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APPROXIMATION RESULTS AND APPLICATIONS\ast 
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Abstract. We construct two new classes of log orthogonal functions in semi-infinite intervals,
log orthogonal functions (LOFs-II) and generalized log orthogonal functions (GLOFs-II), by applying
a suitable log mapping to Laguerre polynomials. We develop basic approximation theory for these
new orthogonal functions and show that they can provide uniformly good exponential convergence
rates for problems in semi-infinite intervals with slow decay at infinity. We apply them to solve
several linear and nonlinear differential equations whose solutions decay algebraically or exponen-
tially with very slow rates, and we present ample numerical results to show the effectiveness of the
approximations by LOFs-II and GLOFs-II.
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1. Introduction. Solutions to many scientific and engineering problems set in
unbounded domains exhibit slow decay at infinity. It is notoriously difficult to ap-
proximate such functions efficiently without explicit knowledge of their asymptotic
behaviors. We consider in this paper approximations of functions on semi-infinite
intervals, such as [a,+\infty ) or ( - \infty , a], with slow or algebraic decay at infinity. For
functions with exponential or rapid decay at infinity, the most natural approach is
to use the classical Laguerre polynomials/functions which are mutually orthogonal in
suitably weighted L2 spaces. However, it is well known that the classical Laguerre
polynomials/functions are not the most efficient due to their poor resolution or ap-
proximation properties [5, 32]. Various alternative approaches have been proposed
in the past several decades. Within the framework of spectral methods, some of the
most popular approaches are as follows:

\bullet Domain mapping [18]: Map the infinite intervals to a bounded interval, and
then use standard spectral methods to solve the mapped problems in the
bounded interval. The main advantage of this approach is that standard
spectral methods can be used, but a disadvantage is the mapped problems can
be very complicated, leading to difficulties in analysis and implementation.

\bullet Mapped orthogonal polynomials/functions [8]: Use a suitable mapping to
map the classical Jacobi polynomials to mapped orthogonal systems in in-
finite intervals. To use this approach, one has to develop a complete set of
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LOG ORTHOGONAL FUNCTIONS 111

theoretical results and practical tools for the mapped orthogonal polynomi-
als/functions, including new approximation theory, corresponding quadrature
formulae, and recurrence relations. Once these tools and results are available,
one can use them to solve problems in infinite intervals directly.

\bullet The sinc method [36]: The sinc function is defined as sinc(x) = sin (\pi x)
\pi x . With

a suitable transform, the sinc function can be used to approximate problems
in ( - \infty ,\infty ) and in (0,\infty ) [35, 39].

The first two approaches are mathematically equivalent but lead to different imple-
mentation and analysis. The second approach is now widely used, as theoretical
results and practical tools for many popular mappings are already available [8, 21,
32, 33]. In particular, the mapped Chebyshev method [5, 21, 32] has been frequently
used in practice due to the fact that (i) it provides a faster convergence rate than the
Laguerre spectral method, and (ii) fast Fourier transform (FFT) can be used in the
implementation. We refer the reader to [5, 21, 32] for more details on the analysis and
applications of the mapped Chebyshev method. However, for problems with algebraic
decay such as u(x)\approx x - r with noninteger r, the mapped Chebychev method can only
converge at an algebraic rate, and the convergence becomes very slow when 0< r\ll 1.
On the other hand, the sinc method is a particularly powerful approximation method
for weakly singular functions and, with a suitable mapping, can lead to exponential
convergence for problems with algebraic decay [35, 39].

In our previous work [10], we constructed two new classes of log orthogonal func-
tions (LOFs and GLOFs) in [0,1] to deal with problems which exhibit weakly singular
behaviors at the initial time for initial value problems or at one endpoint for boundary
value problems. In particular, LOFs and GLOFs provide very accurate approxima-
tion for functions behaving like tr( - log t)k near t = 0 for small but positive r. This
success motivates us to seek suitable mappings which would allow us to construct
orthogonal functions which can provide uniformly good approximation for problems
with algebraic decay such as u(x)\approx x - r for a wide range of r > 0.

The main purpose of this paper is to construct two new classes of log orthogonal
functions in semi-infinite intervals, LOFs-II and GLOFs-II, by applying a suitable log
mapping to Laguerre polynomials. We develop basic approximation theory for these
new orthogonal functions and show that they can provide uniformly good exponential
convergence rates for problems in semi-infinite intervals with algebraic decay (i.e.,
behaving like x - r as x \rightarrow \infty ) or with exponential decays at very slow rates (i.e.,
behaving like exp ( - rx) with 0< r\ll 1 as x\rightarrow \infty ). Hence, these new log orthogonal
functions are particularly useful for problems with slow asymptotic decay rates that
cannot be determined a priori.

As applications, we solve the modified Helmholtz equation on the semi-infinite
interval and carry out a complete analysis for the weighted Galerkin approximation
based on GLOFs-II. We then propose a weighted formulation for a class of fractional
differential equations, and finally we solve the nonlinear Thomas--Fermi equation by
constructing a suitable weighted approximation based on GLOFs-II. Our numerical
results indicate that the new sets of log orthogonal functions are very effective in
approximating functions with slow decays at infinity.

The rest of the paper is organized as follows. In the next section, we review some
basic results about Laguerre approximations and show that they are not effective for
problems with slow decays or fast exponential decay at infinity. In sections 3 and 4,
we construct, respectively, the first and second new class of log orthogonal functions
(LOFs-II and GLOFs-II) and derive their approximation properties. In sections 5,
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112 SHENG CHEN, AND JIE SHEN

6, and 7, we apply GLOFs-II to solve the modified Helmholtz equation, a fractional
differential equation, and the nonlinear Thomas--Fermi equation, respectively. Some
concluding remarks are given in section 8, and MATLAB codes for evaluating GLOFs-
II and the corresponding Gauss quadrature nodes and weights are provided in the
appendix.

2. Approximation by Laguerre polynomials/functions. The Laguerre poly-
nomials/functions play a critical role in constructing our new basis functions. We
review some of their main properties in this section. In particular, we describe the
classical Laguerre approximation theory and explain the inefficiency of the Laguerre
approximation to functions which commonly appear in unbounded partial differential
equations (PDEs), with algebraic decay or with very large or small exponential delay
rate, i.e., e - \lambda y when \lambda is tiny or large. We refer the reader to [32, 37] for a more
detailed study on the Laguerre polynomials/functions.

We start with some notation. Let (\cdot , \cdot ) and \| \cdot \| denote the usual inner product
and norm in L2(\BbbR +), and for a given weight function \omega > 0, we denote by (\cdot , \cdot )\omega and
\| \cdot \| \omega the weighted inner product and norm in L2

\omega (\BbbR +). We also denote by \| \cdot \| \infty the
L\infty -norm.

2.1. Laguerre polynomials/functions. The Laguerre polynomials with real
parameter \alpha > - 1 can be defined by the Rodrigues formula

L(\alpha )
n (y) =

y - \alpha ey

n!

dn

dyn
\bigl( 
yn+\alpha e - y

\bigr) 
, y \in \BbbR +,

or the three-term recurrence, which is more suitable for practical computation:

L
(\alpha )
0 (y) = 1, L

(\alpha )
1 = - y+ \alpha + 1,

L
(\alpha )
n+1(y) =

2n+ \alpha + 1 - y

n+ 1
L(\alpha )
n (y) - n+ \alpha 

n+ 1
L
(\alpha )
n - 1(y).

They are mutually orthogonal with respect to the weight function \omega \alpha (y) = y\alpha e - y,

(2.1)

\int \infty 

0

L(\alpha )
n (y) L(\alpha )

m (y) y\alpha e - y dy= \gamma \alpha n \delta mn, \gamma \alpha n =
\Gamma (n+ \alpha + 1)

\Gamma (n+ 1)
.

For the theoretical analysis and numerical implementation of Laguerre spectral meth-
ods, the following derivative relations are indispensable:

L(\alpha )
n (y) = \partial yL

(\alpha )
n (y) - \partial yL

(\alpha )
n+1(y),

y\partial yL
(\alpha )
n (y) = nL(\alpha )

n (y) - (n+ \alpha )L
(\alpha )
n - 1(y),

\partial yL
(\alpha )
n (y) = - L(\alpha +1)

n - 1 (y) = - 
n - 1\sum 
k=0

L
(\alpha )
k (y).

The following formula relates the Laguerre polynomials with parameters \alpha 
and \alpha + 1:

yL(\alpha +1)
n (y) = (n+ 1+ \alpha )L(\alpha )

n (y) - (n+ 1)L
(\alpha )
n+1(y).
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LOG ORTHOGONAL FUNCTIONS 113

Let \{ y(\alpha )j \} Nj=0 be the roots of L
(\alpha )
n+1(y); then the associated weights are given by

(2.2) \omega 
(\alpha )
j =

\Gamma (N + \alpha + 1)

(N + \alpha + 1)(N + 1)!

y
(\alpha )
j

[L
(\alpha )
N (y

(\alpha )
j )]2

, 0\leq j \leq N,

and we have the following Laguerre--Gauss quadrature:

(2.3)

\int 
\BbbR +

p(y)y\alpha e - ydy=

N\sum 
j=0

p(y
(\alpha )
j )\omega 

(\alpha )
j \forall p(y)\in P2N+1(\BbbR +).

On the other hand, the Laguerre functions, which are more suitable for approx-
imations at infinity, are defined by \widehat L(\alpha )

n (y) = e - y/2L
(\alpha )
n (y). We define the projection

operator \Pi \alpha 
N from L2

y\alpha (\BbbR +) to \^PN := \{ e - y/2p : p\in PN\} by

(\Pi \alpha 
Nu - u, vN )y\alpha = 0 \forall vN \in \^PN ,

which results in

(2.4) u=

\infty \sum 
n=0

\^un\widehat L(\alpha )
n , \Pi \alpha 

Nu=

N\sum 
n=0

\^un\widehat L(\alpha )
n , \^un =

1

\gamma \alpha n

\int 
\BbbR +

u(y)\widehat L(\alpha )
n (y)y\alpha dy.

Proposition 2.1. Let \^\partial y = \partial y+1/2 and 0\leq m\leq N+1. If \^\partial kyu\in L2
y\alpha +k(\BbbR +), k=

0,1, . . .m, then

(2.5) \| \Pi \alpha 
Nu - u\| y\alpha \leq cN - m/2\| \^\partial my u\| y\alpha +m ,

where c is a positive constant independent of m, N, and u.

2.2. Approximation to exponential decay functions. The above error esti-
mate indicates that the convergence rate of the Laguerre approximation relies on the
degree of freedom N and the regularity of the underlying functions u in terms of the
pseudo-derivative \partial y+1/2. It has been verified that Laguerre functions are capable of
approximating the exponential function e - \lambda y since N - m/2\| \^\partial my e - \lambda y\| y\alpha +m goes to zero
exponentially. We provide a precise error estimate for the projection \Pi Nu := \Pi 0

Nu to
exponential decay functions below.

Proposition 2.2. If u(x) = e - \lambda y with \lambda > 0, then

\| \Pi Nu - u\| \leq 1\surd 
2\lambda 

(R\lambda )
N+1, \| \Pi Nu - u\| \infty \leq (R\lambda )

N+1,

where R\lambda =
\bigm| \bigm| \bigm| \lambda  - 1/2
\lambda +1/2

\bigm| \bigm| \bigm| < 1 and R\lambda \approx 1 as \lambda \rightarrow 0 or \infty .

Proof. Using (2.4) and the Rodrigues formula, we find

\^un =
1

\gamma 0n

\int 
\BbbR +

u(y)\widehat L(0)
n (y)dy=

1

n!

\int 
\BbbR +

e(1/2 - \lambda )y dn

dyn
\bigl( 
yne - y

\bigr) 
dy

=
(\lambda  - 1/2)n

n!

\int 
\BbbR +

yne - (\lambda +1/2)ydy=
1

\lambda + 1/2

\biggl( 
\lambda  - 1/2

\lambda + 1/2

\biggr) n

.
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114 SHENG CHEN, AND JIE SHEN

Then using the orthogonality of the Laguerre functions and the fact that | L(0)
n | \leq 1

(see [1, 32]), we obtain

\| \Pi Nu - u\| =

\Biggl( \infty \sum 
N+1

| \^un| 2
\Biggr) 1/2

\leq 1\surd 
2\lambda 

\bigm| \bigm| \bigm| \lambda  - 1/2

\lambda + 1/2

\bigm| \bigm| \bigm| N+1

,

\| \Pi Nu - u\| \infty \leq 
\infty \sum 

N+1

| \^un| =
\bigm| \bigm| \bigm| \lambda  - 1/2

\lambda + 1/2

\bigm| \bigm| \bigm| N+1

,

which completes the proof.

The above estimate indicates that it is not efficient to approximate functions
behaving like e - \lambda x with large or tiny \lambda at infinity by Laguerre functions.

2.3. Approximation to algebraic decay functions. Another class of func-
tions that frequently appears in solving unbounded PDEs is functions with algebraic
decay at infinity. Different from the exponential function e - \lambda x, which is smooth in
terms of the pseudo-derivative \^\partial y = \partial y + 1/2, the regularity of the algebraic decay
function in terms of the pseudo-derivative \^\partial y is limited in the space L2

ym+\alpha (\BbbR +). In

fact, for u(y)\approx y - r, y\rightarrow \infty , it holds that

\^\partial my u(y) = 2 - mu(y) +
\sum m

k=1
ck\partial 

k
yu(y)\approx y - r as y\rightarrow \infty ,

which means that \| \^\partial my u\| y\alpha +m <\infty if and only if m < 2r  - \alpha  - 1. Hence, we derive
from (2.5) that the convergence rate of the approximation by Laguerre functions to
u(y) \approx y - r, y \rightarrow \infty is only m/2 = r  - (\alpha + 1)/2, which means that the Laguerre
approximation is not efficient for functions with slow algebraic decay at infinity.

To illustrate the above theoretical results, we plot the convergence curves of the
L2 projection \Pi Nu to functions e - \lambda y and (1+y) - r on the left and right of Figure 2.1,
respectively. The error curves demonstrate that the Laguerre functions are not effi-
cient to approximate e - \lambda y with \lambda tiny or large, or the function (1 + y) - r with small
r > 0, but can provide good approximations to functions with exponential/algebraic
decay functions outside these parameter ranges.

3. Log orthogonal functions for semi-unbounded intervals (LOFs-II).
We demonstrated in the last section that the popular Laguerre functions do not pro-
vide a uniformly good approximation to functions with algebraic/exponential decay.
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Fig. 2.1. Convergence curves of Laguerre approximation. Left: e - \lambda y. Right: (1 + y) - r.
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LOG ORTHOGONAL FUNCTIONS 115

We construct new basis functions in this section which are capable of providing uni-
formly good approximation to all functions which behave like e - \lambda y with \lambda > 0 or
(1 + y) - r with r > 0 at infinity.

We first introduce some basic notation.

Domain \Lambda = [1,\infty )
Log mapping y= logx, x\in \Lambda 
Parameters \alpha > - 1, \beta > 1

Log orthogonal function (LOFS  - II) \scrU (\alpha )
n (x) = e - yL

(\alpha )
n (y)

LOFs - II with scaling factor \beta \scrU \alpha ,\beta 
n (x) = x\beta \scrU (\alpha )

n (x2\beta )
Generalized derivatives \scrD \beta = (2\beta ) - 1x\beta +1\partial x(x

 - \beta u), \scrD = x\partial x
Weight functions \chi \alpha (x) = (logx)\alpha , \chi \alpha ,\beta (x) = x - 1(2\beta logx)\alpha 

Definition 3.1 (LOFs-II). Let \alpha >  - 1. The log orthogonal functions for semi-
unbounded intervals (LOFs-II) are defined as follows:

(3.1) \scrU (\alpha )
n (x) = e - yL(\alpha )

n (y) = x - 1L(\alpha )
n (logx), x\in \Lambda := [1,\infty ),

where L
(\alpha )
n (y), n\geq 0, are the classical Laguerre polynomials.

From the properties of Laguerre polynomials listed in section 2.1, we can derive
the following basic properties of LOFs-II:

\bullet Orthogonality . Denoting weight function \chi \alpha (x) = (logx)\alpha , it holds that

(3.2)

\int \infty 

1

\scrU (\alpha )
n (x) \scrU (\alpha )

m (x) \chi \alpha (x)dx= \gamma (\alpha )n \delta nm, \gamma (\alpha )n :=
\Gamma (n+ 1+ \alpha )

\Gamma (n+ 1)
.

\bullet The three-term recurrence. Via the mapping y = logx, x \in [1,\infty ), it is
straightforward to derive that

\scrU (\alpha )
0 (x) = 1/x, \scrU (\alpha )

1 (x) = ( - logx+ \alpha + 1)/x,

\scrU (\alpha )
n+1(x) =

2n+ \alpha + 1 - logx

n+ 1
\scrU (\alpha )
n (x) - n+ \alpha 

n+ 1
\scrU (\alpha )
n - 1(x).

(3.3)

\bullet Gauss quadrature formula. Let \{ \xi (\alpha )j \} Nj=0 be the roots of \scrU (\alpha )
N+1(x). Then

(3.4)\int 
\Lambda 

p(x)(logx)\alpha dx=

N+1\sum 
j=0

p(\xi 
(\alpha )
j )\chi 

(\alpha )
j \forall p\in U2N+1 := span\{ \scrU (\alpha )

n \} 2N+1
n=0 ,

where the Gauss nodes and weights can be computed from (2.2) and (2.3),

(3.5) \xi 
(\alpha )
j = ey

(\alpha )
j , \chi 

(\alpha )
j = (\xi 

(\alpha )
j )2\omega 

(\alpha )
j ;

here \{ y(\alpha )j , \omega 
(\alpha )
j \} Nj=0 are the pairs of the zeros and weights of L

(\alpha )
N+1(y).

\bullet Derivative relation I . Referring to [11, eq. (2.45)], [29, eq. (6.146)], or [30,
eq. (B-7.2)], we know that

\partial y
\bigl( 
e - yL(\alpha )

n (y)
\bigr) 
= - e - yL(\alpha +1)

n (y).

Then we have the following derivative relation by the chain rule:

x\partial x\scrU (\alpha )
n (x) = \partial y

\bigl( 
e - yL(\alpha )

n (y)
\bigr) 
= - \scrU (\alpha +1)

n (x).
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116 SHENG CHEN, AND JIE SHEN

Repeating the above relation leads to

(3.6) \scrD k\scrU (\alpha )
n (x) = ( - 1)k\scrU (\alpha +k)

n (x), k= 0,1,2, . . . .

\bullet Derivative relation II. Using the relation [11, eq. (2.46)] and the chain rule
yields

(3.7) \scrD 
\bigl( 
logx \scrU (1)

n (x)
\bigr) 
= (n+ 1)\scrU (0)

n+1(x).

\bullet Rodrigues-like formula.

(3.8) \scrU (\alpha )
n (x) = (logx) - \alpha \scrD n

\bigl\{ 
(logx)n+\alpha x - 1

\bigr\} 
/n!.

To better describe the approximation ability of the log orthogonal functions, we
define the following weighted Hilbert space:

(3.9) Am
\alpha (\Lambda ) :=

\bigl\{ 
v \in L2

\chi \alpha (\Lambda ) : \scrD kv \in L2
\chi \alpha +k(\Lambda ), k= 1,2, . . . ,m

\bigr\} 
, \chi \beta (x) = (logx)\beta ,

and we denote by \pi \alpha 
N the projection operator from L2

\chi \alpha to UN = span\{ \scrU (\alpha )
n \} Nn=0 such

that

(\pi \alpha 
Nu - u, v)\chi \alpha = 0 \forall v \in UN ,

where the superscript of the projector \pi \alpha 
N may be dropped whenever \alpha = 0.

Theorem 3.1. Let \alpha > - 1 and 0\leq k\leq m. For any u\in Am
\alpha (\Lambda ), we have

(3.10)

\| \scrD k(\pi \alpha 
Nu - u)\| \chi \alpha +k \leq 

\sqrt{} 
\Gamma (N + 2+ \alpha + k)

\Gamma (N + 2+ \alpha +m)
\| \scrD mu\| \chi \alpha +m \leq cN

k - m
2 \| \scrD mu\| \chi \alpha +m ,

where the positive constant c\approx 1 for N \gg 1.

Proof. Since u\in L2
\chi \alpha (\Lambda ), we can write

u(x) =

\infty \sum 
n=0

\~un\scrU (\alpha )
n (x), \pi \alpha 

Nu(x) =

N\sum 
n=0

\~un\scrU (\alpha )
n (x).

Then, for any u \in Am
\alpha (\Lambda ), by the orthogonality (3.2) and the derivative relation

(3.6), it holds that

\| \scrD k(\pi \alpha 
Nu - u)\| 2\chi \alpha +k =

\infty \sum 
n=N+1

| \~un| 2
\int \infty 

1

\bigl( 
\scrU (\alpha +k)
n (x)

\bigr) 2
\chi \alpha +k(x)dx

=

\infty \sum 
n=N+1

| \~un| 2\gamma (\alpha +k)
n \leq 

\gamma 
(\alpha +k)
N+1

\gamma 
(\alpha +m)
N+1

\infty \sum 
n=N+1

| \~un| 2\gamma (\alpha +m)
n

\leq \Gamma (N + 2+ \alpha + k)

\Gamma (N + 2+ \alpha +m)
\| \scrD mu\| 2\chi \alpha +m .

(3.11)

We recall the following useful result: for any constant a, b \in \BbbR , n \in \BbbN , n+ a > 1, and
n+ b > 1 (see [43, Lemma 2.1]),

(3.12)
\Gamma (n+ a)

\Gamma (n+ b)
\leq \nu a,bn na - b,
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LOG ORTHOGONAL FUNCTIONS 117

where \nu a,bn \approx 1 for n\gg 1 owing to

(3.13) \nu a,bn = exp

\biggl( 
a - b

2(n+ b - 1)
+

1

12(n+ a - 1)
+

(a - b)2

n

\biggr) 
.

We can then complete the proof by applying (3.12) to (3.11).

Corollary 3.1. For any u\in Am
0 (\Lambda ), we have

(3.14) \| \pi Nu - u\| \leq 

\sqrt{} 
\Gamma (N + 2+ k)

\Gamma (N + 2+m)
\| \scrD mu\| \chi m \leq cN - m

2 \| \scrD mu\| \chi m .

Moreover, for the algebraic decay function x - r with r > 1/2, we have

(3.15) \| \pi Nu - u\| \leq c [2\pi eN/r]1/4 2 - [eN/r]/2,

where the positive constant c\approx 1 for N \gg 1.

Proof. Taking \alpha = 0 and k = 0 in (3.10), we obtain (3.14). On the other hand,
for r > 1/2 (which is necessary for x - r \in L2(\BbbR +)), we have

\| \scrD mx - r\| 2\chi m =

\int \infty 

1

\bigl( 
\scrD mx - r

\bigr) 2
(logx)mdx= r2m

\int \infty 

0

e - 2ryymdy=
r2m \Gamma (m+ 1)

(2r)m+1
.

Thanks to the following property of the Gamma function (see [1, eq. (6.1.38)]),

(3.16) \Gamma (z + 1) =
\surd 
2\pi zz+

1
2 exp

\biggl( 
 - z + \theta 

12z

\biggr) 
, 0< \theta < 1 \forall z > 0,

we find that for any integer m> 0,

N - m
2 \| \scrD mu\| \chi m = exp

\biggl( 
\theta 

12m

\biggr) 
(2\pi m)1/4

\Bigl( rm
2eN

\Bigr) m/2

.

Hence, by taking m= [eN/r], we obtain

\| \pi Nx - r  - x - r\| \leq c [2\pi eN/r]1/4 2 - [eN/r]/2.(3.17)

The above result indicates that the approximation by LOFs-II for u= x - r converges
exponentially for all r > 1/2.

4. Generalized log orthogonal functions for semi-unbounded intervals
(GLOFs-II). As with all other spectral methods in unbounded domain, the perfor-
mance of LOF-II approximations can be improved with a scaling factor. To further
understand the role of the mapping y = logx, we plot, on the left of Figure 4.1,
the roots of the LOFs-II with n = 10,30,50,70,90, and, on the right of Figure 4.1,
the LOFs-II with n = 10,90. We observe from the left figure that the roots of the
LOFs-II increase extremely quickly with n. This seriously affects the quality of the
approximation by LOFs-II as many nodes with large x values maybe wasted.
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Fig. 4.1. Left: Nodes distribution. Right: LOFs-II.

4.1. Definition and basic properties.
Definition 4.1 (GLOFs-II). Let \alpha >  - 1 and \beta > 1. The generalized log or-

thogonal functions for semi-unbounded intervals (GLOFs-II) are defined as follows:

(4.1) \scrU \alpha ,\beta 
n (x) := \scrU (\alpha )

n (\beta ,x) = x\beta \scrU (\alpha )
n (x2\beta ) = x - \beta L(\alpha )

n (logx2\beta ),

where the variable x\in \Lambda := [1,\infty ).

The GLOFs-II bring in not only the scaling factor \beta but also an extra multiplier x\beta 

to ensure that \{ \scrU \alpha ,\beta 
n (x)\} \infty n=0 are dense in

L2
\chi \alpha ,\beta (\Lambda ), \chi 

\alpha ,\beta (x) = x - 1(2\beta logx)\alpha .

Hence they can provide good approximation to x - r for all r > 0, extending the
restriction r > 1/2 for \{ \scrU (\alpha )

n (x)\} \infty n=0 which is dense in L2
\chi \alpha (\Lambda )\subset L2

\chi \alpha ,\beta (\Lambda ).

In view of the benefits from the scaling factor \beta and the multiplier x\beta , it is more
suitable to use GLOFs-II \scrU \alpha ,\beta 

n (x) for practical computations.
We list below the basic properties of GLOFs-II \scrU \alpha ,\beta 

n (x):
(i) Using the orthogonality

(4.2)

\int \infty 

1

\scrU \alpha ,\beta 
n (x) \scrU \alpha ,\beta 

m (x) \chi \alpha ,\beta (x)dx= \gamma \alpha ,\beta n \delta nm, \gamma \alpha ,\beta n :=
\Gamma (n+ 1+ \alpha )

2\beta \Gamma (n+ 1)
,

any u\in L2
\chi \alpha ,\beta (\Lambda ) can be expanded as

(4.3) u(x) =

\infty \sum 
n=0

\^un\scrU \alpha ,\beta 
n (x), \^un =

1

\gamma \alpha ,\beta n

\int 
\Lambda 

u(x) \scrU \alpha ,\beta 
n (x) \chi \alpha ,\beta (x)dx.

(ii) The related Gauss quadrature formula is

(4.4)

\int 
\Lambda 

f(x) \chi \alpha ,\beta (x) dx\approx 
N+1\sum 
j=0

f(\xi \alpha ,\beta j )\chi \alpha ,\beta 
j , \chi \alpha ,\beta (x) = x - 1(2\beta logx)\alpha ,

where the Gauss nodes and weights are

\xi \alpha ,\beta j =
2\beta 

\sqrt{} 
\xi 
(\alpha )
j , \chi \alpha ,\beta 

j = [2\beta (\xi \alpha ,\beta j )2\beta ] - 1 \chi 
(\alpha )
j .
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Fig. 4.2. Nodes distribution with difference scaling parameter \beta .

We derive from the above that\int 
\Lambda 

f(x) dx=

\int 
\Lambda 

f(x)

\chi \alpha ,\beta (x)
\chi \alpha ,\beta (x) dx\approx 

N+1\sum 
j=0

f(\xi \alpha ,\beta j )

\chi \alpha ,\beta (\xi \alpha ,\beta j )
\chi \alpha ,\beta 
j .

We observe from the above that the log-Gaussian quadrature nodes and weights
can be computed by using the Laguerre quadrature formula in [32, section 7.1.2].
MATLAB code for computing the log-Gaussian quadrature nodes and weights is pro-
vided in the appendix. In Figure 4.2, we plot the log-Gaussian quadrature nodes with
n = 90 and different \beta , and we observe that as \beta increases, the largest quadrature
points rapidly decrease.

(iii) The three-term recurrence is

\scrU \alpha ,\beta 
0 (x) = x - \beta , \scrU \alpha ,\beta 

1 (x) = x - \beta (\alpha + 1 - 2\beta logx),

\scrU \alpha ,\beta 
n+1(x) =

2n+ \alpha + 1 - 2\beta logx

n+ 1
\scrU \alpha ,\beta 
n (x) - n+ \alpha 

n+ 1
\scrU \alpha ,\beta 
n - 1(x).

(4.5)

(iv) Combining the chain rule with (3.6) and (3.7), we derive the derivative rela-
tions

\scrD k
\beta \scrU \alpha ,\beta 

n (x) = ( - 1)k \scrU \alpha +k,\beta 
n (x),

\scrD \beta 

\bigl( 
logx \scrU 1,\beta 

n (x)
\bigr) 
=
n+ 1

2\beta 
\scrU 0,\beta 
n+1(x),

(4.6)

where the generalized derivative \scrD \beta is defined as

(4.7) \scrD \beta u := (2\beta ) - 1x\beta +1\partial x(x
 - \beta u) =

1

2\beta 
x\partial xu - 

1

2
u=

\biggl( 
1

2\beta 
\scrD  - 1

2

\biggr) 
u.

The generalized derivative (4.7) implies that \partial xu= \beta x - 1(2\scrD \beta + 1)u. Hence

\partial x \scrU \alpha ,\beta 
n (x) = \beta x - 1

\bigl[ 
\scrU \alpha ,\beta 
n (x) - 2\scrU \alpha +1,\beta 

n (x)
\bigr] 
,

\partial x
\bigl( 
logx \scrU 1,\beta 

n (x)
\bigr) 
= x - 1

\bigl[ 
\beta logx \scrU 1,\beta 

n (x) + (n+ 1)\scrU 0,\beta 
n+1(x)

\bigr] 
.

(4.8)

(v) Substituting the generalized derivative x\partial xu(x
2\beta ) = 2\beta x2\beta \partial x2\beta u(x2\beta ) into the

Rodrigues-like formula (3.8) leads to

(4.9) \scrU \alpha ,\beta 
n (x) = x\beta \scrU (\alpha )

n (x2\beta ) = x\beta (logx) - \alpha \scrD n
\bigl\{ 
(logx)n+\alpha x - 2\beta 

\bigr\} 
/n!.
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120 SHENG CHEN, AND JIE SHEN

Approximation results by the GLOFs-II with scaling factor \beta can be derived by
following a process similar to that in the proof of Theorem 3.1. Indeed, let \pi \alpha ,\beta 

N be

the projection operator from L2
\chi \alpha ,\beta (\Lambda ) to U

\beta 
N := span\{ \scrU \alpha ,\beta 

n \} such that\Bigl( 
\pi \alpha ,\beta 
N u - u, v

\Bigr) 
\chi \alpha ,\beta 

= 0 \forall v \in U\beta 
N .

Then using the same procedure as in the proof of Theorem 3.1, we can derive the
following result.

Theorem 4.1. Let real \alpha > - 1, \beta > 1, and integers 0\leq k\leq m. Then

(4.10) \| \scrD k
\beta (\pi 

\alpha ,\beta 
N u - u)\| \chi \alpha +k,\beta \leq cN

k - m
2 \| \scrD m

\beta u\| \chi \alpha +m,\beta \forall u\in \scrH m(\Lambda ),

where the positive constant c\approx 1 for N \gg 1, \scrD \beta u= (2\beta ) - 1x\beta +1\partial x(x
 - \beta u), and

(4.11) \scrH m(\Lambda ) =
\Bigl\{ 
v
\bigm| \bigm| xk\partial kxv \in L2

\chi \alpha +m,\beta (\Lambda ), k= 0,1, . . .m
\Bigr\} 
, m\in \BbbN .

4.2. Approximation results for some typical functions. The drawback of
the Laguerre approximation to exponential functions is exhibited in Proposition 2.2,
as it shows that the convergence of the Laguerre projection \Pi Ne

 - \lambda x to e - \lambda x is very
slow when \lambda is large or tiny. On the other hand, the result in Theorem 4.1 shows that
the new basis functions are capable of providing good approximations to a large class
of functions in \scrH m(\Lambda ) which includes the classical Schwartz-space

\scrS = \{ v \in C\infty (\Lambda )| \forall k,m\in \BbbN , xk\partial mx v \in C(\Lambda )\} .

Note that both exponential decay function e - \lambda x, \lambda > 0, and algebraic decay function
x - r, r > 0, are the elements of the space \scrH m(\Lambda ) \forall m \in \BbbN . We show below that
the approximation by GLOFs-II can provide uniformly good approximation to some
typical functions with slow decays at infinity.

Consider first e - \lambda x. The relation \scrD m
\beta =

\sum m
k=0 ckx

k\partial kx leads to

\scrD m
\beta e

 - \lambda x =

m\sum 
k=0

( - 1)kck(\lambda x)
ke - \lambda x z=\lambda x

=
\sum m

k=0
( - 1)kckz

ke - z,

which indicates that the behavior of the function \scrD m
\beta e

 - \lambda x is independent of \lambda .
Next, we consider the Mittag--Leffler function E\nu ,1( - x\nu ), which plays a crucial

role in solving fractional differential equations [17, 22, 24]:

Ea,b(z) =

\infty \sum 
j=0

zj

\Gamma (aj + b)
, z \in \BbbC , a > 0, b\in \BbbR .

A direct calculation leads to

xk\partial kxE\nu ,1( - x\nu ) = xk\partial kx

\infty \sum 
j=0

( - 1)jxj\nu 

\Gamma (j\nu + 1)
=E\nu ,1 - k( - x\nu ), x > 0.

It is shown in [12, Lemma 2.2] that E\nu ,1 - k( - x\nu ) \lesssim (1 + x\nu ) - 1, x > 0, for any non-
negative integer k, which implies that E\nu ,1( - x\nu ) \in \scrH m(\Lambda ) \forall m \in \BbbN . Hence, one can
expect that the GLOFs-II approximation to the Mittag--Leffler function E\nu ,1( - x\nu ) is
exponentially convergent.
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LOG ORTHOGONAL FUNCTIONS 121

In fact, for the the function u(x) = x - r with r > 0, we can derive from Theorem
4.1 and the fact that

\scrD m
\beta x

 - r =

\biggl( 
 - \beta + r

2\beta 

\biggr) m

x - r

the following explicit rate of exponential convergence.

Corollary 4.1. Let r > 0, \alpha >  - 1, \beta > 1, and N >  - \alpha / log
\bigm| \bigm| \beta  - r
\beta +r

\bigm| \bigm| . Then for

u(x) = x - r, x\in \Lambda = (1,\infty ), we have

\| \pi \alpha ,\beta 
N u - u\| L2

\chi \alpha ,\beta 
\leq c\alpha ,\beta r,1 (N + 1)\alpha 

\bigm| \bigm| \bigm| \bigm| \beta  - r

\beta + r

\bigm| \bigm| \bigm| \bigm| N+1

,

where constant c\alpha ,\beta r,1 is independent of N .

Proof. Since u\in L2
\chi \alpha ,\beta (\Lambda ), it can be expanded as

u=

\infty \sum 
n=0

\^un\scrU \alpha ,\beta 
n , \^un =

\int \infty 

1

u(x) \scrU \alpha ,\beta 
n (x) x - 1(2\beta logx)\alpha dx.

The coefficient \^un can be estimated by the Rodrigues formula (4.9) as follows:

\^un =
(2\beta )\alpha 

n!

\int \infty 

1

x\beta  - r - 1 \scrD n
\bigl\{ 
(logx)n+\alpha x - 2\beta 

\bigr\} 
dx

=
(2\beta )\alpha 

n!

\int \infty 

1

x\beta  - r (\partial xx)
n
\bigl\{ 
(logx)\alpha +nx - 2\beta  - 1

\bigr\} 
dx

=
(2\beta )\alpha 

n!
(\beta  - r)n

\int \infty 

1

x - 1 - r - \beta (logx)\alpha +n dx

=
(2\beta )\alpha 

n!
(\beta  - r)n

\int \infty 

0

e - (\beta +r)yy\alpha +n dy

=
(2\beta )\alpha \Gamma (n+ \alpha + 1)

(\beta + r)\alpha +1\Gamma (n+ 1)

\biggl( 
\beta  - r

\beta + r

\biggr) n

\leq (2\beta )\alpha \nu \alpha +1,1
n

(\beta + r)\alpha +1
n\alpha 
\biggl( 
\beta  - r

\beta + r

\biggr) n

.

We note that (3.12) is used to derive the last inequality.
Then, for u= x - r, it holds that
(1) for  - 1<\alpha \leq 0,

\| \pi \alpha ,\beta 
N u - u\| 2L2

\chi \alpha ,\beta 
=

\infty \sum 
n=N+1

| \^un| 2 \leq 
\biggl( 
(2\beta )\alpha \nu \alpha +1,1

n

(\beta + r)\alpha +1
(N + 1)\alpha 

\biggr) 2 \infty \sum 
n=N+1

\bigm| \bigm| \bigm| \bigm| \beta  - r

\beta + r

\bigm| \bigm| \bigm| \bigm| 2n

\leq 

\Biggl( 
(2\beta )\alpha \nu \alpha +1,1

n

2
\surd 
\beta r(\beta + r)\alpha 

(N + 1)\alpha 
\bigm| \bigm| \bigm| \bigm| \beta  - r

\beta + r

\bigm| \bigm| \bigm| \bigm| N+1
\Biggr) 2

;
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Fig. 4.3. Convergence curves of log approximations. Left: e - \lambda x. Middle: x - r. Right: E\nu ,1( - x\nu ).

(2) for \alpha > 0, since n2\alpha | \beta  - r
\beta +r | 

2n is monotone decreasing of n when n> - \alpha / log | \beta  - r
\beta +r | ,

it is valid that

\| \pi \alpha ,\beta 
N u - u\| 2L2

\chi \alpha ,\beta 
=

\infty \sum 
n=N+1

| \~un| 2 \leq 
\biggl( 
(2\beta )\alpha \nu \alpha +1,1

n

(\beta + r)\alpha +1

\biggr) 2 \infty \sum 
n=N+1

n2\alpha 
\bigm| \bigm| \bigm| \bigm| \beta  - r

\beta + r

\bigm| \bigm| \bigm| \bigm| 2n
\leq 
\biggl( 
(2\beta )\alpha \nu \alpha +1,1

n

(\beta + r)\alpha +1

\biggr) 2 \int \infty 

N+1

x2\alpha 
\bigm| \bigm| \bigm| \bigm| \beta  - r

\beta + r

\bigm| \bigm| \bigm| \bigm| 2x dx
\leq 
\biggl( 
(2\beta )\alpha \nu \alpha +1,1

n

(\beta + r)\alpha +1

\biggr) 2\biggl( 
2 log

\bigm| \bigm| \bigm| \bigm| \beta + r

\beta  - r

\bigm| \bigm| \bigm| \bigm| \biggr)  - 2\alpha  - 1 \int \infty 

(N+1) log | \beta +r
\beta  - r | 2

y2\alpha e - ydy.

Combining the above relations with the asymptotic behavior of the incomplete Gamma
function [1, 2, 16]

\Gamma (a,X) =

\int \infty 

X

ya - 1e - ydx\approx Xa - 1e - X forX\gg 1,

we arrive at the desired result.

We now present some numerical experiments to verify the above results. Let
\alpha = 0 and \beta = 5. The L2 convergence curves of the LOF approximation \pi \alpha ,\beta 

N u to ex-
ponential decay functions e - \lambda x with \lambda = 100,10,1,0.1,0.01, algebraic decay functions
x - r, r = 1,3/2,2,5/2,3, and two-parameter Mittag--Leffler functions E\nu ,1( - x\nu ) with
\nu = 0.3,0.5,0.7 are plotted in Figure 4.3. The numerical results demonstrate that
both exponential decay functions and algebraic decay functions can be approximated
by GLOFs-II very well.

4.3. Comparison between approximations by GLOFs-II and Laguerre
functions. In order to compare with the classical Laguerre approximation which
is based on Laguerre orthogonal functions \widehat L(\gamma )

n (y), y \in \BbbR +, the shifted GLOFs-II
\phi n(y) = \scrU \alpha ,\beta 

n (y + 1) are applied to approximate functions e - \lambda y, (1 + y) - r, and
Es,1( - (1 + y)s). The convergence curves of the approximations by Laguerre func-
tions and by GLOFs-II are plotted in Figure 4.4, where the parameters are set to
\gamma = 0, \alpha = 0, and \beta = 5, respectively. We observe that the approximation by GLOFs-
II converges exponentially, but approximation by Laguerre functions converges very
slowly.

4.4. Comparison with rational approximations. Besides the Laguerre func-
tions, rational orthogonal functions [6, 7, 19, 33, 42] are also frequently used for solv-
ing problems defined in semi-infinite domains. We compare below the convergence
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Fig. 4.5. Convergence curves. Left \& middle: e - \lambda y. Right: (1 + y) - r.

rate of the numerical solutions obtained from the shifted GLOFs-II and the rational
Chebyshev functions which are most frequently used in practice.

\bullet Shifted GLOFs-II:

(4.12) \phi 0n(y) = \scrU \alpha ,\beta 
n (y+ 1), y \in [0,\infty ).

\bullet Rational Chebyshev functions (RCFs):

(4.13) Rc
n(y) = Tn

\biggl( 
y - 1

y+ 1

\biggr) 
, y \in [0,\infty ).

In Figure 4.5 we use GLOFs-II \scrU \alpha ,\beta 
n with \alpha = 0, \beta = 5, and RCFs to approximate

the exponential functions e - \lambda y and algebraic decay function (1 + y) - r with different
\lambda > 0 and r > 0. We observe that for \lambda small and noninteger r small, i.e., for functions
with slow decays at infinity, the GLOFs-II perform much better than RCFs. However,
for functions with fast decay at infinity, the RCF approximation is better than the
GLOFs-II.

4.5. Comparison with sinc approximations. We now compare approxima-
tions by GLOFs-II with the mapped sinc functions. The sinc function [36] is defined
as

(4.14) sinc(w) =
sin (\pi w)

\pi w
, w \in \BbbC .

With the transforms [35, 39]

y=\Phi 1(w) = ew, \Phi  - 1
1 (y) = log(y),

y=\Phi 2(w) = e
\pi 
2 sinh\omega , \Phi  - 1

2 (y) = sinh - 1

\biggl( 
2

\pi 
log y

\biggr) 
,
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124 SHENG CHEN, AND JIE SHEN

we can approximate a function f(y), y \in (0,\infty ), by mapped sinc functions as
follows:

(4.15) f(y)\simeq fp,N (y) =

N/2\sum 
k= - N/2

f(\Phi p(kh)) sinc
\bigl( 
\Phi  - 1

p (y)/h - k
\bigr) 
, k \in \BbbZ , h > 0,

where h is a parameter depending on N as follows:

h=

\Biggl\{ \sqrt{} 
\pi /N, p= 1;

log(\pi /N)/N, p= 2.

It is shown in [28, 38, 39] that approximation errors by these mapped sinc functions
decay exponentially for f(y) with algebraic decay---more precisely, if f(\Phi p(w)) is
holomorphic on a strip

\scrD d := \{ w \in \BbbC | | Imw | <d\} , 0<d< \pi ,

and satisfies the condition

| f(z)| \leq C

\bigm| \bigm| \bigm| \bigm| zr

(1 + z2)
r

\bigm| \bigm| \bigm| \bigm| , r > 0.

Note that the above condition implies that f(0) = 0.
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LOG ORTHOGONAL FUNCTIONS 125

In order to compare the GLOFs-II with the mapped sinc functions, we plot the
errors of the GLOFs-II with \beta = 10 and of the mapped sinc approximations in Fig-
ures 4.6 and 4.7 for four different functions. We observe that the GLOFs-II approxi-
mation is much better than the mapped sinc functions with p= 1 in all cases. We also
observe from Figure 4.6 that the GLOFs-II provide better approximations than the
mapped sinc functions with p = 2 for functions with very slow and fast exponential
decays. On the other hand, for functions with algebraic decays in Figure 4.7, ap-
proximation errors by both the GLOFs-II and the mapped sinc functions with p= 2
converge exponentially, and the latter is better for functions at a slower decay rate
but a little worse for functions at a slightly faster decay rate.

5. Application to second-order differential equations. In this section, we
shall use GLOFs-II to solve a second-order differential equation and establish the
basic structure of the numerical analysis, which provides the basic idea for general
cases.

5.1. Second-order differential equation. Consider the modified Helmholtz
equation

(5.1)  - \partial xxu+ \lambda 2u= f, x\in \Lambda = (1,\infty ),

with the homogeneous boundary conditions u(1) = limx\rightarrow \infty u(x) = 0. In order to use
GLOFs-II, we use the following weighted weak formulation:
Find u\in \scrW 1

0 (\Lambda ) such that

(5.2) a(u, v) :=
\bigl( 
\partial xu,\partial x(vx

 - 1)
\bigr) 
+ \lambda 2(u, v)x - 1 = (f, v)x - 1 \forall v \in \scrW 1

0 (\Lambda ),

where the weighted Sobolev space is defined by

\scrW 1
0 (\Lambda ) :=

\Bigl\{ 
vx - 1 \in L2

x(\Lambda ) : \partial x(vx
 - 1)\in L2

x(\Lambda ), v(1) = lim
x\rightarrow \infty 

v(x) = 0
\Bigr\} 

equipped with the norm

(5.3) \| v\| 1,x = (| v| 20,x + | v| 21,x)1/2, | v| k,x =
\biggl( \int 

\Lambda 

| \partial kx(vx - 1)| 2 x dx
\biggr) 1/2

, k= 0,1.

Lemma 5.1. The bilinear form a(\cdot , \cdot ) is continuous and coercive in \scrW 1
0 (\Lambda ), i.e.,

a(u, v)\leq max\{ 1, \lambda 2\} \| u\| 1,x\| v\| 1,x, u, v \in \scrW 1
0 (\Lambda );(5.4)

a(u,u)\geq min\{ 1, \lambda 2\} \| u\| 21,x, u\in \scrW 1
0 (\Lambda ).(5.5)

Proof. Notice that for u, v \in \scrW 1
0 (\Lambda ), we have\int 

\Lambda 

ux - 1 \partial x(ux
 - 1) dx= 0,

and \bigl( 
\partial xu,\partial x(vx

 - 1)
\bigr) 
=

\int 
\Lambda 

\partial x(ux
 - 1) \partial x(vx

 - 1) x dx+

\int 
\Lambda 

ux - 1 \partial x(vx
 - 1) dx.

The desired results then follow from the above and the Cauchy--Schwarz inequality.

Thanks to the above lemma, the existence and uniqueness of the problem (5.1) can
be proved by the Lax--Milgram lemma.
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126 SHENG CHEN, AND JIE SHEN

5.2. GLOFs-II spectral method and numerical analysis. Define the ap-
proximation space by

(5.6) W 0
N = span\{ \psi n : n= 1, . . . ,N\} with \psi n(x) = logx \scrU 1,\beta 

n - 1(x).

Note that \psi n(1) = 0. Then the Galerkin spectral method for (5.2) is to find uN =\sum N
n=1 \~un\psi n(x) such that

(5.7) a(uN , v) = (f, v)x - 1 \forall v \in W 0
N .

Setting u= (u1, . . . , uN )t and

(5.8) aij = a(\psi j ,\psi i), A= (aij); fj = (f,\psi j)x - 1 , f = (f1, . . . , fN )t,

the scheme (5.7) becomes Au = f . Note that unlike the usual Galerkin-spectral
methods based on the classical orthogonal polynomials, the matrix A is full. However,
since usually N is relatively small, this is a not a big issue.

Lemma 5.2. For any \lambda \not = 0, the problem (5.2) (resp., the scheme (5.7)) admit a
unique solution u (resp., uN ), and it holds that

\| u - uN\| 1,x \leq max\{ \lambda  - 2, \lambda 2\} inf
v\in W 0

N

\| u - v\| 1,x.

Proof. We derive from (5.2) and (5.7) that

a(u - uN , v) = 0 \forall v \in W 0
N .

Then

min\{ 1, \lambda 2\} \| u - uN\| 21,x \leq a(u - uN , u - uN ) = a(u - uN , u - v)

\leq max\{ 1, \lambda 2\} \| u - uN\| 1,x\| u - v\| 1,x \forall v \in W 0
N .

Namely,

\| u - uN\| 1,x \leq 
max\{ 1, \lambda 2\} 
min\{ 1, \lambda 2\} 

min
v\in W 0

N

\| u - v\| 1,x,

which implies the desired result.

For any \delta > 0, we define

(5.9) T\delta u := x2+\delta \partial x(ux
 - 1), u\in \scrW 1

0 (\Lambda ).

Lemma 5.3. Let \beta > 1 and \delta > 0. If u\in \scrW 1
0 (\Lambda ) and T\delta u\in L2

x - 1(\Lambda ), then

min
v\in W 0

N

\| u - v\| 1,x \leq C\delta ,\beta \| \pi 0,\beta  - \delta 
N \{ T\delta u\}  - T\delta u\| x - 1 ,

where

C\delta ,\beta =

\left(   \biggl( 1 + \surd 
\beta + 1

2
\surd 
1 + \delta 

\biggr) 2

+

\Bigl( \surd 
\beta +

\surd 
\delta 
\Bigr) 2

4(1 + \delta )\delta \beta 

\right)   
1/2

.
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LOG ORTHOGONAL FUNCTIONS 127

Proof. Given u\in \scrW 1
0 (\Lambda ) and T\delta u\in L2

x - 1(\Lambda ), we define

\~v(x) := - 
\int \infty 

x

s - 2 - \delta \pi 0,\beta  - \delta 
N \{ s2+\delta \partial s(us

 - 1)\} ds, v(x) := x\~v(x) - \~v(1)x - \beta .

We can show by repeating the integration by parts formula that

\~v(x) =

N\sum 
j=0

cj

\int \infty 

x

s - \beta  - 2[log s]jds=

N\sum 
j=0

djx
 - \beta  - 1[logx]j ,

where cj and dj are constants. We then find from the above and v(1) = 0 that v \in W 0
N .

By direct calculation, we find

| u - v| 1,x = | u - x\~v+ \~v(1)x - \beta | 1,x \leq | u - x\~v| 1,x + | \~v(1)x - \beta | 1,x

=

\biggl( \int 
\Lambda 

\bigl[ 
\partial x(ux

 - 1) - \partial x\~v
\bigr] 2
x dx

\biggr) 1/2

+

\sqrt{} 
\beta + 1

2
| \~v(1)| 

=

\biggl( \int 
\Lambda 

\bigl[ 
x - 2 - \delta T\delta u - x - 2 - \delta \pi 0,\beta  - \delta 

N \{ T\delta u\} 
\bigr] 2
x dx

\biggr) 1/2

+

\sqrt{} 
\beta + 1

2
| \~v(1)| 

\leq \| \pi 0,\beta  - \delta 
N \{ T\delta u\}  - T\delta u\| x - 1 +

\sqrt{} 
\beta + 1

2
| \~v(1)| ,

(5.10)

and

| u - v| 0,x \leq | u - x\~v| 0,x + | \~v(1)x - \beta | 0,x

=

\biggl( \int 
\Lambda 

\bigl[ 
ux - 1  - \~v

\bigr] 2
x dx

\biggr) 1/2

+
1\surd 
2\beta 

| \~v(1)| 

=

\Biggl( \int 
\Lambda 

\biggl( \int \infty 

x

s - 2 - \delta 
\bigl[ 
\pi 0,\beta  - \delta 
N \{ T\delta u\}  - T\delta u

\bigr] 
ds

\biggr) 2

x dx

\Biggr) 1/2

+
1\surd 
2\beta 

| \~v(1)| 

\leq \| \pi 0,\beta  - \delta 
N \{ T\delta u\}  - T\delta u\| x - 1

\biggl( \int 
\Lambda 

\int \infty 

x

s - 3 - 2\delta dsx dx

\biggr) 1/2

+
1\surd 
2\beta 

| \~v(1)| 

\leq 1\sqrt{} 
2\delta (2 + 2\delta )

\| \pi 0,\beta  - \delta 
N \{ T\delta u\}  - T\delta u\| x - 1 +

1\surd 
2\beta 

| \~v(1)| .

(5.11)

In addition, since u(x)x - 1| \infty x=1 = 0, one can derive

\~v(1) =

\int \infty 

1

\partial x(ux
 - 1)dx - 

\int \infty 

1

x - 2 - \delta \pi 0,\beta  - \delta 
N \{ x2+\delta \partial x(ux

 - 1)\} dx

\leq \| \pi 0,\beta  - \delta 
N \{ T\delta u\}  - T\delta u\| x - 1

\biggl( \int 
\Lambda 

x - 3 - 2\delta dx

\biggr) 1/2

=
1\surd 

2 + 2\delta 
\| \pi 0,\beta  - \delta 

N \{ T\delta u\}  - T\delta u\| x - 1 .

(5.12)

The desired result follows by combining the inequalities (5.10)--(5.12).

Combining the above lemmas with the projection estimate (4.10) shown in The-
orem 4.1, it is straightforward to obtain the following error estimate.
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128 SHENG CHEN, AND JIE SHEN

Theorem 5.1. Given \delta > 0 and \~\beta = \beta  - \delta > 1. We assume T\delta u \in L2
x - 1(\Lambda ). If

\scrD k
\~\beta 
T\delta u\in L2

\chi k,\~\beta 
(\Lambda ) for k= 0,1, . . . ,m, then

(5.13) \| u - uN\| 1,x \leq C\delta ,\beta ,\lambda N
 - m

2 \| \scrD m
\~\beta 
T\delta u\| \chi m,\~\beta ,

where \scrD \~\beta = (2\~\beta ) - 1x
\~\beta +1\partial x(x

 - \~\beta u), and for N \gg 1,

C\delta ,\beta ,\lambda \approx max\{ \lambda  - 2, \lambda 2\} 

\left(  \Biggl( 1 +\sqrt{} \beta + 1

2

\Biggr) 2

+
1

2+ 2\delta 

\biggl( 
1 +

1\surd 
2\delta 

\biggr) 2
\right)  1/2

.

Remark 5.1. In the above error estimate, \delta is a tunable parameter for the as-
ymptotic behavior of the underlying solution u. For example, if u(x) behaves like
x - r, r > 0, at infinity, one should choose \delta < r such that T\delta u\in L2

x - 1(\Lambda ).

5.3. Numerical examples. We first take f(x) = e - x for which the exact so-
lution of (5.1) is unknown. We plot the numerical solutions of the problem (5.2)
with different \lambda = 10 - 2,10 - 1.5,10 - 1 in the left of Figure 5.1. We observe that the
parameter \lambda determines the asymptotic behavior of the solution uN (x). We also plot
loguN (x) in the right of Figure 5.1, which indicates that the asymptotic behavior of
the solution behaves like e - \lambda x, which is the eigenfunction of \partial xxu= \lambda 2u.
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Fig. 5.1. Solutions of (5.2) with different \lambda = 10 - 2,10 - 1.5,10 - 1.
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Fig. 5.2. Convergence curves: L\infty error.
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LOG ORTHOGONAL FUNCTIONS 129

Next, we set as the exact solution of the problem (5.1)

u(x) = x - 0.5  - e - r(x - 1), x\in (1,\infty ).

The convergence curves with \alpha = 0, \beta = 5, and r = 0.01,1,100 shown on the left
of Figure 5.2 demonstrate that the GLOFs-II spectral methods are very efficient for
solving problems with slow algebraic decay and with slow/fast exponential decays.
With a fixed r= 0.01, the convergence curves plotted in the right graph of Figure 5.2
show that the GLOFs-II are efficient in a wide range of \beta .

6. Application to fractional differential equations (FDEs). Let s\in (1,2).
We consider the FDEs

(6.1)  - xD
s
\infty u+Ku= f, x\in \Lambda = (1,\infty ); u(1) = lim

x\rightarrow \infty 
u(x) = 0,

where the constant K \geq 0 and the operator xD
\nu 
\infty with \nu \in (n - 1, n), n \in \BbbN +, is the

Riemann--Liouville fractional derivative defined by

xD
\nu 
\infty u := ( - 1)n

dn

dxn
xI

n - \nu 
\infty u, xI

n - \nu 
\infty u :=

1

\Gamma (n - \nu )

\int \infty 

x

u(t)

(t - x)\nu  - n+1
dt.

Note that if u(k) \in L(\Lambda ), k= 0,1, . . . , n, then

(6.2) xD
\nu 
\infty u=

( - 1)n

\Gamma (n - \nu )

dk

dxk

\int \infty 

x

u(n - k)(t)

(t - x)\nu  - n+1
dt.

Hence, a weak formulation of the above FDE is to find u\in H1
0 (\Lambda ) such that

(6.3) bs(u, v) =
\bigl( 
xI

2 - s
\infty u\prime , (vx - 1)\prime 

\bigr) 
+K(u, v)x - 1 = (f, v)x - 1 \forall v \in H1

0 (\Lambda ).

The corresponding spectral method using GLOFs-II is to find uN \in W 0
N such that

(6.4) bs(uN , v) = (f, v)x - 1 \forall v \in W 0
N ,

where W 0
N is defined as in (5.6).

Remark 6.1. The inner product involving xI
2 - s
\infty can be computed by

(xI
2 - s
\infty g,h) =

\int \infty 

1

1

\Gamma (2 - s)

\int \infty 

x

g(t)

(t - x)s - 1
dt h(x)dx

=
1

\Gamma (2 - s)

\int \infty 

1

k(g,x) h(x)dx,

(6.5)

where the function

k(g,x) :=

\int \infty 

0

y1 - s g(y+ x)dy=

\int 1

0

y1 - sg(y+ x)dy+

\int \infty 

1

y1 - sg(y+ x)dy.

The inner integral in the above can be well approximated by shifted Jacobi--Gauss
quadrature formula [4, 9, 20, 23, 32, 37, 41] and the outer integral can be well ap-
proximated by the Gauss quadrature formula corresponding to GLOFs-II (4.4).

The following fractional derivative relations shown in [31, Table 9.3.1] and [24,
Property 2.5] are useful:

xD
\nu 
\infty e

 - rx = r\nu e - rx, xD
\nu 
\infty x

 - r =
\Gamma (r+ \nu )

\Gamma (r)
x - r - \nu , [\nu ] + 1 - \nu  - r < 0.(6.6)
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Fig. 6.1. Left: Solution profiles with f(x) = (x - 1)(x - 3)(x - 7)e - x. Right: Convergence curves
measured by L\infty norm.

We take f(x) = (x - 1)(x - 3)(x - 7)e - x and plot the numerical solutions of (6.4)
with K = 10,1,0.1,0.01 on the left of Figure 6.1. We observe that, similar to the
classical derivative relation (e - \lambda x)\prime \prime = \lambda 2e - \lambda x, the fractional derivative relation (6.6)
determines the asymptotic behavior of the problem (6.1). We also plot the conver-
gence curves with K = 1 and K = 0.01 ion the right of Figure 6.1, and exponential
convergences are observed.

7. Application to the Thomas--Fermi equation (TFE). In the last exam-
ple, we consider the nonlinear Thomas--Fermi equation, which describes the electro-
static potential associated with the Thomas--Fermi atom model in quantum mechanics
[14, 40]. Its normalized form can be read as

(7.1) \partial yyu=
\sqrt{} 
u3/y, y \in (0,\infty ),

which is subjected to the boundary conditions

u(0) = 1, u(\infty ) = 0.

Remark 7.1. Combining the equation (7.1) with the boundary conditions, one
can determine the asymptotic behavior near y= 0 and at infinity:

lim
y\rightarrow 0

u(y) = 1+ lim
y\rightarrow 0

\scrO (y3/2), lim
y\rightarrow \infty 

u(y) = lim
y\rightarrow \infty 

\scrO (y - 3).

In fact, thanks to [3, eq. (2)] (and the references therein), the exact behavior of the
solution u at origin y= 0 can be expanded as

u(y) = 1+ ay+
4y3/2

2
+

2ay5/2

5
+
y3

3
+ . . . ,

where a = u\prime (0) < 0 is the unknown slope at the origin. On the other hand, we find
from [6, 13, 25] that the asymptotic behavior at infinity is

u(y)\equiv 144

y3

\biggl( 
1 - F

y\lambda 
+ 0.62569

F 2

y2\lambda 
+ . . .

\biggr) 
,

where F = 13.27094 and \lambda = (
\surd 
73 - 7)/2.
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LOG ORTHOGONAL FUNCTIONS 131

Most classical numerical methods will have trouble accurately handling the sin-
gularity near y= 0 and the algebraic decay at infinity. On the other hand, GLOFs-II
are able to efficiently treat the algebraic decay functions but would fail in resolving
the weak singularity near y= 0. However, the particular form of the weak singularity
near y= 0 can be easily handled with a transform [6, 15, 26]. Specifically, setting

z =
\surd 
y, w(z) = u(z2),

the Thomas--Fermi equation (7.1) can be recast as

(7.2)  - z\partial zzw+ \partial zw+ 4z2w
3
2 = 0; w(0) = 1, w(\infty ) = 0.

Then, the transformed solution w(z) becomes regular at z = 0.
Using the Newton--Kantorovich iterative method [5, 27, 34], we are led to solve,

at each iteration,

 - z\partial zzwk+1 + \partial zwk+1 + 6z2(wk)
1/2wk+1 = 4z2(wk)

3/2, wk+1(0) = 1, wk+1(\infty ) = 0,

whose weak form is

b(wk+1, v) :=
\bigl( 
z\partial zwk+1 - 2wk+1, \partial zv

\bigr) 
+6
\bigl( 
z2(wk)

1/2wk+1, v
\bigr) 
= 4
\bigl( 
z2(wk)

3/2, v
\bigr) 
+2v(0).

Notice that the factor z2 grows quickly as x \rightarrow \infty . In order to effectively solve the
above problem, we define the approximation space consisting of the shifted GLOFs-II:

WN = span\{ \psi n(z + 1)\} Nn=0, \psi n(z + 1) := (z + 1) - 1\scrU 0,\beta 
n (z + 1), z \in \BbbR +,

and construct the following Galerkin spectral method for (7): find wk+1 \in WN s.t.

b(wk+1
N , v) = 4

\bigl( 
z2(wk)

3/2, v
\bigr) 
+ 2v(0) \forall v \in WN .

An initial guess w0
N \in WN can be obtained by solving the linearized equation.

In Figure 7.1, we plot the profile of the numerical solution uN (y) and its expansion
(in GLOFs-II) coefficients. The exponential decay of the coefficients indicates that
the numerical error also converges exponentially.

0 2 4 6 8 10
y

0

0.2

0.4

0.6

0.8

1

u
(y

)

0 5 10 15 20 25 30
degree n

10
-10

10
-5

10
0

Coefficients, β=10

102*exp(-n)

Fig. 7.1. Left: Solution to TFE. Right: Coefficients behavior.
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8. Concluding remarks. We constructed in this paper two new classes of log
orthogonal functions which are suitable for problems which exhibit slow decays at
infinity. The log orthogonal functions LOFs-II and GLOFs-II are mutually orthogonal
in L2

\chi \alpha (\Lambda ) and L2
\chi \alpha ,\beta (\Lambda ), respectively, with \chi 

\alpha = (logx)\alpha , \chi \alpha ,\beta (x) = x - 1(2\beta logx)\alpha ,

and \Lambda = (1,\infty ). In particular, u = x - r with r > 1/2 (resp., r > 0) can be well
approximated by LOFs-II (resp., GLOFs-II). Furthermore, \beta in GLOFs-II is a tunable
parameter which can be used to adjust the distribution of the log Gauss quadrature
nodes (see the left of Figure 4.1). Hence, GLOFs-II are preferred in practice.

Both the theoretical estimates and numerical results showed that GLOFs-II pro-
vide uniformly good exponential convergence for problems with slow but monotonic
decay solutions at infinity such as x - r or e - \lambda x with small r, \lambda > 0.

For problems defined in [a,\infty ) (resp., ( - \infty , a]), one can use the shifted GLOFs-II
\phi a,n(x) := \scrU \alpha ,\beta 

n (x  - a + 1) (resp., \scrU \alpha ,\beta 
n ( - x + a + 1)). Hence, they are particularly

useful for problems whose asymptotic decay rates cannot be determined a priori or
for problems having multiple algebraic decay rates.

Note that LOFs-II and GLOFS-II cannot be used to approximate functions which
do not decay at infinity, such as limx\rightarrow \infty u(x) = 1. For such problems, we can define
another class of GLOFs with three parameters \alpha ,\beta , \gamma as follows:

(8.1) \scrU \alpha ,\beta ,\gamma 
n (x) = x\gamma \scrU \alpha ,\beta 

n (x),

which are mutually orthogonal in

L2
\chi \alpha ,\beta ,\gamma (\Lambda ), \chi 

\alpha ,\beta (x) = x - 2\gamma  - 1(2\beta logx)\alpha .

Hence, for limx\rightarrow \infty u(x) = 1, we can expand it as

u(x) =

\infty \sum 
n=0

un \scrU 0,\beta ,\gamma 
n (x), \beta > 1, \gamma > 0.

Appendix A. Codes for GLOFs-II \scrU \alpha ,\beta 
n (x), \bfitx \in \Lambda = [1,\infty ).

A.1. Generalized log orthogonal functions.

function poly=GLOF2(n,alp, bet, x)

y= x.\wedge ( - bet);
x= 2 \ast bet \ast log(x);
if n== 0, poly= y; return;end;

if n== 1, poly= (alp+ 1 - x). \ast y; return;end;
polylst= y; poly= (alp+ 1 - x). \ast y;

for k= 1 : n - 1

polyn= ((2 \ast k+ alp+ 1 - x). \ast poly - (k+ alp) \ast polylst)/(k+ 1);

polylst= poly; poly= polyn;

end

end
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LOG ORTHOGONAL FUNCTIONS 133

A.2. Generalized log Gaussian nodes and weights.

function [x,w] =GLOF2gs(n,alp, bet)

J = diag(2 \ast [0 : n - 1] + alp+ 1) . . . .

+ diag( - sqrt([1 : n - 1]. \ast ([1 : n - 1] + alp)),1) . . . .

+ diag( - sqrt([1 : n - 1]. \ast ([1 : n - 1] + alp)), - 1);

r= sort(eig(sparse(J)));

x= exp
\bigl( 
r/(2 \ast bet)

\bigr) 
;

gm= gammaln(n+ alp) - log(n+ alp) - gammaln(n+ 1);

gm= exp(gm);

w= gm/(2 \ast bet) \ast r./(GLOF2(n - 1, alp, bet, x)).\wedge 2;

end
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