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STABILITY AND CONVERGENCE ANALYSIS OF A FULLY

DISCRETE SEMI-IMPLICIT SCHEME FOR STOCHASTIC

ALLEN-CAHN EQUATIONS WITH MULTIPLICATIVE NOISE

CAN HUANG AND JIE SHEN

Abstract. We consider a fully discrete scheme for stochastic Allen-Cahn

equation in a multi-dimensional setting. Our method uses a polynomial based
spectral method in space, so it does not require the elliptic operator A and the
covariance operator Q of noise in the equation commute, and thus successfully
alleviates a restriction of Fourier spectral method for stochastic partial dif-
ferential equations pointed out by Jentzen, Kloeden and Winkel [Ann. Appl.
Probab. 21 (2011), pp. 908–950]. The discretization in time is a tamed
semi-implicit scheme which treats the nonlinear term explicitly while being
unconditionally stable. Under regular assumptions which are usually made for
SPDEs, we establish strong convergence rates in the one spatial dimension for
our fully discrete scheme. We also present numerical experiments which are
consistent with our theoretical results.

1. Introduction

We consider numerical approximation of the following nonlinear stochastic PDE
perturbed by multiplicative noise:

(1.1)

⎧⎪⎨⎪⎩
du = Audt+ F (u)dt+G(u)dWQ(t), x ∈ O ⊂ R

d (d = 1, 2),

u(t, x) = 0, x ∈ ∂O,

u(0, x) = u0(x), x ∈ O,

where A is the Laplacian operator on O, F is the Nemytskii operator defined by
F (u)(ξ) = f(u(ξ)), ξ ∈ O, where f(u) = u− u3. G(u)(ξ) = g(u(ξ)) is another Ne-
mytskii operator, where g(u) is a Lipschitz continuous function with linear growth
satisfying Assumption 2.2, and WQ(t) is a Q-Wiener process on the probability
space (Ω,F , {Ft}t≥0,P) defined by (cf. [33])

WQ(t) =
∞∑
j=1

√
qjejβj(t),

where βj(t) are independent standard Wiener processes, and {(qj , ej)}∞j=1 are eigen-
pairs of a symmetric nonnegative operator Q. We emphasize that {ej}∞j=1 are not
necessarily eigenfunctions of A in O.
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It is well known that for u0 ∈ C(O), (1.1) admits a unique mild solution in
Lp(Ω;C((0, T );H) ∩ L∞(0, T ;H)) for arbitrary p ≥ 1 that satisfy (cf. [9])

u(t) = etAu0 +

∫ t

0

e(t−s)Af(u(s))ds+

∫ t

0

e(t−s)Ag(u(s))dWQ(s).(1.2)

Moreover, under certain conditions to be specified later, supt∈[0,T ] E‖(−A)
γ
2 u(t)‖2

< ∞ holds for some γ > d/2 (cf. Theorem 2.1).
Many mathematical models in physics, biology, chemistry etc. are formulated

as SPDEs (cf. [10, 13, 29]), and various numerical methods have been proposed for
solving SPDEs. We refer to [3,21,26,40,42] and references therein for an incomplete
account of numerical approaches for SPDEs with global Lipschitz condition on f .
In contrast, SPDEs with nonglobally Lipschitz condition on f are more difficult to
deal with, we refer to [5, 6, 8, 11, 12, 17, 24, 25, 30, 31, 34] for some recent advances
in this regard. Moreover, most of these works are concerned with additive noise
(cf. [5, 8, 11, 15, 21–24, 34, 40]), while SPDEs with local Lipschitz condition driven
by multiplicative noise have received much less attention. We would like to point
out that in [17], the authors considered a finite element method (FEM) for sto-
chastic Allen-Cahn equation driven by the gradient type multiplicative noise under
sufficient spatial regularity assumptions, and in [30], the authors also investigated
a FEM for the same equation perturbed by multiplicative noise of type g(u)β(t),
where β(t) is a Brownian motion. In both cases, fully implicit time discretization
schemes are used so that a nonlinear system has to be solved at each time step.

The main goal of this paper is to design and analyze a strongly convergent,
linear and fully decoupled numerical method for stochastic Allen-Cahn equation in
a multi-dimensional framework. To avoid using a fully implicit scheme for SPDEs
with local Lipschitz condition, we construct a tamed semi-implicit scheme in time
(cf. [18,19,39,41]) and show that it is unconditionally stable under a quite general
setting. On the other hand, we adopt a polynomial based spectral-Galerkin method
as spatial discretization. Distinguished for their high resolution and relative low
computational cost for a given accuracy threshold, spectral methods have become
a major computational tool for solving PDEs. However, only limited attempts
have been made for using spectral methods for SPDEs (cf. [5, 21, 22]), and most
of these attempts are confined to Fourier spectral methods. Note that the use of
Fourier spectral methods in these works is essential as Fourier basis functions are
eigenfunctions of the elliptic operator −A. Since in our tamed semi-implicit scheme,
the nonlinear term and the noise terms are treated explicitly, we shall employ
a polynomial-based spectral method for spatial approximation to overcome the
restriction mentioned above. A key ingredient is to use a set of specially constructed
Fourier-like discrete eigenfunctions of A (cf. [37, Chapter 8]), which are mutually
orthogonal in both L2(O) and H1(O).

Combining the above ingredients together, we develop an efficient and uncondi-
tionally stable fully discretized scheme based on a tamed semi-implicit approach.
Moreover, we derive the following convergence rate in the one-dimensional case un-
der regular assumptions (Assumption 2.1-Assumption 2.3) for general multiplicative
noise

E‖u(tk)− uk
N‖2 ≤ C(N−2γ + τ + τ−1N−4γ),(1.3)

where uk
N is the full discretization of u at tk, N is the number of points in each

direction in our spatial approximation, τ is the time step size and γ is the index
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measuring the regularity of noise, which can be arbitrarily large provided that
Assumptions 2.2 and 2.3 hold. It extends the results in [11,34] for stochastic Allen-
Cahn equation with additive noise with finite-element approximation under the

essential assumption ‖(−A)
γ−1
2 Q

1
2 ‖L2 < ∞.

In summary, the main contributions of this paper include:

• We investigate the optimal spatial regularity of solution for (1.1), which lifts
the previous results γ ∈ (1, 2] (cf. [11, 21, 22, 26, 28, 34, 40, 41]) to possible
arbitrarily large γ provided Assumption 2.1-Assumption 2.3 are fulfilled,
and derive optimal spatial convergence rate for our fully-discretized scheme
based on the improved regularity.

• Our tamed time discretization for (1.1) treats the nonlinear terms explic-
itly while is still unconditionally stable. Thus, it avoids solving nonlinear
systems at each time step, which is in contrast to the popular backward
Euler method (cf. [21, 22, 26, 28, 34, 41]).

• We use the Legendre spectral method, instead of the usual Fourier spectral
method, for spatial discretization which does not require the commutativ-
ity of operators A and Q, and circumvents a restriction of Fourier approx-
imation for SPDE pointed out in [21]. Through a matrix diagonalization
process, our method based on the Legendre approximation can also be ef-
ficiently implemented as with a Fourier approximation.

• We establish the strong convergence result (1.3) when d = 1.

The rest of this paper is organized as follows. In Section 2, some preliminaries
including our main assumptions and optimal spatial regularity of solution of (1.1)
are presented. Section 3 is devoted to spatial semi-discretization and its analy-
sis. In Section 4, we present our semi-implicit tamed Euler full discretization for
(1.1), and derive an unconditional stability result. In Section 5, we derive further
stability estimates and strong convergence results for the scheme under regular
assumptions. In Section 6, we present an efficient implementation of our scheme
using the spectral-Galerkin method, and present numerical results for the stochastic
Allen-Cahn equation to validate our main theoretical results.

2. Preliminaries

In this section, we first describe some notations and a few lemmas which will
be used in our analysis, and then we present several general assumptions for the
problem under consideration.

2.1. Notations. We begin with notations. Denote byH the standard L2(O) space.
Let U and V be separable Hilbert spaces and let L(U, V ) be the Banach space of
all bounded linear operators U → V endowed with the uniform norm ‖ · ‖L. We
denote the norm in Lp(Ω,F ,P;U) by ‖ · ‖Lp(Ω;U), that is,

‖Y ‖Lp(Ω;U) =
(
E
[
‖Y ‖pU

]) 1
p , Y ∈ Lp(Ω,F ,P;U).

Denote by L1(U, V ) the nuclear operator space from U to V and for T ∈ L1(U, V ),
its norm is given by

‖T‖L1
=

∞∑
i=1

|(Tei, ei)U | and Tr(T ) =

∞∑
i=1

(Tei, ei)U
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for any orthonormal basis {ei} of U . In particular, if T > 0, then ‖T‖L1 = Tr(T ).
In this work, we assume that WQ(t) is of trace class, i.e. Tr(Q) < ∞. Let L2(U, V )
be the Hilbert-Schmidt space such that for any T ∈ L2(U, V )

‖T‖L2
=

( ∞∑
i=1

‖Tei‖2
)1/2

< ∞.

Moreover, if Q is of trace class, we introduce L0
2 = L2(U0, V ) with norm

‖T‖L0
2
= ‖TQ1/2‖L2(U,V ),

where U0 = Q1/2(U).
Finally, when no confusion arises, we will drop the spatial dependency from the

notations, i.e., u(t) = u(t, x).

2.2. Some useful lemmas. We shall start with the Burkholder-Davis-Gundy
(BDG) inequality for a sequence of H-valued discrete martingales (cf. [20, 28])

Lemma 2.1. Let p ≥ 2 and {Zm} be a sequence of H-valued random variables with
bounded p-moments such that E[Zm+1|Z0, · · · , Zm] = 0 for all 1 ≤ m ≤ N − 1.
Then there exists a constant C = C(p) such that

(
E

∥∥∥∥ m∑
i=0

Zi

∥∥∥∥p) 1
p

≤ C

( m∑
i=0

(E‖Zi‖p)
2
p

) 1
2

.(2.1)

Recall the following generalized Gronwall’s inequality:

Lemma 2.2 (Generalized Gronwall’s lemma [16]). Let T > 0 and C1, C2 ≥ 0 and
let φ be a nonnegative and continuous function. Let β > 0. If we have

φ(t) ≤ C1 + C2

∫ t

0

(t− s)β−1φ(s)ds,

then there exists a constant C = C(C2, T, β) such that

φ(t) ≤ CC1.

2.3. Assumptions and observations. We describe below our main assumptions.

Assumption 2.1 (Operator A). The linear operator −A : dom(A) ⊂ H → H is
densely defined, self-adjoint and positive definite with compact inverse.

Under Assumption 2.1, the operator A generates an analytic semi-group E(t) =
etA, t ≥ 0 on H and the fractional powers of (−A) and its domain Hr :=
dom((−A)r/2) for all r∈R equipped with inner product (·, ·)r=((−A)r/2·, (−A)r/2·)
and the induced norm ‖ · ‖r =(·, ·)1/2r . In particular, we denote ‖ · ‖ = ‖ · ‖0. Let
L0
2,r = L2(U0, H

r) with norm ‖T‖L0
2,r

= ‖(−A)r/2T‖L0
2
. Moreover, the following
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inequalities hold (cf. [32, Theorem 6.13], [26]).

(i) For any μ ≥ 0, it holds that

(−A)μE(t)v = E(t)(−A)μv, for v ∈ H2μ,

and there exists a constant C such that

‖(−A)μE(t)‖ ≤ Ct−μ, t > 0;

(2.2)

(ii) For any 0 ≤ ν ≤ 1, there exists a constant C such that

‖(−A)−ν(E(t)− I)‖ ≤ Ctν , t > 0.

(2.3)

Assumption 2.2 (Linear growth and Lipschitz condition for g). Given γ > d
2 .

The mapping g(v) satisfies

‖g(u)‖L0
2,ν

≤ c‖u‖ν , u ∈ Hν(O)

with ν = 0 and ν = γ, and

‖g(u)− g(v)‖ ≤ c‖u− v‖, u, v ∈ L2(O).

Observation 2.1 (Nonlinearity). f satisfies the following coercivity and one-sided
Lipschitz condition

(f(u), u) ≤ −θ‖u‖4 +K‖u‖2, for some θ,K > 0;

(f(u)− f(v), u− v) ≤ L‖u− v‖2, L > 0, u, v ∈ L2P (O),(2.4)

for some L > 0.

Remark 2.1. The parameter γ essentially determines (see Theorem 2.1) spatial
regularity. It is clear that linear functions satisfy the assumption which relaxes the
sublinear growth condition of g to some extent (cf. [4]).

Assumption 2.3 (Initial condition). Let γ > d
2 be the same as in Assumption 2.2.

We assume that the initial condition u0 is F0/B(Hγ)-measurable and

E‖u0‖pγ < ∞, p ≥ 2.

Under Assumptions 2.1-2.3, there exists a unique predictable process u (cf. [28])
such that for any p ≥ 1, one has

E

(
sup
t

‖u(t)‖pγ
)

< ∞, for γ ∈ (1, 2).(2.5)

Remark 2.2 (On the well-posedness of (1.1)).

• If both f and g are globally Lipschitz continuous with linear growth con-
dition, then the well-posedness of (1.1) is standard and has been provided
in, for instance, [26, Chap. 2].

• If f(v) is a general polynomial of degree P , to guarantee the existence and
uniqueness of solution for (1.1) for cylindrical white noise (cf. [9]), g(u) is
required to have the following restriction

‖g(u)‖ ≤ C(1 + ‖u‖1/P ), u ∈ H.
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2.4. Spatial regularity of u. We proceed to exploit the regularity of the solution
(1.2) under these assumptions. We note that an optimal spatial regularity has been

established for additive noise under the conditions ‖(−A)
γ−1
2 Q

1
2 ‖ < ∞ (cf. [8,34]).

Theorem 2.1. Under Assumption 2.1-Assumption 2.3, the unique mild solution
u(t) of (1.1) satisfies

sup
t

E‖u(t)‖pγ , sup
t

E‖f(u(t))‖pγ < ∞, ∀p ≥ 2.

Proof. We start with (1.2). For any t > 0

‖u(t)‖Lp(Ω;Hγ) ≤
∥∥(−A)

γ
2 E(t)u0

∥∥
Lp(Ω;H)

+

∥∥∥∥(−A)
γ
2

∫ t

0

E(t− σ)f(u(σ))dσ

∥∥∥∥
Lp(Ω;H)

+

∥∥∥∥(−A)
γ
2

∫ t

0

E(t− σ)g(u)dWQ(σ)

∥∥∥∥
Lp(Ω;H)

.(2.6)

The assumption on u0 : Ω → Hγ implies the bound for the first term∥∥(−A)
γ
2 E(t)u0

∥∥
Lp(Ω;H)

≤ ‖u0‖Lp(Ω;Hγ) < C.(2.7)

For the last term in (2.6), we use the Burkholder-Davis-Gundy inequality, Assump-
tion 2.2 and generalized Gronwall inequality to obtain∥∥∥∥∫ t

0

(−A)
γ
2 E(t− σ)g(u(σ))dWQ(σ)

∥∥∥∥
Lp(Ω;H)

≤ C(p)

(∫ t

0

(
E
∥∥(−A)

γ
2 E(t− σ)g(u(σ))

∥∥p
L0

2

) 2
p dσ

) 1
2

≤ C(p)

(∫ t

0

(
E
∥∥(−A)

1−ε
2 E(t− σ)(−A)

γ−1+ε
2 g(u(σ))

∥∥p
L0

2

) 2
p dσ

) 1
2

≤ C

(∫ t

0

(t− σ)ε−1
(
E‖g(u(σ))‖p

L0
2,γ−1+ε

) 2
p dσ

) 1
2

≤ C

(∫ t

0

(t− σ)ε−1
(
E‖(u(σ))‖p

L0
2,γ−1+ε

) 2
p dσ

) 1
2

≤ C

(∫ t

0

(t− σ)ε−1‖u(σ)‖2Lp(Ω;Hγ)dσ

) 1
2

.(2.8)

It remains to bound the second term in (2.6). Towards this end, we consider γ
in differently intervals separately as follows.

(i) Case γ ∈ (d2 , 2):
The regularity result on u for γ ∈ (1, 2) has been proved in [28]. We only

need to prove the case for γ ∈ ( 12 , 1] with d = 1.

∥∥∥∥(−A)
γ
2

∫ t

0

E(t− σ)f(u(σ))dσ

∥∥∥∥
Lp(Ω;H)

≤
∫ t

0

(t− σ)−
γ
2 ‖f(u(σ))‖Lp(Ω;H)dσ.

(2.9)

Therefore, u(t) ∈ Lp(Ω;Hγ) by the generalized Gronwall’s inequality using
(2.7), (2.9) and (2.8).

Since γ > d
2 , p ≥ 2, we have W γ,p(O) is a Banach algebra for d = 1, 2

(cf. [1, Page 106]). Hence, supt E‖f(u(t))‖pγ < ∞.
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(ii) Case γ = 2:
From the previous case, one has u(t) ∈ Lp(Ω;Hμ) for some μ ∈ (1, 2).

Hence,∥∥∥∥ ∫ t

0

E(t− σ)Af(u(σ))dσ

∥∥∥∥
Lp(Ω;H)

=

∥∥∥∥ ∫ t

0

E(t− σ)(−A)1−
μ
2 (−A)

μ
2 f(u(σ))dσ

∥∥∥∥
Lp(Ω;H)

≤
∫ t

0

(t− σ)
μ
2 −1‖f(u(σ))‖Lp(Ω;Hμ)dσ < C,(2.10)

by the result of case (i). Therefore, u(t) ∈ Lp(Ω;H2) by the generalized
Gronwall’s inequality using (2.7), (2.10) and (2.8), and by the same reason
as in the previous case, supt E‖f(u(t))‖p2 < ∞.

(iii) Case γ ∈ (2, 4):
By virtue of the results of case (ii),

∥∥∥∥ ∫ t

0

(−A)
γ
2 E(t− σ)f(u(σ))dσ

∥∥∥∥
Lp(Ω;H)

≤
∫ t

0

(t− σ)1−
γ
2 ‖f(u(σ)‖Lp(Ω;H2)dσ < C.

(2.11)

We repeat the above process for arbitrarily large γ as long as both (2.7)
and (2.8) hold or Assumptions 2.2 and 2.3 hold.

The proof is completed.

�

Remark 2.3. Theorem 2.1 lifts an essential restriction on γ in [11,24,25,27,28,34],
and allows us to obtain higher-order convergence in space, as opposed to the low-
order convergence rate of linear FEM approximation considered in [11,24,25,27,34].

3. Spatial semi-discretization

We describe below our spatial semi-discretization and carry out an error analysis.
We assume O = (0, 1)d,(d = 1, 2).

3.1. Spatial semi-discretization. Let PN be the space of polynomials on O with
degree at most N in each direction and VN = {v|v ∈ PN , v|∂O = 0}. We define
PN : H−1 → VN a generalized projection by (cf. [26]):

(PNv, yN ) = (∇A−1v,∇yN ), ∀v ∈ H−1, yN ∈ VN .(3.1)

It is clear that for v ∈ L2(O), we have

(PNv, yN ) = (v, yN ), ∀yN ∈ VN ,

from which we derive [7]

‖PNv − v‖ ≤ inf
vN∈VN

‖vN − v‖ ≤ CN−r‖u‖r, ∀r > 0.(3.2)

We introduce a discrete operator AN : VN → VN defined by

(ANvN , χN ) := −((−A)1/2vN , (−A)1/2χN ), ∀vN , χN ∈ VN .

Then the spectral Galerkin approximation of (1.1) yields

duN = ANuNdt+ PNf(uN )dt+ PNg(uN )dWQ(t), uN (0) = PNu0.(3.3)
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Similar as the continuous case, there exists a unique mild solution uN to (3.3) which
can be written as

uN (t)=EN (t)PNu0+

∫ t

0

EN (t−s)PNf(uN (s))ds+

∫ t

0

EN (t−s)PNg(uN )dWQ(s),

(3.4)

where EN (t) = etAN . Similar to [38, Lemma 3.9], one has the property

‖(−AN )μENvN‖ ≤ Ct−μ‖vN‖ for all t > 0, vN ∈ PN ,(3.5)

and defines the operator

FN (t) := EN (t)PN − E(t).

Lemma 3.1. Let 0 ≤ ν ≤ μ. Then there exists a constant C such that

‖FN (t)u‖ ≤ CN−μt−
μ−ν

2 ‖u‖ν , ∀u ∈ Hν .

Proof. Thanks to (3.2), this result can be proved by using the same technique used
for finite elements (cf. [38, Theorem 3.5]), so we omit the detail here. �

Lemma 3.2. Let Assumptions 2.1-2.3 hold and uN is given by (3.3). Then, for
all p ≥ 2,

sup
t

E‖uN (t)‖p∞ < C,

where C is independent of N .

Proof. The proof is the similar as that of full discretization scheme (see Theorem
5.1) and we omit it here. �

Theorem 3.1. Let u and uN be the solutions of (1.1) and (3.3). Then, under
Assumptions 2.1-2.3, there exists a constant C independent of N such that

‖u(t)− uN (t)‖L2(Ω;H) ≤ CN−γ , t > 0.(3.6)

Proof. Let us introduce an auxiliary process ũN (t) defined by

dũN (t) = AN ũN (t)dt+ PNf(u(t))dt+ PN [g(u(t))dWQ(t)], ũN (0) = PNu0.

(3.7)

We can easily obtain the following stability result by following the same proof for
uN (t)

sup
t

E‖ũN (t)‖p∞ ≤ C, ∀p ≥ 2.(3.8)

It is clear that

‖u(t)− ũN (t)‖Lp(Ω,H) ≤
∥∥FN (t)u0

∥∥
Lp(Ω,H)

+

∥∥∥∥ ∫ t

0

FN (t− s)f(u(s))ds

∥∥∥∥
Lp(Ω,H)

+

∥∥∥∥ ∫ t

0

FN (t− s)g(u(s)dWQ(s)

∥∥∥∥
Lp(Ω,H)

:= I1 + I2 + I3.(3.9)

By Lemma 3.1 and Theorem 2.1, we easily have

I1 ≤ CN−γ‖u0‖Lp(Ω,Hγ), I2 ≤ CN−γ

∫ t

0

‖f(u(s))‖Lp(Ω,Hγ)ds,(3.10)
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and by the BDG inequality

I23 ≤ C

∫ t

0

(E‖FN (t− s)g(u(s))Tr(Q)‖p) 2
p ds

≤ CN−2γ

∫ t

0

(E‖g(u(s))‖pγ)
2
p ds

≤ CN−2γ

∫ t

0

(E‖u(s)‖pγ)
2
p ds ≤ CN−2γ .(3.11)

Therefore,

‖u(t)− ũN (t)‖Lp(Ω,H) ≤ CN−γ .(3.12)

Let ẽN (t) = ũN (t)− uN (t). Then, we have

(3.13)

ẽN (t) =

∫ t

0

EN (t− s)PN [f(u(s))− f(uN (s))]ds

+

∫ t

0

EN (t− s)PN [g(u(s))− g(uN (s))dWQ(s)].

Now, we apply Itô’s formula for ẽN (t) (cf. [14]) and obtain

E‖ẽN (t)‖2 + 2

∫ t

0

E‖∇ẽN (s)‖2ds

=2

∫ t

0

E(ẽN (s), PN (f(u(s))− f(uN (s)))ds+

∫ t

0

E‖PN (g(u(s))− g(uN (s)))‖2L0
2
ds

≤2L

∫ t

0

E‖ẽN (s)‖2ds+ 2

∫ t

0

E(ẽN (s), PN(f(u(s))− f(ũN (s)))ds

+ C

∫ t

0

E‖u(s)− uN (s)‖2ds

≤C

∫ t

0

E‖ẽN (s)‖2ds+
∫ t

0

E‖f(u(s))− f(ũN (s))‖2ds+ C

∫ t

0

E‖u(s)− ũN (s)‖2ds

≤C

∫ t

0

E‖ẽN (s)‖2ds+
∫ t

0

E[‖u(s)− ũN (s)‖2(1 + ‖u(s)‖4∞ + ‖ũN (s)‖4∞)] + CN−2γ

≤C

∫ t

0

E‖ẽN (s)‖2ds+
∫ t

0

√
E‖u(s)− ũN (s)‖4

√
E(1 + ‖u(s)‖4∞ + ‖ũN (s)‖4∞)2ds

+ CN−2γ

≤C

∫ t

0

E‖ẽN (s)‖2ds+ CN−2γ ,

(3.14)

where we have used (2.4), Theorem 2.1 and (3.8).
Therefore, the Gronwall’s inequality implies

E‖ẽN (t)‖2 ≤ CN−2γ .(3.15)

Combining (3.12) and (3.15) leads to the desired result. �
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4. Full discretization and an unconditional stability result

In this section, we present our fully discrete scheme and establish an uncondi-
tional stability result. The time discretization is based on a tamed semi-implicit
discretization which leads to a linear system at each time step and is unconditionally
stable.

Let τ be the time step size and M = T/τ . We start with a semi-discrete time
splitting discretization scheme for (1.1):

uk+1 − uk = τΔuk+1 +
τf(uk)

1 + τ‖f(uk)‖2 + g(uk)ΔWQ(tk), 0 ≤ k ≤ M − 1.(4.1)

Combining with (3.3), we have its fully discretized version:

(4.2) (uk+1
N − uk

N , ψ) = τ (Δuk+1
N , ψ) +

τ

1 + τ‖f(uk
N )‖2

(f(uk
N ), ψ) + (g(uk

N ), ψ),

u0
N = PNu0,

or

(4.3) uk+1
N − uk

N = τANuk+1
N +

τ

1 + τ‖f(uk
N )‖2

PNf(uk
N ) + PN [g(uk

N )ΔWQ(tk)],

0 ≤ k ≤ M − 1.

A remarkable property of the above tamed scheme is that, despite treating the
nonlinear term explicitly, it is still unconditionally stable as we show below.

Theorem 4.1. The schemes (4.1) and (4.2) admit a unique solution uk+1 and

uk+1
N , and are unconditionally stable in the sense that for 1 ≤ k ≤ M − 1, we have

E‖uk+1
N ‖q ≤ C(E‖u0‖, q, T ), ∀q ≥ 2.

Proof. The proof for the semi-discrete and full-discrete cases are essentially the
same so we shall only prove the result for the full-discrete case. It is clear that the
scheme (4.2) admits a unique solution.

Choosing ψ = un+1
N in (4.2) gives

‖un+1
N ‖2 + ‖un+1

N − un
N‖2 + 2τ‖∇un+1

N ‖2

≤ ‖un
N‖2 + 2τ

1 + τ‖f(un
N )‖2 (f(u

n
N ), un+1

N ) + 2(g(un
N )ΔWn, un+1

N )

≤ ‖un
N‖2 + 2τ

1 + τ‖f(un
N )‖2 (f(u

n
N ), un+1

N − un
N ) + 2τ (f(un

N ), un
N )

+ 2(g(un
N )ΔWn, un+1

N )

≤ ‖un
N‖2 + 4τ +

1

4
‖un+1

N − un
N‖2 − 2τ‖un

N‖4L4 + 2τ‖un
N‖2

+ 2(g(un
N )ΔWn, un+1

N − un
N ) + 2(g(un

N )ΔWn, un
N )

≤ (1 + 2τ )‖un
N‖2 + 4τ +

1

2
‖un+1

N − un
N‖2 − 2τ‖un

N‖4L4

+ 4‖g(un
N )ΔWn‖2 + 2(g(un

N )ΔWn, un
N ).(4.4)

Denote by A = (1 + 2τ ) and a simple computation implies

lim
M→∞

An = lim
M→∞

(
1 +

2T

M

)n

≤ e2T , n ≤ M.
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Hence, (4.4) leads to

‖un+1
N ‖2 + 1

2

n∑
j=0

An−j‖uj+1
N − uj

N‖2 + 2τ
n∑

j=0

An−j‖∇uj+1
N ‖2 + 2τ

n∑
j=0

An−j‖uj
N‖4L4

≤An+1‖u0
N‖2+4τ

n∑
j=0

Aj+4
n∑

j=0

An−j‖g(uj
N )ΔWn‖2+2

n∑
j=0

An−j(g(uj
N )ΔW j , uj

N ).

(4.5)

Next, we take m-moment on (4.5) and obtain

‖un+1
N ‖2m

(4.6)

≤

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
C‖u0

N‖2m+CTm+C

[∑n
j=0 ‖g(u

j
N )ΔWn‖2

]m
+C

[∑n
j=0(g(u

j
N )ΔW j , uj

N )

]m
,

if
∑n

j=0(g(u
j
N )ΔW j , uj

N ) ≥ 0;

C‖u0
N‖2m+CTm+C

[∑n
j=0 ‖g(u

j
N )ΔWn‖2

]m
, otherwise.

Since (g(uj
N )ΔW j , uj

N ) are martingales independent from each other, we derive
from the BDG inequality (Lemma 2.1) and Assumption 2.2 that

E‖un+1
N ‖2m ≤ CE‖u0

N‖2m + CTm + Cnm−1
n∑

j=0

E‖g(uj
N )ΔWn‖2m

+ CE
n∑

j=0

(g(uj
N )ΔW j , uj

N )m

≤ CE‖u0
N‖2m + CTm + Cτ

n∑
j=0

E‖g(uj
N )‖2m

+ C

( n∑
j=0

[E(|(g(uj
N )ΔW j , uj

N )|m]
2
m

)m
2

≤ CE‖u0
N‖2m + CTm + Cτ

n∑
j=0

E‖g(uj
N )‖2m

+ C

( n∑
j=0

{E[(‖g(uj
N )‖4 + ‖uj

N‖4)τ ]m2 } 2
m

)m
2

≤ CE‖u0
N‖2m+CTm+Cτ

n∑
j=0

E‖uj
N‖2m+Cτ

m
2

( n∑
j=0

(E‖uj
N‖2m)

2
m

)m
2

≤ CE‖u0
N‖2m + CTm + Cτ

n∑
j=0

E‖uj
N‖2m + Cτ

n∑
j=0

(E‖uj
N‖2m)

≤ CE‖u0
N‖2m + CTm + Cτ

n∑
j=0

E‖uj
N‖2m.(4.7)
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Hence, the discrete Gronwall’s inequality implies

E‖un+1
N ‖2m ≤ C(‖u0‖, T,m).(4.8)

Furthermore, we also have

E‖un+1
N ‖2m +E

( n∑
j=0

‖∇uj+1
N ‖2τ

)m

+E

( n∑
j=0

‖uj
N‖4L4τ

)m

≤ C(‖u0‖, T,m).

(4.9)

�

Remark 4.1. We note that the full discretization scheme (3.3) can be directly ex-
tended to rectangular domains in d dimension, and that the above stability result
is also valid for any dimension.

5. Error analysis in one spatial dimension

We established an unconditional stability result for d = 1, 2 in the last section,
but the result in Theorem 4.1 is not sufficient to derive a strong convergence result.
Therefore, we confine ourselves mostly to the case d = 1 in this section. We first
derive further stability results in L∞ norm, and then use it to establish a strong
convergence result.

5.1. Further stability results. We first establish a result which is valid in any
dimension d, and will be used below.

Lemma 5.1. There exist positive constants c1 and c2 independent of N and τ such
that

c1‖(−ΔN )γvN‖ ≤ ‖(−Δ)γvN‖ ≤ c2‖(−ΔN )γvN‖, −1

2
≤ γ ≤ 1

2
.(5.1)

Proof. We follow a similar argument in [2] for a finite-element approximation.
We start with the first inequality in (5.1). By definition of ΔN ,

(5.2)
‖(−ΔN )

1
2PNv‖ = ‖∇PNv‖ = ‖(−Δ)

1
2PNv‖ = ‖PNv‖1 ≤ C‖v‖1

= C‖(−Δ)
1
2 v‖, v ∈ H1.

Moreover,

‖(−ΔN )−
1
2PNv‖ = sup

ψ∈PN

(v, ψ)

‖(−ΔN )
1
2ψ‖

= sup
ψ∈PN

(v, ψ)

‖(−Δ)
1
2ψ‖

≤ sup
ψ∈H1

(v, ψ)

‖(−Δ)
1
2ψ‖

= ‖(−Δ)−
1
2 v‖.(5.3)

Hence, by interpolation, we have

‖(−ΔN )γPNv‖ ≤ C‖(−Δ)γv‖, v ∈ Hγ , −1

2
≤ γ ≤ 1

2
.(5.4)

The desired inequality is proved by choosing v = vN .
Next, we prove the second inequality in (5.1). We note from (5.2) that

‖(−ΔN )
1
2PN (−Δ)−

1
2 ‖L ≤ C.(5.5)
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Hence,

(5.6)
‖(−Δ)−

1
2 (−ΔN )

1
2PN‖L = ‖[(−Δ)−

1
2 (−ΔN )

1
2PN ]∗‖L

= ‖(−ΔN )
1
2PN (−Δ)−

1
2 ‖L ≤ C,

so that

‖(−Δ)−
1
2 (−Δ)

1
2

NPNv‖ ≤ C‖v‖
or

‖(−Δ)−
1
2 vN‖ ≤ C‖(−ΔN )−

1
2 vN‖, vN ∈ PN .(5.7)

In addition,

‖(−ΔN )
1
2 vN‖ = ‖∇vN‖ = ‖(−Δ)

1
2 vN‖, vN ∈ PN .(5.8)

Again, by interpolation,

‖(−Δ)γvN‖ ≤ C‖(−ΔN )γvN‖, vN ∈ PN , −1

2
≤ γ ≤ 1

2
.(5.9)

�

We denote

En = (I − τAN )−n, 1 ≤ n ≤ M.

To proceed, we need to prove a stability result for the operator Em.

Lemma 5.2. Let d = 1. We have for 0 ≤ γ ≤ 1,m ≥ 1,

‖EmPNv‖∞ ≤ C(mτ )
γ
2−

1
4−ε‖v‖γ , v ∈ Hγ .(5.10)

Proof. We note that the function

h(x) =
x

1
2+ε−γ

(1 + τx)2m
, x > 0

attains its maximum at the point x∗ = 1+2ε−2γ
[4m−(1+2ε−2γ)]τ with the bound

|h(x)| ≤ h(x∗) ≤ C(mτ )γ−
1
2−ε.

Therefore, by Lemma 5.1 and the bound of h, we deduce that

‖EmPNv‖2∞ ≤ C‖EmPNv‖21
2+ε = C‖(−Δ)

1
4+

ε
2EmPNv‖2

≤ C‖(−ΔN )
1
4+

ε
2EmPNv‖2

= C
N∑
j=1

(λj
N )

1
2+ε−γ

(1 + τλj
N )2m

(λj
N )γ |(v, ejN )|2

≤ C(mτ )γ−
1
2−2ε

N∑
j=1

(λj
N )γ |(v, ejN )|2

≤ C(mτ )γ−
1
2−2ε‖(−ΔN )

γ
2 PNv‖2

≤ C(mτ )γ−
1
2−2ε‖v‖2γ , ∀ 0 ≤ γ ≤ 1,(5.11)

which implies (5.10). �

Now we are ready to prove a new stability result needed for the error analysis
below.
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Theorem 5.1. Let T > 0, q ≥ 1 and d = 1. There exists a constant C(T, q, ‖u0‖)
such that

sup
n
[E‖un

N‖q∞] ≤
{
C(T, q, ‖u0‖)t

− q
4−ε

n , u0 ∈ L2(O),

C(T, q, ‖u0‖), u0 ∈ Hγ(O), γ > 1
2 .

Proof. With Theorem 4.1 in hand, we bound the following stochastic term first.
Applying Lemma 2.1 and (3.5) and Assumption 2.2 successively, we have

E

∥∥∥∥ k∑
j=0

Ek+1−nPNg(uj
N )ΔW j

∥∥∥∥q
∞
≤CE

∥∥∥∥ k∑
j=0

Ek+1−nPNg(uj
N )ΔW j

∥∥∥∥q
1
2+ε

≤CE

∥∥∥∥ k∑
j=0

(−AN )
1
4+

ε
2Ek+1−nPNg(uj

N )ΔW j

∥∥∥∥q

≤C

( k∑
j=0

(E‖(−AN )
1
4+

ε
2Ek+1−nPNg(uj

N )ΔW j‖q)2q
)q

2

≤C

( k∑
j=0

t
− 1

2−ε

k+1−n(E‖g(uj
N )ΔW j‖q) 2

q

) q
2

≤C

( k∑
j=0

t
− 1

2−ε

k+1−nτ (E‖uj
N‖q) 2

q

) q
2

< ∞.(5.12)

Now, we are ready to bound uk+1
N . By (5.12) and the Gagliardo-Nirenberg

inequality

E‖uk+1
N ‖q∞=E

∥∥∥∥Ek+1u0
N+

k∑
j=0

τEk+1−jPN

1+τ‖f(uj
N )‖2

f(uj
N )+

k∑
j=0

Ek+1−jPNg(uj
N )ΔWQ(tj)

∥∥∥∥q
∞

≤ 3q−1E‖Ek+1u0
N‖q∞ + 3q−1E

( k∑
j=0

‖Ek+1−jPNf(uj
N )‖∞τ

)q

+ 3q−1E

∥∥∥∥ k∑
j=0

Ek+1−nPNg(uj
N )ΔWQ(tj)

∥∥∥∥q
∞

≤ CE‖Ek+1u0
N‖q∞ + 3q−1E

( k∑
j=n

t
− 1

4−ε

k+1−j‖f(u
j
N )‖τ

)q

+ C

≤ CE‖Ek+1u0
N‖q∞ + CE

( k∑
i=0

t
− 1

4−ε

k+1−i(1 + ‖ui
N‖3L6)τ

)q

+ C

≤ CE‖Ek+1PNu0‖q∞+C(q)E

( k∑
i=0

t
− 1

4−ε

k+1−i (1+‖∇ui
N‖ 4

3 +‖ui
N‖8)τ

)q

+C

≤ C(q)

( k∑
i=0

t
− 3

4−3ε

k+1−i τ

) q
3

E

( k∑
i=0

(1 + ‖∇ui
N‖2 + ‖ui

N‖12)τ
) 2q

3

+ C +

{
Ct

− q
4−ε

k+1 E‖u0
N‖q, u0 ∈ L2(O)

CE‖u0‖qγ , u0 ∈ Hγ(O), γ > 1
2

,
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where we have used Lemma 5.2 to bound u0
N . Then, the desired result follows from

the above and previous results on uk
N in (4.9). �

5.2. Convergence analysis. Now, we carry out a convergence analysis for (4.2).

Lemma 5.3. Under Assumption 2.1, we have

‖(−A)
ρ
2 (E(tn)− En)v‖ ≤ Cτ

β
2 t

− β−γ+ρ
2

n ‖(−A)
γ
2 v‖, 0 ≤ γ ≤ β + ρ, γ ≥ 0, β ∈ [0, 2];

‖(E(t)− EnPN )v‖ ≤ C(N−μ + τmin{μ
2 ,1})‖v‖μ, v ∈ Hμ.

(5.13)

Proof. The first inequality can be found in [24]. We only prove the second one.

‖(E(t)− EnPN )v‖ ≤ ‖(EnPN − E(tn))v‖+ ‖(E(tn)− E(t))v‖, t ∈ [tn−1, tn].

It is clear that

‖(E(tn)− E(t))v‖ = ‖(−A)−
μ
2 (E(tn − t))− I)E(t)(−A)

μ
2 v‖

≤ C(tn − t)
μ
2 ‖x‖μ ≤ Cτ

μ
2 ‖v‖μ,

where (2.3) is applied and therefore we require 0 ≤ μ < 2 for this estimate.
Furthermore, since v is smooth, we can follow the proof of [38, Theorem 7.8] to

derive

‖(EnPN − E(tn))v‖ ≤ C(N−μ‖v‖μ + τ‖v‖2), tn ≥ 0.

�

Remark 5.1. For the above estimate, we only require v ∈ Ḣμ, where μ can be
arbitrarily large. Thus, the spatial error can be made arbitrarily small provided v
is sufficiently smooth whereas the temporal error is at most of order O(τ ) which
cannot be improved.

We start by establishing some temporal properties of u(s).

Lemma 5.4. Under Assumptions 2.1-2.3, we have

‖u(t)− u(s)‖Lp(Ω;H) ≤ C(t− s)min{ γ
2 ,

1
2 }, p ≥ 2.(5.14)

Proof. Suppose that 0 ≤ s ≤ t ≤ T . Using (1.2),

‖u(t)− u(s)‖Lp(Ω;H)

≤ ‖(E(t)− E(s))u0‖Lp(Ω;H)

+

∥∥∥∥ ∫ t

0

E(t− σ)f(u(σ))dσ −
∫ s

0

E(s− σ)f(u(σ))dσ

∥∥∥∥
Lp(Ω;H)

+

∥∥∥∥ ∫ t

0

E(t− σ)g(u(σ))dWQ(σ)−
∫ s

0

E(s− σ)g(u(σ))dWQ(σ)

∥∥∥∥
Lp(Ω;H)

:= H1 +H2 +H3.
(5.15)

Using (2.3),

H1 ≤ ‖E(s)(−A)−min{ γ
2 ,1}(E(t− s)− I)(−A)min{ γ

2 ,1}u0‖Lp(Ω;H)

≤ C(t− s)min{ γ
2 ,1}‖u0‖Lp(Ω;Hmin{γ,2}).(5.16)
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Similarly,

H2 ≤
∥∥∥∥ ∫ s

0

(
E(t− σ)− E(s− σ)

)
f(u(σ)))dσ

∥∥∥∥
Lp(Ω;H)

+

∥∥∥∥ ∫ t

s

E(t− σ)f(u(σ))dσ

∥∥∥∥
Lp(Ω;H)

≤ C(t− s)min{ γ
2 ,1}

∫ s

0

‖f(u(σ))‖Lp(Ω;Hmin{γ,2})dσ

+

∫ t

s

‖E(t− σ)f(u(σ))‖Lp(Ω;H)ds

≤ C(t− s)min{ γ
2 ,1}.(5.17)

By the BDG inequality and Assumption 2.2, we have
(5.18)

H2
3 ≤ CE

∥∥∥∥
∫ s

0

(
E(t− σ)− E(s− σ)

)
g(u(σ))dWQ(σ)

∥∥∥∥
2

Lp(Ω;H)

+ CE

∥∥∥∥
∫ t

s

E(t− σ)g(u(σ))dWQ(σ)

∥∥∥∥
2

Lp(Ω;H)

≤ C

∫ s

0

(E‖
(
E(t− σ)−E(s− σ)

)
g(u(σ))‖p

L0
2
)
2
p dσ

+ C

∫ t

s

(E‖E(t− σ)g(u(σ))‖p
L0

2
)
2
p dσ

≤C

∫ s

0

(E‖(−A)
1−ε
2 E(s−σ)(−A)−min{ γ

2
,1}(E(t−s)−I)(−A)min{ γ

2
,1}−1−ε

2 g(u(σ))‖p
L0

2
)
2
p dσ

+ C(t− s)

≤ C(t− s)min{γ,2}
∫ s

0

(s− σ)ε−1(E‖g(u)‖pγ−1+ε)
2
p dσ + C(t− s)

≤ C(t− s)min{γ,2}(E sup
σ

‖u(σ)‖pγ−1+ε)
2
p + C(t− s).

The result follows by combining estimates of H1, H2 and H3. �

Theorem 5.2. Let d = 1, and u(t) and um
N be solutions of (1.2) and (4.2) respec-

tively. Then, under Assumptions 2.1-2.3, there exists a constant C independent of
N and τ such that

‖u(tm)− um
N‖L2(Ω;H) ≤ C(N−γ + τmin{ γ

2 ,
1
2} + τ−

1
2N−2γ), t > 0.(5.19)

Proof. Following the idea from [28] (see also [34, 35]), we introduce an auxiliary
process

ũn
N − ũn−1

N = τAN ũn +
τPNf(u(tn−1))

1 + τ‖f(u(tn))‖2
+ PNg(u(tn−1))ΔWQ(tn),(5.20)

which can be rewritten as

ũn
N = EnPNu0 + τ

n∑
k=1

En−kPNf(u(tk−1))

1 + τ‖f(u(tk−1))‖2
+

n∑
k=1

∫ tk

tk−1

En−kPNg(u(tk−1))dW
Q(s).

(5.21)

By the proof of Theorem 2.1, we easily infer that E‖ũn
N‖pγ < ∞, E‖f(ũn

N )‖2γ < ∞,
for all 1 ≤ n ≤ M (see also [34, 35]).
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Note that (4.2) can also be written in closed form

(5.22)

un
N = EnPNu0 +

n∑
k=1

∫ tk

tk−1

En−kPNf(uk−1
N )

1 + τ‖f(uk−1
N )‖2

ds

+

n∑
k=1

∫ tk

tk−1

En−kPNg(u(tk−1))dW
Q(s).

Next, we split the error ‖u(tn) − un
N‖L2(Ω;H), 1 ≤ n ≤ M into two parts, and

bound them individually.

‖u(tn)− un
N‖L2(Ω;H) ≤ ‖u(tn)− ũn

N‖L2(Ω;H) + ‖un
N − ũn

N‖L2(Ω;H).(5.23)

Subtracting (5.21) from (1.2) and taking the associated norm gives
(5.24)
‖u(tn)− ũn

N‖Lp(Ω;H)

≤ ‖(E(tn)− EnPN )u0‖Lp(Ω;H)

+

∥∥∥∥ ∫ tn

0

E(tn − s)f(u(s))ds− τ
n∑

k=1

En−kPNf(u(tk−1))

1 + τ‖f(u(tk−1))‖2

∥∥∥∥
Lp(Ω;H)

+

∥∥∥∥ ∫ tn

0

E(tn−s)g(u(s))dWQ(s)−
n∑

k=1

∫ tk

tk−1

En−kPNg(u(tk−1))dW
Q(s)

∥∥∥∥
Lp(Ω;H)

:= I1 + I2 + I3.

An application of (5.13) gives

I1 ≤ C(N−γ + τmin{ γ
2 ,1})‖u0‖Lp(Ω;Hγ).(5.25)

I2 can be decomposed in the following way:

I2 =

∥∥∥∥ n∑
k=1

∫ tk

tk−1

[
E(tn − s)f(u(s))− En−kPNf(u(tk−1))

1 + τ‖f(u(tk−1))‖2

]
ds

∥∥∥∥
Lp(Ω;H)

≤
∥∥∥∥ n∑

k=1

∫ tk

tk−1

E(tn − s)[f(u(s))− f(u(tk−1))]ds

∥∥∥∥
Lp(Ω;H)

+

∥∥∥∥ n∑
k=1

∫ tk

tk−1

[E(tn − s)− En−k]f(u(tk−1))ds

∥∥∥∥
Lp(Ω;H)

+

∥∥∥∥ n∑
k=1

∫ tk

tk−1

[
En−kf(u(tk−1))−

En−kPNf(u(tk−1))

1 + τ‖f(u(tk−1))‖2

]
ds

∥∥∥∥
Lp(Ω;H)

:= I21 + I22 + I23.(5.26)
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2 By Lemma 5.4 and Theorem 2.1, we bound I21 as follows.

‖I21‖Lp(Ω:H)

=

∥∥∥∥ n∑
k=1

∫ tk

tk−1

E(tn − s)(f(u(s))− f(u(tk−1)))ds

∥∥∥∥
Lp(Ω;H)

≤ C

n∑
k=1

∫ tk

tk−1

(
1 + ‖u(s)‖4L2p(Ω;L∞) + ‖u(tk−1)‖4L2p(Ω;L∞)

)
‖u(s)− u(tk−1)‖L2p(Ω;H)

≤ C

n∑
k=1

∫ tk

tk−1

‖u(s)− u(tk−1)‖L2p(Ω;H)ds

≤ Cτmin{ γ
2 ,

1
2}.

By (5.13),

‖I22‖Lp(Ω;H) ≤
∥∥∥∥ n∑

k=1

∫ tk

tk−1

[E(tn − s)− En−kPN ]f(u(tk−1))ds

∥∥∥∥
Lp(Ω;H)

+

∥∥∥∥ n∑
k=1

∫ tk

tk−1

[En−kPN − En−k]f(u(tk−1))ds

∥∥∥∥
Lp(Ω;H)

≤ C(N−γ + τmin{ γ
2 ,1}).(5.27)

Similarly, using Theorem 2.1 and (5.13) gives
(5.28)

‖I23‖Lp(Ω;H) =

∥∥∥∥ n∑
k=1

∫ tk

tk−1

[
En−kf(u(tk−1))−

En−kPNf(u(tk−1))

1 + τ‖f(u(tk−1))‖2

]
ds

∥∥∥∥
Lp(Ω;H)

≤
n∑

k=1

∫ tk

tk−1

∥∥∥∥(En−k−En−kPN )f(u(tk−1))+τ‖f(u(tk−1))‖2En−kf(u(tk−1))

1 + τ‖f(u(tk−1))‖2

∥∥∥∥
Lp(Ω;H)

ds

≤ C(N−γ + τmin{ γ
2 ,1}‖f(u)‖Lp(Ω;Hγ) + Cτ (‖f(u(tk−1))‖4L4p(Ω;H)

+ ‖f(u(tk−1))‖2L2p(Ω;H))

≤ C(N−γ + τmin{ γ
2 ,1}).

Hence,

‖I2‖Lp(Ω;H) ≤ C(N−γ + τmin{ γ
2 ,

1
2}).(5.29)
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I3 can be bounded by using the Burkholder-Davis-Gundy inequality, Assumption
2.2, Lemma 5.4, and (5.13). Note that Tr(Q) < ∞.

‖I3‖2Lp(Ω;H) =

∥∥∥∥ n∑
k=1

∫ tk

tk−1

[E(tn − s)g(u(s))− En−kPNg(u(tk−1)]dW
Q(s)

∥∥∥∥2
Lp(Ω;H)

≤ C

n∑
k=1

∫ tk

tk−1

‖E(tn − s)g(u(s))− En−kPNg(u(tk−1)‖2Lp(Ω;L0
2)
ds

≤ C

n∑
k=1

∫ tk

tk−1

‖E(tn − s)(g(u(s))− g(u(tk−1)))‖2Lp(Ω;L2)
ds

+ C

n∑
k=1

∫ tk

tk−1

‖(E(tn − s)− En−kPN )g(u(tk−1))‖2Lp(Ω;L2)
ds

≤ C

n∑
k=1

∫ tk

tk−1

‖u(s)− u(tk−1)‖2Lp(Ω;L2)
ds+ C(N−2γ + τmin{γ,2})

≤ C(N−2γ + τmin{γ,1}).(5.30)

Thus, combining estimates of I1, I2 and I3, we can obtain

‖u(tn)− ũn
N‖Lp(Ω;H) ≤ C(N−γ + τmin{ γ

2 ,
1
2}).(5.31)

Next, we estimate ‖ũn
N −un

N‖Lp(Ω;H). Denote ẽn := un
N − ũn

N . It is clear that ẽn
satisfies the equation

ẽn − ẽn−1 = τAN ẽn +
τf(un−1

N )

1 + τ‖f(un−1
N )‖2

− τPNf(u(tn−1)

1 + τ‖f(u(tn−1))‖2
(5.32)

+ PN (g(un−1
N )− g(u(tn−1)))ΔWQ(tn),

ẽ0 = 0.

Multiplying both sides by ẽn gives

1

2
‖ẽn‖2 − 1

2
‖ẽn−1‖2 + 1

2
‖ẽn − ẽn−1‖2 + τ‖∇ẽn‖2

=

(
τf(un−1

N )

1 + τ‖f(un−1
N )‖2

− τf(u(tn−1)

1 + τ‖f(u(tn−1))‖2
, ẽn

)
+ (g(un−1

N )− (g(u(tn−1)))ΔWQ(tn), ẽ
n)

:= J +K.(5.33)

A careful computation gives

J=

τ

(
f(un−1

N )−f(u(tn−1)), ẽ
n

)
+τ2

(
‖f(u(tn−1))‖2f(u(tn−1

N )−‖f(un−1
N ))‖2f(u(tn−1)), ẽ

n

)

(1+τ‖f(u(tn−1))‖2)(1+τ‖f(un−1
N )‖2)

=
τ2(‖f(u(tn−1))‖2−‖f(un−1

N )‖2)(f(u(tn−1)), ẽ
n)

(1+τ‖f(u(tn−1))‖2)(1+τ‖f(un−1
N )‖2)

+
τ(f(un−1

N )−f(u(tn−1), ẽ
n)

1+τ‖f(un−1
N )‖2

:=J1+J2.
(5.34)
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By Theorem 5.1, we have

EJ1 ≤ Cτ3E[‖f(un−1
N )‖4‖f(u(tn−1))‖2 + ‖(f(u(tn−1))‖6] + τE‖ẽn‖2

≤ Cτ2 + τE‖ẽn‖2.(5.35)

From Observation 2.1 of f ,

J2 =
τ(f(u(tn−1)− f(un−1

N ), ẽn)

1 + τ‖f(un−1
N )‖2

=
τ(f(u(tn−1)−f(ũn−1), ẽn〉+τ〈f(ũn−1)−f(un−1

N ), ẽn−1)+τ(f(ũn−1)−f(un−1
N ), ẽn−ẽn−1)

1+τ‖f(un−1
N )‖2

≤ τ

[
‖f(u(tn−1)− f(ũn−1)‖2 + 1

4
‖ẽn‖2

]
+ Lτ‖ẽn−1‖2 + τ2‖f(ũn−1)− f(un−1

N )‖2

+
1

4
‖ẽn − ẽn−1‖2.

(5.36)

Based upon Theorem 2.1 and (5.31), we deduce that

τE‖f(u(tn−1)− f(ũn−1)‖2

≤ CτE

[
(1 + ‖u(tn−1)‖2∞ + ‖ũn−1‖2∞)2‖u(tn−1)− ũn−1‖2

]
≤ Cτ2E(1 + ‖u(tn−1)‖4∞ + ‖ũn−1‖4∞) + CE‖u(tn−1)− ũn−1‖4

≤ Cτ2 + C(N−4γ + τmin{2γ,2})(5.37)

and τ2E‖f(ũn−1)− f(un−1
N )‖2 ≤ Cτ2. Hence,

EJ ≤ C(τmin{2γ,2} +N−4γ) + CτE‖ẽn‖2 + CτE‖ẽn−1‖2 + 1

4
E‖ẽn − ẽn−1‖2.

(5.38)

Now it remains to bound K. By Assumption 2.2 and (5.31),

EK = E(g(u(tn−1))− g(un−1
N ))ΔWQ(tn), ẽ

n − ẽn−1)

≤ E‖g(u(tn−1))− g(un−1
N ))ΔWQ(tn)‖2 +

1

4
E‖ẽn − ẽn−1‖2

≤ CτTr(Q)E‖g(u(tn−1))− g(un−1
N ))‖2 + 1

4
E‖ẽn − ẽn−1‖2

≤ CτE‖u(tn−1)− un−1
N ‖2 + 1

4
E‖ẽn − ẽn−1‖2

≤ CτE‖u(tn−1)− ũn−1
N ‖2 + CτE‖ẽn−1‖2 + 1

4
E‖ẽn − ẽn−1‖2

≤ Cτ (N−2γ + τmin{γ,1}) + CτE‖ẽn−1‖2 + 1

4
E‖ẽn − ẽn−1‖2.(5.39)

Therefore,

1

2
E‖ẽn‖2 − 1

2
E‖ẽn−1‖2 + τE‖∇ẽn‖2

≤ C1τE‖ẽn‖2+C2τE‖ẽn−1‖2+C(τmin{2γ,2}+N−4γ)+Cτ (N−2γ+τmin{γ,1}).

(5.40)
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Hence, substituting the bounds of J and K into (5.33) and taking expectation,
we have for τ sufficiently small

E‖ẽn‖2 ≤ A(τ )E‖ẽn−1‖2 + Cτ (N−2γ + τmin{γ,1}) + C(τ2 +N−4γ),(5.41)

where

A(τ ) =
1 + 2C2τ

1− 2C1τ
.

By a simple calculation,

lim
n→∞

A(τ )n = e(2C2+2C1)T .

Therefore,

E‖ẽn‖2 ≤ A(τ )nE‖ẽ0‖2 + C
[
τ (N−2γ + τmin{γ,1}) + τ2 +N−4γ

] n−1∑
k=1

A(τ )k

≤ C(N−2γ + τ + τ−1N−4γ).(5.42)

The result follows by a combination of (5.31) and (5.42). �

6. Efficient implementation and numerical experiments

In this section, we first present an efficient implementation of our scheme with
the spectral-Galerkin method, and then present some numerical experiments.

6.1. Efficient implementation with spectral-Galerkin method. We present
below an efficient implementation by using the spectral-Galerkin method [36] which
will greatly simplify the implementation and increase the efficiency. To fix the idea,
we take O = (0, 1)2 and A = Δ as an example.

Our spectral semi-discretization (3.3) is equivalent to finding uN ∈ VN such that

(duN , χN ) = (ANuN , χN )dt+ (f(uN ), χN )dt+ (g(uN )dWQ(t), χN ), χN ∈ VN ,

(6.1)

where WQ(t) ≈
∑J

j1,j2=1
√
qj1j2ej1j2(x, y)βj1j2(t).

Let {φm(·)}Nm=1 be the basis functions of VN in 1-D so that {φm(x)φj(y)}Nm,j=1

forms a basic for VN in 2-D.

uN (t) =
N−2∑

m,n=0

cmn(t)φm(x)φn(y),C(t) = (cmn(t))m,n=0,1,··· ,N−2;

amn =

∫ 1

0

φ′
m(x)φ′

n(x)dx,A = (amn)m,n=0,1,··· ,N−2;

bmn =

∫ 1

0

φm(x)φn(x)dx,B = (bmn)m,n=0,1,··· ,N−2;

fmn =

∫
O
f(uN (t))φm(x)φn(y)dxdy,F(t) = (fmn)m,n=0,1,··· ,N−2;

gj1j2mn =

∫
O
g(uN (t))ej1j2(x, y)φm(x)φn(y)dxdy,Gj1j2(t) = (gj1j2m,n)m,n=0,1,··· ,N−2.
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Then, (6.1) can be transformed into

B(dC(t))B = −[AC(t)B+BC(t)A]dt+ F(t)dt+
J∑

j1,j2=1

√
qj1j2Gj1j2(t)dβj1j2(t).

(6.2)

We now perform a matrix diagonalization technique (cf. [37, Chap 8]) to the above
system. Let (λi, h̄i) (i = 0, 1, · · · , N − 2) be the generalized eigenpairs such that
Bh̄i = λiAh̄i, and set

(6.3) Λ = diag(λ0, λ1, · · · , λN−2),H = (h̄0, h̄1, · · · , h̄N−2).

Then, we have BH = AHΛ. Note that since A and B are symmetric, we have
H−1 = HT .

Writing C(t) = HV(t)HT in (6.2), we arrive at

HΛdV(t)ΛHT = −[HV(t)ΛHT +HΛV(t)HT ]dt+A−1(F(t)dt

+

J∑
j1,j2=1

√
qj1j2Gj1j2(t)dβj1j2(t))A

−1.

Multiplying the left (resp. right) of the above equation by HT (resp. H), we arrive
at

ΛdV(t)Λ = −[V(t)Λ+ΛV(t)]dt+HTA−1(F(t)dt

+

J∑
j1,j2=1

√
qj1j2Gj1j2(t)dβj1j2(t))A

−1H,

which can be rewritten componentwise as a system of nonlinear SDEs with decou-
pled linear parts:

λmλndVmn(t) = −[λm + λn]Vmn(t)dt+ (HTA−1F(t)A−1H)mndt

+

J∑
j1,j2=1

√
qj1j2(H

TA−1Gj1j2(t)A
−1H)mndβj1j2(t),

0 ≤ m,n ≤ N − 2.(6.4)

Now, we are in a position to discretize the above SDE. Writing uk
N =∑N−2

m,n=0 c
k
mnφm(x)φn(y) in (4.2), setting Ck = (ckmn) = HVkHT with Vk =

(V k
mn)m,n=0,1,··· ,N−2, we derive

λmλn
V k
mn − V k−1

mn

τ
+ (λm + λn)V

k
mn =

(
1

1 + τ‖f(uk−1
N )‖2

)
(HTFk−1H)mn

+
J∑

j1,j2=1

√
qj1j2(H

TGk−1
j1j2

H)mnΔβj1j2(tk−1).(6.5)

Here Δβj1j2(tk−1) are i.i.d. random variables following N(0, τ )-distribution and

Fk−1 = (fk−1
mn ), fk−1

mn =

∫
O
f(uk−1

N )φm(x)φn(y)dxdy;

Gk−1
j1j2

= (gj1j2,k−1
mn ), gj1j2,k−1

mn =

∫
O
g(uk−1

N )ej1j2(x, y)φm(x)φn(y)dxdy.(6.6)
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Hence, we can determine V k
mn explicitly from (6.5).

Note that in general Fk−1 and Gk−1
j1j2

cannot be computed exactly. In practice,

the following pseudo-spectral approach is used to approximately compute Fk−1 and
Gk−1

j1j2
. Let {xi, yi}i=0,N be the Legendre-Gauss Lobatto points, and PN be the set

of polynomials with degree less than or equal to N in each direction. We define
an interpolation operator IN : C(Ō) → PN such that INu(xi, yj) = u(xi, yj), i, j =

01, 1, · · · , N . Then, we approximate Fk−1 and Gk−1
j1j2

as follows:

fk−1
mn ≈

∫
O
IN (f(uk−1

N ))φm(x)φn(y)dxdy;

gj1j2,k−1
mn ≈

∫
O
IN (g(uk−1

N )ej1j2(x, y))φm(x)φn(y)dxdy.(6.7)

Since IN (f(uk−1
N )) ∈ PN , we can determine hk−1

mn such that IN (f(uk−1
N )) =∑N

m,n=0 h
k−1
mn Ln(x)Lm(y) where {Lj(·)} are the shifted Legendre polynomials.

Hence, fk−1
mn can be easily obtained using the orthogonality of Legendre polynomi-

als. The total cost of computing HTFk−1H being O(Nd+1) for the d-dimensional
problem. One can compute gj1j2,k−1

mn in a similar way with the total cost of com-

puting HTGk−1
j1j2

H is JdNd+1 for the d-dimensional problem.
In summary, our algorithm can be described as follows:

(1) Compute the eigenvalues and eigenvectors of the generalized eigenvalue
problem BH = HΛ;

(2) Find C0 by projecting u0 onto PN ⊗ PN ;

(3) At time step tk−1, compute Fk−1, Gk−1
j1j2

and generate a random matrix

Δβj1j2(tk);

(4) Use (6.5) to obtainVk, setCk=HVkHT and uk
N=

∑N−2
m,n=0 c

k
mnφm(x)φn(y);

(5) Go to the next step.

Remark 6.1.

• In principle, one can solve the above system of nonlinear SDEs using any
standard SDE solver.

• The above procedure is also applicable to a separable operator A in the form
Au = ∂x(a(x)∂xu)+∂y(b(y)∂yu), and can be extended in a straightforward
fashion to three dimensions.

• In the special case of A = Δ considered above, we can use

φm(x) =
1

2
√
4m+ 6

(Lm(x)− Lm+2(x)), m ≥ 0,(6.8)

where Lm(x) is the shifted Legendre polynomials on [0, 1] such that φm(0) =
φm(1) = 0 and (φ′

m, φ′
n) = δmn [36]. Hence, A is the identity matrix, and

the entries of B have the explicit form [36]

bmn = bnm =

⎧⎪⎪⎨⎪⎪⎩
1

4(4m+6)

(
1

2m+1 + 1
2m+5

)
, m = n,

− 1

4
√

(4m+6)(4m−2)

1
2m+1 , m = n+ 2,

0, otherwise.

(6.9)

6.2. Numerical experiments. In this section, two numerical experiments are
provided to illustrate the theoretical results claimed in the previous sections.
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Example 6.1. Consider the following 1-d stochastic Allen-Cahn equation on the
time domain 0 ≤ t ≤ 1:

(6.10)

⎧⎪⎨⎪⎩
du = 1

π2
∂2u
∂x2 dt+ (u− u3)dt+ g(u)dWQ(t), x ∈ I = (0, 1),

u(t, 0) = u(t, 1) = 0,

u(0, ·) = sin πx

and we take

WQ(t) =
∞∑
j=1

√
qj sin(jπx)βj(t).

Here, Lj(x) is the shifted Legendre polynomials on [0, 1] with qj to be specified
below.

Obviously, eigenfunctions of A = ∂2

∂x2 with homogeneous Dirichlet boundary
condition on I are {sin jπx}∞j=1, and A andQ commute for this case. To measure the
spatial error, we run K = 200 independent realizations for each spatial expansion
term with N = 12, 14, 16, 18, 20 and temporal steps τ = 1E − 5 and truncate the
first 100 terms in WQ(t). Since the true solution is unknown, we take the numerical
solution with τ = 1E − 5 and N = 100 as a surrogate. The error E‖Uk

N − u(tk, ·)‖
is approximated by

E‖u(tk, ·)− uk
N‖ ≈

√√√√ 1

K

K∑
i=1

‖uk
N (ωi)− u(tk, ωi)‖2.(6.11)

First, we consider additive noise and take g(u) = I. Hence, we examine the

condition ‖A γ−1
2 Q

1
2 ‖L2 < ∞ associated with qj and γ, and consider the following

two cases:

(1) qj = j−1.001, associated with γ = 1;
(2) qj = j−5.001, associated with γ = 3.

One observes from Figure 6.1 that the spatial error decays at a rate of O(N−γ) for
both cases as Theorem 5.2 predicts, and the restriction γ < 2 is lifted in contrast
to [11, 24, 26, 34, 40].

Similarly, in order to find the temporal error convergence rate, we freeze N = 100
and split the time interval [0, 1] into 96, 144, 192, 256, 384 subintervals for (1) and
256, 384, 768, 1152, 1536 for (2), and truncate the first 100 terms in WQ(t). A
surrogate of true solution is obtained using N = 100 and M = 9216. Figure 6.2
demonstrates that the temporal error decays at a rate of O(τmin{ γ

2 ,1}).
Secondly, in order to demonstrate the prediction in Theorem 5.2, we also choose

g(u) = 1−u2

1+u2 and qj = j−5.001 in WQ(t) and repeat the process above. From Figure

6.3, it is evident that the convergence rate is O(N−3 + τ1/2), which is consistent
with Theorem 5.2.

Example 6.2. Consider the following 2-d stochastic Allen-Cahn equation:{
du = 1

2Δudt+ (u− u3)dt+ g(u)dWQ, (x, y) ∈ (0, 1)2,

u0(x, y, 0) = sin(πx) sin(πy),
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Figure 6.1. Spatial errors of 1-d stochastic Allen-Cahn equation
with g(u) = I: (Left) qj = j−1.001 and (right) qj = j−5.001
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Figure 6.2. Temporal errors of 1-d stochastic Allen-Cahn equa-
tion with g(u) = I: (Left) qj = j−1.001 and (right) qj = j−5.001

where g(u) = sin(u) and

WQ(t) =

∞∑
j1,j2=1

1/
√

(j21 + j22)
3(sin(j1πx+ φj1(x)))(sin(j2πy) + φj2(y))βj1,j2(t).

Here, φ(x) is defined in (6.8).

In the experiment, we choose K = 200 in (6.11) to measure the error again. To
balance the CPU runtime and accuracy, we truncate the first 10 terms in each direc-
tion of WQ(t). In order to find the spatial convergence rate, we use the numerical
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Figure 6.3. Numerical errors of 1-d Allen-Cahn equation with
g(u) = (1− u2)/(1 + u2)

solution with N = 100 and M = 1000 for T = 0.1 as a surrogate of true solution.
From Figure 6.4, we can clearly observe a spatial convergence rate of approximately
O(N−3/2) for N = 16, 17, 19, 21 and 22.

Similarly, in order to find temporal convergence rate, we use the numerical so-
lution with N = 60 and M = 2304 for T = 0.5 as a surrogate of true solution. It is
clear that temporal convergence rate O(τ1/2) for τ = 1/64, 1/72, 1/96, 1/128, 1/144
can be observed from Figure 6.4. These numerical evidences offer strong indication
that the results in Theorem 5.2 may still hold in two spatial dimensions.
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Figure 6.4. Numerical errors of 2d stochastic A-C equation
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7. Concluding remarks

We developed a fully discrete scheme for stochastic Allen-Cahn equation driven
by multiplicative noise in a multi-dimensional setting. The space discretization
is a Legendre spectral method, so it does not require the elliptic operator A and
the covariance operator Q of noise in the equation commute, while can still be
efficiently implemented as with a Fourier method. The time discretization is a
tamed semi-implicit scheme which treats the nonlinear term explicitly while being
unconditionally stable, and it avoids solving nonlinear systems at each time step.
Under reasonable regularity assumptions, we established strong convergence results
in one spatial dimension for our fully discrete scheme. We also presented several
numerical experiments to validate our theoretical results.

Although we only proved strong convergence results in one spatial dimension,
our numerical results indicate that the convergence results in Theorem 5.2 still
hold in two spatial dimensions. However, how to extend the analysis to the two
dimensional case is still an open problem.
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