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MULTIPLE SCALAR AUXILIARY VARIABLE (MSAV) APPROACH
AND ITS APPLICATION TO THE PHASE-FIELD VESICLE

MEMBRANE MODEL∗

QING CHENG† AND JIE SHEN‡

Abstract. We consider in this paper gradient flows with disparate terms in the free energy that
cannot be efficiently handled with the scalar auxiliary variable (SAV) approach, and we develop the
multiple scalar auxiliary variable (MSAV) approach to deal with these cases. We apply the MSAV
approach to the phase-field vesicle membrane (PF-VMEM) model which, in addition to some usual
nonlinear terms in the free energy, has two additional penalty terms to enforce the volume and surface
area. The MSAV approach enjoys the same computational advantages as the SAV approach but can
handle free energies with multiple disparate terms such as the volume and surface area constraints
in the PF-VMEM model. The MSAV schemes are unconditional energy stable and second-order
accurate in time and lead to decoupled elliptic equations with constant coefficients to solve at each
time step. Hence, these schemes are easy to implement and extremely efficient when coupled with an
adaptive time stepping. Ample numerical results are presented to validate the stability and accuracy
of the MSAV schemes.
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1. Introduction. Recently, the so-called scalar auxiliary variable (SAV) ap-
proach is developed in [17, 18]. This approach is inspired by the invariant energy
quadratization (IEQ) approach [21] but fixes most, if not all, of its shortcomings.
While the SAV approach can be applied in principle to a large class of gradient
flows, our numerical experiments indicate that it cannot produce correct numerical
solutions for some gradient flows with disparate nonlinear terms such as those with
penalty terms to enforce certain geometric constraints, unless exceedingly small time
steps are used. The main reason is that these disparate nonlinear terms behave very
differently and cannot be properly handled with a single SAV. This fact motivates us
to develop the multiple scalar auxiliary variable (MSAV) approach in this paper to
handle such situations. We consider, as a particular example, the phase-field vesicle
membrane (PF-VMEM) model which, in addition to some usual nonlinear terms in
the free energy, has two additional penalty terms to enforce the volume and surface
area.

Biological vesicle membranes have been widely studied in biology, biophysics,
and bioengineering. Accurate modeling and simulation of morphological evolution of
vesicles present a great challenge due to the variety of equilibrium shapes assumed by
vesicles in biological experiments. A pioneering work on single-phase lipid membrane
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was carried out by Canham, Evans, and Helfrich [1, 2, 12] in which the so-called
sharp interface elastic bending energy is derived. On the other hand, by introducing
a phase variable to describe the mean curvature of the membrane surface area, the
authors of [4, 5, 6] have used the phase-field approach to approximate the elastic
bending energy. The phase-field approach has since been used to study various kinds
of vesicles, such as multicomponent vesicles [13, 19], vesicle-substrate adhesion [25],
and vesicle-vesicle adhesion problems [10]. The main challenge in designing efficient
and accurate numerical schemes for these models is to preserve the thermodynamically
consistent dissipation law at the discrete level while imposing physical constraints such
as conservation of volume and surface area.

A popular strategy to design energy stable time discretization schemes for gradi-
ent flows and phase-field models is the so-called convex splitting method [7, 8, 16, 24].
However, it appears to be difficult to apply it for the vesicle membrane model with
volume and surface area constraints. Many other attempts have been made for this
model, such as the stabilized semi-implicit method [3], exponential time discretiza-
tion scheme [20], nonlinear scheme [11], and IEQ scheme [22]. All these numerical
schemes are first-order accurate except the second-order scheme by the IEQ approach
in [22]. However, the IEQ approach leads to a coupled linear system with compli-
cated variable coefficients at each time step that is still expensive to solve. The SAV
approach [18] leads to decoupled linear systems with constant coefficients so it is very
efficient, but it failed to deliver correct numerical solutions with reasonable time steps.
Therefore, we shall introduce multiple SAVs to deal with the volume and surface area
constraints. More precisely, since the volume penalty term leads to a linear term in
the PDE system so it can be treated implicitly along with other linear terms, we
introduce one additional SAV for the surface area constraint to formulate an equiv-
alent MSAV system. We then develop a set of numerical schemes which enjoy the
same computational advantages as the SAV approach but can effectively handle both
the volume and surface area constraints. In fact, these schemes are unconditionally
energy stable and second-order accurate, and at each time step they can be decoupled
into three fourth-order equations with constant coefficients, and each can be further
reduced to two Poisson type equations. In particular, we also develop a time adap-
tive second-order scheme with the above properties. Thus, these schemes are easy to
implement and extremely efficient, especially when coupled with a suitable adaptive
time stepping.

The rest of the paper is organized as follows. We describe the PF-VMEM model
with volume and surface area constraints in section 2. In section 3, we reformulate the
PF-VMEM model into equivalent PDE systems by introducing two SAVs, develop a
set of second-order, unconditionally energy stable schemes using the MSAV approach
for the reformulated system, and show that they can be decoupled into three linear
equations of fourth-order with only constant coefficients and are unconditionally en-
ergy stable. In section 4, we describe the MSAV approach in a general setting. In
section 5, we present several numerical results to validate the accuracy and stability
of the proposed schemes. Some concluding remarks are presented in section 6.

2. Vesicle membrane model. In the phase-field vesicle membrane model, the
location of the membrane is described by a phase variable: φ(x, t). The corresponding
interface motion can be derived though the energetic approach with respect to the
bending energy:

(2.1) Eb(φ) =
ε

2

∫
Ω

(
−∆φ+

1

ε2
G(φ)

)2

dx =
ε

2

∫
Ω

w2dx,
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where

w := −∆φ+
1

ε2
G(φ), G(φ) := F ′(φ),

where F (φ) = 1
4 (φ2 − 1)2 is the Ginzburg–Landau double well potential, and ε is the

interfacial width. We define

(2.2) A(φ) =

∫
Ω

(φ+ 1)dx and B(φ) =

∫
Ω

( ε
2
|∇φ|2 +

1

ε
F (φ)

)
dx.

Note that 1
2A(φ) and 3

2
√

2
B(φ) represent the volume and surface area of the vesicle,

respectively. In reality, the volume A(φ) and the surface area B(φ) of the vesicles do
not change during the evolution in time. In order to numerically enforce these two
constraints, we introduce two corresponding penalty terms in the free energy so that
the total energy is

(2.3) Etot(φ) = Eb(φ) +
1

2γ

(
A(φ)− α

)2

+
1

2η

(
B(φ)− β

)2

,

where γ and η are two small parameters, and α, β represent the initial volume and
surface area. Hence, the Allen–Cahn type dynamic equation takes the following form:

φt = −Mµ,(2.4)

µ = −ε∆w +
1

ε
G′(φ)w +

1

γ

(
A(φ)− α

)
+

1

η

(
B(φ)− β

)(
− ε∆φ+

1

ε
F ′(φ)

)
,(2.5)

w = −∆φ+
1

ε2
G(φ),(2.6)

where M is the mobility constant. The boundary conditions can be either one of the
following two types:

(i) periodic or (ii) ∂nφ|∂Ω = ∂nw|∂Ω = 0,(2.7)

where n is the unit outward normal on the boundary ∂Ω.

Lemma 2.1. The system (2.4)–(2.6) with (2.7) admits the following energy law:

d

dt
Etot(φ) = −M‖µ‖2,(2.8)

where ‖µ‖2 =
∫

Ω
µ2dx.

Proof. By taking the L2 inner product of (2.4) with µ, and of (2.5) with φt and
of (2.6) with w, performing integration by parts, and summing up all the inequalities
we obtain the energy law.

3. Time discretization. We develop a set of second-order semidiscrete numer-
ical schemes to solve the system (2.4)–(2.6). While we consider only time discretiza-
tions here, the results can carry over to any consistent finite-dimensional Galerkin
approximations (finite elements or spectral) since the proof is based on variational
formulations with all test functions in the same space as the trial function.
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3.1. The SAV approach. The system (2.4)–(2.6) is highly nonlinear with three
small parameters. A usual semi-implicit scheme, in which the nonlinear terms G(φ)
andB(φ) are treated explicitly, will lead to a severe time step constraint, while treating
nonlinear terms implicitly will result in a highly nonlinear system to solve at each time
step. The recently proposed SAV approach [18] provides an effective way to construct
unconditionally stable yet decoupled and linear schemes.

We first rewrite the original energy Eb(φ) as follows:

Eb(φ) =
ε

2

∫
Ω

(
−∆φ+

1

ε2
G(φ)

)2

dx(3.1)

=
ε

2

∫
Ω

(
|∆φ|2 − 2

ε2
|∇φ|2 +

6

ε2
φ2|∇φ|2 +

1

ε4
(G(φ))2

)
dx.

In the SAV approach, we treat the first two linear terms in the above and the volume
constraint term (which is also linear) implicitly and all other nonlinear terms explicitly.
More precisely, letting C > 0 be a positive constant, we define a SAV

Ṽ =

√∫
Ω

ε

2

( 6

ε2
φ2|∇φ|2 +

1

ε4
(G(φ))2

)
dx +

1

2η
(B(φ)− β)2 + C(3.2)

and rewrite the system (2.4)–(2.6) into the following equivalent system:

φt = −Mµ,(3.3)

µ = ε∆2φ+
2

ε
∆φ+

1

γ
(A(φ)− α) + 2Ṽ S(φ),(3.4)

Ṽt =

∫
Ω

S(φ)φtdx,(3.5)

where S(φ) = δṼ
δφ . By taking the L2 inner product of (3.3) with µ, of (3.4) with

φt, and of (3.5) with Ṽ , we find that the new system satisfies the following energy
dissipative law:

d

dt
E(φ; Ṽ ) = −M‖µ‖2 ≤ 0,(3.6)

where E(φ; Ṽ ) = ε
2

∫
Ω
|∆φ|2 − 2

ε2 |∇φ|
2dx + Ṽ 2 − C is a modified free energy which

is equivalent to the original free energy in the time continuous case. Thus, one can
use the general SAV approach developed in [18] to construct second-order, linear,
decoupled, unconditionally energy stable schemes. As for all SAV schemes, they
are very easy to implement. However, our numerical experiments indicate that the
SAV schemes have difficulty enforcing the volume and surface area constraints unless
exceedingly small time steps are used. In Figure 1, we consider the example in section
5.2 and plot the evolution of modified and original energies by using a second-order
SAV scheme based on (3.3)–(3.5). We observe from Figure 1 that when η = γ = 0.1,
both the modified energy and the original energy decay monotonically and the SAV
scheme leads to a reasonable numerical solution. However, when η = γ = 0.001, while
the modified energy still decays monotonically as it should, the corresponding original
energy deviates significantly from the modified energy and the SAV scheme produces
a nonphysical numerical solution even with a very small time step δt = 0.00001.
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Fig. 1. Evolution of the modified and original energies by the SAV scheme with δt = 0.00001:
Left, η = γ = 0.1. Right: η = γ = 0.001.

The main reason is that each of the two nonlinear terms in the total free energy
has one small parameter and behaves differently, so a single SAV cannot adequately
describe the two disparate evolution processes. Therefore it is natural to introduce
two SAVs to reformulate the original system. We note that in [22] the authors also
introduced multiple vector auxiliary variables in the IEQ framework, which results in
coupled linear equations with variable coefficients to solve at each time step.

3.2. The MSAV approach. We introduce two new SAVs:

U(t) = B(φ)− β, V (t) =

√∫
Ω

( 6

ε2
φ2|∇φ|2 +

1

ε4
(G(φ))2

)
dx + C,(3.7)

where C is any positive constant to ensure V (t) > 0, so the total energy (2.3) becomes
(3.8)

Etot(φ;U, V ) =
ε

2

∫
Ω

(
|∆φ|2 − 2

ε2
|∇φ|2

)
dx +

1

2γ
(A(φ)− α)2 +

1

2η
U2 +

ε

2
(V 2 − C),

and the system (2.4)–(2.6) becomes

φt = −Mµ,(3.9)

µ =
δEtot
δφ

= ε∆2φ+
2

ε
∆φ+

1

γ
(A(φ)− α) +

1

η
UH(φ) + εV S(φ),(3.10)

Ut =

∫
Ω

H(φ)φtdx,(3.11)

Vt =

∫
Ω

S(φ)φtdx,(3.12)

where

S(φ) =
δV

δφ
=

6
ε2

(
φ|∇φ|2 −∇ · (φ2∇φ)

)
+ 1

ε4G(φ)G′(φ)√∫
Ω

(
6
ε2φ

2|∇φ|2 + 1
ε4 (G(φ))2

)
dx + C

,(3.13)

H(φ) =
δU

δφ
= −ε∆φ+

1

ε
F ′(φ).(3.14)

The initial conditions are

φ|t=0 = φ0, U |t=0 = U(φ0), V |t=0 = V (φ0),(3.15)

and the boundary conditions are still (2.7).



MULTIPLE SCALAR AUXILIARY VARIABLE (MSAV) APPROACH A3987

The PDE system (3.9)–(3.12) is equivalent to the original system (2.4)–(2.6) and
also admits an energy dissipative law. Indeed, by taking the L2 inner product of
(3.9) with µ, of (3.10) with φt, of (3.11) with U , and of (3.12) with V , performing
integration by parts, and summing up all equalities, we obtain

d

dt
E(φ;U, V ) = −M‖µ‖2 ≤ 0.(3.16)

We first construct a second-order Crank–Nicolson scheme for (3.9)–(3.12).
Given δt > 0, let tn = nδt. For any function S(·, t), Sn denotes a numerical

approximation to S(·, tn), and Sn+ 1
2 := Sn+1+Sn

2 .

Scheme 1 (MSAV-CN). Assuming that φn−1, φn, Un−1, Un, and V n−1, V n are
known, we solve for φn+1, Un+1, V n+1 as follows:

φn+1 − φn

δt
= −Mµn+ 1

2 ,(3.17)

µn+ 1
2 = ε∆2φn+ 1

2 +
2

ε
∆φ?,n+ 1

2(3.18)

+
1

γ
(A(φn+ 1

2 )− α) +
1

η
Un+ 1

2H(φ?,n+ 1
2 ) + εV n+ 1

2S(φ?,n+ 1
2 ),

Un+1 − Un =

∫
Ω

H(φ?,n+ 1
2 )(φn+1 − φn)dx,(3.19)

V n+1 − V n =

∫
Ω

S(φ?,n+ 1
2 )(φn+1 − φn)dx,(3.20)

where φ?,n+ 1
2 = 3

2φ
n − 1

2φ
n−1 is a second-order extrapolation for φn+ 1

2 .

Note that in the above, we treated the linear term 2
ε∆φ?,n+ 1

2 . This is due to the
fact that this linear term is negative definite so an implicit treatment will not help on
the energy stability.

Theorem 3.1. The scheme (3.17)–(3.20) admits a unique solution and is un-
conditionally energy stable in the sense that it satisfies the following discrete energy
dissipation law:

(3.21) En+1,n
cn − En,n−1

cn ≤ −δtM‖µn+ 1
2 ‖2,

where

En+1,n
cn =

ε

2
‖∆φn+1‖2 − 1

ε
‖∇φn+1‖2 +

1

2ε
‖∇φn+1 −∇φn‖2

+
1

2η
(Un+1)2 +

ε

2
(V n+1)2 +

1

2γ
(A(φn+1)− α)2

(3.22)

is the modified energy at tn+1.

Proof. We first show that the scheme (3.17)–(3.20) admits a unique solution. To
this end, we denote

(3.23) Bn+1 :=

∫
Ω

H?,n+ 1
2φn+1dx, Cn+1 :=

∫
Ω

S?,n+ 1
2φn+1dx

and rewrite (3.19) and (3.20) as

Un+1 = Bn+1 + fn, V n+1 = Cn+1 + gn(3.24)
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with fn = Un −
∫

Ω
H?,n+ 1

2φndx and gn = V n −
∫

Ω
S?,n+ 1

2φndx. Then we can

eliminate Un+ 1
2 and V n+ 1

2 from (3.18)–(3.20) to get(
1

δt
+
Mε

2
∆2

)
φn+1 +

M

2γ

∫
Ω

φn+1dx(3.25)

+
M

2η
H?,n+ 1

2Bn+1 +
Mε

2
S?,n+ 1

2Cn+1 = f̃n,

where f̃n include all the explicit terms.
Next, we derive explicit formulas for computing Bn+1 and Cn+1.
For any f ∈ L2(Ω), we define a linear operator χ−1(·) in L2(Ω) such that ψ =

χ−1(f) is the solution of(
1

δt
+
Mε

2
∆2

)
ψ +

M

2γ

∫
Ω

ψdx = f(3.26)

with the boundary conditions being

(i) periodic or (ii) ∂nψ|∂Ω = ∂n∆ψ|∂Ω = 0.(3.27)

Applying the operator χ−1 to (3.25), we obtain

φn+1 +
M

2η
χ−1(H?,n+ 1

2 )Bn+1 +
Mε

2
χ−1(S?,n+ 1

2 )Cn+1 = χ−1(f̃n).(3.28)

Taking the L2 inner product of (3.28) with H?,n+ 1
2 , we find(

1 +
M

2η
(H?,n+ 1

2 , χ−1(H?,n+ 1
2 ))

)
Bn+1 +

Mε

2
(H?,n+ 1

2 , χ−1(S?,n+ 1
2 ))Cn+1

= (H?,n+ 1
2 , χ−1(f̃n)).

(3.29)

Taking the L2 inner product of (3.28) with S?,n+ 1
2 , we find

M

2η
(S?,n+ 1

2 , χ−1(H?,n+ 1
2 ))Bn+1 +

(
1 +

Mε

2
(S?,n+ 1

2 , χ−1(S?,n+ 1
2 ))

)
Cn+1

= (S?,n+ 1
2 , χ−1(f̃n)).

(3.30)

The above two equations form a 2× 2 linear system for the unknowns (Bn+1, Cn+1)t.
It remains to shown that the 2× 2 matrix

D =

(
1 + M

2η (H?,n+ 1
2 , χ−1(H?,n+ 1

2 )) Mε
2 (H?,n+ 1

2 , χ−1(S?,n+ 1
2 ))

M
2η (S?,n+ 1

2 , χ−1(H?,n+ 1
2 )) 1 + Mε

2 (S?,n+ 1
2 , χ−1(S?,n+ 1

2 ))

)

is nonsingular.
It is clear that (H?,n+ 1

2 , χ−1(H?,n+ 1
2 )) ≥ 0 and (S?,n+ 1

2 , χ−1(S?,n+ 1
2 )) ≥ 0. Using

the Cauchy–Schwarz inequality and integration by parts, we obtain

(H?,n+ 1
2 , χ−1(S?,n+ 1

2 )) = (χ−
1
2H?,n+ 1

2 , χ−
1
2 (S?,n+ 1

2 ))

≤ (χ−
1
2H?,n+ 1

2 , χ−
1
2H?,n+ 1

2 )
1
2 (χ−

1
2S?,n+ 1

2 , χ−
1
2S?,n+ 1

2 )
1
2

= (H?,n+ 1
2 , χ−1H?,n+ 1

2 )
1
2 (S?,n+ 1

2 , χ−1S?,n+ 1
2 )

1
2 .

(3.31)
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Similarly, we have

(S?,n+ 1
2 , χ−1(H?,n+ 1

2 )) = (χ−
1
2H?,n+ 1

2 , χ−
1
2 (S?,n+ 1

2 ))

≤ (χ−
1
2H?,n+ 1

2 , χ−
1
2H?,n+ 1

2 )
1
2 (χ−

1
2S?,n+ 1

2 , χ−
1
2S?,n+ 1

2 )
1
2

= (H?,n+ 1
2 , χ−1H?,n+ 1

2 )
1
2 (S?,n+ 1

2 , χ−1S?,n+ 1
2 )

1
2 .

(3.32)

We derive from the above that the determinant of D is positive so the system (3.29)–
(3.30) admits a unique solution (Bn+1, Cn+1)t. Then φn+1 is uniquely determined
from (3.28).

Next, we show the scheme is unconditionally energy stable. Taking the L2 inner
product of (3.17) with δtµn+ 1

2 , we obtain

(φn+1 − φn, µn+ 1
2 ) = −δtM‖µn+ 1

2 ‖2.(3.33)

Taking the L2 inner product of (3.18) with φn+1 − φn, we derive

(µn+ 1
2 , φn+1 − φn) = (ε∆2φn+ 1

2 , φn+1 − φn)+

(
2

ε
∆φ?,n+ 1

2 , φn+1 − φn
)

+
1

γ

(
A(φn+ 1

2 )− α, φn+1 − φn
)

+

(
1

η
Un+ 1

2H(φ?,n+ 1
2 ), φn+1 − φn

)
(3.34)

+ (εV n+ 1
2S(φ?,n+ 1

2 ), φn+1 − φn).

Taking the L2 inner product of (3.19) with Un+ 1
2 and of (3.20) with V n+ 1

2 , we obtain
respectively

1

2
((Un+1)2 − (Un)2) =

∫
Ω

Un+ 1
2H(φ?,n+ 1

2 )(φn+1 − φn)dx,(3.35)

1

2
((V n+1)2 − (V n)2) =

∫
Ω

V n+ 1
2S(φ?,n+ 1

2 )(φn+1 − φn)dx.(3.36)

Using the equality

(3.37)
1

2
(3b− c, a− b) =

1

2
(|a|2 − |b|2)− 1

4
(|a− b|2 − |b− c|2 + |a− 2b+ c|2),

we derive from integration by parts that

(∆φ?,n+ 1
2 , φn+1 − φn) = −1

2
(‖∇φn+1‖2 − ‖∇φn‖2) +

1

4
(‖∇φn+1 −∇φn‖2

−‖∇φn −∇φn−1‖2 + ‖∇φn+1 − 2∇φn +∇φn−1‖2).
(3.38)

Combining (3.34)–(3.36) and (3.38), we obtain

(µn+ 1
2 , φn+1 − φn) =

ε

2
(‖∆φn+1‖2 − ‖∆φn‖2)− 1

ε
(‖∇φn+1‖2 − ‖∇φn‖2)

+
1

2ε
(‖∇φn+1 −∇φn‖2 − ‖∇φn −∇φn−1‖2

+ ‖∇φn+1 − 2∇φn +∇φn−1‖2)

+
1

2γ

((
A(φn+1)− α)2 − (A(φn)− α)2

)
+

1

2η

(
(Un+1)2 − (Un)2

)
+
ε

2

(
(V n+1)2 − (V n)2

)
.
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Finally, combining the above with (3.33) and dropping some positive terms, we obtain
the following energy dissipative law:

( ε
2
‖∆φn+1‖2 − 1

ε
‖∇φn+1‖2 +

1

2ε
‖∇φn+1 −∇φn‖2

+
1

2γ

(
A(φn+1)− α

)2
+

1

2η
(Un+1)2 +

ε

2
(V n+1)2

)
−
( ε

2
‖∆φn‖2 − 1

ε
‖∇φn‖2 +

1

2ε
‖∇φn −∇φn−1‖2

+
1

2γ

(
A(φn)− α

)2
+

1

2η
(Un)2 +

ε

2
(V n)2

)
≤ −δtM‖µn+ 1

2 ‖2.

Then proof is complete.

Remark 3.1. In summary, at each time step of Scheme 1, we need to
1. compute χ−1(H?,n+ 1

2 ), χ−1(S?,n+ 1
2 ), χ−1(f̃n) which require solving three

decoupled equations of the form (3.26) with the boundary conditions (3.27);
2. solve (Bn+1, Cn+1)t from the 2× 2 linear system (3.29)–(3.30);
3. update φn+1 from (3.28).

Taking the integral of (3.26) over Ω, thanks to (3.27), we find immediately that

( 1
δt + M |Ω|

2γ )
∫

Ω
φdx =

∫
Ω
fdx. Hence, (3.26) reduces to a usual fourth-order equation

with (3.27), which can be further reduced to two decoupled Poisson type equations
[23]. Therefore, Scheme 1 is extremely efficient and easy to implement.

Remark 3.2. Note that an additional vector auxiliary variable is introduced in [22]
to enforce the volume constraint. However, since this constraint leads to a linear
term in (2.5), it is advantageous to treat it implicitly since it is more accurate and
computationally more efficient as it requires solving only three fourth-order equations
instead of four if additional SAV is introduced.

Another way to construct efficient schemes using the SAV or MSAV approach is
through the backward differentiation formulas. Below is a second-order version.

Scheme 2 (MSAV-BDF2). Assuming that φn−1, φn, Un−1, Un, and V n−1, V n

are known, we solve φn+1, Un+1, and V n+1 as follows:

3φn+1 − 4φn + φn−1

2δt
= −Mµn+1,(3.39)

µn+1 = ε∆2φn+1 +
2

ε
∆φ†,n+1 +

1

γ
(A(φn+1)− α)

+
1

η
Un+1H(φ†,n+1) + εV n+1S(φ†,n+1),(3.40)

3Un+1 − 4Un + Un−1 =

∫
Ω

H(φ†,n+1)(3φn+1 − 4φn + φn−1)dx,(3.41)

3V n+1 − 4V n + V n−1 =

∫
Ω

S(φ†,n+1)(3φn+1 − 4φn + φn−1)dx.(3.42)

where φ†,n+1 = 2φn − φn−1. The boundary conditions are still (2.7).

This scheme possesses the same nice properties as Scheme 1 and, at each time step,
can also be decoupled into three linear, constant coefficient fourth-order equations.
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Theorem 3.2. The scheme (3.39)–(3.42) admits a unique solution and is uncon-
ditionally energy stable, i.e., satisfies the following discrete energy dissipation law:

(3.43) En+1,n
bdf2 − En,n−1

bdf2 ≤ −2δtM‖µn+1‖2,

where

En+1,n
bdf2 =

ε

2
(‖∆φn+1‖2 + ‖2∆φn+1 −∆φn‖2)− 1

ε
(‖∇φn+1‖2

+ ‖2∇φn+1 −∇φn‖2 − 2‖∇φn+1 −∇φn‖2)

+
1

2γ

(
(A(φn+1)− α)2 − (2A(φn+1)−A(φn)− α)2

)
+

1

2η

(
(Un+1)2 − (2Un+1 − Un)2

)
+
ε

2

(
(V n+1)2 − (2V n+1 − V n)2

)
.

(3.44)

Proof. The proof for the existence of a unique solution is essentially the same as
for Scheme 1 so we shall only prove its stability.

Taking the L2 inner product of (3.39) with 2δtµn+1, we obtain

(3φn+1 − 4φn + φn−1, µn+1) = −2δtM‖µn+1‖2.(3.45)

Taking the L2 inner product of (3.40) with 3φn+1 − 4φn + φn−1, we have

(µn+1, 3φn+1 − 4φn + φn−1) = (ε∆2φn+1, 3φn+1 − 4φn + φn−1)

+

(
2

ε
∆φ†,n+1, 3φn+1 − 4φn + φn−1

)
+

1

γ

(
A(φn+1)− α, 3φn+1 − 4φn + φn−1

)
+

(
1

η
Un+1H(φ†,n+1), 3φn+1 − 4φn + φn−1

)
+ (εV n+ 1

2S(φ†,n+1), 3φn+1 − 4φn + φn−1),

(3.46)

Taking the L2 inner product of (3.41) with 2Un+1 and of (3.42) with 2V n+1, and
using the equality

(3.47) 2(3a− 4b+ c, a) = |a|2 − |b|2 + |2a− b|2 − |2b− c|2 + |a− 2b+ c|2,

we obtain respectively

1

γ
((A(φn+1)− α), 3φn+1 − 4φn + φn−1) =

1

2γ
((A(φn+1)− α)2 − (A(φn)− α)2)

+
1

2γ
((2A(φn+1)−A(φn)− α)2− (2A(φn)−A(φn−1)−α)2)(3.48)

+
1

2γ
(A(φn+1)− 2A(φn) +A(φn−1))2,

(|Un+1|2 − |Un|2 + |2Un+1 − Un|2 − |2Un − Un−1|2 + |Un+1 − 2Un + Un−1|2)

=

∫
Ω

2Un+1H(φ†,n+1)(3φn+1 − 4φn + φn−1)dx,
(3.49)
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and

(|V n+1|2 − |V n|2 + |2V n+1 − V n|2 − |2V n − V n−1|2 + |V n+1 − 2V n + V n−1|2)

=

∫
Ω

2V n+1S(φ†,n+1)(3φn+1 − 4φn + φn−1)dx,
(3.50)

Using the equality

2(3a− 4b+ c, 2b− c) = (|a|2 + |2a− b|2 − 2|a− b|2)

− (|b|2 + |2b− c|2 − 2|b− c|2)− 3|a− 2b+ c|2,
(3.51)

and taking integration by parts, we obtain

−2(∆φ†,n+1, 3φn+1 − 4φn + φn−1) = (‖∇φn+1‖2 + ‖2∇φn+1 −∇φn‖2 − 2‖∇φn+1 −∇φn‖2)

− (‖∇φn‖2 + ‖2∇φn −∇φn−1‖2 − 2‖∇φn −∇φn−1‖2)(3.52)

− 3‖∇φn+1 − 2∇φn +∇φn−1‖2.

By using the equality (3.47), we know that

(2∆2φn+1, 3φn+1 − 4φn + φn−1) = ‖∆φn+1‖2 − ‖∆φn‖2

+ ‖2∆φn+1 −∆φn‖2 − ‖2∆φn −∆φn−1‖2

+ ‖∆φn+1 − 2∆φn + ∆φn−1‖2.
(3.53)

Combining (3.45) to (3.53) leads to

(µn+1, 3φn+1 − 4φn + φn−1) =
ε

2
(‖∆φn+1‖2 + ‖2∆φn+1 −∆φn‖2)

− ε

2
(‖∆φn‖2 + ‖2∆φn −∆φn−1‖2) +

ε

2
‖∆φn+1 − 2∆φn + ∆φn−1‖2

− 1

ε
(‖∇φn+1‖2 + ‖2∇φn+1 −∇φn‖2 − 2‖∇φn+1 −∇φn‖2)

+
1

ε
(‖∇φn‖2 + ‖2∇φn −∇φn−1‖2 − 2‖∇φn −∇φn−1‖2)

+
3

ε
‖∇φn+1 − 2∇φn +∇φn−1‖2 +

1

2γ
(A(φn+1)− 2A(φn) +A(φn−1))2

+
1

2η

(
(Un+1)2 − (Un)2 + (2Un+1 − Un)2 − (2Un − Un−1)2 + (Un+1 − 2Un + Un−1)2

)
+
ε

2

(
(V n+1)2 − (V n)2 + (2V n+1 − V n)2 − (2V n − V n−1)2 + (V n+1 − 2V n + V n−1)2

)
+

1

2γ

(
(A(φn+1)− α)2 − (A(φn)− α)2 + (2A(φn+1)

−A(φn)− α)2 − (2A(φn)−A(φn−1)− α)2
)
.

Finally, combining the last inequality with (3.45) and dropping some positive terms,
we obtain the desired result.

3.3. A second-order scheme with adaptive time stepping. In many ap-
plications, energy evolution may undergo large variations initially and at some time
intervals, but may change very little in some other time intervals (see, e.g., simula-
tions in the next subsection). One main advantage of unconditionally energy stable
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schemes is that they can be easily combined with an adaptive strategy which chooses
time steps based on the accuracy requirement only. So small time steps are only
used when the energy variation is large, while larger time steps can be used when the
energy variation is small.

While it is straightforward to apply variable time steps to first-order schemes
without affecting the unconditional stability, it is generally nontrivial to preserve
unconditional stability for second-order schemes with variable time steps, except for
the fully implicit Crank–Nicolson scheme. In fact, both Scheme 1 and Scheme 2 cannot
preserve the unconditional stability with variable time steps. Below, we construct an
unconditionally stable, second-order scheme with variable time steps by modifying
Scheme 1 slightly.

Let {tn} be an increasing sequence with t0 = 0, and set δtn = tn+1 − tn.

Scheme 3 (MSAV-CN2). Assuming that φn−1, φn, Un−1, Un, and V n−1, V n are
known, we solve for φn+1, Un+1, V n+1 as follows:

φn+1 − φn

δtn
= −Mµn+ 1

2 ,(3.54)

µn+ 1
2 = ε∆2φn+ 1

2 +
2

ε
∆φn+ 1

2(3.55)

+
1

γ
(A(φn+ 1

2 )− α) +
1

η
Un+ 1

2H(φ?,n+ 1
2 ) + εV n+ 1

2S(φ?,n+ 1
2 ),

Un+1 − Un =

∫
Ω

H(φ?,n+ 1
2 )(φn+1 − φn)dx,(3.56)

V n+1 − V n =

∫
Ω

S(φ?,n+ 1
2 )(φn+1 − φn)dx,(3.57)

where φ?,n+ 1
2 = ( δtn

2δtn−1
+1)φn− δtn

2δtn−1
φn−1 is a second-order extrapolation for φn+ 1

2 .

Note that besides variable time steps, the only other difference between the above
scheme and Scheme 1 is that we replaced the explicit ∆φ?,n+ 1

2 in (3.18) by the implicit

∆φn+ 1
2 in (3.55). Like Scheme 1, it can still be decoupled into three fourth-order

equations at each time step.

Theorem 3.3. The scheme (3.54)−(3.57) is unconditionally energy stable in the
sense that it satisfies the following discrete energy dissipation law:

(3.58) En+1,n
cn2 − En,n−1

cn2 ≤ −δtnM‖µn+ 1
2 ‖2,

where

En+1,n
cn2 =

ε

2
‖∆φn+1‖2 − 1

ε
‖∇φn+1‖2

+
1

2η
(Un+1)2 +

ε

2
(V n+1)2 +

1

2γ
(A(φn+1)− α)2

(3.59)

is the modified energy at tn+1.

Proof. The proof is quite similar to that of Theorem 3.1.
Taking the L2 inner product of (3.54) with δtnµ

n+ 1
2 , we obtain

(φn+1 − φn, µn+ 1
2 ) = −δtnM‖µn+ 1

2 ‖2.(3.60)
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Taking the L2 inner product of (3.55) with φn+1 − φn and integrating by parts, we
derive

(µn+ 1
2 , φn+1 − φn) =

ε

2
(‖∆φn+1‖2 − ‖∆φn‖2)− 1

ε
(‖∇φn+1‖2 − ‖∇φn‖2)

+
1

γ

(
A(φn+ 1

2 − α), φn+1 − φn
)

+

(
1

η
Un+ 1

2H(φ?,n+ 1
2 ), φn+1 − φn

)
+ (εV n+ 1

2S(φ?,n+ 1
2 ), φn+1 − φn).

(3.61)

Taking the L2 inner product of (3.56) with Un+ 1
2 , of (3.57) with V n+ 1

2 , we obtain
respectively

1

2
((Un+1)2 − (Un)2) =

∫
Ω

Un+ 1
2H(φ?,n+ 1

2 )(φn+1 − φn)dx,(3.62)

1

2
((V n+1)2 − (V n)2) =

∫
Ω

V n+ 1
2S(φ?,n+ 1

2 )(φn+1 − φn)dx.(3.63)

Combining (3.61)–(3.63), we obtain

(µn+ 1
2 , φn+1 − φn) =

ε

2
(‖∆φn+1‖2 − ‖∆φn‖2)− 1

ε
(‖∇φn+1‖2 − ‖∇φn‖2)

+
1

2γ

((
A(φn+1)− α)2 − (A(φn)− α)2

)
+

1

2η

(
(Un+1)2 − (Un)2

)
+
ε

2

(
(V n+1)2 − (V n)2

)
.

We obtain the desired result from the above and (3.60).

One simple but effective strategy is to update the time step size by using the
formula [9, 15]

(3.64) Adp(e, τ) = ρ

(
tol

e

) 1
2

τ,

where e is a relative error, τ is the time step, tol is the error tolerance, and ρ is a
parameter. One can of course use other adaptive strategies such as those in [14].

A second-order adaptive time step algorithm based on Scheme 3 is given below.

Algorithm 1. Adaptive time stepping with Scheme 3.

Given Solutions at time steps n and n− 1; parameter tol and ρ, and the preassigned
minimum and maximin allowable time steps δtmin and δtmax.
Step 1 Compute (φ1, U1, V1)n+1 by the first-order MSAV scheme with δtn.
Step 2 Compute (φ2, U2, V2)n+1 by Scheme 3 with δtn.

Step 3 Calculate en+1 = max{‖U
n+1
2 −Un+1

1 ‖
‖Un+1

2 ‖ ,
‖V n+1

2 −V n+1
1 ‖

‖V n+1
2 ‖ ,

‖φn+1
2 −φn+1

1 ‖
‖φn+1

2 ‖ }.
Step 4 if en+1 > tol, then

Recalculate time step δtn ← max{δtmin,min{Adp(en+1, δt
n), δtmax}}.

Step 5 goto Step 1
Step 6 else

Update time step δtn+1 ← max{δtmin,min{Adp(en+1, δt
n), δtmax}}.

Step 7 endif
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4. MSAV approach in a general setting. We present in this section the
MSAV approach in a more general setting. Consider, for instance, the free energy:

(4.1) E(φ) =

∫
Ω

[
1

2
φLφ+

k∑
i=1

1

εi
Fi(φ)

]
dx,

where L is a linear elliptic operator and {Fi(φ)} are different nonlinear potentials and
{εi} are possibly small parameters. We consider the following gradient flow:

∂φ

∂t
= −Gµ,

µ :=
δE

δφ
= Lφ+

k∑
i=1

1

εi
F ′i (φ),

(4.2)

where G is a positive definite operator, e.g., G = I is the L2 gradient flow and G = −∆
is the so-called H−1 gradient flow. Due to the disparate nonlinear terms, it may not
be effective to use one single SAV to deal with all nonlinear terms, so we introduce
one SAV for each disparate nonlinear potential in the free energy.

Assuming Ei(φ)=
∫

Ω
1
εi
Fi(φ)dx >−Ci (Ci > 0), we introduce ri(t)=

√
Ei(φ)+Ci,

i = 1, . . . , k and rewrite the free energy as

(4.3) E(φ) =

∫
Ω

[
1

2
φLφ+

k∑
i=1

(r2
i (t)− Ci)

]
dx.

Then, we can write an equivalent gradient flow based on the above free energy as
follows:

∂φ

∂t
= −Gµ,

µ = Lφ+

k∑
i=1

2ri(t)
δEi
δφ

,

∂tri =

∫
Ω

δEi
δφ

φtdx, i = 1, . . . , k.

(4.4)

For any sequence {gn}, we denote gn+1/2 = gn+1+gn

2 and g∗,n+1/2 = 3
2g
n − 1

2g
n−1.

Then, a second-order MSAV scheme based on Crank–Nicolson and Adams–Bashforth
is as follows:

φn+1 − φn

∆t
=− Gµn+1/2,

µn+1/2 = Lφn+1/2 +

k∑
i=1

2r
n+1/2
i

δEi
δφ

∗,n+1/2

,

rn+1
i − rni =

∫
Ω

δEi
δφ

∗,n+1/2

(φn+1 − φn) dx, i = 1, . . . , k.

(4.5)
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Theorem 4.1. The scheme (4.5) is linear, second-order accurate, uniquely solv-
able, and unconditionally energy stable in the following sense:

(4.6)
[1

2
(Lφn+1, φn+1)+

k∑
i=1

(rn+1
i )2

]
−
[1

2
(Lφn, φn)+

k∑
i=1

(rni )2
]

= −∆t‖∇µn+1/2‖2.

Proof. It is clear that the scheme (4.5) is linear and second-order accurate. Taking
the inner product of the equations in (4.5) successively with ∆tµn+1/2, φn+1 − φn,

and 2r
n+1/2
i (i = 1, . . . , k) and summing up the results, we obtain immediately (4.6).

The unique solvability is just a direct consequence of (4.6).

Next we show that the scheme (4.5) can be efficiently solved. Indeed, we can
write it as a matrix system 1

∆tI G 0
−L I ∗
∗ 0 Ik

φn+1

µn+1

r̄n+1

 = b̄n,

where I is the identity operator, Ik is the identity matrix of order k, and b̄n includes
only the terms from previous time steps. We can first solve r̄n+1 = (rn+1

1 , . . . , rn+1
k )t

using a block Gaussian elimination, which requires solving k system with constant
coefficients of the form (

1
∆tI G
−L I

)(
φ
µ

)
= b̄.

With r̄n+1 known, we can obtain (φn+1, µn+1) by solving one more system in the
above form.

Stabilized MSAV approach. In some situations where the nonlinear terms
in the free energy are very strong compared with the linear terms, such as in (4.1)
with εi � 1, the MSAV approach may need exceedingly small time steps to obtain
accurate solutions. In these cases, we may split the free energy in a different manner
by adding; suitable stabilized terms to the linear terms. For example, consider (4.1)
with εi � 1; we can split it as follows:

(4.7) E(φ) =

∫
Ω

[
1

2
φLφ+

k∑
i=1

Si
εi

]
+

k∑
i=1

1

εi
(Fi(φ)− Si)dx,

where Si are some suitable positive terms such that Ẽi(φ) :=
∫

Ω

∑k
i=1

1
εi

(Fi(φ)−Si)dx
is still bounded from below (this can be easily established, for instance, with typical
double-well potentials). We can then apply the MSAV approach with the above
splitting of the free energy.

5. Numerical simulations. We now present several numerical experiments
to verify the stability and accuracy of the proposed numerical schemes. We set
Ω = (−π, π)d (d = 2, 3) and use the Fourier-spectral method to discretize the space
variables. In all computations, we use 129d Fourier modes with the following param-
eters:

ε =
6π

128
, M = 1.(5.1)
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5.1. Accuracy tests. We first perform the same simulation presented in Figure 1
using MSAV-BDF2 with the same parameters and plot the results later in Figure 3.
We observe that for the two sets of η = γ = 0.1, 0.001, the modified and original
energies by the MSAV approach are indistinguishable even at a much larger time
step ∆t = 0.2 × 10−3. This example indicates that for gradient flows with disparate
nonlinear terms, such as the constraints enforced by penalty in the free energy, it is
essential to use the MSAV approach.

5.1.1. With a manufactured exact solution. We now test the order of con-
vergence with a manufactured exact solution,

(5.2) φ(x, y, t) =

(
sin(2x) sin(2y)

4
+ 0.48

)(
1− sin2(t)

2

)
.

In Table 1, we list the L2 errors of the phase variable φ with volume and surface area
constraints (η = γ = 0.02) between the numerical solution and the exact solution at
t = 0.5 with different time step sizes. We observe that both Scheme 1 and Scheme 2
achieve second-order accuracy in time.

5.1.2. Adaptive time stepping with a given initial condition. We examine
here the temporal accuracy of the adaptive time stepping using an example with the
initial condition

(5.3)

φ(x, y, z, 0) = tanh

(
0.25π −

√
x2 + (y − 0.35π)2 + z2

√
2ε

)

+ tanh

(
0.25π −

√
x2 + (y + 0.35π)2 + z2

√
2ε

)
+ 1.

We computed the solution without volume and surface area constraints (M1 = 0,M2 =
0) by using Scheme 3 with adaptive time stepping and Scheme 2 with a very small
time step δt = 0.00001. Evolutions of the scaled energy are shown in Figure 2. We
observe that the two results are indistinguishable. Note that for this example, the
total number of adaptive steps is 687, while it takes 50000 uniform time steps with
δt = 0.00001, indicating that our adaptive time stepping is very effective.

Table 1
Accuracy test: with given exact solution for the PF-VMEM model (2.4)–(2.5). The L2 errors at

t = 0.5 for the phase variable φ with volume and surface area constraints (η = γ = 0.02), computed
by Scheme 1 and Scheme 2 using various time steps.

δt Scheme 1 Order Scheme 2 Order

2 × 10−3 1.73E(−6) – 3.81E(−6) −
1 × 10−3 5.15E(−7) 1.74 1.32E(−6) 1.53

5 × 10−4 1.32E(−7) 1.96 3.90E(−7) 1.76

2.5 × 10−4 3.52E(−8) 1.91 1.12E(−7) 1.80

1.25 × 10−4 8.44E(−9) 2.01 2.78E(−8) 2.01

6.25 × 10−5 2.06E(−9) 2.03 6.91E(−9) 2.00

3.125 × 10−5 5.09E(−10) 2.02 1.72E(−9) 2.00

1.5625 × 10−5 1.26E(−10) 2.01 4.30E(−10) 2.00
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Fig. 2. Evolution of the free energy using Scheme 2 with the time step δt = 0.00001 and
Scheme 3 with adaptive time stepping.

Fig. 3. Evolution of the modified and original energies by the MSAV Scheme 2: Left, η = γ =
0.1. Right: η = γ = 0.001.

In Figure 3, we investigate the accuracy of our schemes with different time steps.
We observe that with both η = γ = 0.1 and η = γ = 0.0001, we can obtain accurate
results with ∆t ∼ 10−3, but the results with ∆t ∼ 10−2 deviate significantly while still
decaying monotonically. It is interesting to note that with ∆t = 10−3 the modified
energy is not accurate but the original energy is essentially correct.

5.1.3. Comparison with ETDRK schemes. Below we make a comparison
between our MSAV schemes, with or without adaptive time stepping, with stabilized
ETDRK2 and ETDRK4 schemes developed in [20], the initial condition is taken as
two close-by spheres in two dimensions which is defined by (5.4), and for the adaptive
time stepping method we choose parameter tol = 10−5, ρ = 0.6, δtmin = 10−4,
δtmax = 10−2. From Figure 4, the original energy of the MSAV-BDF2 scheme and
adaptive numerical scheme are essentially the same as the energy by ETDRK2. This
indicates that the accuracy of our schemes is comparable to that of the ETDRK
schemes. Note that we used the stabilized MSAV approach with similar stabilization
terms as in the stabilized ETDRK2 scheme.
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Fig. 4. Evolution of the original energies by ETDRK2, MSAV-BDF2 (Scheme 2), and the
adaptive scheme (Scheme 3).

(5.4)

φ(x, y, 0) = tanh

(
0.28π −

√
x2 + (y − 0.35π)2

√
2ε

)

+ tanh

(
0.28π −

√
x2 + (y + 0.35π)2

√
2ε

)
+ 1.

5.2. Collision of two close-by spherical vesicles for the PF-VMEM
model. We use the following initial condition for φ to describe two close-by spherical
vesicles in three dimensions:

(5.5)

φ(x, y, z, 0) = tanh

(
0.28π −

√
x2 + y2 + (z − 0.35π)2

√
2ε

)

+ tanh

(
0.28π −

√
x2 + y2 + (z + 0.35π)2

√
2ε

)
+ 1,

and we use Scheme 2 with time step δt = 0.0001 to study the collision of the two
close-by spherical vesicles.

In Figure 5, we depict the collision process without the volume and surface con-
straints. We observe that the two close-by spheres will gradually merge into one
capsule shape and eventually become a ball which is the steady state solution.

We then impose the volume and surface constraints with the penalty parameters
α = η = 0.02 and α = η = 0.0001 and plot the results in Figures 6 and 7, respectively.
The two sets of results are visually indistinguishable. We observe that the two spheres
connect within a small time interval, then merge into a stable capsule shape.

In Figure 8, we plot the evolution of original energy, the difference of volume and
surface area, with and without the volume and surface area constraints. We observe
that in both cases the original energy decays rapidly, and the volume and surface area
are well preserved under the volume and surface area constraints where the constraint
parameters η = γ = 0.001.
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Fig. 5. Collision of two close-by spherical vesicles without the volume and surface area con-
straints using Scheme 2 with the time step size δt = 0.0001. Snapshots of the iso-surfaces of φ = 0
at t = 0, 0.005, 0.01, 0.02, 0.1, 0.5, 1, 2, 6.

Fig. 6. Collision of two three-dimensional close-by spherical vesicles with the volume and
surface area constraints (η = γ = 0.02) using Scheme 2 with the time step size δt = 0.0001.
Snapshots of the iso-surfaces of φ = 0 at t = 0, 0.02, 0.1, 0.5, 1, 2.
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Fig. 7. Collision of two three-dimensional close-by spherical vesicles with the volume and
surface area constraints (η = γ = 0.001) using Scheme 2 with the time step size δt = 0.0001.
Snapshots of the iso-surfaces of φ = 0 at t = 0, 0.02, 0.1, 0.5, 1, 2.

Fig. 8. Evolution of the original energy, the volume difference A(φ) − α, and the surface area
difference B(φ) − β with and without the volume and surface area constraints using Scheme 2 with
the time step size δt = 0.0001.

5.3. Deformation of an ellipsoid. We simulate here the deformation of an
ellipsoid vesicle in the PF-VMEM model with the initial profile

(5.6) φ(x, y, z, 0) = tanh

(
1−

√
x2/4 + y2 + z2

√
2ε

)
.

We use Scheme 2 with time step δt = 0.0001 and plot the results without volume and
surface area constraints in Figure 9. We observe that the ellipsoid gradually evolves
into a spherical shape at time t = 6.

In Figure 10, we plot the results with volume and surface area constraint param-
eter η = γ = 0.001. We observe the ellipsoid gradually evolves into the stable shape
at time t = 6, which is different from Figure 9.

5.4. Collision of four close-by spherical vesicles. As the last example, we
simulate the collision process of four close-by spherical vesicles which are initially
given as
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Fig. 9. The dynamical behaviors of the ellipsoid vesicles without the volume and surface area
constraints using Scheme 2 with the time step size δt = 0.0001. Snapshots of the numerical approx-
imation of the iso-surfaces of φ = 0 are taken at t = 0, 0.1, 0.5, 1, 2, 6.

Fig. 10. The dynamical behaviors of the ellipsoid vesicles with the volume and surface area
constraints (i.e., η = γ = 0.001) using Scheme 2 with the time step size δt = 0.0001. Snapshots of
the numerical approximation of the iso-surfaces of φ = 0 are taken at t = 0, 0.1, 0.5, 1, 2, 6.

(5.7)

φ(x, y, z, 0) = tanh

(
π
6 −

√
(x+ π

4 )2 + (y + π
4 )2 + z2

√
2ε

)

+ tanh

(
π
6 −

√
(x+ π

4 )2 + (y − π
4 )2 + z2

√
2ε

)

+ tanh

(
π
6 −

√
x2 + (y − π

4 )2 + z2

√
2ε

)

+ tanh

(
π
6 −

√
x2 + y2 + (z − π

3 )2

√
2ε

)
+ 3.
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We use Scheme 2 with time step δt = 0.0001 and plot the results without volume and
surface area constraints in Figure 11 and those with volume and surface area con-
straints in Figure 12. We observe from Figure 11 that the initially four disjoint spheres
merge and eventually evolve into a ball, which is similar to the collision of two spheres
in Figure 5. However, when we add the volume and surface area constraints with η =
γ = 0.001, the four spheres will merge and eventually evolve into a doughnut shape.

Next we examine the influence of the penalty parameters. In Figure 13, we plot
the results with smaller volume and surface area constraint parameters η = γ = 0.02.
We observe that the evolution process up to time t = 0.5 is essentially the same as in
Figure 12 with η = γ = 0.001. However, it eventually evolves into a capsule shape,
which is very different from the ball shape at t = 2 in Figure 12.

Fig. 11. The dynamical behaviors of four spherical vesicles without the volume and surface
area constraints using Scheme 2 with the time step size δt = 0.0001. Snapshots of the numerical
approximation of the iso-surfaces of φ = 0 are taken at t = 0, 0.005, 0.002, 0.1, 0.5, 2.

Fig. 12. Collision of four spherical vesicles with the volume and surface area constraints (i.e.,
η = γ = 0.001). Snapshots of the iso-surfaces of φ = 0 at t = 0, 0.005, 0.002, 0.1, 0.5, 2.
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Fig. 13. Collision of four spherical vesicles with the volume and surface area constraints (i.e.,
η = γ = 0.02). Snapshots of the iso-surfaces of φ = 0 at t = 0, 0.005, 0.002, 0.1, 0.5, 2.

6. Concluding remarks. We developed in this paper the MSAV approach for
gradient flows with disparate terms in the free energy that cannot be efficiently han-
dled with the SAV approach and applied it to the PF-VMEM model, which, in ad-
dition to some usual nonlinear terms in the free energy, has two additional penalty
terms to enforce the volume and surface area. Our numerical results indicated that
while the SAV approach could be applied to the PF-VMEM model, it was not able to
produce correct numerical solutions even with very small time steps. The main reason
is that the two additional penalty terms behave very differently with the other nonlin-
ear terms and cannot be properly handled with a single auxiliary variable. Noticing
that the volume penalty term leads to a linear term in the PDE system so it can be
treated implicitly along with other linear terms, we introduced one additional SAV
for the surface area constraint and developed the so-called MSAV approach, which
enjoys the same computational advantages as the SAV approach but can handle free
energies with multiple disparate terms such as multiple constraints enforced through
penalty in the free energy. More precisely, the MSAV schemes enjoy the following
advantages:

• are second-order accurate in time;
• are unconditionally energy stable; and
• lead to decoupled elliptic equations with constant coefficients to solve at each

time step.
Thus, these schemes are easy to implement and extremely efficient, usually only taking
a fraction of the computing time required by existing methods. We also constructed
a second-order MSAV scheme with variable time steps so that it can be used with an
adaptive time stepping.

We presented ample numerical results to validate the stability and accuracy of
these schemes. It is clear that the MSAV approach presented here can be used to deal
with other gradient flows with constraints.

We have only established energy stability for our MSAV schemes in this paper.
However, a rigorous convergence and error analysis for the SAV approach under a
general setting has been established in [17]. It is expected that similar convergence
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and error estimates would hold for the MSAV schemes, and detailed analysis will be
carried out elsewhere.

Although we considered only semidiscretized schemes in time in this paper, the
stability results here can be carried over to any consistent finite-dimensional Galerkin
type approximations since the proofs are all based on a variational formulation with
all test functions in the same space as the trial functions.
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