
Journal of Computational Physics 401 (2020) 108975
Contents lists available at ScienceDirect

Journal of Computational Physics

www.elsevier.com/locate/jcp

Two classes of linearly implicit local energy-preserving 

approach for general multi-symplectic Hamiltonian PDEs

Jiaxiang Cai a, Jie Shen b,∗
a School of Mathematical Science, Huaiyin Normal University, Huaian, Jiangsu 223300, China
b Department of Mathematics, Purdue University, West Lafayette, IN, 47907, USA

a r t i c l e i n f o a b s t r a c t

Article history:
Received 15 May 2019
Received in revised form 19 September 
2019
Accepted 20 September 2019
Available online 2 October 2019

Keywords:
Multi-symplectic
Hamiltonian PDE
Energy-preserving
Stability
IEQ

Two classes of efficient and robust schemes are proposed for the general multi-symplectic 
Hamiltonian systems using the invariant energy quadratization (IEQ) approach. The 
schemes are linear, second-order accurate, local energy-preserving, and preserve the 
global energy. They are not restricted to specific forms of the nonlinear part of the state 
function, and only require solving linear equations at each time step. We applied the new 
schemes to various multi-symplectic Hamiltonian PDEs to demonstrate their effectiveness, 
computational efficiency and accuracy.

© 2019 Elsevier Inc. All rights reserved.

1. Introduction

Many problems in sciences and engineering can be described by PDEs in the form of multi-symplectic Hamiltonian 
systems [4]:

M∂t z +
d∑

l=1

Kl∂xl z = ∇z S(z), z ∈Rd1 , (1)

where M and Kl , l = 1, 2, . . . , d, are constant d1 × d1 skew-symmetric matrices, z = z(t, x), x = (x1, x2, . . . , xd), is a state 
variable, and S :Rd1 →R is a scalar-valued smooth state function. Examples include KdV equation, Camassa-Holm equation, 
Sine-Gordon equation, Schrödinger equation, Klein-Gordon-Schrödinger equations, Zakharov-Kuznetsov equation, Maxwell’s 
equations and so on [2,5–7,14,16,20,24,37].

It’s well-known that the solution z of the system (1) admits a multi-symplectic conservation law (MSCL) [4]

∂tω +
d∑

l=1

∂xlκl = 0, (2)

where ω = dz ∧ M̂dz and κl = dz ∧ K̂ldz. Here, the matrices M̂ and K̂l satisfy
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M = M̂ − M̂T , Kl = K̂l − K̂ T
l . (3)

Besides the MSCL, the solution z of (1) also satisfies the local energy conservation law (LECL)

∂t E +
d∑

l=1

∂xl Fl = 0, (4)

where E = S(z) +∑d
l=1(∂xl z)

T K̂l z and Fl = −(∂t z)T K̂l z are the energy density and fluxes, respectively, and the local momen-
tum conservation law (LMCL) in each of the xl-direction (l = 1, 2, . . . , d):

∂t Il + ∂xl Gl +
d∑

j=1, j �=l

∂x j G̃l, j = 0,

where Il = −(∂xl z)
T M̂z, Gl = S(z) + (∂t z)T M̂z + ∑d

j=1, j �=l(∂x j z)T K̂ j z and G̃l, j = −(∂xl z)
T K̂ j z.

Many conservative evolutionary PDEs, under appropriate boundary conditions, can also be written as a general form

∂t u = D
δH
δu

, (5)

where D is a constant skew symmetric linear differential operator, which preserves the global energy H and symplecticity.
However, the MSCL, LECL and LMCLs of the multi-symplectic Hamiltonian system (1) are local properties and inde-

pendent of boundary conditions, since they are exact on any time-space point. If the system (1) is supplemented with 
appropriate boundary conditions such as periodic/homogenous boundary condition, then integrating MSCL, LECL and LMCLs 
over the space leads to symplecticity, global energy conservation and global momentum conservation, respectively. Thus, the 
system (1) is more general than the system (5). Actually, one can always write (5), with suitable boundary conditions, in the 
form (1). Schemes that conserve geometric structure (local structure or global invariants) are sometimes called geometric- or 
structure-preserving integrator, which are important for studying the long-term behavior of dynamical systems. Nowadays, 
preservation of some invariants or system structures has been a criterion to judge the success of the numerical scheme.

In the last decade, many systematic methodologies (also called multi-symplectic integrators) holding the discrete ver-
sion of the MSCL have been proposed for the system (1) in one dimension, such as the box/Preissmann scheme [26], the 
Euler-box scheme [30], the Fourier pseudo-spectral collocation scheme [14], the wavelet collocation scheme [43] and the 
diamond scheme [29]. These multi-symplectic integrators have been successfully applied to the Schrödinger-type equations 
[14,21], KdV equation [2], RLW equation [7], the Camassa-Holm equation [16], Maxwell’s equations [24,38] and so on. For 
more details, one can refer to the review paper [26] and references therein. While multi-symplectic-preserving methods do 
have some remarkable advantages such as suitability for long-term integrations, they do not typically preserve energy and 
momentum, which can be important for stability and convergence analysis.

Recently, designing numerical schemes preserving certain structure, especially the energy structure, for the continuous 
dynamical systems have attracted much attention [8,13,25,33]. The local structure produces richer information of the PDE 
system than the corresponding global one does, since the former does not need the appropriate boundary conditions while 
the latter does. In general, the conservative methods preserving global invariants are invalid for the problem without appro-
priate boundary conditions. Since LECL is an important local structure for the system (1), many works have been devoted 
to preserve it in the discrete version. In [39], Wang et al. made use of the concatenating idea to construct local energy-
preserving (LEP) schemes for the one-dimensional (1D) Sine-Gordon equation. This technique was also employed to develop 
LEP schemes for the coupled nonlinear Schrödinger equations [11] and the Cahn-Hilliard equation [31]. The concatenating 
method can result in several different LEP schemes for a given conservative/dissipative PDEs, but it is not systematic either 
in derivations or in applicability to a class of PDEs. Furthermore, these LEP schemes are all fully implicit. In [12,18], we 
employed the averaged vector field (AVF) method [28,32] for constructing LEP integrators, respectively,

Mδt A+
x zn

j + K1δ
+
x At zn

j =
1∫

0

∇ S(ξ A+
x zn+1

j + (1 − ξ A+
x zn

j ))dξ, (6)

and

Mδt zn
j + K̂1δ

+
x At zn

j + K̂1δ
−
x At zn

j =
1∫

0

∇ S(ξ zn+1
j + (1 − ξ zn

j ))dξ, (7)

where the definitions of operators δt , δ±
x , At and A+

x can be found in Section 2, which is applicable to the entire class (1) in 
one dimension. The two LEP integrators have been successfully applied to many PDEs and the resulting schemes exhibited 
excellent performance in providing accurate solution and preserving the local/global energy. However, these schemes are 
always fully implicit, so they are very expensive, particularly when applied to the multi-dimensional systems (1).
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From the performance perspective, a scheme for the multi-symplectic Hamiltonian system (1) is generally evaluated 
from the following aspects: whether it preserves the local energy conservation law; the order of its accuracy; its efficiency; 
whether it is easy to implement. Obviously, the existing structure-preserving schemes, including the MS schemes and LEP 
schemes, have shortcomings in the last two aspects due to their fully implicit feature. Besides, for these fully implicit 
conservative schemes, exact preservation of the invariant requires that the nonlinear system be solved to machine precision, 
this procedure can be very time-consuming. Thus it is highly desirable to have linearly implicit conservative schemes. 
In [17,27], for the conservative PDEs with polynomial nonlinearities, the authors developed a framework for constructing 
linearly implicit method conserving a time discretized version of energy by combining polarization of the energy and the 
discrete variational derivatives or AVF method. However, these methodologies are invalid for the conservative PDEs with 
non-polynomial nonlinearities or the multi-component polynomial nonlinearities such as the multi-symplectic Hamiltonian 
system (1). In [34,35], Shen et al. proposed linearly implicit schemes for the gradient flow by introducing the scalar auxiliary 
variable (SAV). The SAV approach is flexible and applicable to a large class of dissipative/conservative system, but it cannot 
preserve local structures for the multi-symplectic Hamiltonian system.

In this study, we develop linearly implicit LEP methods that are applicable to the entire class of multi-symplectic 
Hamiltonian PDEs (1). Inspired by the IEQ approach [40,41], we modify the state function in (1) into a quadratic form 
S(z) = S1(z) + r2 by introducing the auxiliary variable r = √

S2(z) + C0 (see Section 2.1), and rewrite the original multi-
symplectic Hamiltonian system (1) into a new equivalent system. By adopting some special discretizations in space and 
Crank-Nicolson discretization in time for the new system, we develop two classes of LEP integrators for the multi-symplectic 
system (1) which preserve the discrete version LECL exactly. These schemes possess the following remarkable advantages:

• For any PDE in the class of multi-symplectic Hamiltonian systems (1), one only needs to solve a linear system of 
equations at each time step, so that the schemes are remarkably efficient.

• The schemes are second-order in both time and space, and conserve the local and global energies.
• For some multi-component PDEs that belongs to multi-symplectic Hamiltonian system (1), such as Sine-Gordon (see 

Sec. 4), coupled nonlinear Schrödinger equations and so on, our schemes can be decoupled, so that one only needs to 
solve decoupled linear equations at each time for each of the components.

The rest of paper is organized as follows. In Section 2, we describe the two classes of linearly implicit LEP integrators 
for the 1D general multi-symplectic systems, and present their remarkable advantages. In Section 3, the methodologies 
for the 1D system are extended to the multi-symplectic Hamiltonian PDEs in d dimensions. In Section 4, we apply these 
new efficient integrators to solve various PDEs in the class of multi-symplectic Hamiltonian systems, and present ample 
numerical experiments to demonstrate their performance, followed by some concluding remarks in Section 5.

2. Linearly implicit LEP schemes for 1D systems

For clarity of presentation, we shall first present our methods for the multi-symplectic Hamiltonian PDE (1) in one 
dimension (d = 1), i.e.,

M∂t z + K∂xz = ∇z S(z), z ∈Rd1 , (8)

where (x, t) ∈ [a, b] × [0, T ]. The notations and methodologies in one-dimensional case will be generalized to the multi-
symplectic Hamiltonian system (1) in multi dimensions in the next section.

We introduce some notations for dealing with the discrete systems. Let the notation un
j represent the approximation 

value of u(a + jh, nτ ), where the index j corresponds to increments in space and n to increments in time, and h = (b −a)/ J
and τ = T /N . We also define the finite difference operators

δt f n
j = ( f n+1

j − f n
j )/τ , δ±

x f n
j = ±( f n

j±1 − f n
j )/h,

and the average operators

At f n
j = ( f n+1

j + f n
j )/2, A±

x f n
j = ( f n

j±1 + f n
j )/2.

Obviously, these operators are commutative mutually, and also satisfy the following discrete Leibnitz rules

δt( f n
j · gn

j ) =δt f n
j · At gn

j + At f n
j · δt gn

j ,

δ+
x ( f n

j · gn
j ) =δ+

x f n
j · A+

x gn
j + A+

x f n
j · δ+

x gn
j ,

and

δ+
x ( f n

j−1 · gn
j ) = f n

j · δ+
x gn

j + δ−
x f n

j · gn
j .
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2.1. The equivalent IEQ system

Usually, the scalar-valued state function S(z) in (8) contains quadratic term and non-quadratic term, which can be 
written as

S(z) = S1(z) + S2(z),

where S1(z) and S2(z) represent quadratic and non-quadratic terms, respectively. Assuming that the function S2(z) is 
bounded from below, e.g., there exists a constant C0 > 0 such that S2(z) ≥ −C0, one can introduce an auxiliary variable 
r(x, t; z) = √

S2(z) + C0, and then rewritten the multi-symplectic Hamiltonian system (8) as

M∂t z + K∂xz = ∇z S1(z) + r√
S2(z) + C0

∇z S2(z), (9a)

rt = 1

2
√

S2(z) + C0
∂t z
∇z S2(z). (9b)

The above system is equivalent to the multi-symplectic Hamiltonian system (8) under the initial condition r(x, 0; z) =√
S2(z)|t=0 + C0. However, it allows more flexibility in time discretization.
Multiplying ∂t z
 on both sides of Eq. (9a) together with the vanishment of the term ∂t z
M∂t z, and r on both sides of 

(9b), we have

∂t z
K∂xz = ∂t S1(z) + r√
S2(z) + C0

∂t z
∇z S2(z). (10)

and

∂tr2 = r√
S2(z) + C0

∂t z
∇z S2(z) (11)

Combining Eqs. (10) and (11) together with

∂t z
K∂xz =∂t z
 K̂∂xz − ∂xz
 K̂∂t z

=∂x(∂t z
)K̂ z − ∂t(∂xz
)K̂ z,

we have the following:

Theorem 2.1. The system (9) is local energy-preserving, and holds the local energy-energy conservation law

∂t E + ∂x F = 0, E = S1(z) + r2 + ∂xz
 K̂ z, F = −∂t z
 K̂ z. (12)

Furthermore, with appropriate boundary conditions such as periodic/homogeneous boundary conditions, the system possesses the 
global energy conservation

dE/dt = 0, E =
b∫

a

S1(z) + r2 + ∂xz
 K̂ zdx. (13)

Remark 2.1. The purpose of introducing the auxiliary variable r is to make the state function quadratic. This allows us more 
flexibility in discretization. The local/global energy law (12) may be regarded as a modified form of the original one.

2.2. The first class of linearly implicit approach

We consider first the semi-discretization in time. A semi-implicit second-order scheme based on Crank-Nicolson dis-
cretization in time for the system (9) is

Mδt zn + K∂x At zn =∇ S1(zn+1, zn) + Atrn√
S2(̃zn+1/2) + C0

∇z S2(̃zn+1/2),

δtrn = 1

2
√

S2(̃zn+1/2) + C0

(δt zn)
∇z S2(̃zn+1/2),

(14)

where ̃z can be any explicit approximation of z(tn+1/2) with an error of O(τ 2), and ∇ is a discrete gradient of H , that is, 
a continuous function of (ẑ, z) satisfying ∇ z H(ẑ, z)
(ẑ − z) = H(ẑ) − H(z) and ∇ z H(z, z) = ∇z H(z) [19,22,32]. Here we use 
the AVF discrete gradient method. In the above, we may let
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z̃n+1/2 = (3zn − zn−1)/2 (15)

be the second-order extrapolation.
Multiplying the first and the second equations of (14) with (δt zn)
 and 2Atrn , respectively, we see that the above 

semi-implicit second-order system conserves the following semi-discrete energy conservation law

δt En + dF n+1/2/dx = 0, En = S1(zn) + (rn)2 + (∂xzn)
 K̂ zn, F n+1/2 = −(δt zn)
 K̂ At zn. (16)

Obviously, the above is a local property and independent of boundary conditions.
For the spatial discretization, one has many choices, such as finite difference method, finite element method, spectral 

method and so on. However, our interest of this study is to design local energy-preserving schemes for the general multi-
symplectic Hamiltonian system. To this end, applying the midpoint rule in space to the system (14) yields the following 
linearly implicit full-discrete scheme (LI-LEP-1)

Mδt A+
x zn

j + Kδ+
x At zn

j =∇ S1(A+
x zn+1

j , A+
x zn

j ) + At A+
x rn

j√
S2(A+

x z̃n+1/2
j ) + C0

∇z S2(A+
x z̃n+1/2

j ),

δt A+
x rn

j = 1

2
√

S2(A+
x z̃n+1/2

j ) + C0

(δt A+
x zn

j )

∇z S2(A+

x z̃n+1/2
j ),

(17)

where ̃zn+1/2
j = (3zn

j − zn−1
j )/2.

Theorem 2.2. The full-discrete scheme (17) is local energy-preserving, which possesses the discrete local energy conservation law

δt En
j+1/2 + δ+

x F n+1/2
j = 0, (18)

where En
j+1/2 = S1(A+

x zn
j ) + (A+

x rn
j )

2 + (δ+
x zn

j )

 K̂ A+

x zn
j and F n+1/2

j = −(δt zn
j )


 K̂ At zn
j .

Proof. Multiplying the first and second equations of (17) with (δt A+
x zn

j )

 and 2At A+

x rn , respectively, and then combining 
the two obtained equations, we have

(δt A+
x zn

j )

Kδ+

x At zn
j = δt

(
S1(A+

x zn
j ) + (A+

x rn
j )

2
)

. (19)

Thanks to the discrete Leibnitz rules δ+
x ( f n

j · gn
j ) = δ+

x f n
j · A+

x gn
j + A+

x f n
j · δ+

x gn
j , the left term

(δt A+
x zn

j )

Kδ+

x At zn
j =(δt A+

x zn
j )


 K̂δ+
x At zn

j − (δ+
x At zn

j )

 K̂δt A+

x zn
j

=(δt A+
x zn

j )

 K̂δ+

x At zn
j − δt

(
(δ+

x zn
j )


 K̂ A+
x zn

j

)
+ (δtδ

+
x zn

j )

 K̂ At A+

x zn
j

=δ+
x

(
(δt zn

j )

 K̂ At zn

j

)
− δt

(
(δ+

x zn
j )


 K̂ A+
x zn

j

)
.

(20)

This completes the proof. �
2.3. The second class of linearly implicit approach

The linearly implicit LI-LEP-1 integrator is applicable to the entire class (8). However, the approximation of the solution z
in space on the midpoint may be complicated for some PDEs, and it is usually difficult to carry out a rigorous error analysis. 
On the other hand, it is relatively easy to implement a scheme on the grid points and to carry out corresponding error 
analysis [3,9]. Hence, we propose another class of linearly implicit local energy-preserving scheme on the grid points for the 
multi-symplectic Hamiltonian system.

Let K̂ be an arbitrary splitting matrix of K , satisfying the relationship (3). We discretize the system (14) as follows 
(LI-LEP-2),

Mδt zn
j + K̂δ+

x At zn
j − K̂ 
δ−

x At zn
j =∇ S1(zn+1

j , zn
j ) + Atrn

j√
S2(̃zn+1/2

j ) + C0

∇z S2(̃zn+1/2
j ),

δtrn
j = 1

2
√

S2(̃zn+1/2
j ) + C0

(δt zn
j )


∇z S2(̃zn+1/2
j ),

(21)

where ̃zn+1/2 = (3zn − zn−1)/2.
j j j
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Theorem 2.3. The semi-implicit scheme (21) possesses a discrete local energy conservation law

δ+
t En

j + δ+
x F

n+ 1
2

j = 0, (22)

where En
j = S1(zn

j ) + (rn
j )

2 + (δ−
x zn

j )
T K̂ zn

j and F n+ 1
2

j = −(δ+
t zn

j−1)

 K̂ (At zn

j ).

Proof. Multiplying the two equations of (21) with (δt zn
j )


 and 2Atrn
j , respectively, one has

(δt zn
j )


 K̂δ+
x At zn

j − (δt zn
j )


 K̂ 
δ−
x At zn

j = δt

(
S1(zn

j ) + (rn
j )

2
)

.

By making use of the Leibnitz rule δ+
x ( f n

j−1 · gn
j ) = f n

j · δ+
x gn

j + δ−
x f n

j · gn
j , the left term becomes

(δt zn
j )


 K̂δ+
x At zn

j − (δ−
x At zn

j )

 K̂δt zn

j

=(δt zn
j )


 K̂δ+
x At zn

j − δt

(
(δ−

x zn
j )


 K̂ zn
j

)
+ (δtδ

−
x zn

j )

 K̂ At zn

j

=δ+
x

(
(δt zn

j−1)

 K̂ At zn

j

)
− δt

(
(δ−

x zn
j )


 K̂ zn
j

)
.

The proof is completed. �
We established above that both schemes are local energy preserving, as for the global energy, we have the following:

Theorem 2.4. If the original multi-symplectic Hamiltonian system is subject to appropriate boundary conditions such that 
∑

j δ
+
x

F n+1/2
j = 0 (for example, periodic or homogeneous Dirichlet boundary conditions), both the schemes (17) and (21) are global energy-

preserving, i.e.,

En = En−1 = . . . = E0, (23)

where En = h 
∑

j S1(A+
x zn

j ) + (A+
x rn

j )
2 + (δ+

x zn
j )


 K̂ A+
x zn

j for the former scheme and En = h 
∑

j S1(zn
j ) + (rn

j )
2 + (δ−

x zn
j )

T K̂ zn
j for 

the latter one.

Proof. Summing the local energy conservation law (18) or (22) over spatial indices together with the boundary condition 
gives the corresponding global energy, immediately. �

Some remarks are in order:

• The Leibniz rule satisfied by the spatial discrete operators are crucial for designing local energy-preserving schemes.
• For a given multi-symplectic Hamiltonian PDE, one may get different linearly implicit local energy-preserving schemes 

from LI-LEP-2 (21) by different choices of the splitting matrix K̂ , but LI-LEP-1 (17) leads to a unique scheme.
• While z and r in the LI-LEP-1 and LI-LEP-2 schemes appear to be coupled. However, one can usually eliminate r from 

the coupled system, leading to a linear equation for z only. We take LI-LEP-2 (21) as an example:
– It follows from the second equation of (21) that rn+1

j = rn
j + 1

2 (zn+1
j − zn

j )

ãn+1/2

j where ãn+1/2
j = ∇z S2 (̃zn+1/2

j )/√
S2 (̃zn+1/2

j ) + C0.

– Substituting the above representation of rn+1
j into the first equation of (21) reads a scheme

Mδt zn
j + K̂δ+

x At zn
j − K̂ 
δ−

x At zn
j = ∇ S1(zn+1

j , zn
j ) + ãn+1/2

j (rn
j + 1

4
(zn+1

j − zn
j )


ãn+1/2
j ) (24)

for solving zn+1
j . Actually, for many PDEs, the scheme (24) can be simplified further by eliminating the auxiliary 

variables in z j which are introduced to write the PDEs in multi-symplectic form (see Sec. 4).
• The linearly implicit LEP schemes (17) and (21) with (15) needs the initial values z0 and z1 to run. z0 is determined 

from the given initial values and z1 can be obtained from the schemes (17) and (21) with ̃zn+1/2
j = z0

j + z1
j .

• The schemes can be applied for multi-symplectic Hamiltonian systems with various types of nonlinearities.
• In this study, only one auxiliary variable r is introduced. For some problems, it may be advantageous to split the 

non-quadratic term into S2(z) + S3(z) + · · · + Sm(z) and introduces multiple auxiliary variables rk = √
Sk(z) + Ck , k =

2, 3, · · · , m.
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3. Extension to multi-dimensional systems

The methodology presented in the last section for 1-D systems can be easily extended to multi-dimensional systems, we 
will present the linearly implicit local energy-preserving schemes for the multi-symplectic systems (1) and their numerical 
properties without detailed discussion and derivation.

Consider the multi-symplectic Hamiltonian systems (1) with x ∈ � = 	d
l=1[al, bl]. Let zn

j1,··· , jd
be a numerical approxima-

tion to z(x1 j1
, · · · , xd jd

, tn) where xl jl = al + jlhl , hl = (bl − al)/ Jl , jl = 0, 1, · · · , Jl and l = 1, 2, · · · , d. For simplicity, if one of 
the indices is held constant, we will drop it from the notation, that is, z := zn

j1,··· , jd
, z j1−1 := zn

j1−1,··· , jd
and so on. Denote 

the forward and backward Euler finite difference operators in xl direction by δ+
xl

and δ−
xl

respectively, and the forward and 
backward average operators in xl direction by A+

xl
and A−

xl
, respectively.

Assume that the state function S(z) = S1(z) + S2(z) where S1(z) and S2(z) are defined as before. By introducing the 
auxiliary variable r = √

S2(z) + C0, we have the following two classes of linearly implicit local energy-preserving schemes:

Mδt	
d
k=1 A+

xl
z +

d∑
l=1

Kδ+
xl

	d
k=1,k �=l A+

xk
At z

=∇ S1(	
d
k=1 A+

xk
zn+1,	d

k=1 A+
xk

zn) + 	d
k=1 A+

xk
Atr√

S2
(
	d

k=1 A+
xk

z̃n+1/2
) + C0

∇z S2

(
	d

k=1 A+
xk

z̃n+1/2
)

,

δt	
d
k=1 A+

xl
r = 1

2
√

S2
(
	d

k=1 A+
xk

z̃n+1/2
) + C0

(
δt	

d
k=1 A+

xk
z
)
 ∇z S2

(
	d

k=1 A+
xk

z̃n+1/2
)

(25)

and

Mδt z +
d∑

l=1

(
K̂lδ

+
xl

At z − K̂ 

l δ−

xl
At z

)
=∇ S1(zn+1, zn) + Atr√

S2(̃zn+1/2) + C0

∇z S2(̃zn+1/2),

δtr = 1

2
√

S2(̃zn+1/2) + C0

(δt z)
∇z S2(̃zn+1/2),

(26)

where ̃zn+1/2 = (3zn − zn−1)/2.
As in the 1D case, we can prove that the above schemes satisfy the discrete local energy conservation law

δt En +
d∑

l=1

δ+
xl

F n+1/2
l = 0, (27)

where, for the scheme (25), F n+1/2
l = −(δt	

d
k=1,k �=l A+

xk
z)
 K̂l At	

d
k=1,k �=l A+

xk
z and En = S1(	

d
k=1 A+

xk
z) + (	d

k=1 A+
xk

r)2 +∑d
l=1(δ

+
xl

	d
k=1,k �=l A+

xk
z)
 K̂l	

d
k=1 A+

xk
z, and for the scheme (26), En = S1(z) + r2 + ∑d

l=1(δ
−
xl

z)T K̂l z and F
n+ 1

2
l = −(δ+

t z jl−1)



K̂l(At z).
If the original multi-dimensional system is supplemented with periodic/homogeneous Dirichlet boundary conditions, 

summing up all spatial indexes in (27) gives global energy conservation

En = h1h2 · · ·hd

∑
j1, j2,··· , jd

En = · · · = E0 = h1h2 · · ·hd

∑
j1, j2,··· , jd

E0. (28)

4. Some applications

Many PDEs motivated by physics belong to the class of multi-symplectic Hamiltonian systems, including in particular the 
KdV equation, NLS-type equations, and Sine-Gordon equation. In this section, we apply our schemes to solve these equations 
with different boundary conditions.

In the following, we always take K̂l as an upper triangular matrix of the matrix Kl . At n-th time level, the solution error 
is calculated by e∞ = ‖un − u(tn)‖∞ , the value of local energy is scaled by max j1,··· , jd |δt En +∑d

l=1 δ+
xl

F n+1/2
l |, and the error 

in global energy is monitored by En − E0.

4.1. The KdV equation

ut + ηuux + μ2uxxx = 0
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can be written as a 1D multi-symplectic Hamiltonian system (8) with S(z) = v2/2 − uw + ηu3/6, z = (φ, u, v, w)T and

M =

⎛⎜⎜⎝
0 1/2 0 0

−1/2 0 0 0
0 0 0 0
0 0 0 0

⎞⎟⎟⎠ , K =

⎛⎜⎜⎝
0 0 0 1
0 0 −μ 0
0 μ 0 0

−1 0 0 0

⎞⎟⎟⎠ .

Let r =
√

u3 + C0. An application of the LI-LEP-1 integrator (17) to the above form yields⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
2 δt A+

x un
j + Atδ

+
x wn

j = 0,

− 1
2 δt A+

x φn
j − μAtδ

+
x vn

j = −At A+
x wn

j + ηAt A+
x rn

j

2
√

(A+
x ũn+1/2

j )3+C0

(A+
x ũn+1/2

j )2,

μAtδ
+
x un

j = At A+
x vn

j , Atδ
+
x φn

j = At A+
x un

j ,

δt A+
x rn

j = 3(A+
x ũn+1/2

j )2

2
√

(A+
x ũn+1/2

j )3+C0

δt A+
x un

j .

(29)

Since μux = v and φx = u have no time derivative, μδ+
x un

j = A+
x vn

j and δ+
x φn

j = A+
x un

j are more accurate approximations for 
them than those in (29). Eliminating the auxiliary variables wn

j , vn
j and φn

j yields a linearly implicit scheme⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
δt(A+

x )3un
j + μ2(δ+

x )3 At un
j + η

2 δ+
x A+

x

(
At A+

x rn
j√

(A+
x ũn+1/2

j )3+C0

(A+
x ũn+1/2

j )2

)
= 0,

A+
x rn+1

j = A+
x rn

j + 3(A+
x ũn+1/2

j )2

2
√

(A+
x ũn+1/2

j )3+C0

(A+
x un+1

j − A+
x un

j ).

(30)

Applying the LI-LEP-2 integrator to the problem reads⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
2 δt un

j + δ+
x At wn

j = 0,

− 1
2 δtφ

n
j − μAtδ

+
x vn

j = −At wn
j + ηAtrn

j

2
√

(̃un+1/2
j )3+C0

(̃un+1/2
j )2,

μδ−
x un

j = vn
j , δ−

x φn
j = un

j ,

δtrn
j = 3(̃un+1/2

j )2

2
√

(̃un+1/2
j )3+C0

δt un
j ,

which can also be written in a compact form⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
δt A−

x un
j + μ2δ+

x δ−
x δ−

x At un
j + η

2 δ−
x

(
Atrn

j√
(̃un+1/2

j )3+C0

(̃un+1/2
j )2

)
= 0,

rn+1
j = rn

j + 3(̃un+1/2
j )2

2
√

(̃un+1/2
j )3+C0

(un+1
j − un

j ).

(31)

Next, we carried out some numerical experiments to test the numerical performance of the schemes (C0 = 1). The KdV 
equation has a traveling wave solution u(x, t) = 3c sech2(

√
c

2 (x − c t − x0)), −∞ < x < +∞, c > 0, which means the soliton 
initially at x0 travels with velocity c and amplitude 3c.

First, we perform simulations with the initial value u0(x) = u(x, 0) with x ∈ [−40, 40], c = 1/3, x0 = 0, periodic boundary 
condition, and parameters μ = η = 1, τ = 0.05, h = 0.05 and T = 200. With the periodic boundary condition, the exact 
solution becomes

u(x, t) =

⎧⎪⎨⎪⎩
3c sech2

(√
c

2 (x − f (t))
)

, x ∈ [−40 + f (t),40],
3c sech2

(√
c

2 (x − f (t) + 80)
)

, x ∈ [−40,−40 + f (t)],
where f (t) = mod(c t, 80). The numerical results are illustrated with Fig. 1. The left hand graph shows both schemes have 
excellent long-term performance on solution, but LI-LEP-1 gives more accurate solution than LI-LEP-2. The right graphs show 
the local energy and global energy are conserved exactly, which verifies the theoretical results. Fig. 2 displays the behaviors
of the original energy and modified energies that our schemes hold. One can see that each of the modified energy is a good 
approximation to the original energy. In the following numerical examples, since the original energy and modified energy 
have the similar behaviors, we will not show them again.
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Fig. 1. Numerical results for the KdV equation given by (30) (solid line) and (31) (dotted line).

Fig. 2. The behaviors of the original energy (solid line) and the modified energies of schemes (squares: (30); stars: (31))

Table 1
Numerical results for the KdV equation at T = 1: x ∈ [−40, 40], τ = h.

Mesh τ = 0.2 τ/2 τ/22 τ/23 τ/24 τ/25

LI-LEP-1 2.2510e-4 6.0011e-5 1.5420e-5 3.9058e-6 9.8264e-7 2.4598e-7
Order − 1.9073 1.9604 1.9811 1.9909 1.9981
LI-LEP-2 4.5719e-4 1.2663e-4 3.3086e-5 8.4494e-6 2.1342e-6 5.3629e-7
Order − 1.8522 1.9363 1.9693 1.9852 1.9926

Second, we test the convergence order of the solution. Table 1 displays the solution error and its convergence order in 
maximal error norm, in which the ‘Order’ is calculated by log(e∞(τ2)/e∞(τ1))/ log(τ2/τ1). The results confirm that both 
LI-LEP-1 and -2 have second order convergence in time and space.

Finally, we make numerical comparisons between our schemes and the existing second-order finite difference schemes, 
such as the LEP schemes [12,18], multi-symplectic Preissmann scheme (MPS) [42] and narrow box scheme (NBS) [1]. The 
results are listed in Table 2. It is clear that all schemes provide numerical solutions with similar accuracy (LI-LEP-1 has the 
most accurate solution), but the present schemes are much more efficient than the others.

4.2. Nonlinear Schrödinger equations

We consider first the 1D time-dependent NLS equation

iψt + ψxx + a|ψ |2ψ = 0. (32)
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Table 2
Numerical results for the KdV equation: x ∈ [−40, 40], τ = h = 0.05, T = 100.

Results\Scheme LI-LEP-1 LI-LEP-2 LEP-1[12] LEP[18] MPS[42] NBS[1]

L∞-error 1.67e-4 6.22e-4 3.83e-4 4.44e-4 4.50e-4 3.77e-4
|En − E0| 9.62e-13 1.68e-12 1.06e-12 8.50e-12 2.25e-11 4.32e-5
CPU time 1.23 s 1.06 s 6.20 s 6.97 s 6.57 s 6.34 s

Fig. 3. Numerical results for 1D NLS equation (solid line: (33); dotted line: (34)). Top: the maximal error in solution; Bottom: global energy error.

By setting ψ(x, t) = p(x, t) + iq(x, t), one obtains the multi-symplectic Hamiltonian form (8) with

S(z) = 1

2
(v2 + w2 + a

2
(p2 + q2)2), z = (p,q, v, w)T

and

M =
(

J 0
0 0

)
, K =

(
0 −I
I 0

)
, J =

(
0 1

−1 0

)
, I =

(
1 0
0 1

)
.

Let r = √
(p2 + q2)2 + C0. Then the LI-LEP-1 and LI-LEP-2 integrators lead to the following two linearly implicit local energy 

preserving schemes, respdectively,⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
iδt A+

x A−
x ψn

j + Atδ
+
x δ−

x ψk
j + aA−

x

(
At A+

x rn
j A+

x ψ̃
n+1/2
j

|A+
x ψ̃

n+1/2
j |2√

|A+
x ψ̃

n+1/2
j |4+C0

)
= 0,

δt A+
x rn

j = 2|A+
x ψ̃

n+1/2
j |2√

|A+
x ψ̃

n+1/2
j |4+C0

(
A+

x (ψ̃
n+1/2
j )δt A+

x (ψn
j ) + A+

x �(ψ̃
n+1/2
j )δt A+

x �(ψn
j )

)
,

(33)

and ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
iδtψ

n
j + Atδ

+
x δ−

x ψk
j + aA−

x

(
Atrn

j ψ̃
n+1/2
j

|ψ̃n+1/2
j |2√

|ψ̃n+1/2
j |4+C0

)
= 0,

δtrn
j = 2|ψ̃n+1/2

j |2√
|ψ̃n+1/2

j |4+C0

(
(ψ̃

n+1/2
j )δt(ψn

j ) + �(ψ̃
n+1/2
j )δt�(ψn

j )
)

,

(34)

where  and � stand for the real and imaginary parts of complex function.
The NLS equation with a = 2 admits an analytical solution ψ(x, t) = sech(x − 2t) exp(ix). We run the above two schemes 

with initial condition ψ(x, 0) = sech(x) exp(ix), x ∈ [−20, 30] and periodic boundary condition. Fig. 3 displays the errors 
in solution and energy with τ = 0.01 and h = 0.02. Obviously, LI-LEP-2 provides more accurate solution than LI-LEP-1 
as t > 2.5, and both schemes preserve the energy exactly throughout the simulations. The results in Table 3 confirm the 
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Table 3
Numerical results for the Schrödinger equation at T = 1: x ∈ [−20, 30], τ = h.

Mesh τ = 0.2 τ/2 τ/22 τ/23 τ/24 τ/25

LI-LEP-1 3.2955e-2 9.6676e-3 2.6671e-3 7.0030e-4 1.7950e-4 4.5444e-5
Order − 1.7693 1.8579 1.9292 1.9640 1.9818
LI-LEP-2 1.1362e-1 3.1602e-2 8.3827e-3 2.1654e-3 5.4635e-4 1.3672e-4
Order − 1.8461 1.9145 1.9528 1.9867 1.9986

Table 4
Numerical results for the Schrödinger equation: x ∈ [−20, 30], τ = 0.01, h = 0.02 and T = 5.

Results\Scheme LI-LEP-1 LI-LEP-2 LEP-1 [12] LEP-2 [12] LEP [18] LMP [18]

L∞-error 3.20e-3 2.78e-3 1.40e-3 6.16e-3 4.74e-3 4.41e-3
|En − E0| 8.55e-14 4.26e-12 2.91e-13 7.79e-13 6.27e-13 1.89e-7
CPU time 0.45 s 0.39 s 1.16 s 1.15 s 1.80 s 1.49 s

solutions of LI-LEP-1 and -2 converge to the exact solution with second order in time and space. Table 4 shows the numerical 
results of various schemes. All schemes have comparable solution accuracy, but our schemes consume the least CPU times.

Next we consider the 2D NLS equation

iψt + α�ψ + V ′(|ψ |2,x)ψ = 0, (35)

where the symbol ′ represents the derivative of V with respect to the first variable and the Laplace operator � = ∂2
x1

+ ∂2
x2

. 
With α = 1/2 and V (|ψ |2, x) = V 1(x)|ψ |2 +β|ψ |4/2, Eq. (35) becomes Gross-Pitaevskii (G-P) equation which is an important 
mean field model for the dynamics of a dilute gas Bose-Einstein condensate. G-P equation is attractive for β > 0 and 
repulsive for β < 0.

Introducing ψ = p + iq again, the equation can be written into the multi-symplectic Hamiltonian form (1) with S(z) =
1
2 V (p2 + q2, x) + α

2 ((vx1 )2 + (wx1)2 + (vx2 )2 + (wx2 )2), z = (p, q, vx1 , wx1 , vx2 , wx2 ), and the skew-symmetric matrices (∈
R6×6)

M =
⎛⎝ J 0 0

0 0 0
0 0 0

⎞⎠ , K1 =
⎛⎝ 0 −α I 0

α I 0 0
0 0 0

⎞⎠ , K2 =
⎛⎝ 0 0 −α I

0 0 0
α I 0 0

⎞⎠ ,

with matrices J , I ∈R2×2 being the same as those in Example 2.
Introduce auxiliary variable r = √

V (|ψ |2,x) + C0, the LI-LEP-2 integrator to the equation yields the following linearly 
implicit scheme⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

iδtψ
n
j1, j2

+ α�Atψ
k
j1, j2

+ aA−
x

⎛⎝Atrn
j1, j2

ψ̃
n+1/2
j1, j2

V ′
(
|ψ̃n+1/2

j1, j2
|2,x j1, j2

)
√

V
(
|ψ̃n+1/2

j1, j2
|2,x j1, j2

)
+C0

⎞⎠ = 0,

δtrn
j1, j2

= V ′
(
|ψ̃n+1/2

j1, j2
|2,x j1, j2

)
√

V
(
|ψ̃n+1/2

j1, j2
|2,x j1, j2

)
+C0

(
(ψ̃

n+1/2
j1, j2

)δt(ψn
j1, j2

) + �(ψ̃
n+1/2
j1, j2

)δt�(ψn
j1, j2

)
)

,

(36)

where � = δ+
x1

δ−
x1

+ δ+
x2

δ−
x2

.
First, we simulate the attractive case with β = 1, V 1(x) = −(x2

1 + x2
2)/2 −2 exp(−(x2

1 + x2
2)), the initial condition ψ(x, 0) =√

2 exp(−(x2
1 + x2

2)/2), x ∈ [−6, 6]2 and periodic boundary conditions. For this initial problem, the G-P equation has an exact 
solution ψ(x, t) = √

2 exp(−(x2
1 + x2

2)/2 − it). The simulation is carried out with h1 = h2 =5e-2 and τ =5e-4 till T = 5. Fig. 4
shows the variation of the solution error and global energy error of LI-LEP-2 as time evolves. It is clear that LI-LEP-2 gives 
satisfactory solution and captures the discrete global energy exactly. The results listed in Table 5 verify the solution of our 
scheme converges to the exact solution with second order in time and space.

Then, we consider the repulsive case with β = −2, V 1 = −(x2
1 + x2

2)/2 and the initial condition ψ(x, 0) = exp(−(x2
1 +

x2
2)/2)/

√
π . The simulation is done on the domain � = [−8, 8]2 with τ =5e-4 and h1 = h2 =5e-2 till T = 5. The profile of 

solution |ψ | at T = 5 is illustrated with Fig. 5 (left). The right graph in Fig. 5 shows the global energy is preserved exactly 
again.

4.3. Sine Gordon equations

The results in the previous examples confirm the excellent performance of our schemes for the equations with periodic 
boundary conditions. Now we consider the Sine Gordon equations.
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Fig. 4. Numerical results for the G-P equation (attractive case, β = 1). Left: the maximal error in solution; Right: the global energy error.

Table 5
Numerical results for the 2D G-P equation at T = 1: τ0 =2e-3, h1 = h2 = h0 =2e-1.

(τ ,h) (τ0,h0) (τ0,h0)/2 (τ0,h0)/22 (τ0,h0)/23 (τ0,h0)/24

LI-LEP-2 1.9699e-2 4.8342e-3 1.2031e-3 3.0043e-4 7.5102e-5
Order − 2.03 2.01 2.00 1.9640

Fig. 5. Numerical results for the G-P equation (repulsive case, β = −2). Left: the profile of |ψ | at T = 5. Right: the global energy error.

We first consider the 1D Sine-Gordon equation

utt − uxx = − sin u

with Dirichlet boundary condition. The above Sine-Gordon belongs to multi-symplectic Hamiltonian system with the state 
variable z = (u, v, w)
 , the state function S(z) = v2/2 − w2/2 − cos u and skew-symmetric matrices

M =
⎛⎝ 0 −1 0

1 0 0
0 0 0

⎞⎠ , K =
⎛⎝ 0 0 −1

0 0 0
1 0 0

⎞⎠ .

Let r = √
C0 − cos u. The LI-LEP-1 scheme for the above problem reads to⎧⎪⎪⎨⎪⎪⎩
−δt A+

x A−
x vn

j − Atδ
+
x δ−

x wn
j = ãn+1/2

j At A+
x r,

δt un
j = At vn

j ,

δt A+rn = 1 ãn+1/2
δt A+un,

(37)
x j 2 j x j



J. Cai, J. Shen / Journal of Computational Physics 401 (2020) 108975 13
Fig. 6. The numerical results for 1D Sine-Gordon equation. Top-left: the solution at t = 0 and t = 100; Top-right: the solution error (bule line: LI-LEP-1; red 
line: LI-LEP-2; black dotted line: LEP [12]); Bottom-left: local energy of LI-LEP-2; Bottom-right: global energy error (bule line: LI-LEP-1; red line: LI-LEP-2).

This is a coupled scheme which can be cast into the following decoupled one⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
−2δt A+

x A−
x un

j + τ Atδ
+
x δ−

x un
j = −2A+

x A−
x vn

j + τ A−
x

(̃
an+1/2

j (A+
x rn

j + τ ãn+1/2
j
4 δt A+

x un
j )

)
,

vn+1
j = 2

τ (un+1
j − un

j ) − vn
j ,

A+
x rn+1

j = A+
x rn

j + ãn+1/2
j

2 (A+
x un+1

j − A+
x un

j ),

(38)

where ̃an+1/2
j = sin(A+

x ũn+1/2
j )/

√
C0 − cos(A+

x ũn+1/2
j ).

On the other hand, application of the LI-LEP-2 scheme to the equation can be simplified to a decoupled one⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
−2δt un

j + τ Atδ
+
x δ−

x un
j = −2vn

j + τ ãn+1/2
j

(
rn

j + ãn+1/2
j

4 (un+1
j − un

j )

)
,

vn+1
j = 2

τ (un+1
j − un

j ) − vn
j ,

rn+1
j = rn

j + ãn+1/2
j

2 (un+1
j − un

j ),

(39)

where ̃an+1/2
j = sin(̃un+1/2

j )/

√
C0 − cos(̃un+1/2

j ).

The Sine-Gordon equation admits an analytical solution u(x, t) = 4 arctan(exp( x−ct√
1−c2

)). We test our schemes with the ini-

tial conditions u0(x) = u(x, 0) and v0(x) = ut(x, 0) where x ∈ [−30, 70], c = 0.2, boundary conditions u(−30, t) = u(−30, 0)

and u(70, t) = u(70, 0), and computational parameters τ = h = 0.05 and T = 100. It should be noted that, for this problem, 
our schemes only need to solve linear equations with a tridiagonal coefficient matrix at each time step. Fig. 6 shows the 
obtained results on the waveform of solution, the maximal errors in solution, local energy and the errors in global energy. 
One can see that our linearly implicit LI-LEP-1 and LI-LEP-2 schemes have essentially the same solution accuracies as the 
fully implicit LEP scheme [12] at the final time T = 100, but consume much less CPU time. The results of the local energy 
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and global energy errors shown in the last two graphs confirm the theoretical results. All the results displayed in Fig. 6
indicate that our schemes can simulate the problem with general boundary condition well.

Next, we consider the Sine-Gordon equation in two dimensions⎧⎨⎩ utt − uxx − u yy = − sin u, (x, y) ∈ � = (a1,b1) × (a2,b2),

u(x, y,0) = f (x, y), ut(x, y,0) = v(x, y),

∇u · n = 0, (x, y) ∈ ∂�,

where n is the outward unit normal of ∂�.1 The equation can be cast into the multi-symplectic Hamiltonian system (1)
with the state variable z = (u, v, w, φ)
 , the state function S(z) = (v2 − w2 − φ2)/2 − cos u and skew-symmetric matrices

M =

⎛⎜⎜⎝
0 −1 0 0
1 0 0 0
0 0 0 0
0 0 0 0

⎞⎟⎟⎠ , K1 =

⎛⎜⎜⎝
0 0 −1 0
0 0 0 0
1 0 0 0
0 0 0 0

⎞⎟⎟⎠ , K2 =

⎛⎜⎜⎝
0 0 0 −1
0 0 0 0
0 0 0 0
1 0 0 0

⎞⎟⎟⎠ .

Let r = √
C0 − cos u. Applying the LI-LEP-1 and LI-LEP-2 to this problem, respectively, gives the following two decoupled 

schemes⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
−2δt A+

xy A−
xyun

j1, j2
+ τ�At un

j1, j2
= −2A+

xy A−
xy vn

j1, j2
+ τ A−

xy

(̃
an+1/2

j1, j2
(A+

xyrn
j1, j2

+ τ ãn+1/2
j1, j2
4 δt A+

xyun
j1, j2

)

)
,

vn+1
j1, j2

= 2
τ (un+1

j1, j2
− un

j1, j2
) − vn

j1, j2
,

A+
xyrn+1

j1, j2
= A+

xyrn
j1, j2

+ ãn+1/2
j1, j2

2 (A+
xyun+1

j1, j2
− A+

xyun
j1, j2

),

(40)

where A±
xy = A±

x A±
y , � = δ+

x δ−
x A+

y A−
y + A+

x A−
x δ+

y δ−
y and ̃an+1/2

j1, j2
= sin(A+

xyũn+1/2
j1, j2

)/

√
C0 − cos(A+

xyũn+1/2
j1, j2

), and⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
−2δt un

j1, j2
+ τ�At un

j1, j2
= −2vn

j1, j2
+ τ ãn+1/2

j1, j2

(
rn

j1, j2
+ ãn+1/2

j1, j2
4 (un+1

j1, j2
− un

j1, j2
)

)
,

vn+1
j1, j2

= 2
τ (un+1

j1, j2
− un

j1, j2
) − vn

j1, j2
,

rn+1
j1, j2

= rn
j1, j2

+ ãn+1/2
j1, j2

2 (un+1
j1, j2

− un
j1, j2

),

(41)

where � = δ+
x δ−

x + δ+
y δ−

y and ̃an+1/2
j1, j2

= sin(̃un+1/2
j1, j2

)/

√
C0 − cos(̃un+1/2

j1, j2
).

There have been some simulations on the evolution of the circular ring solitons for the 2D Sine-Gordon equations in the 
literature [10,15,23,36]. We start with the initial conditions

u(x, y,0) = 4 arctan

(
exp

(
3 −

√
x2 + y2

))
and v(x, y,0) = 0, (x, y) ∈ [−14,14]2.

Here, we choose computational parameters hx = hy = 28/399 and τ = 0.1. Fig. 7 displays the surfaces of the circular ring 
soliton in term of sin(u/2) at different times. One can see that the ring solitons shrink at the initial stage, but oscillations 
and radiations begin to form and continue slowly as time evolves. These results are consistent with those in the literature. 
The global energy errors of our schemes shown in the bottom-left graph are very close to zero.

Then, we simulate the interaction of two circular solitons by choosing initial data

u(x, y,0) =4 arctan (exp (γ χ1)) + 4 arctan (exp (γ χ2))

v(x, y,0) =4.13 sech (γ χ1) + 4.13 sech (γ χ2) ,

where γ = 1/0.436, χ1 = 4 −√
(x + 3)2 + (y + 7)2, χ2 = 4 −√

(x + 17)2 + (y + 7)2, � = [−30, 10] ×[−21, 7] and computa-
tional parameters hx = hy = 40/199 and τ = 0.1 till T = 8. Fig. 8 shows that the two expanding circular ring solitons move 
in opposite directions, and then they interact, and finally they emerge into a large ring soliton. The obtained results again 
agree with the existing ones in the literature. The global energy errors shown in Fig. 9 show that our schemes do preserve 
the energy very well.

1 In the schemes (40) and (41), the values on the ghost point outside the boundary are given by u−1, j2 = u1, j2 , u J1+1, j2 = u J1−1, j2 , u j1,−1 = u j1,1 and 
u j1, J2+1 = u j1, J2−1. The schemes cannot conserve the global energy exactly with this choice, but numerical results show that the schemes can preserve it 
very well.
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Fig. 7. The surface of the circular ring soliton (sin(u/2)) and the error in energy (blue: LI-LEP-1, red: LI-LEP-2).

Fig. 8. Collision of two ring solitons at time t = 0,2,6,8. Left: the surfaces of sin(u/2); Right: the contours of sin(u/2).

5. Conclusion

Many PDEs such as the KdV equation, Schrödinger-type equation, Sine Gordon equation, Maxwell’s equations and so on 
belongs to the class of general multi-symplectic Hamiltonian systems, which possess some remarkable features such as they 
admit MSCL, LECL and LMCLs defined on any time-space region, independent of the boundary conditions. We developed 
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Fig. 9. The error in global energy. Solid line: LI-LEP-1; Dotted line: LI-LEP-2.

two classes of linearly implicit LEP schemes for the general multi-symplectic Hamiltonian systems. These schemes are 
second-order in both space and time, conserve local and global energies, and only require solving linear equations at each 
time step. Thus, our schemes are much more efficient than existing fully implicit schemes.

To demonstrate the effectiveness of our integrators, we applied them to solve the KdV equation, Schrödinger-type equa-
tions and Sine-Gordon in one and two dimensions. Our numerical experiments and comparisons with some existing schemes 
confirmed the efficiency and accuracy of our schemes and their advantages over existing schemes.

This study is mainly focused on the construction of linearly implicit LEP integrators for the general multi-symplectic 
Hamiltonian systems, further numerical analysis for these schemes will be carried out in a future work.
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