nu 
2 (\Lambda )

\leq c\| 0D
\nu 
2
t (\Pi 

t
Nu - u)\| L2(\Lambda ) \leq cN - m/2 | 0D

\nu 
2
t u| Am

\beta 
2

,T
(\Lambda ),

where the constant c depends on \beta , k, and m.

Proof. First of all, we note that for any \nu \in (0, 1) and u \in H
\nu 
2
0 (\Lambda ) it holds that

0D
\nu 
2
t u \in L2(\Lambda ), and hence \widehat \Pi N (0D

\nu 
2
t u) is well defined. Meanwhile, using the fact

that \nu \in (0, 1), we know the fractional integral operator 0I
\nu 
2
t is bounded from L2(\Lambda )

to H
\nu 
2
0 (\Lambda ) [23, Theorems 2.1], and hence we have \Pi t

Nu \in H
\nu 
2 (\Lambda ). Then the first

inequality is valid owing to the Poincar\'e inequality and the equivalence relation (2.2):

\| \Pi t
Nu - u\| 

H
\nu 
2 (\Lambda )

\leq c| \Pi t
Nu - u| 

H
\nu 
2
0 (\Lambda )

\leq c\| 0D
\nu 
2
t (\Pi 

t
Nu - u)\| L2(\Lambda ).

Next, for any v defined on \Lambda , we define \widehat v(\tau ) = v(T\tau ), with \tau \in I = (0, 1). Then,
owing to the approximation result given in (3.4), it holds that

\| (\widehat \Pi N  - I)v\| L2(\Lambda ) =
\surd 
T\| (\Pi N  - I)\widehat v\| L2(I) \leq c

\surd 
TN - m/2 | \widehat v| Am

\beta /2
(I).

Hence, we arrive at

(3.7) \| (\widehat \Pi N  - I)v\| L2(\Lambda ) \leq cN - m/2 \| v\| Am
\beta /2,T

(\Lambda ).

Therefore, the claim (3.6) is valid. Then we shall prove that \Pi t
Nu = 0I

\nu 
2
t
\widehat \Pi N 0D

\nu 
2
t u can

be expanded by SGLOFs \{ \widehat \scrS \nu 
n(t)\} Nn=1. In fact, due to the facts that

span\{ \widehat \scrS \nu 
n(t)\} Nn=0 = span\{ t

\nu +\beta 
2 (log t)k\} Nk=0 and \widehat \Pi N 0D

\nu 
2
t u =

N\sum 
n=0

an
\widehat \scrS 0
n =

N\sum 
k=0

a\prime 
nt

\beta 
2 (log t)k,

it suffices to show that 0I
\nu 
2
t \{ t

\beta 
2 (log t)k\} Nk=0 belongs to span\{ t

\nu +\beta 
2 (log t)k\} Nk=0. Now we

observe that

0I
\nu 
2
t \{ t

\beta 
2 (log t)k\} =

1

\Gamma (\nu 2 )

\int t

0

(t - \tau )
\nu 
2 - 1\tau 

\beta 
2 (log \tau )kd\tau 

\tau =ts
=

1

\Gamma (\nu 2 )

\int 1

0

t
\nu +\beta 
2 (1 - s)

\nu 
2 - 1s

\beta 
2 (log t+ log s)kds

=

k\sum 
j=0

t
\nu +\beta 
2 (log t)j

1

\Gamma (\nu 2 )

\int 1

0

(1 - s)
\nu 
2 - 1s

\beta 
2

\biggl( 
k

j

\biggr) 
(log s)kds.

Finally, the estimate (3.6) can be derived by using (3.7).

4. Spectral-Galerkin method for subdiffusion equations. In this section,
we shall develop a spectral-Galerkin method for solving the subdiffusion equation
(2.6) with rigorous analysis. A fully discrete scheme based on a finite element method
in space and a fast algorithm to solve the matrix system will also be provided.

4.1. Wellposedness of the weak problem. In order to solve the subdiffusion
equation, we follow the standard space-time Galerkin framework. To this end, we
define a space-time Hilbert space

Hs,1
0 (\scrO ) := Hs

0

\bigl( 
\Lambda ;L2(\Omega )

\bigr) 
\cap L2

\bigl( 
\Lambda ;H1

0 (\Omega )
\bigr) 
, \scrO := \Lambda \times \Omega ,
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endowed with the norm

\| v\| Hs,1
0 (\scrO ) :=

\Bigl( 
\| v\| 2Hs(\Lambda ;L2(\Omega )) + \| v\| 2L2(\Lambda ;H1(\Omega ))

\Bigr) 1/2
.

Recalling the assumptions on the elliptic operator L in (1.2), it induces a coercive
bilinear form

a(u, v) =  - (a\nabla u,\nabla v)\Omega + (bu, v)\Omega \forall u, v \in H1
0 (\Omega ),

which satisfies

(4.1) a(u, u) \geq c1\| u\| 2\.H1(\Omega )
and a(u, v) \leq c2\| u\| \.H1(\Omega )\| v\| \.H1(\Omega ) \forall u, v \in H1

0 (\Omega ).

Then a weak formulation of the subdiffusion equation (2.6) reads as follows: find

u \in H
\nu 
2 ,1
0 (\scrO ) such that

(4.2) \scrB (u, v) = \scrF (v) \forall v \in H
\nu 
2 ,1
0 (\scrO ),

where the bilinear form \scrB (\cdot , \cdot ) and the functional \scrF (\cdot ) are respectively defined by

\scrB (u, v) :=
\int T

0

\bigl( 
0D

\nu 
2
t u , tD

\nu 
2

T v
\bigr) 
\Omega 
+ a
\bigl( 
u, v
\bigr) 
dt, \scrF (v) :=

\int T

0

(f, v)\Omega dt.

Lemma 4.1. For any u, v \in H
\nu 
2 ,1
0 (\scrO ), there exist constants c1, c2 such that

(4.3) \scrB (u, u) \geq c1\| u\| 
H

\nu 
2
,1

0 (\scrO )
, \scrB (u, v) \leq c2\| u\| 

H
\nu 
2
,1

0 (\scrO )
\| v\| 

H
\nu 
2
,1

0 (\scrO )
.

Proof. The coercivity and continuity of the bilinear form \scrB (\cdot , \cdot ) are the straight-
forward results from the elliptic conditions (4.1), the Cauchy--Schwarz inequality, the
properties (2.2) and (2.4), and the fractional Poincar\'e inequality.

With the elliptic conditions (4.3) in hand, we can claim the wellposedness of the
weak formulation of the subdiffusion equation by the Lax--Milgram lemma as follows.

Theorem 4.2. Let there be a function f belonging to
\bigl( 
H

\nu 
2 ,1
0 (\scrO )

\bigr) \prime 
, the dual space

of H
\nu 
2 ,1
0 (\scrO ). For any \nu \in (0, 1), the weak problem (4.2) admits a unique solution u

satisfying
\| u\| 

H
\nu 
2
,1

0 (\scrO )
\leq c\| f\| \bigl( 

H
\nu 
2
,1

0 (\scrO )
\bigr) \prime .

4.2. Spectral-Galerkin method and error estimation. In this section, we
shall develop and study a semidiscrete spectral-Galerkin method using the basis \widehat \scrS \nu 

m(t)

defined in (3.5). Here we define Xt
N (\Lambda ) to be a finite-dimensional subspace of H

\nu 
2
0 (\Lambda ),

(4.4) Xt
N = span\{ \widehat \scrS \nu 

n(t)\} Nn=0,

which is a finite-dimensional subspace of H
\nu 
2
0 (\Lambda ). Then the semidiscrete-in-time

scheme reads as follows: find uN \in VN = Xt
N \otimes H1

0 (\Omega ) such that

(4.5) \scrB (uN , v) = \scrF (v) \forall v \in VN .

By the Lax--Milgram lemma, for any given function f belonging to
\bigl( 
H

\nu 
2 ,1
0 (\scrO )

\bigr) \prime 
, the

semidiscrete problem admits a unique solution uN satisfying

(4.6) \| uN\| 
H

\nu 
2
,1

0 (\scrO )
\leq c\| f\| \bigl( 

H
\nu 
2
,1

0 (\scrO )
\bigr) \prime .D
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Next, we shall derive the error estimate for the semidiscrete solution. The error
u - uN satisfies the Galerkin orthogonality

\scrB (uN  - u, v) = 0 \forall v \in VN .

Recalling that \Pi t
Nu \in VN (by Lemma 3.2), the standard argument leads to

(4.7) \| uN  - u\| 
H

\nu 
2
,1

0 (\scrO )
\leq c\| \Pi t

Nu - u\| 
H

\nu 
2
,1

0 (\scrO )
\leq c\| 0D

\nu 
2
t (\Pi 

t
Nu - u)\| L2(\Lambda ;H1(\Omega )).

To derive the error estimate, we shall use the following regularity estimate.

Theorem 4.3. Let u be the solution of the subdiffusion equation (2.6). For k =
0, 1, . . . ,m, if the source term f satisfies

\partial jt (t
jf) \in L2

\chi k
T
(\Lambda ;H1

0 (\Omega )) \forall 0 \leq j \leq k,

then the solution u satisfies

\partial k
\gamma ,t(0D

\nu 
2
t u) \in L2

\chi k
T
(\Lambda ;H1

0 (\Omega )), k = 0, 1, . . . ,m,

where \partial \gamma ,t := t\partial t  - \gamma , with \gamma > 0 being a generalized derivative.

Proof. For a given suitable function g(t), we have

(4.8)

0D
\nu 
2
t

\int t

0

(t - \tau )\nu  - 1E\nu ,\nu ( - \lambda n(t - \tau )\nu )g(\tau )d\tau 

=
1

\Gamma (1 - \nu 
2 )
\partial t

\int t

0

(t - s) - 
\nu 
2

\int s

0

(s - \tau )\nu  - 1E\nu ,\nu ( - \lambda n(s - \tau )\nu )g(\tau ) d\tau ds

=
1

\Gamma (1 - \nu 
2 )
\partial t

\int t

0

g(\tau )

\int t

\tau 

(t - s) - 
\nu 
2 (s - \tau )\nu  - 1E\nu ,\nu ( - \lambda n(s - \tau )\nu ) dsd\tau 

= \partial t

\int t

0

(t - \tau )
\nu 
2E\nu ,1+ \nu 

2
( - \lambda n(t - \tau )\nu ) g(\tau ) d\tau ,

where the validation of the last equality owes to

(4.9)

\int t

\tau 

(t - s) - 
\nu 
2 (s - \tau )\nu  - 1E\nu ,\nu ( - \lambda n(s - \tau )\nu ) ds

= (t - \tau )
\nu 
2

\int 1

0

(1 - \theta ) - 
\nu 
2 \theta \nu  - 1

\infty \sum 
j=0

( - \lambda n)j\theta j\nu (t - \tau )j\nu 

\Gamma (j\nu + \nu )
d\theta 

= (t - \tau )
\nu 
2

\infty \sum 
j=0

( - \lambda n)j(t - \tau )j\nu 

\Gamma (j\nu + \nu )

\int 1

0

(1 - \theta ) - 
\nu 
2 \theta j\nu +\nu  - 1 d\theta 

= \Gamma 

\biggl( 
1 - \nu 

2

\biggr) 
(t - \tau )

\nu 
2E\nu ,1+ \nu 

2
( - \lambda n(t - \tau )\nu ).

Using the solution representation (2.8) and the derivative relation (2.7), it holds that

(4.10)

0D
\nu 
2
t u(x, t) =

\infty \sum 
n=1

\varphi n(x) \partial t

\int t

0

(t - \tau )
\nu 
2E\nu ,1+ \nu 

2
( - \lambda n(t - \tau )\nu )

\bigl( 
f(\cdot , \tau ), \varphi n

\bigr) 
\Omega 
d\tau 

=

\infty \sum 
n=1

\varphi n(x)

\int t

0

(t - \tau )
\nu 
2 - 1E\nu , \nu 2

( - \lambda n(t - \tau )\nu )
\bigl( 
f(\cdot , \tau ), \varphi n

\bigr) 
\Omega 
d\tau .
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Then we can rewrite 0D
\nu 
2
t u as

0D
\nu 
2
t u(t) =

\int t

0

\=E(t - \tau )f(\tau ) d\tau , where \=E(t)v =

\infty \sum 
n=1

t
\nu 
2 - 1E\nu , \nu 2

( - \lambda nt\nu )
\bigl( 
v, \varphi n

\bigr) 
\Omega 
\varphi n.

(4.11)

Now we are ready to prove that \partial k
\gamma ,t[0D

\nu 
2
t (\Delta 

1
2u)] \in L2

\chi k
T
(\Lambda ;L2(\Omega )). Thanks to the

definition of the generalized derivative \partial \gamma ,t = t\partial t  - \gamma , we only need to check that

\partial kt
\bigl( 
tk[0D

\nu 
2
t (\Delta 

1
2u)]

\bigr) 
\in L2

\chi k
T
(\Lambda ;L2(\Omega )) for k = 0, 1, . . . ,m. For this purpose, we observe

that

\partial kt
\bigl( 
tk[0D

\nu 
2
t (\Delta 

1
2u)]

\bigr) 
(t) = \partial kt

\biggl( 
tk
\int t

0

\=E(t - \tau )\Delta 
1
2 f(\tau ) d\tau 

\biggr) 
=

k\sum 
j=0

\biggl( 
k

j

\biggr) 
\partial kt

\biggl( \int t

0

(t - \tau )k - j \=E(t - \tau ) \tau jf(\tau )d\tau 

\biggr) 

=

k\sum 
j=0

\biggl( 
k

j

\biggr) \int t

0

\Bigl( 
\partial k - j
t [(t - \tau )k - j \=E(t - \tau )]

\Bigr) \Bigl( 
\partial j\tau [\tau 

j\Delta 
1
2 f(\tau )]

\Bigr) 
d\tau .

The last equality holds due to the fact that

lim
t\rightarrow 0

tk+1\partial kt f(t) = 0 and lim
t\rightarrow 0

tk+1\partial kt
\=E(t)v = 0 \forall v \in L2(\Omega ).

Thanks to Lemma 4.4, we have

\| \partial k
t

\bigl( 
tk[0D

\nu 
2
t (\Delta 

1
2 u)]

\bigr) 
(t)\| L2(\Omega ) \leq c

k\sum 
j=0

\int t

0

(t - \tau )
\nu 
2
 - 1\| \partial j

\tau [\tau 
j\Delta 

1
2 f(\tau )]\| L2(\Omega ) d\tau =: c

k\sum 
j=0

Kj(t).

By Young's convolution inequality, we have\int T

0

| Kj(t)| 2| log(t/T )| k dt =
\int T

0

\bigm| \bigm| \bigm| \bigm| \int t

0

(t - \tau )
\nu 
2
 - 1\| \partial j

\tau [\tau 
j\Delta 

1
2 f(\tau )]\| L2(\Omega ) d\tau 

\bigm| \bigm| \bigm| \bigm| 2| log(t/T )| k dt
\leq 
\int T

0

\bigm| \bigm| \bigm| \bigm| \int t

0

(t - \tau )
\nu 
2
 - 1
\Bigl( 
\| \partial j

\tau [\tau 
j\Delta 

1
2 f(\tau )]\| L2(\Omega )| log(\tau /T )| 

k
2

\Bigr) 
d\tau 

\bigm| \bigm| \bigm| \bigm| 2 dt
\leq 
\biggl( \int T

0

t
\nu 
2
 - 1 dt

\biggr) 2 \int T

0

\| \partial j
\tau [\tau 

j\Delta 
1
2 f(\tau )]\| 2L2(\Omega )| log(\tau /T )| 

k dt

\leq c

\int T

0

\| \partial j
\tau [\tau 

jf(\tau )]\| 2H1(\Omega )| log(\tau /T )| 
k dt \leq c.

Therefore, \partial kt
\bigl( 
tk[0D

\nu 
2
t u]
\bigr) 
\in L2

\chi k
T
(\Lambda ;H1

0 (\Omega )) for k = 0, 1, . . . ,m, and so does \partial k
\gamma ,t[0D

\nu 
2
t u].

This completes the proof of this theorem.

Lemma 4.4. Let \=E(t) be the operator defined in (4.11). Then it holds that

\| \partial kt (tk \=E(t))v\| L2(\Omega ) \leq ct
\nu 
2 - 1\| v\| L2(\Omega ) \forall v \in L2(\Omega ) and k = 0, 1, 2, . . . ,

where \partial kt := dk

dtk
is the k-fold derivative with respect to t.

D
ow

nl
oa

de
d 

04
/0

7/
20

 to
 7

3.
10

3.
78

.2
12

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

A862 SHENG CHEN, JIE SHEN, ZHIMIN ZHANG, AND ZHI ZHOU

Proof. Using the identity (2.7), we have

\partial kt (t
k \=E(t))v =

k\sum 
j=0

\biggl( 
k

j

\biggr) \infty \sum 
n=1

(\partial k - j
t tk)\partial jt

\Bigl( 
t
\nu 
2 - 1E\nu , \nu 2

( - \lambda nt\nu )
\Bigr) \bigl( 
v, \varphi n

\bigr) 
\Omega 
\varphi n

=

k\sum 
j=0

k!

j!

\biggl( 
k

j

\biggr) \infty \sum 
n=1

t
\nu 
2 - 1E\nu , \nu 2 - j( - \lambda nt\nu )

\bigl( 
v, \varphi n

\bigr) 
\Omega 
\varphi n.

This together with Lemma 2.2 leads to

\| \partial kt (tk \=E(t))v\| 2L2(\Omega ) \leq c

k\sum 
j=0

\infty \sum 
n=1

\bigm| \bigm| \bigm| t \nu 
2 - 1E\nu , \nu 2 - j( - \lambda nt\nu )

\bigm| \bigm| \bigm| 2\bigl( v, \varphi n

\bigr) 2
\Omega 
\leq ct\nu  - 2\| v\| 2L2(\Omega ),

which completes the proof.

Combining (4.7) and Theorem 4.3 with the approximation properties stated in
Lemma 3.2, we immediately obtain the following error estimate.

Theorem 4.5. Let u be the solution of the subdiffusion equation (2.6) and uN be
the semidiscrete solution of the spectral-Galerkin scheme (4.5). If the source term f
satisfies

\partial jt (t
jf) \in L2

\chi k
T
(\Lambda ;H1

0 (\Omega )) \forall 0 \leq j \leq k and k = 0, 1, . . . ,m,

then it holds that
\| uN  - u\| 

H
\nu 
2
,1

0 (\scrO )
\leq cN - m/2.

Here the constant is independent of N and u but may depend on \nu , \beta ,m, T , and f .

Remark 4.1. In case that the initial condition of the subdiffusion problem is not
zero, we may derive the same result by assuming that u0 \in \.H3(\Omega ). Recall that the
initial value u0(x) of the subdiffusion equation (1.1) transforms to Lu0 arising in the
source term in (2.6), and it is easy to verify that \partial nt (t

nLu0) \in C\infty ([0, T ];H1
0 (\Omega )) for

any positive integer n.

Remark 4.2. In Jin, Lazarov, and Zhou [25] and Jin, Li, and Zhou [27], the au-
thors developed time-stepping schemes using convolution quadrature generated by
high-order BDF methods, motivated by the pioneer work in [39, 12]. An initial
correction strategy was proposed to restore high-order convergence. See also [63]
for the analysis of the L1 scheme with initial correction and [16, 5] for the convo-
lution quadrature Runge--Kutta schemes. One requirement of those time-stepping
schemes in the aforementioned works is that the source term f needs to be smooth
in the time direction. As an example, the kth-order BDF method requires f \in 
W k,1((0, T );L2(\Omega )) \cap f \in W k,\infty ((\epsilon , T );L2(\Omega )), and the high-order convergence will
deteriorate if f is not regular enough (cf. [27, section 4]). Therefore, it is nontrivial
to extend the strategy and analysis to nonlinear problems [28] or problems with time-
dependent diffusion coefficients [26, 29]. Compared with those schemes, the spectral
Galerkin method (4.5) allows singularity of the source term near t = 0, and hence also
performs well for solving linear subdiffusion equations with time-dependent diffusion
coefficients as well as nonlinear subdiffusion problems. See section 5 for numerical re-
sults and more discussion. On the other hand, the spectral Galerkin method requires
a smooth initial condition, and the error estimate was derived in the space-time energy
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SPECTRAL APPROXIMATION TO SUBDIFFUSION EQUATIONS A863

norm, while the time-stepping schemes in [25, 27] lead to an optimal pointwise-in-time
error estimate at a fixed time (even for nonsmooth initial data u0 \in L2(\Omega )). How
to derive a pointwise-in-time error estimate for the spectral Galerkin method (4.5)
requires further investigation.

4.3. Fully discrete scheme and error estimation. In this section, we shall
discuss the fully discrete scheme based on our preceding results. As an example,
we apply the P1 conforming finite element in space. Here we introduce a quasi-
uniform shape regular partition of the domain \Omega into simplicial elements of maximal
diameter h, which is denoted by \scrT h. We consider the space of continuous piecewise
linear functions on \scrT h with N \in \BbbN being the number of degrees of freedom. Let
\{ \varphi i\} Mi=1 \subset H1

0 (\Omega ) be the nodal basis functions, and denote

(4.12) Xx
h := span\{ \varphi i\} Mi=1.

The L2-projection Ph : L2(\Omega ) \rightarrow Xx
h is defined by

(\phi  - Ph\phi , v)\Omega = 0 \forall v \in Xx
h .

It is well known that it satisfies the following error estimate [59]:
(4.13)
\| Ph\phi  - \phi \| L2(\Omega )+h\| \nabla (Ph\phi  - \phi )\| L2(\Omega ) \leq chq\| \phi \| Hq(\Omega ) \forall \phi \in H1

0 (\Omega )\cap Hq(\Omega ), q = 1, 2.

Then the spatially semidiscrete scheme reads as follows: find uh \in Wh = H
\nu 
2
0 (0, T )\otimes 

Xx
h such that

(4.14) \scrB (uh, v) = \scrF (v) \forall v \in Wh.

The wellposedness follows from the coercivity of the bilinear form and the Lax--
Milgram lemma.

Upon introducing the discrete operator Lh : Xx
h \rightarrow Xx

h defined by  - (Lh\psi , \chi ) =
a(\psi , \chi ) for all \psi , \chi \in Xh, let \{ \lambda hj , \varphi h

j \} Nj=1 be the eigenpairs of the discrete operator
 - Lh. Now we introduce the discrete analogue Eh of the operator E defined in (2.8)
for t > 0 and vh \in Xh:

(4.15) Eh(t)vh =

N\sum 
j=1

t\nu  - 1E\nu ,\nu ( - \lambda hj t\nu ) (vh, \varphi h
j )\Omega \varphi 

h
j .

Then the solution uh(t) of the spatially semidiscrete problem (4.14) can be represented
by [24, equation (3.4)]

(4.16) uh(t) =

\int t

0

Eh(t - s)Phf(s) ds.

Lemma 4.6. For f \in L2(\Lambda ;L2(\Omega )), the spatially semidiscrete solution uh in
(4.14) satisfies

\| uh  - u\| 
H

\nu 
2
,1

0 (\scrO )
\leq ch\| f\| L2(\Lambda ;L2(\Omega )).

Proof. By the approximation property (4.13), we have for \varrho = Phu - u

\| \varrho \| 2
H

\nu 
2
,1

0 (\scrO )
= \| \varrho \| 2

H
\nu 
2
0 (\Lambda ;L2(\Omega ))

+ \| \nabla \varrho \| 2L2(\Lambda ;L2(\Omega ))

\leq ch2
\Bigl( 
\| \nabla u\| 2

H
\nu 
2
0 (\Lambda ;L2(\Omega ))

+ \| u\| 2L2(\Lambda ;H2(\Omega ))

\Bigr) 
.
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Then by applying (2.2), (2.3), and regularity results [24, Theorem 2.1], we obtain

\| \nabla u\| 2
H

\nu 
2
0 (\Lambda ;L2(\Omega ))

\leq c

\int T

0

\bigl( 
0D

\nu 
2
t \nabla u , tD

\nu 
2

T\nabla u
\bigr) 
\Omega 
dt = c

\int T

0

\bigl( 
0D

\nu 
t u , - \Delta u

\bigr) 
\Omega 
dt

\leq c\| 0D\nu 
t u\| 2L2(\Lambda ;L2(\Omega )) + c\| \Delta u\| 2L2(\Lambda ;L2(\Omega )) \leq c\| f\| 2L2(\Lambda ;L2(\Omega )).

Therefore, we arrive at

(4.17) \| \varrho \| 
H

\nu 
2
,1

0 (\scrO )
\leq ch\| f\| L2(\Lambda ;L2(\Omega )).

The function \vargamma := uh  - Phu satisfies \vargamma (0) = 0 and 0\partial 
\alpha 
t \vargamma  - Lh\vargamma = Lh(Phu  - Rhu) =

LhRh\varrho (with Rh being the Ritz projection) [24, equation (3.9)]. By the regularity
results, we have

\| \vargamma \| H\nu (\Lambda ;H - 1(\Omega )) + \| \vargamma \| L2(\Lambda ;H1
0 (\Omega )) \leq c\| LhRh\varrho \| L2(0,T ;H - 1(\Omega )).

Then the interpolation between H\nu (\Lambda ;H - 1(\Omega )) and L2(\Lambda ;H1
0 (\Omega )) yields that (note

that \nu 
2 <

1
2 )

\| \vargamma \| 
H

\nu 
2
0 (\Lambda ;L2(\Omega ))

+ \| \vargamma \| L2(\Lambda ;H1
0 (\Omega )) \leq c\| LhRh\varrho \| L2(\Lambda ;H - 1(\Omega )).

This together with the estimate (4.17) leads to
(4.18)

\| \vargamma \| 
H

\nu 
2
,1

0 (\scrO )
\leq c\| LhRh\varrho \| L2(\Lambda ;H - 1(\Omega )) \leq c\| \nabla Rh\varrho \| L2(\Lambda ;L2(\Omega )) \leq ch\| f\| L2(\Lambda ;L2(\Omega )).

As a result, (4.17), (4.18), and the triangle inequality complete the proof.

The next lemma, which is an analogue to Theorem 4.3, provides regularity results
of uh in the time direction. The proof, relying on the solution representation (4.16)
and the property of Mittag--Leffler functions, is similar to the proof of Theorem 4.3.
The details can be found in Appendix B.

Lemma 4.7. Let uh be spatially semidiscrete solution in (4.14). For k = 0, 1, . . . ,m,
if the source term f satisfies

\partial jt (t
jf) \in L2

\chi k
T
(\Lambda ;H1

0 (\Omega )) \forall 0 \leq j \leq k,

then the solution u satisfies

\partial k
\gamma ,t0D

\nu 
2
t uh \in L2

\chi k
T
(\Lambda ;H1

0 (\Omega )) for k = 0, 1, . . . ,m,

where \partial \gamma ,t := t\partial t  - \gamma , with \gamma > 0 being a generalized derivative.

Now we are ready to develop a fully discrete scheme. Let Xt
N (\Lambda ) and Xx

h(\Omega )
be finite-dimensional spaces defined in (4.4) and (4.12), respectively. Then the fully
discrete scheme reads as follows: find uhN \in XhN := Xt

N \otimes Xx
h such that

(4.19) \scrB (uhN , v) = (f, v) \forall v \in XhN .

Similarly, the wellposedness of the above numerical scheme can be guaranteed by the
coercivity of linear form \scrB (\cdot , \cdot ) and the Lax--Milgram lemma.

The following theorem provides an estimate on the difference between the fully
discrete solution uhN and the spatially semidiscrete solution uh.
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Theorem 4.8. Let uh be the solution of the spatially semidiscrete scheme (4.14)
and uhN be the fully discrete solution satisfying (4.19). If the resource term f satisfies

\partial jt (t
jf) \in L2

\chi k
T
(\Lambda ;H1

0 (\Omega )) \forall 0 \leq j \leq k and k = 0, 1, . . . ,m,

then it holds that

\| uhN  - uh\| 
H

\nu 
2
,1

0 (\scrO )
\leq c2N

 - m/2.

Here the constant is independent of h, N , and u but may depend on \nu , \beta ,m, T , and
f .

To estimate the numerical error uhN  - u, we split it into two components:

uhN  - u = (uhN  - uh) + (uh  - u).

Note that the bound of uh - u and uhN  - uh has already been established in Theorems
4.5 and 4.8, respectively.

Corollary 4.9. Let u be the solution of the subdiffusion equation (2.6) and uhN
be the fully discrete solution satisfying (4.19). If the resource term f \in L2(\Lambda ;L2(\Omega ))
also satisfies

\partial jt (t
jf) \in L2

\chi k
T
(\Lambda ;H1

0 (\Omega )) \forall 0 \leq j \leq k and k = 0, 1, . . . ,m,

then it holds that

\| uhN  - u\| 
H

\nu 
2
,1

0 (\scrO )
\leq c1h+ c2N

 - m/2.

Here the constant is independent of h, N , and u, but c1 may depend on \nu , f , and T ,
and c2 may depend on \nu , \beta ,m, T , and f .

4.4. Fast solver. In this section, we want to develop a fast algorithm to solve the
space-time linear system (4.19). By substituting uhN =

\sum M
m=1

\sum N
n=0 \~umn\phi m(x) \widehat \scrS \nu 

n(t)

and v = \phi p(x) \widehat \scrS \nu 
q (t), p = 1, . . . ,M , q = 0, 1, . . . , N , the fully discrete scheme (4.19) is

equivalent to solving the following matrix system:

(4.20) Sx U (Mt)T +Mx U (St)T = F,

where Mx and Sx are the mass and stiffness matrices in the x-direction(s), and Mt

and St are the mass and stiffness matrices in the t-direction below:

Sx = (sxpm), sxpm =
\bigl( 
L\phi m, \phi p

\bigr) 
\Omega 
, Mx = (mx

pm), mx
ml =

\bigl( 
\phi m, \phi p

\bigr) 
\Omega 
,

St = (stqn), stqn =
\bigl( 
0D

\nu 
2
t
\widehat \scrS \nu 
n, tD

\nu 
2

T
\widehat \scrS \nu 
q

\bigr) 
\Lambda 
, Mt = (mt

qn), mt
pn =

\bigl( \widehat \scrS \nu 
n, \widehat \scrS \nu 

q

\bigr) 
\Lambda 
,

U = (umn), umn = \~umn, F = (fpq), fpq =
\bigl( 
f, \phi p \widehat \scrS \nu 

q

\bigr) 
.

Notice that both the matrices Mt and St are nonsymmetric (see Appendix A), so the
classical matrix diagonalization method [40, 17, 52] cannot be applied directly. To
overcome this difficulty, we shall apply an efficient QZ decomposition method recently
proposed by Shen and Sheng [54].

The key point of the new method is the following QZ decomposition:

Q(St)T Z = A, Q(Mt)T Z = B,
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where Q, Z are unitary matrices satisfying QQT = ZZT = I, and A, B are upper
triangular matrices, namely,

A =

\left(     
a11 a12 . . . a1N

a22 . . . a2N
. . .

...
aNN

\right)     , B =

\left(     
b11 b12 . . . b1N

b22 . . . b2N
. . .

...
bNN

\right)     .

Then, by setting U = VQ and multiplying (4.20) by both sides of Z, we have an
equivalent form

(4.21) Mx VA+ Sx VB = G := FZ.

Denote by vn = (v1n, v2n, . . . , vMn)
T the nth column of the matrix V, i.e.,

V = [v1,v2, . . . ,vN ] =

\left(     
v11 v12 . . . v1N
v21 v22 . . . v2N
...

...
. . .

...
vM1 vM2 . . . vMN

\right)     .

The matrix system (4.21) can be solved by the following fast algorithm:

(4.22) (annM
x + bnnS

x)vn = gn  - hn - 1, n = 1, 2, . . . , N,

where gn is the nth column of the matrix G and

h0 = 0, hn - 1 = Mx

\Biggl( 
n - 1\sum 
k=1

akn vk

\Biggr) 
+ Sx

\Biggl( 
n - 1\sum 
k=1

bkn vk

\Biggr) 
.

Note that the new algorithm (4.22) is indeed equivalent to solving the following
N times elliptical problems:

 - annLv(x) + bnnv(x) = gh(x), n = 1, 2, . . . , N.

As shown in Theorem 4.8, our scheme enjoys spectral convergence in time, so in
general only small N is needed to achieve the desired accuracy. On the other hand,
the above elliptic problems can be solved efficiently by usual multigrid or other fast
solvers. Therefore, our space-time scheme is very efficient.

5. Numerical experiments, extensions, and discussions. In this section,
we present some numerical examples to illustrate our theoretical results proposed in
previous sections, and in addition we apply the proposed techniques to problems with
time-dependent diffusion coefficients and to a nonlinear time-fractional Allen--Cahn
equation. In our experiments, we computed the numerical solutions of the fully dis-
crete scheme (4.19), with the spectral-Galerkin method in time and the Galerkin finite
element method in space. Since the spatially semidiscrete solution has been verified
in [24], we focus on the temporal discretization error below. All the computations are
carried out in MATLAB R2015a on a personal laptop.
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Example (a). Subdiffusion problems with time-independent coeffi-
cients. In the first example, we present the numerical results for the following two
dimension subdiffusion problem on the unit square domain \Omega = (0, 1)2. Letting
0 < \nu < 1 and x := (x1, x2) \in \Omega , we look for the function u satisfying

(5.1)

\left\{     
0
CD\nu 

t u(x, t) - \Delta u(x, t) = f(x, t), (x, t) \in \Omega \times (0, T ],

u(x, 0) = 0, x \in \Omega ,

u(x, t)
\bigm| \bigm| 
\partial \Omega 

= 0, t \in (0, T ).

Here we choose the source term

(5.2) f(x, t) = t0.3(1 - | 2x1  - 1| )(1 - | 2x2  - 1| ).

In our computation, the domain \Omega = (0, 1)2 is first divided into M2 small equal
squares, and we obtain a symmetric triangulation by connecting the diagonal of each
small square. To verify the temporal error, we fixed M = 100, \beta = 5 and changed
the number of basis functions of the spectral method in the time direction. Since
the closed form of the exact solution to problem (5.1) is unavailable, we compute a
reference solution uh \approx uhNref

, with Nref = 70.
In this case, the source term f satisfies the smoothness requirement in Theorems

4.5 and 4.8,

(5.3) \partial jt (t
jf) \in L2

\chi k
T
(\Lambda ;H1

0 (\Omega )) \forall 0 \leq j \leq k and k = 0, 1, . . . ,m,

with an arbitrary positive integer m. Therefore, all the theoretical results hold valid
and we expect an exponential convergence in the time direction. The numerical results
are presented in Figure 2, where the temporal error EL in L2 space and error EH in
space-time energy space are defined by

(5.4) EL =
\| uh  - uhN\| L2(\Lambda ;L2(\Omega ))

\| uh\| L2(\Lambda ;L2(\Omega ))
and EH =

\| uh  - uhN\| 
H

\nu 
2
,1(\scrO )

\| uh\| H \nu 
2
,1(\scrO )

,

respectively. In Figure 2, we draw the error curves against N for distinct parameters
\nu and final time T . All the experiments show that the proposed spectral-Galerkin
method is highly efficient for subdiffusion problems, and the numerical solutions uhN
exponentially converge to uh.

Next, we test the problem (5.1) with another source term,

(5.5) f(x, t) = (1 + t0.5)x1(1 - x1)x2(1 - x2),

and compare the spectral-Galerkin method with some high-order BDF schemes de-
veloped in [27]. Note that the source is nonsmooth in the time direction, and hence
the BDF schemes fail to achieve the desired high accuracy. In particular, it can be
verified that

f \in W
3
2 - \epsilon ,1(0, T/2;L2(\Omega )) \cap Wm,\infty (T/2, T ;L2(\Omega ))

for any small \epsilon > 0 and positive integer m > 0. The proof of [27, Theorem 2.2]

indicates a convergence rate O(\tau 
3
2 - \epsilon ) for this example, where \tau denotes the step size

in time. This prediction is consistent with the numerical results plotted in Figure 3
(right), where we plot the L2(\Omega )-norm of the numerical error at T = 1. On the other
hand, the source term still satisfies the smoothness requirement (5.3). Therefore,
we can observe the high accuracy of the spectral method in Figure 3 (left). Those
experiments indicate that the spectral-Galerkin method (4.19) performs much better
than the time-stepping approach in this special case.
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Fig. 2. Example (a) with the source term (5.2). Left: plot of EL and EH with T = 1 and
fractional orders \nu = 0.25, 0.5, 0.75. Right: plot of EL and EH with \nu = 0.5 and terminal times
T = 0.01, 0.1, 1.
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Fig. 3. Example (a) with the source term (5.5). Left: plot of EL with T = 1 and fractional
orders \nu = 0.25, 0.5, 0.75. Right: plot of the L2(\Omega )-norm of the error at T = 1 with \nu = 0.5 for
spectral-Galerkin method (4.19) and the kth-order BDF method proposed in [27].

Example (b). Subdiffusion problems with time-dependent coefficients.
We consider the following subdiffusion problems with time-dependent coefficients:\left\{     

0D
\nu 
t u(x, t) - \nabla \cdot (a(x, t)\nabla u(x, t)) = f(x, t), x \in \Omega , t \in \Lambda := (0, T ),

u(x, t) = 0, (x, t) \in \partial \Omega \times (0, T ],

u(x, 0) = 0, x \in \Omega .

(5.6)

Here we assume that the diffusion coefficient a(x, t) : \Omega \times (0, T ) \rightarrow \BbbR d\times d has the
following regularity for some real number \lambda \geq 1 and for any positive integer m:

\lambda  - 1| \xi | 2 \leq a(x, t)\xi \cdot \xi \leq \lambda | \xi | 2 \forall \xi \in \BbbR d, \forall (x, t) \in \Omega \times (0, T ],

(5.7)

| \partial \partial ta(x, t)| + | \nabla xa(x, t)| + | \nabla x
\partial 
\partial ta(x, t)| \leq c \forall (x, t) \in \Omega \times (0, T ],

(5.8)

| \nabla x
\partial j

\partial tj a(x, t)| + | \nabla x
\partial j+1

\partial tj+1 a(x, t)| \leq c \forall (x, t) \in \Omega \times (0, T ], j = 1, . . . ,m.

(5.9)

For standard parabolic problems with time-dependent coefficients, there are a few rel-
evant works. Unfortunately, the fractional derivative does not satisfy the well-known
Leibnitz rule, and hence some traditional techniques working for the heat equation
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cannot be directly applied. In [46], Mustapha analyzed the spatially semidiscrete
Galerkin FEM approximation of the subdiffusion problem involving time-dependent
coefficients, but without the source term, by using a novel energy argument. A per-
turbation argument was developed in [29] to derive regularity results and analyze
the spatially semidiscrete Galerkin scheme, as well as some first-order time stepping
schemes. In particular, it has been proved in [29, Theorem 2.1] that under conditions
(5.7)--(5.9), with u0 = 0 and f \in Lp(0, T ;L2(\Omega )), 1/\alpha < p < \infty , problem (2.6) has a
unique solution

u \in C([0, T ];L2(\Omega )) \cap Lp(0, T ; \.H2(\Omega )) such that 0D
\nu 
t u \in Lp(0, T ;L2(\Omega )).

Very recently, a second-order time stepping scheme, based on convolution quad-
rature generated by the second-order BDF scheme and an initial correction technique,
was developed and analyzed in [26]. To the best of our knowledge, there is no other
high-order numerical scheme for such models with rigorous analysis in the literature.
The main difficulty is caused by the initial singularity of the solution, which will cause
trouble in the estimation of the perturbation term. However, under the assumptions
(5.7)--(5.9), it has been proved in [26, Theorem 3.2] that the solution u satisfies the
regularity results for all t \in (0, T ] and k \in \BbbN :\bigm\| \bigm\| \bigm\| \partial kt (tku(t))\bigm\| \bigm\| \bigm\| \.H3(\Omega )

\leq c

k\sum 
j=0

tj\| f (j)(0)\| \.H1(\Omega ) + ctk
\int t

0

\| f (k)(s)\| \.H1(\Omega )ds.(5.10)

Therefore, using this estimate, we have the following result.

Theorem 5.1. Assuming that f \in Wm+1,1(\Lambda ; \.H1(\Omega )), the solution u of the sub-
diffusion problem (5.6) satisfies

\partial k
\gamma ,t(0D

\nu 
2
t u) \in L2

\chi k
T
(\Lambda ;H1

0 (\Omega )) for k = 0, 1, . . . ,m,

where \partial \gamma ,t = t\partial t  - \gamma , with \gamma > 0.

The proof of Theorem 5.1 can be found in Appendix C. This result indicates

that 0D
\nu 
2
t u(x, t) belongs to the nonuniformly weighted Sobolev space Am

\beta 
2 ,T

(\Lambda ;H1
0 (\Omega )),

provided that the source term is smooth enough in the time direction. This regularity
result motivates us to develop a spectral-Galerkin method using the LOFs. In fact, it
is possible to prove such a regularity result as above in the case where f satisfies the
smoothness requirement (5.3). But the proof requires some technical arguments and
is out of the scope of the current paper.

Let Xt
N (\Lambda ) and Xx

h(\Omega ) be finite-dimensional spaces defined in (4.4) and (4.12),
respectively. Then our fully discrete scheme for (5.6) reads as follows: find uhN \in 
XhN := Xt

N \otimes Xx
h such that

(5.11)

\int T

0

\bigl( 
0D

\nu 
2
t uhN , tD

\nu 
2

T v
\bigr) 
\Omega 
+
\bigl( 
a(t)\nabla uhN ,\nabla v

\bigr) 
dt =

\int T

0

(f, v)\Omega dt \forall v \in Xt
N\otimes Xx

h .

In the first experiment, we let a(x, t) := 2 + cos(t), \Omega = (0, 1)2, T = 1, and we
test

(5.12) f(x, t) = cos(t)x1(1 - x1)x2(1 - x2),

which is smooth in the time direction. Therefore, by Theorem 5.1 and the approxi-
mation property in Lemma 3.2, we expect that the numerical solution uhN converges
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Fig. 4. Example (b). Left: plot of EL with T = 1, with the smooth-in-time source term (5.12)
and fractional orders \nu = 0.25, 0.5, 0.75. Right: plot of EL with T = 1, with the nonsmooth-in-time
source term (5.12) and fractional orders \nu = 0.25, 0.5, 0.75.

to uh exponentially. This estimate is fully supported by the error curves (against N)
plotted in Figure 4 (left).

Further, we test the numerical results in the case of nonsmooth (in time) source
term

(5.13) f(x, t) = (1 + t0.1)x1(1 - x1)x2(1 - x2).

Although it does not satisfy the smoothness condition in Theorem 5.1, we still observe
the exponential convergence (see, e.g., Figure 4 (right)). The theoretical confirmation
awaits studies in the future. The numerical results verify the high efficiency of the
spectral-Galerkin method for solving the subdiffusion problem with time-dependent
coefficients.

Example (c). Time-fractional Allen--Cahn equations. Finally, we consider
the following one-dimensional time-fractional Allen--Cahn problem:

(5.14)

\left\{     
0
CD\nu 

t u - \epsilon 2\Delta u = u - u3, x \in \Omega := ( - 1, 1), t > 0,

u( - 1, t) = u(1, t) = 0, t \geq 0,

u(x, 0) = u0(x), x \in \Omega ,

where \varepsilon is a small parameter which describes the interfacial width.
The first rigorous studies of the semilinear subdiffusion problem were given in

[28], where Jin, Li, and Zhou proposed a general framework for mathematical and
numerical analysis of the semilinear subdiffusion equation with a globally Lipschitz
continuous potential f(u). A time-stepping scheme based on a backward Euler con-
volution quadrature scheme was studied, and a convergence rate of order O(\tau \alpha ) was
proved, where \tau denotes the step size in time. Then the analysis was extended to
the time-fractional Allen--Cahn equation [13], where Du, Yang, and Zhou developed
and analyzed several \alpha th-order accurate time-stepping schemes satisfying a weighted
energy dissipation law. See also [2] for the argument in the case of nonsmooth ini-
tial data. As far as we know, high-order time-stepping schemes by using convolution
quadrature or a collocation method for the nonlinear problem (5.14) are still missing
in the literature.

In order to develop a spectral-Galerkin scheme for solving the time-fractional
Allen--Cahn equation (5.14), we define an auxiliary function w(x, t) = u(x, t) - u0(x)
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and note that the function w(x, t) satisfies the following initial boundary value prob-
lem:\left\{     

F (w) := 0
CD\nu 

tw  - \varepsilon 2\Delta w + (w + u0)
3  - w  - (\varepsilon 2\Delta u0 + u0) = 0, x \in \Omega , t > 0,

w( - 1, t) = w(1, t) = 0, t \geq 0,

w(x, 0) = 0, x \in \=\Omega .

Using the Newton iterative method [55], we are led to solve, at each iteration,\left\{         
0
CD\nu 

tEk  - \varepsilon 2\Delta Ek + (3(wk + u0)
2  - 1)Ek =  - F (wk), x \in \Omega , t > 0,

Ek( - 1, t) = Ek(1, t) = 0, t \geq 0,

Ek(x, 0) = 0, x \in \Omega ,

wk+1 = Ek + wk, x \in \Omega , t \geq 0.

In the computation, we choose the initial guess w0 = 0 and derive the approximation
wk+1 = wk +Ek by the above iteration process. For each iteration step, we apply the
fully discrete method (4.19).

In our computation, we test the time-fractional Allen--Cahn equation (5.14) with
\varepsilon = 0.05, h = 0.01, \beta = 7, and smooth initial distribution u0(x) = sin\pi x. The profile
of the numerical solution at T = 10 is plotted in Figure 5 (left). Furthermore, in order
to verify the high efficiency of the spectral-Galerkin method in time, we plot the error
curve in Figure 5 (right). The exponential decay of the error shows again that our
new method is very efficient for solving the semilinear time-fractional problem (5.14).
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Fig. 5. Example (c). Left: profile of numerical solutions at T = 10. Right: plot of EL with
T = 10 and \nu = 0.25, 0.5, 0.75.

6. Conclusion. In this paper, we developed a spectral-Galerkin method (in the
time direction) for solving the subdiffusion equations which involve a time-fractional
derivative with order \nu \in (0, 1). The log orthogonal functions (LOFs), which were
constructed by applying a log mapping to the Laguerre functions, are used as the
basis functions. We established the regularity results in some nonuniform weighted
Sobolev spaces. This together with the approximation properties of the LOFs leads
to the spectral convergence of the numerical schemes. We believe that this is the first
such result with spectral accuracy in time for weakly singular solutions of subdiffusion
problem (1.1).

We also developed fully discrete space-time schemes with the spectral-Galerkin
method in time and the Galerkin finite element method in space. Compared with the
traditional time-stepping schemes, the proposed spectral-Galerkin method in time

D
ow

nl
oa

de
d 

04
/0

7/
20

 to
 7

3.
10

3.
78

.2
12

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

A872 SHENG CHEN, JIE SHEN, ZHIMIN ZHANG, AND ZHI ZHOU

could achieve high accuracy even if both the solution and the source term have sin-
gularities at initial time, and hence it is very efficient for solving the subdiffusion
problem. Numerical results fully support the efficiency and accuracy of the proposed
spectral-Galerkin methods.

Furthermore, we have applied the proposed method to linear subdiffusion equa-
tions with time-dependent diffusion coefficients as well as nonlinear subdiffusion equa-
tions, for which high-order time-stepping schemes are rarely studied in the litera-
ture. Our numerical results indicate that the proposed approach is very efficient
and achieves accuracy similar to that for the linear subdiffusion equations with time-
independent coefficients.

Appendix A. The detail for computing M\bfitt and S\bfitt . In this section, we
shall present the way to compute the mass matrix Mt and stiffness matrix St.

In fact, by using the Gauss-GLOFs quadrature (3.1) and relation

mt
qn =

\bigl( \widehat \scrS \nu 
n, \widehat \scrS \nu 

q

\bigr) 
=

\int T

0

\biggl( 
t

T

\biggr) \nu 
2

\scrS n

\biggl( 
t

T

\biggr) \biggl( 
t

T

\biggr) \nu 
2

\scrS q

\biggl( 
t

T

\biggr) 
dt = T

\int 1

0

\tau \nu \scrS n(\tau )\scrS q(\tau ) d\tau ,

we can compute Mt with high accuracy.
The evaluation of St, involving the fractional derivative, is more technical. The

following relation eases the complexity:

stqn =
\bigl( 
0D

\nu 
2
t
\widehat \scrS \nu 
n, tD

\nu 
2
1
\widehat \scrS \nu 
q

\bigr) 
=
\bigl( 
0D

\nu 
t
\widehat \scrS n, \widehat \scrS q

\bigr) 
=

\int T

0
0D

\nu 
t

\biggl\{ \biggl( 
t

T

\biggr) \nu 
2

\scrS n

\biggl( 
t

T

\biggr) \biggr\} \biggl( 
t

T

\biggr) \nu 
2

\scrS q

\biggl( 
t

T

\biggr) 
dt

= T 1 - \nu 

\int 1

0
0
CD\nu 

\tau 

\bigl\{ 
\tau 

\nu 
2 \scrS n(\tau )

\bigr\} 
\tau 

\nu 
2 \scrS q(\tau ) d\tau ,

where the last equality holds via \widehat \scrS \nu 
n(0) = 0 and the relation (see [11, equation (2.9)])

below:

0D
\nu 
t h

\biggl( 
t

T

\biggr) 
= T - \nu 

0D
\nu 
\tau h(\tau ), \tau =

t

T
.

Next, denote f(t) = t
\nu 
2 \scrS n(t) and g(t) = t

\nu 
2 \scrS m(t); then the remaining work is to

compute\int 1

0

1

\Gamma (1 - \nu )

\int t

0

f \prime (s)

(t - s)\nu 
ds g(t)dt

s=t\tau 
=

1

\Gamma (1 - \nu )

\int 1

0

\int 1

0

f \prime (t\tau )

(1 - \tau )\nu 
d\tau g(t)t1 - \nu dt.

The integrand f(t\tau ) g(t)t1 - \nu (1  - \tau ) - \nu has the low regularity near both t \rightarrow 0 and

t\rightarrow 1. In order to compute integral
\int 1

0 0
CD\nu 

t f(t) g(t)dt with high accuracy, we use the
identity\int 1

0

f \prime (t\tau )

(1 - \tau ) - \nu 
d\tau =

\int 1
2

0

f \prime (t\tau ) (1 - \tau ) - \nu d\tau +

\int 1

1
2

f \prime (t\tau ) (1 - \tau ) - \nu d\tau 

=
1

2

\int 1

0

f \prime 
\biggl( 
t\tau 

2

\biggr) \biggl( 
1 - \tau 

2

\biggr)  - \nu 

d\tau +
1

41 - \nu 

\int 1

 - 1

f \prime 
\biggl( 
t(x+ 3)

4

\biggr) 
(1 - x) - \nu dx,

to derive its high accuracy numerical approximation,\int 1

0
0
CD\nu 

t f(t) g(t)dt \approx 
1

2\Gamma (1 - \nu )

NL\sum 
i=0

NL\sum 
j=0

f \prime 
\biggl( 
ti tj
2

\biggr) \biggl( 
1 - tj

2

\biggr)  - \nu 

g(ti)t
1 - \nu 
i \chi i\chi j

+
1

41 - \nu \Gamma (1 - \nu )

NL\sum 
i=0

NJ\sum 
j=0

f \prime 
\biggl( 
ti(\xi j + 3)

4

\biggr) 
g(ti)t

1 - \nu 
i \chi i\eta j ,
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where NL and NJ are the node numbers usually greater than the degree of poly-
nomials/functions, and the corresponding Gauss nodes and weights \{ ti, \chi i\} NI

i=0 and

\{ \xi i, \eta i\} NI
i=0 are the Gauss-GLOFs nodes with suitable \beta and the classical Gauss--Jacobi

nodes with weight function \omega  - \nu ,0 = (1 - x) - \nu , respectively.

Appendix B. Proof of Lemma 4.7. Repeating the argument in (4.8)--(4.11),
we have the following expression for any v \in Xx

h :

0D
\nu 
2
t uh =

\int t

0

\=Eh(t - s)Phf(s) ds, where \=Eh(t)v =

\infty \sum 
n=1

t
\nu 
2 - 1E\nu , \nu 2

( - \lambda hnt\nu )
\bigl( 
v, \varphi h

n

\bigr) 
\Omega 
.

Then similar to Lemma 4.4, there holds the smoothing property

\| \partial kt (tk \=Eh(t))v\| L2(\Omega ) \leq ct
\nu 
2 - 1\| v\| L2(\Omega ) \forall v \in Xx

h and k = 0, 1, 2, . . . .

Next, by the observation

lim
t\rightarrow 0

tk+1\partial kt f(t) = 0 and lim
t\rightarrow 0

\| tk+1\partial kt \=Eh(t)v\| L2(\Omega ) = 0 \forall v \in L2(\Omega )

and simple calculation, we derive that

\partial k
t

\bigl( 
tk[0D

\nu 
2
t ( - Lh)

1
2 uh)]

\bigr) 
(t) = \partial k

t

\biggl( 
tk

\int t

0

\=Eh(t - \tau )( - Lh)
1
2 Phf(\tau ) d\tau 

\biggr) 

=
k\sum 

j=0

\Bigl( k
j

\Bigr) 
\partial k
t

\biggl( \int t

0
(t - \tau )k - j \=Eh(t - \tau ) \tau j( - Lh)

1
2 Phf(\tau )d\tau 

\biggr) 

=
k\sum 

j=0

\Bigl( k
j

\Bigr) \int t

0

\Bigl( 
\partial k - j
t [(t - \tau )k - j \=Eh(t - \tau )]

\Bigr) \Bigl( 
\partial j
\tau [\tau 

j( - Lh)
1
2 Phf(\tau )]

\Bigr) 
d\tau ,

where we apply the estimate that

c1\| v\| \.H1(\Omega ) \leq \| ( - Lh)
1
2 v\| L2(\Omega ) \leq c2\| v\| \.H1(\Omega ) \forall v \in Xx

h .

Appealing to Lemma 4.4, we have the estimate that

\| \partial kt
\bigl( 
tk[0D

\nu 
2
t uh)]

\bigr) 
(t)\| \.H1(\Omega ) = \| \partial kt

\bigl( 
tk[0D

\nu 
2
t ( - Lh)

1
2uh)]

\bigr) 
(t)\| L2(\Omega )

\leq c

k\sum 
j=0

\int t

0

(t - \tau )
\nu 
2 - 1\| \partial j\tau [\tau jPhf(\tau )]\| \.H1(\Omega ) d\tau =: c

k\sum 
j=0

Kj(t).

Then Young's convolution inequality and the stability of L2(\Omega ) projection Ph on
\.H1(\Omega ) imply that\int T

0

| Kj(t)| 2| log(t/T )| k dt =
\int T

0

\bigm| \bigm| \bigm| \bigm| \int t

0

(t - \tau )
\nu 
2
 - 1\| Ph\partial 

j
\tau [\tau 

jf(\tau )]\| \.H1(\Omega ) d\tau 

\bigm| \bigm| \bigm| \bigm| 2| log(t/T )| k dt
\leq c

\int T

0

\bigm| \bigm| \bigm| \bigm| \int t

0

(t - \tau )
\nu 
2
 - 1
\Bigl( 
\| \partial j

\tau [\tau 
jf(\tau )]\| \.H1(\Omega )| log(\tau /T )| 

k
2

\Bigr) 
d\tau 

\bigm| \bigm| \bigm| \bigm| 2 dt
\leq c

\biggl( \int T

0

t
\nu 
2
 - 1 dt

\biggr) 2 \int T

0

\| \partial j
\tau [\tau 

jf(\tau )]\| 2\.H1(\Omega )| log(\tau /T )| 
k dt

\leq c

\int T

0

\| \partial j
\tau [\tau 

jf(\tau )]\| 2\.H1(\Omega )| log(\tau /T )| 
k dt \leq c.
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Therefore, \partial kt
\bigl( 
tk[0D

\nu 
2
t u]
\bigr) 
\in L2

\chi k
T
(\Lambda ;H1

0 (\Omega )) for k = 0, 1, . . . ,m, and so does \partial k
\gamma ,t[0D

\nu 
2
t u].

This completes the proof of this lemma.

Appendix C. Proof of Theorem 5.1. It suffices to show that \partial kt (t
k
0D

\nu 
2
t u) \in 

L2
\chi k
T
(\Lambda ;H1

0 (\Omega )) for all k = 0, 1, . . . ,m. Appealing to the subdiffusion equation (5.6),

we have

0D
\nu 
2
t u(t) =

\int t

0

(t - \tau )\nu /2 - 1

\Gamma (\nu /2)
L(\tau )u(\tau ) d\tau +

\int t

0

(t - \tau )\nu /2 - 1

\Gamma (\nu /2)
f(s) ds.

Using the a priori estimate (5.10), we derive that for all k = 0, 1, . . . ,m - 1

lim
t\rightarrow 0

\partial kt (t
k+1u(t)) = 0 and lim

t\rightarrow 0
\partial kt (t

k+1f(t)) = 0,

and hence

\partial k
t (t

k
0D

\nu 
2
t u(t)) =

1

\Gamma (\nu /2)

k\sum 
j=0

\Biggl( 
k

j

\Biggr) \int t

0

\partial j
t (t - \tau )\nu /2+j - 1\partial k - j

\tau 

\bigl[ 
\tau (k - j)(L(\tau )u(\tau ) + f(\tau ))

\bigr] 
d\tau .

Then taking the \.H1(\Omega ) norm, we obtain

\| \partial k
t (t

k
0D

\nu 
2
t u(t))\| \.H1(\Omega ) \leq c

k\sum 
j=0

\int t

0
(t - \tau )\nu /2 - 1

\bigl[ 
\| \partial j

\tau (\tau 
ju(\tau ))\| \.H3(\Omega ) + \| \partial j

\tau (\tau 
jf(\tau ))\| \.H1(\Omega )

\bigr] 
d\tau \leq c.

This immediately implies that \partial kt (t
k
0D

\nu 
2
t u(t)) \in L2

\chi k
T
(\Lambda ;H1

0 (\Omega )).
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