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In this paper we develop a fully adaptive energy stable scheme for Cahn–Hilliard Navier–
Stokes system, which is a phase-field model for two-phase incompressible flows, consisting 
a Cahn–Hilliard-type diffusion equation and a Navier–Stokes equation. This scheme, which 
is decoupled and unconditionally energy stable based on stabilization, involves adaptive 
mesh, adaptive time and a nonlinear multigrid finite difference method. Numerical 
experiments are carried out to validate the scheme for problems with matched density 
and non-matched density, and also demonstrate that CPU time can be significantly reduced 
with our adaptive approach.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

In recent years the phase field methods, also called diffuse interface methods, have been successfully used to study 
a variety of interfacial phenomena (cf. [12,3,21,15,18,36,19], the recent reviews [25,16] and the references therein). The 
basic idea for the phase field methods can be traced back to [24] and [30], which was originally developed to model 
solid–liquid phase transitions, where the interface is represented as a thin transition layer between two phases which 
is indicated by an auxiliary function. A particular advantage of the phase field methods is that the system can be derived 
from an energy variational approach, which leads to well-posed nonlinearly coupled systems that satisfy thermodynamically 
consistent energy dissipation laws. That makes it possible to design a numerical scheme that preserves the energy law at 
the discrete level (cf., for instance, [11,17,4]) in order to ensure the stability of the numerical scheme and the accuracy of 
the solution.

The challenges and complexities of problems involving the mixtures of different materials lie in their multiscale and 
sometimes multiphysics nature. It is the competitions and couplings between these effects which determine the overall 
properties of the mixtures. A main difficulty in dealing with non-matching densities can be seen in the basic macroscopic 
(continuum) mass conservation ρt + div(ρu) = 0 and (macroscopic) incompressibility divu = 0. As the density ρ is a macro-
scopic quantity, it may be different with the direct average from microscopic descriptions, such as from the phase fields. 
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For instance, the mixtures of two incompressible fluids may not be incompressible, for we have to take into consideration 
the interaction between two different particles. Various approaches have been proposed in the literature. Traditionally, they 
can be classified into two categories: incompressible or quasi-incompressible. In the former approach, the volume averaged 
velocity is assumed to be incompressible everywhere, including the interfacial region. In the latter approach, on the other 
hand, the mass averaged velocity is assumed to satisfy the mass conservation instead of incompressibility, leading to a slightly 
compressible mixture inside the interfacial region. In [21], the authors derived a quasi-incompressible phase model which 
allows the mixture to be slightly compressible inside the interface, see also [1]; a similar quasi-incompressible model, which 
admits an energy law, was proposed recently in [26]. On the other hand, incompressible phase-field models were derived 
in [5,10,27,2]. In particular, the model in [2] is thermodynamically consistent, frame invariant and admits an energy law, 
and in [28], the authors developed a semi-discrete-in-time scheme for this model which is totally decoupled, linear and 
unconditionally energy stable.

It is well-known that the accuracy of the phase-field models depends on the interfacial width which has to be resolved
by the spatial discretization. Since the interfacial region usually occupies a small portion of the domain, it is very costly to 
resolve the interface with a uniform grid. On the other hand, the solution variation can be very different at different times 
so it is also very beneficial to have an adaptive procedure to select time steps automatically. The main purpose of this paper 
is to develop a fully discretized and fully adaptive numerical scheme for the model in [2] based on the semi-discrete-in-time 
scheme in [28] and a finite difference multigrid method in space.

The paper is organized as follows. In Section 2, we describe Cahn–Hilliard Navier–Stokes models of two-phase incom-
pressible flows and present decoupled, energy stable schemes for both uniform constant density and variable density cases. 
In Section 3, we construct a fully discrete energy stable scheme for both uniform constant density and variable density 
cases. Adaptive mesh and time adaptive strategies are also introduced. Numerical simulations and some concluding remarks 
are presented in Section 4.

2. Cahn–Hilliard phase-field models

In this section, we recall the Cahn–Hilliard Navier–Stokes phase-field models and their time discretizations for a mixture 
of two immiscible, incompressible fluids in a confined domain � ⊂ Rd , d = 2 or 3, with densities ρ1, ρ2 and viscosities ν1, 
ν2, respectively. We first introduce a phase function (macroscopic labeling function) φ such that

φ(x, t) =
{

1 fluid 1,

−1 fluid 2,
(2.1)

with a thin, smooth transitional layer of width O (η). The (equilibrium) configurations and patterns of this mixing layer, 
in the neighborhood of the level set �t = {x : φ(x, t) = 0}, are determined by the microscopic interactions between fluid 
molecules. For the isotropic interactions, the classical self-consistent mean field theory (SCMFT) in statistical physics [7]
gives the following Ginzburg–Landau type of Helmholtz free energy functional:

E(φ,∇φ) =
∫
�

λ(
1

2
|∇φ|2 + F (φ))dx, (2.2)

where the first term represents the hydro-philic type (tendency of mixing) of interactions between the materials and the 
second term, the double well bulk energy F (φ) = 1

4η2 (φ2 − 1)2, implies the hydro-phobic type (tendency of separation) of 
interactions. As the consequence of the competition between the two types of interactions, the equilibrium configuration 
will include a diffusive interface with thickness proportional to the parameter η (cf., for instance, [36]); and, as η approaches 
zero, we expect to recover the sharp interface separating the two different fluids.

2.1. Case of matched density

We first consider the mixture of two incompressible fluids with constant, uniform density, i.e., ρ1 = ρ2. The dynamics of 
the phase function φ is governed by the Cahn–Hilliard gradient flow (cf. [6,12,3,21,15,18]):

∂φ

∂t
+ M
μ + ∇ · (φu) = 0, (2.3)

μ = −λ( f (φ) − 
φ), (2.4)

where μ is the chemical potential, the parameter M is a mobility constant related to the relaxation time scale, and f (φ) =
F ′(φ). The term M
μ represents the coarse grained form of the microscopic dissipation (general diffusion) relation.

The momentum equation (macroscopic force balance) for the whole system is

ρ(ut + (u · ∇)u) = ∇ · τ , (2.5)

where the total stress τ = νD(u) − pI +τe with D(u) = ∇u +∇uT and τe the extra elastic stress induced by the microscopic 
internal energy. An energy variational approach is used to derive that
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ρ(ut + (u · ∇)u) = ∇ · (νD(u) − pI − λ∇φ ⊗ ∇φ), (2.6)

where p includes both the hydrostatic pressure due to the incompressibility and the contributions from the induced stress.
We next use the following identity

∇ · (∇φ ⊗ ∇φ) = (
φ − f (φ))∇φ + ∇(F (φ) + 1

2
|∇φ|2),

= (
φ − f (φ))∇φ + ∇(F (φ) + 1

2
|∇φ|2) + 1

λ
∇(φμ) − 1

λ
∇(φμ)

and denote the modified pressure as p̃ = p + λ(F (φ) + 1
2 |∇φ|2) + 1

λ
φμ (still denoting it by p for simplicity), then the 

momentum equation (2.6) can be rewritten as follows

ut + (u · ∇)u − ν∇ · D(u) + ∇p − φ∇μ = 0,

with ρ = 1 for simplicity.
Combining with the Cahn–Hilliard phase field equation (2.3)–(2.4), the incompressibility constraint ∇ · u = 0, and the 

boundary conditions

n · ∇φ = n · ∇μ = 0, u = 0 on ∂�.

A completed system below is found for the unknown (φ, μ, u, p).

∂φ

∂t
+ M
μ + ∇ · (φu) = 0, (2.7a)

μ + λ( f (φ) − 
φ) = 0, (2.7b)

ut + (u · ∇)u − ν∇ · D(u) + ∇p − φ∇μ = 0, (2.7c)

∇ · u = 0. (2.7d)

We shall adopt the following time discretization developed in [28].
Assuming that ν1 = ν2 = ν . Given initial conditions φ0, μ0, u0 and p0, we compute (φk+1, μk+1, ̃uk+1, uk+1, pk+1) for 

k ≥ 0 by⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

φk+1 − φk

s
+ M
μk+1 + ∇ · (uk∗φk) = 0,

μk+1 + λ( f (φk) − 
φk+1) + λ

η2
(φk+1 − φk) = 0,

n · ∇φk+1|∂� = n · ∇μk+1|∂� = 0,

(2.8a)

with

uk∗ = uk + sφk∇μk+1; (2.8b)⎧⎨
⎩

ũk+1 − uk

s
− ν
ũk+1 + ∇pk + (uk · ∇)ũk+1 − φk∇μk+1 = 0,

ũk+1|∂� = 0;
(2.8c)

⎧⎪⎪⎨
⎪⎪⎩

uk+1 − ũk+1

s
+ ∇(pk+1 − pk) = 0,

∇ · uk+1 = 0,

n · uk+1|∂� = 0.

(2.8d)

The last step can be rewritten as⎧⎨
⎩−
(pk+1 − pk) = −1

s
∇ · ũk+1,

n · ∇(pk+1 − pk)|∂� = 0;
uk+1 = ũk+1 − s∇(pk+1 − pk). (2.9)

Note that the above scheme is decoupled, linear, and it is shown in [28] that it is unconditionally energy stable.

2.2. Case of non-matched density

Next, we consider the Cahn–Hilliard phase-field model in [2] for mixture of two incompressible fluids with different 
densities:
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φt + M
μ + ∇ · (φu) = 0, (2.10a)

μ + λ( f (φ) − 
φ) = 0, (2.10b)

ρ(ut + (u · ∇)u) − J · ∇u − ∇ · νD(u) + ∇p − φ∇μ = 0, (2.10c)

∇ · u = 0, (2.10d)

with

J = −ρ1 − ρ2

2
M∇μ, ρ = ρ1 − ρ2

2
φ + ρ1 + ρ2

2
, ν = ν1 − ν2

2
φ + ν1 + ν2

2
, (2.11)

where u, p, ρ and ν are the velocity, pressure, density and viscosity of the mixture, respectively.
Equation (2.10) is accompanied with the boundary conditions

n · ∇φ = n · ∇μ = 0, u = 0 on ∂�.

For this case, a totally decoupled, linear, and unconditionally energy stable scheme was constructed in [28]. Below, we 
present a slightly modified version to fit our need.⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

φk+1 − φk

s
+ M
μk+1 + ∇ · (uk∗φk) = 0,

μk+1 + λ( f (φk) − 
φk+1) + λ

η2
(φk+1 − φk) = 0,

n · ∇φk+1|∂� = n · ∇μk+1|∂� = 0,

(2.12a)

with

uk∗ = uk + s
φk∇μk+1

ρk
; (2.12b)⎧⎪⎪⎪⎨

⎪⎪⎪⎩
ρk uk+1 − uk

s
− ∇ · νk∇uk+1 + ∇pk + ρk(uk · ∇)uk+1 − Jk · ∇uk+1

− φk∇μk+1 = 0,

uk+1|∂� = 0;
(2.12c)

⎧⎨
⎩−
(pk+1 − pk) = −χ

s
∇ · uk+1

n · ∇(pk+1 − pk)|∂� = 0,
(2.12d)

with χ = 1
2 min(ρ1, ρ2) and

Jk = −ρ1 − ρ2

2
M∇μk, ρk = ρ1 − ρ2

2
φ̂k + ρ1 + ρ2

2
, νk = ν1 − ν2

2
φ̂k + ν1 + ν2

2
, (2.13)

where φ̂ is a cutoff function defined by

φ̂ =
{

φ |φ| ≤ 1,

sign(φ) |φ| > 1.
(2.14)

3. Fully discrete schemes and adaptive strategies

3.1. Spatial discretization

We first recall notations and summation-by-parts formulae for a second-order finite-difference discretization used in 
[31,33]. For the sake of brevity, we only present the scheme in two dimensions; the three-dimensional case is similar.

Assuming that the computational domain � = (0, mh) × (0, nh), where m and n are positive integers, and h > 0 is the 
grid spacing. The spatial discretization is based on the MAC scheme [14,22,9] for the velocity and pressure. We define

xi = (i − 1

2
)h and y j = ( j − 1

2
)h,

where i, j can take on integer and half integer values. Consider the following three sets of uniform grid points: (i) east–west 
edge points Eew , (ii) north–south edge points Ens , (iii) cell-centered points C , and (iv) vertex-centered points V , defined via
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Eew = {(xi+ 1
2
, y j)|i = 0, · · · ,m; j = 1, · · · ,n},

Ens = {(xi, y j+ 1
2
)|i = 1, · · · ,m; j = 0, · · · ,n},

Ēew = {(xi+ 1
2
, y j)|i = 0, · · · ,m; j = 0, · · · ,n + 1},

Ēns = {(xi, y j+ 1
2
)|i = 0, · · · ,m + 1; j = 0, · · · ,n},

Cm×n = {(xi, y j)|i = 1, · · · ,m; j = 1, · · · ,n},
Cm̄×n = {(xi, y j)|i = 0, · · · ,m + 1; j = 1, · · · ,n},
Cm×n̄ = {(xi, y j)|i = 1, · · · ,m; j = 0, · · · ,n + 1},
Cm̄×n̄ = {(xi, y j)|i = 0, · · · ,m + 1; j = 0, · · · ,n + 1},
Vm×n = {(xi+ 1

2
, y j+ 1

2
)|i = 1, · · · ,m; j = 1, · · · ,n}.

We define the function spaces

Cm×n = {φ : Cm×n →R}, Cm̄×n = {φ : Cm̄×n →R},
Cm×n̄ = {φ : Cm×n̄ →R}, Cm̄×n̄ = {φ : Cm̄×n̄ →R},
Eew

m×n = {u : Eew →R}, Ens
m×n = {v : Ens →R},

Eew
m×n̄ = {u : Ēew →R}, Ens

m̄×n = {v : Ēns →R},
Vm×n = { f : Vm×n →R}.

Real-valued grid functions with domains Eew are called east–west edge-centered functions and are identified via 
f i+ 1

2 , j = f (xi+ 1
2
, y j); those with domains Ens are called north–south edge-centered functions and are identified via 

f i, j+ 1
2

= f (xi, y j+ 1
2
); those with domains Cm×n are called cell-centered functions and are identified via φi, j = φ(xi, y j); 

and those with domains Vm×n are called vertex-centered functions and are identified via f i+ 1
2 , j+ 1

2
= f (xi+ 1

2
, y j+ 1

2
). The 

velocity u is approximated as edge-centered functions. For example, writing u = (u, v), u is approximated as an east–west 
edge-centered function, and v is approximated as a north–south edge-centered function. All other dependent variables are 
approximated as cell-centered functions.

To complete the spatial discretization, we replace spatial derivatives by finite difference operators. The reader is referred 
to [31,33,9] for the definitions of the edge-to-center difference operators dx : Eew

m×n → Cm×n and dy : Ens
m×n → Cm×n; the 

center-to-edge average and difference operators Ax, Dx : Cm̄×n → Eew
m×n , A y, D y : Cm×n̄ → Ens

m×n , respectively. The Laplacian 
operator is approximated to second order by

∇2
h φi, j = φi+1, j + φi−1, j + φi, j+1 + φi, j−1 − 4φi, j

h2
, (3.1)

where φ is cell-centered. The Laplacian with non-constant diffusivity/mobility is approximated by

∇h · (m∇hφ)i, j =
Axmi+ 1

2 , j(φi+1, j − φi, j) − Axmi− 1
2 , j(φi, j − φi−1, j)

h2

+
A ymi, j+ 1

2
(φi, j+1 − φi, j) − A ymi, j− 1

2
(φi, j − φi, j−1)

h2
, (3.2)

where both φ and m are assumed to be cell-centered, and Ax and A y are the averaging operators defined component-wise 
as

Axmi+ 1
2 , j = mi+1, j + mi, j

2
, Axmi− 1

2 , j = mi, j + mi−1, j

2
,

A ymi, j+ 1
2

= mi, j+1 + mi, j

2
, A ymi, j− 1

2
= mi, j + mi, j−1

2
.

The grid function norms are defined as follows [31,33,9]: for φ ∈ Cm×n, 1 ≤ p < ∞,

‖φ‖p = (h2
m∑

i=1

n∑
j=1

|φi, j|p)1/p .

For any φ ∈ Cm̄×n̄ , we define

‖∇φ‖2 =
√

h2[Dxφ‖Dxφ]ew + h2[D yφ‖D yφ]ns.
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For the edge-centered cell velocity u, we define

‖u‖2 =
√

h2[u‖u]ew + h2[v‖v]ns,

where u ∈ Eew
m×n , and v ∈ Ens

m×n .
We recall (cf. [31,33,9]) the following summation-by-parts formulae which are essential to prove the stability of the fully 

discrete schemes.

Proposition 3.1 (Summation-by-parts). If φ ∈ Cm̄×n ∪ Cm̄×n̄ and f ∈ Eew
m×n, then

h2[Dxφ‖ f ]ew = −h2(φ‖dx f ) − h(Axφ 1
2 ,∗| f 1

2 ,∗) + h(Axφm+ 1
2 ,∗| fm+ 1

2 ,∗), (3.3)

and if φ ∈ Cm×n̄ ∪ Cm̄×n̄ and f ∈ Ens
m×n, then

h2[D yφ‖ f ]ns = −h2(φ‖dy f ) − h(A yφ∗, 1
2
| f∗, 1

2
) + h(A yφ∗,n+ 1

2
| f∗,n+ 1

2
). (3.4)

If f ∈ Vm×n and g ∈ Ens
m̄×n, then

h2[dx f ‖g]ns = −h2< f ‖Dx g > − h[Ax g 1
2 ,∗| f 1

2 ,∗] + h[Ax gm+ 1
2 ,∗| fm+ 1

2 ,∗], (3.5)

and if f ∈ Vm×n and g ∈ Eew
m×n̄ , then

h2[dy f ‖g]ew = −h2< f ‖D y g > − h[A y g∗, 1
2
| f∗, 1

2
] + h[A y g∗,m+ 1

2
| f∗,n+ 1

2
]. (3.6)

3.2. Fully discrete scheme and its stability analysis

Now we are ready to present the fully-discrete version of the scheme (2.8a)–(2.8c) and (2.9).
Given φk, μk, pk ∈ Cm̄×n̄ , uk ∈ Eew

m×n , and vk ∈ Ens
m×n , find φk+1, μk+1, pk+1 ∈ Cm̄×n̄ , ũk+1 ∈ Eew

m×n , ṽk+1 ∈ Ens
m×n , uk+1 ∈

Eew
m×n , and vk+1 ∈ Ens

m×n such that

φk+1 − φk = −sM(dx(Dxμ
k+1) + dy(D yμ

k+1)) − s(dx(Axφ
kuk∗) + dy(A yφ

k vk∗)), (3.7a)

μk+1 = −λ( f (φk) − 
hφ
k+1) − λ

η2
(φk+1 − φk), (3.7b)

ũk+1 − uk∗ = sν(dy(D yũk+1) + Dx(dxũk+1)) − s

2
(dxuk + dy vk)ũk+1 − sDx pk

− s(uk Dxũk+1 + vk D yũk+1), (3.7c)

ṽk+1 − vk∗ = sν(dx(Dx ṽk+1) + D y(dy ṽk+1)) − s

2
(dxuk + dy vk)ṽk+1 − sD y pk

− s(uk Dx ṽk+1 + vk D y ṽk+1), (3.7d)

−
h(pk+1 − pk) = −1

s
∇h · ũk+1, (3.7e)

uk+1 − ũk+1 = −sDx(pk+1 − pk), (3.7f)

vk+1 − ṽk+1 = −sD y(pk+1 − pk), (3.7g)

where

uk∗ = uk + sφk Dxμ
k+1, (3.7h)

vk∗ = vk + sφk D yμ
k+1, (3.7i)

and the boundary conditions are

n · ∇φk+1 = n · ∇μk+1 = 0, ũk+1 = 0, n · uk+1 = 0 on ∂�. (3.7j)

We note that the pressure Poisson equation (3.7e) is discretized using the cell centered approximation (3.1), and the Poisson 
type equations (3.7c) and (3.7d) for the velocity components are discretized using the edge/face-centered approximation 
which is described below:

ũk+1
i+1/2, j − sν
ũk+1

i+1/2, j = uk
i+1/2, j − s((px)

k
i, j + (px)

k
i+1, j)/2 − s(ukũk+1

x + vkũk+1
y )i+1/2, j

+ s((φk(μx)
k+1)i, j + (φk(μx)

k+1)i+1, j)/2, (3.8)



46 Y. Chen, J. Shen / Journal of Computational Physics 308 (2016) 40–56
and

ṽk+1
i, j+1/2 − sν
ṽk+1

i, j+1/2 = vk
i, j+1/2 − s((p y)

k
i, j + (p y)

k
i, j+1)/2 − s(uk ṽk+1

x + vk ṽk+1
y )i, j+1/2

+ s((φk(μy)
k+1)i, j + (φk(μy)

k+1)i, j+1)/2. (3.9)

Theorem 3.1. Assume that the potential function F (φ) satisfying max|φ|∈R|F ′′(φ)| ≤ 2
η2 , then the scheme (3.7) is unconditionally 

stable, and satisfies the following discrete energy law:

1

2
‖uk+1‖2

2 + λ

2
‖∇φk+1‖2

2 + λ(F (φk+1)|1) + s2

2
‖∇pk+1‖2

2 + sM‖∇μk+1‖2
2 + sν‖∇ũk+1‖2

2

≤ 1

2
‖uk‖2

2 + λ

2
‖∇φk‖2

2 + λ(F (φk)|1) + s2

2
‖∇pk‖2

2

Proof. Take the discrete inner-product of (3.7c) with 2ũk+1 and of (3.7d) with 2ṽk+1, respectively. Using Proposition 3.1 and 
the following property

[uk Dxũk+1 + vk D yũk+1‖ũk+1]ew + [uk Dx ṽk+1 + vk D y ṽk+1‖ṽk+1]ns

+ 1

2
[(dxuk + dy vk)ũk+1‖ũk+1]ew + 1

2
[(dxuk + dy vk)ṽk+1‖ṽk+1]ns = 0,

we derive

[ũk+1‖ũk+1]ew + [ṽk+1‖ṽk+1]ns − [uk∗‖uk∗]ew − [vk∗‖vk∗]ns + [ũk+1 − uk∗‖ũk+1 − uk∗]ew

+ [ṽk+1 − vk∗‖ṽk+1 − vk∗]ns = −2sν(< D yũk+1‖D yũk+1 > + < Dx ṽk+1‖Dx ṽk+1 >)

− 2sν((dxũk+1‖dxũk+1) + (dy ṽk+1‖dy ṽk+1)) − 2s([Dx pk+1‖ũk+1]ew + [D y pk+1‖ṽk+1]ns).

Taking the discrete inner-product of (3.7f) with 2Dx pk and of (3.7g) with 2D y pk , respectively, we find

s([Dx pk+1‖Dx pk+1]ew + [D y pk+1‖D y pk+1]ns − [Dx pk‖Dx pk]ew − [D y pk‖D y pk]ns

− [Dx pk+1 − Dx pk‖Dx pk+1 − Dx pk]ew − [D y pk+1 − D y pk‖D y pk+1 − D y pk]ns)

= 2[ũk+1‖Dx pk]ew + 2[ṽk+1‖D y pk]ns.

From Eqs. (3.7f) and (3.7g), we derive that

[uk+1 − ũk+1‖uk+1 − ũk+1]ew = s2[Dx(pk+1 − pk)‖Dx(pk+1 − pk)]ew,

[vk+1 − ṽk+1‖vk+1 − ṽk+1]ns = s2[D y(pk+1 − pk)‖D y(pk+1 − pk)]ns.

Taking the discrete inner-product of (3.7f) with uk+1 and of (3.7g) with vk+1, respectively, we obtain

[uk+1‖uk+1]ew + [vk+1‖vk+1]ns + [uk+1 − ũk+1‖uk+1 − ũk+1]ew

+ [vk+1 − ṽk+1‖vk+1 − ṽk+1]ns − [ũk+1‖ũk+1]ew − [ṽk+1‖ṽk+1]ns = 0.

Combining the four equalities above, we find

−[uk∗‖uk∗]ew − [vk∗‖vk∗]ns + [ũk+1 − uk∗‖ũk+1 − uk∗]ew + [ṽk+1 − vk∗‖ṽk+1 − vk∗]ns

+ [uk+1‖uk+1]ew + [vk+1‖vk+1]ns + s2([Dx(pk+1 − pk)‖Dx(pk+1 − pk)]ew

+ [D y(pk+1 − pk)‖D y(pk+1 − pk)]ns − [Dx pk‖Dx pk]ew − [D y pk‖D y pk]ns)

+ 2sν(< D yũk+1‖D yũk+1 > + < Dx ṽk+1‖Dx ṽk+1 >) + 2sν((dxũk+1‖dxũk+1)

+ (dy ṽk+1‖dy ṽk+1)) = 0.

Next, we use (3.7h) and (3.7i) to deal with the term −[uk∗‖uk∗]ew − [vk∗‖vk∗]ns above.
Taking the discrete inner-product of (3.7h) with 2uk∗ and of (3.7i) with 2vk∗ , respectively, gives us

[uk∗‖uk∗]ew + [vk∗‖vk∗]ns − [uk‖uk]ew − [vk‖vk]ns + [uk∗ − uk‖uk∗ − uk]ew + [vk∗ − vk‖vk∗ − vk]ns

= 2s[Axφ
k Dxμ

k+1‖uk∗] + 2s[A yφ
k D yμ

k+1‖vk∗].
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Summing up the two equalities above, we obtain

[uk+1‖uk+1]ew + [vk+1‖vk+1]ns − [uk‖uk]ew − [vk‖vk]ns + [uk∗ − uk‖uk∗ − uk]ew

+ [vk∗ − vk‖vk∗ − vk]ns + [ũk+1 − uk∗‖ũk+1 − uk∗]ew

+ [ṽk+1 − vk∗‖ṽk+1 − vk∗]ns + s2([Dx(pk+1 − pk)‖Dx(pk+1 − pk)]ew

+ [D y(pk+1 − pk)‖D y(pk+1 − pk)]ns − [Dx pk‖Dx pk]ew − [D y pk‖D y pk]ns)

+ 2sν(< D yũk+1‖D yũk+1 > + < Dx ṽk+1‖Dx ṽk+1 >)

+ 2sν((dxũk+1‖dxũk+1) + (dy ṽk+1‖dy ṽk+1))

= 2s[Axφ
k Dxμ

k+1‖uk∗] + 2s[A yφ
k D yμ

k+1‖vk∗]. (3.10)

Next, we take the discrete inner-product of (3.7a) with −2μk+1 to get

−2(φk+1 − φk‖μk+1) = −2s([Dxμ
k+1‖Dxμ

k+1]ew + [D yμ
k+1‖D yμ

k+1]ns)

+ 2s([Axφ
kuk∗‖Dxμ

k+1]ew + [A yφ
k vk∗‖D yμ

k+1]ns). (3.11)

Taking the discrete inner-product of (3.7b) with 2(φk+1 − φk), we find

2(μk+1‖φk+1 − φk) = −2λ( f (φk‖φk+1 − φk) − λ([Dxφ
k+1‖Dxφ

k+1]ew

+ [D yφ
k+1‖D yφ

k+1]ns − [Dxφ
k‖Dxφ

k]ew − [D yφ
k‖D yφ

k]ns

+ [Dxφ
k+1 − Dxφ

k‖Dxφ
k+1 − Dxφ

k]ew + [D yφ
k+1 − D yφ

k‖D yφ
k+1 − D yφ

k]ns

− 2λ

η2
(φk+1 − φk‖φk+1 − φk). (3.12)

The Taylor expansion for F (φk+1) shows that

F (φk+1) = F (φk) + f (φk)(φk+1 − φk) + f ′(ξk)

2
(φk+1 − φk)2. (3.13)

Combining Eqs. (3.10)–(3.13), using the assumption that max|φ|∈R|F ′′(φ)| ≤ 2
η2 , we have

‖uk+1‖2
2 − ‖uk‖2

2 + ‖uk∗ − uk‖2
2 + ‖ũk+1 − uk∗‖2

2 + s2(‖∇pk+1‖2
2 − ‖∇pk‖2

2

+ 2sν‖∇ũk+1‖2
2 + 2sM‖∇μk+1‖2

2 + 2λ(F (φk+1) − F (φk)|1)

+ λ(‖∇φk+1‖2
2 − ‖∇φk‖2

2 + ‖∇φk+1 − ∇φk‖2
2) ≤ 0,

which implies the desired result. �
Similarly, we construct the fully discrete version of (2.12a)–(2.12d) as follows:

φk+1 − φk = −sM(dx(Dxμ
k+1) + dy(D yμ

k+1)) − s(dx(Axφ
kuk∗) + dy(A yφ

k vk∗)), (3.14a)

μk+1 = −λ( f (φk) − 
hφ
k+1) − λ

η2
(φk+1 − φk), (3.14b)

(Axρ
k)uk+1 − s∇ · ((Axν

k)∇huk+1) = (Axρ
k)uk − sDx pk − s(Axρ

k)(ukuk+1
x + vkuk+1

y ) (3.14c)

− s
ρ1 − ρ2

2
M∇hμ

k · ∇huk+1 + s(Axφ
k)Dxμ

k+1, (3.14d)

(A yρ
k)vk+1 − s∇h · ((A yν

k)∇h vk+1) = (A yρ
k)vk − sD y pk − s(A yρ

k)(uk vk+1
x + vk vk+1

y ) (3.14e)

− s
ρ1 − ρ2

2
M∇hμ

k · ∇h vk+1 + s(A yφ
k)D yμ

k+1; (3.14f)

−
h(pk+1 − pk) = −χ

s
∇h · uk+1, (3.14g)

with the boundary conditions

n · ∇φk+1 = n · ∇μk+1 = 0, ũk+1 = 0, n · uk+1 = 0 on ∂�. (3.14h)

It can be shown, by combining the stability proof in [28] and the argument in the proof of Theorem 3.1, that the above 
scheme is also unconditionally energy stable under the same assumption. We omit the detail for the sake of brevity.
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3.3. Space and time adaptive strategy

The fully discrete schemes (3.7) and (3.14) lead to a sequence of discrete elliptic equations at each time step. We shall 
solve them by using the adaptive multigrid method developed in [34,35,32,8]. In fact, since the system of governing equa-
tions is discretized on a block-structured Cartesian mesh, the composite mesh consists of a hierarchy of levels which is 
particularly suitable for adaptive multigrid. At each time step, we check grid cells for refinement using a simple undivided 
gradient test. Since it is essential that much more refinement is needed in the diffuse interface region. This test marks 
grid cells where the finite differences of the phase-field functions are large. In particular, the set of cell-centered points is 
marked for refinement if√

(φi+1, j − φi−1, j)
2 + (φi, j+1 − φi, j−1)

2 > Ck,

where Ck is the critical value for level k. More sophisticated mesh refinement strategy could also be used here. For instance, 
curvature-based mesh refinement criteria [29]. For a detailed discussion of all the aspects of the adaptive algorithm, the 
reader is referred to [34].

In our case, the refinement takes place around the interface of two mixtures, so as to have sufficient resolution of the 
interface, see Fig. 4.1 (right).

The schemes (3.7) and (3.14) are shown to be unconditionally energy stable, which allows us to use large time step sizes 
whenever suitable. In order to maintain the desired accuracy, we adjust the time steps based on the total energy derivative 
as follows (cf. [23,37]):


tn+1 = max

⎛
⎜⎝
tmin,


tmax√
1 + α| E(tn)−E(tn−1)


tn |

⎞
⎟⎠ , (3.15)

where 
tmax and 
tmin are a preset upper and lower bound for the time step sizes, and α is an adjustable constant. We 
observe from (3.15) that large (resp. small) deviation in total energy will yield small (resp. large) time step size.

3.4. Second-order scheme

The schemes (2.8) and (2.12), and their fully discrete versions (3.7) and (3.14), are only first-order accurate in time. It is 
highly desirable to have a second-order-in-time scheme, which inherits all essential advantages of the first-order schemes, to 
match accuracy of the second-order-in-space finite-difference method. Very recently, Han and Wang [13] developed a second 
order in time numerical scheme for Cahn–Hilliard-Navier–Stokes phase field model with matched density. The scheme 
is based on second order convex-splitting for the Cahn–Hilliard equation and pressure-projection for the Navier–Stokes 
equation. The pressure is decoupled from the velocity and phase field, but the velocity field is still coupled with the phase 
field. Here we construct below a second-order scheme based on the improved Euler method (also known as Heun method). 
In our schemes the velocity field is decoupled from the phase field.

For the sake of brevity, we will only consider the case with matched density.

Step 1. Given the solution (φk , μk , ũk , uk and pk) at step n, we first compute φk+1, μk+1, ũk+1, uk+1 and pk+1 from 
(2.8a)–(2.8c) and (2.9), and rename them as φ̂k+1, μ̂k+1, ũk+1, ûk+1 and p̂k+1, respectively.

Step 2. Compute (φk+1, μk+1, ̃̃uk+1, uk+1, pk+1) as follows:⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

φk+1 − φk

s
+ M


μk+1 + μk

2
+ ∇ · ( ûk+1∗ φ̂k+1 + uk∗φk

2
) = 0,

μk+1 + μk

2
+ λ( f (

φ̂k+1 + φk

2
) − 


φk+1 + φk

2
) + sλ

η2
(φk+1 − φk) = 0,

n · ∇φk+1|∂� = n · ∇μk+1|∂� = 0,

(3.16a)

with

ûk+1∗ = ûk+1 + sφ̂k+1∇μ̂k+1, (3.16b)

uk∗ = uk + sφk∇μk+1; (3.16c)⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

˜̃uk+1 − uk

s
− ν


˜̃uk+1 + ˜̃uk

2
+ ∇pk + (

ûk+1 + uk

2
· ∇)

˜̃uk+1 + ˜̃uk

2

− φ̂k+1 + φk

2
∇ μk+1 + μk

2
= 0,

˜̃uk+1|∂� = 0;

(3.16d)
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⎧⎪⎪⎪⎨
⎪⎪⎪⎩

uk+1 − ˜̃uk+1

s
+ 1

2
∇(pk+1 − pk) = 0,

∇ · uk+1 = 0,

n · uk+1|∂� = 0.

(3.16e)

The fully discrete version of the above scheme can be constructed similarly as (3.7).

4. Numerical results

We present in this section some numerical experiments in two dimensions using the schemes constructed above.
For the examples with matched density, the computational domain is [−1, 1] × [−1, 1]. For adaptive refinement, we 

choose the root-level grid size to be 32 × 32, and perform three levels of refinement, i.e., the finest mesh size is h = 2/256. 
We set time step size 
t = 0.01, which is sufficient for the purpose of accuracy, see Fig. 4.1 (left). The other parameters are

M = 0.002, λ = 0.01, ν = 1, η = 0.02.

For the examples with variable density, the computational domain is [0, 1] ×[0, 1.5]. The root-level grid size is 128 ×192, 
and three levels of refinement are used, i.e., the finest mesh size is h = 1/1024. The parameters will be given in section 4.3
later.

4.1. Example 1. Surface tension effect

Since it is not an easy matter to rigorously prove that the scheme (3.16a)–(3.16e) is energy stable and second-order 
accurate, we shall provide some numerical evidence to show that it is indeed the case.

We take ρ1 = ρ2 = 1, ν1 = ν2 = 1. We set the initial velocity and pressure to be zero, and start with a square shaped 
fluid bubble in the domain [−1, 1] ×[−1, 1]. It is clear that the square will eventually evolve into a circle due to the surface 
tension. In Fig. 4.3, characteristic snapshots are shown at different times.

In the left of Fig. 4.2, we plot the total energy which is shown to be decreasing as the system evolves. This indicates that 
the second-order scheme is indeed energy stable.

In the next we use the same example above to test the convergence rate of the scheme (3.16a)–(3.16e). The mesh 
spacings are taken to be h = 2

64 , 2
128 , 2

256 , 2
512 , 2

1024 , each one half the size of the previous. We take the linear refinement 
path s = 0.0256h. The error between two different grid spacings φh and φh/2 is calculated by

eh:h/2
i, j = φh

i, j − 1

4

(
φ

h/2
2i,2 j + φ

h/2
2i−1,2 j + φ

h/2
2i,2 j−1 + φ

h/2
2i−1,2 j−1

)
and correspondingly for e2h:h . The rate of convergence is defined as

log2

( ||e2h:h||2
||eh:h/2||2

)
.

Fig. 4.1. Left: the φ = 0 contours at t = 2.0 using different time steps and uniform meshes; Right: a typical adaptive mesh. Three levels of refinement are 
performed with the root-level grid 32 × 32.
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Fig. 4.2. The evolution of discrete energy for Example 1 (top/left) and Example 2 (top/right) using the second-order scheme. The bottom graph is a part of 
figure showing the evolution of the discrete energy for Example 2.

Fig. 4.3. Snapshots of the phase function in Example 1 at T = 0.2,1,2,4, respectively.

The errors and rate of convergence are shown in Table 4.1 which indicates that the scheme is of second-order in both 
space and time. Furthermore, we plot in Fig. 4.1 (left) the interface contour with different time steps to show that the 
numerical solution quickly converges as we decrease the time step.

Next, we examine the savings achieved by the space and time adaptivity. In Table 4.2, we list the CPU time consumed by 
using the constant time step/uniform meshes, constant time step/adaptive meshes, and adaptive time step/adaptive meshes 
with two different sets of parameters. It is observed that the computational efficiency is significantly improved by using 
adaptive time steps and adaptive meshes. Because the scheme is unconditionally stable, it is more efficient to use a large 
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Table 4.1
Errors and convergence rate for the scheme (3.16a)–(3.16e).

Grid sizes 642–1282 1282–2562 2562–5122 5122–10242

Error 2.629 × 10−2 4.049 × 10−3 9.407 × 10−4 2.345 × 10−4

Rate 2.6989 2.1058 2.0041

Table 4.2
CPU time (in seconds) comparison for Example 1. The constant time step is set at 
t = 0.01. We choose in (3.15) 
tmin = 0.01, α = 10 000 with two 
different choices of 
tmax: Results with 
t1 are obtained with 
tmax = 0.1, while results with 
t2 are obtained with 
tmax = 1.

t 0.2 0.5 1 2 4 20 100 500 1000 2000 3000

const. 
t, uni. meshes 6.5 13.2 24.2 45.4 83.9 324.3 1092.3 6425.2 13744.0 23455.0 31788.0
const. 
t, ad. meshes 3.4 6.7 11.6 24.4 46.2 204.5 891.1 4380.3 8429.7 13256.0 18074.0
ad. 
t1, ad. meshes 3.4 6.6 11.6 21.7 28.1 59.0 131.0 455.3 892.9 1860.4 2667.3
ad. 
t2, ad. meshes 3.5 6.0 8.6 10.5 12.9 31.4 54.1 157.6 273.6 501.4 777.6

Fig. 4.4. Snapshots of the phase function in Example 2 at T = 0, 0.2, 0.5, 1, 2, 20, 50, 70, 100, 500, respectively, using adaptive meshes with the root-level 
grid size 32 × 32 and two levels of refinement, and adaptive time with 
tmax = 1.

upper bound 
tmax. In Fig. 4.1 (right), a typical mesh is shown. We observe that the mesh is properly refined near the 
interfacial region.

4.2. Example 2. Coarsening dynamics

We take the same parameters as in the first example but start with a random phase function in the domain [−1, 1] ×
[−1, 1] to simulate the coarsening dynamics in the presence of flow.

Characteristic evolutions of the phase functions at different times are shown in Figs. 4.4 and 4.5. In the right of Fig. 4.2, 
we plot the total energy evolution which decreases as the system evolves. CPU time consumed by the constant time 
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Fig. 4.5. Snapshots of the phase function in Example 2. Three levels of refinement are performed: the root-level grid is 32 × 32.

Table 4.3
CPU time (seconds) comparison for Example 2. The constant time step is set at 
t = 0.01. We choose in (3.15) 
tmin = 0.01, 
tmin = 1, α = 10 000.

t 0.2 0.5 1 2 4 20 100 500 1000 2000 3000

const. 
t, uni. meshes 6.9 14.4 28.9 52.3 98.7 434.4 2152.9 8496.1 12396.0 20050.0 27545.0
const. 
t, ad. meshes 8.1 16.4 30.7 59.0 111.5 476.1 1674.3 3613.1 4503.2 6165.3 7850.1
ad. 
t1, ad. meshes 7.6 15.9 31.5 57.0 109.4 441.6 1463.4 2376.4 2509.5 2700.3 2889.2

step/uniform meshes, constant time step/adaptive meshes, and adaptive time step/adaptive meshes is shown in Table 4.3. 
We observe that the fully adaptive scheme is still much more efficient than their non-adaptive counterpart, but compared 
to Example 1, the CPU saying is less impressive due to the larger percentage of interfacial region in this case.

4.3. Example 3. Lighter bubble rising in a heavier medium

In order to demonstrate that our fully adaptive scheme is robust with respect to density variations, we consider the 
situation where a lighter bubble (with density ρ1 and dynamic viscosity ν1) initially inside a heavier medium (with density 
ρ2 and dynamic viscosity ν2) confined in a rectangular domain � = (0, d) × (0, 32 d).

The equations are non-dimensionalized using the following scaled variables:

t̃ = t

t0
, ρ̃ = ρ

ρ0
, x̃ = x

d0
, ũ = u

u0
, (4.1)

where

t0 = √
d/g, d0 = d; u0 = √

dg, ρ0 = min(ρ1,ρ2). (4.2)

The dimensionless form of (2.7) with an extra gravitational force ρg in the momentum equation, after omitting the ˜ from 
the notation, is:

φt + M
μ + ∇ · (φu) = 0, (4.3a)

μ + λ(
φ(φ2 − 1)

η2
− 
φ) = 0, (4.3b)

ρ(ut + (u · ∇)u)) + J · ∇u − ∇ · (ν∇u) + ∇p − φ
μ = −ρg, (4.3c)

∇ · u = 0, (4.3d)

with
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Fig. 4.6. The evolution of a rising drop with density ratio 1 : 10 at T = 0.125,0.25,0.5,0.75,1.0,1.25,1.5,1.75,1.875,2.0, respectively.

J = − ρ̃1 − ρ̃2

2
M∇μ, ρ(φ) = ρ̃1 − ρ̃2

2
φ + ρ̃1 + ρ̃2

2
, ν(φ) = ν̃1 − ν̃2

2
φ + ν̃1 + ν̃2

2
,

where ρ̃1 = ρ1/ρ0, ρ̃2 = ρ2/ρ0, ν̃1 = ν1/(ρ0d3/2g1/2), ν̃2 = ν2/(ρ0d3/2g1/2).
The initial velocity and pressure are set to be zero and initial phase function is given by

φ(x, t = 0) = − tanh(
r − 1

4 d√
2η0

), (4.4)

where r is the distance from the center of the bubble to the point and η0 is the diffusive interfacial width.
We set d = 1, g = (0, 9.8)T , M = 0.002, ν = 1, λ = 0.05, and η0 = η = 0.02, and test two cases with density ratios 

1 : 10, 1, 1 : 40, respectively. The initial time step size is 
t = 0.0002. We use the root-level grid size 128 × 192 and perform 
three levels of mesh refinement. Snapshots of phase evolution are shown in Fig. 4.6 for the density ratio (1:10) and in 
Fig. 4.7 for the density ratio (1:40). We plot in Fig. 4.8 a typical mesh refinement for this example. Once again, we observe 
that the mesh is properly refined near the interfacial region.
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Fig. 4.7. The evolution of a rising drop with density ratio 1 : 40 at T = 0.125,0.25,0.3,0.35,0.4,0.5,0.625,0.75,0.875,1.0, respectively.

4.4. Summary and future work

We developed space and time adaptive numerical methods in this paper for the Cahn–Hilliard Navier–Stokes phase-field 
models for incompressible two phase flows with uniform and variable densities. We adopted the decoupled, linear, and 
energy stable schemes constructed in [28] and coupled them with an adaptive mesh refinement with finite-differences 
and an adaptive time approach. We showed rigorously that our fully discrete scheme is also unconditionally energy 
stable.

This fully adaptive scheme is extremely efficient, as it only requires solving a sequence of decoupled linear equations at 
each time step, and it adjusts the time step and spatial resolution automatically. We presented several illustrative numerical 
results to show that our fully adaptive scheme can save CPU and memory requirement significantly for this type of interface 
problems.

While we have only provided numerical results for two-dimensional simulations, the method extends naturally to three-
dimensional cases. We are also extending the approaches developed in this paper to study more complex two-phase flows 
such as tumor growth model [20].
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Fig. 4.8. Example 3: a typical adaptive mesh. Three levels of refinement are performed: the root-level grid is 128 × 196.
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