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Abstract
The velocity correction method has shown to be an effective approach for solving
incompressible Navier–Stokes equations. It does not require the initial pressure and
the inf-sup condition may not be needed. However, stability and convergence anal-
yses have not been established for the nonlinear case. The challenge arises from the
splitting associated with the nonlinear term and rotational term. In this paper, we
carry out stability and convergence analysis of the first-order method in the nonlinear
case. Our technique is a new Gauge–Uzawa formulation, which brings forth a tele-
scoping symmetry into the rotational form. We also provide a stability proof for the
second-order method in the linear case. Numerical results are provided for both first-
and second-order methods.
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1 Introduction

We consider in this paper a kind of time discretization of the unsteady incompressible
Navier–Stokes equations in primitive variables. Below is the setup of the continuous
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system. Given a body force f (x, t) and a solenoidal initial condition u0, we look for
the velocity field u(x, t) and the pressure p(x, t) such that:

ut + u · ∇u − ν�u + ∇p = f , in � × (0, T ],
∇ · u = 0, in � × (0, T ],

u = 0, on �,

u|t=0 = u0, in �,

where T is the terminal time, � is an open, connected, and bounded subset of Rd

(d = 2 or 3), � is the smooth boundary of �, and ν = Re−1 is the reciprocal of the
Reynolds number Re.

The projection method was firstly introduced in [2] and [24]. The method has
been popularized over the decades for discretizing the Navier–Stokes equations in
time. As an improvement for the projection method, the pressure correction method
first appeared in [8, 26]. It consists of two substeps at each time step: (i) treating
the pressure explicitly and solving for the velocity in the momentum equation, and
(ii) projecting the solved velocity to a divergence-free space. In the second sub-
step, a Poisson-type equation is solved. The pressure correction method has been
widely implemented (cf. [1, 22, 25, 26]). And the analysis has been done for both the
standard form (cf. [7, 19, 20, 23]) and the rotational form (cf. [9, 10]).

The focus of this paper is another kind of projection scheme, the velocity correc-
tion method proposed in [14, 17]. Like the pressure correction method, it also consists
of two substeps. Unlike the pressure correction method, it solves the pressure from
the momentum equation at the first substep and corrects the velocity at the second
substep. In other words, the two substeps have been swapped within an operator split-
ting framework. This type of scheme possesses the following advantages. First, the
method does not require the initialization of the pressure. Secondly, the inf-sup con-
dition is not needed in practice (cf. [5, 12]). Thirdly, it has a potential for deriving
schemes that are more accurate and consistent. For example, the authors of [11] pro-
posed a rotational form of the velocity correction method, which improved the order
of convergence for both the velocity and pressure. A rigorous error analysis has been
carried out for the linear case (cf. [11]). Later, as a further improvement, the fully non-
linear case was addressed by an unconditionally stable rotational velocity correction
method (cf. [5]). The effectiveness of the method in [5] was validated through various
experiments in fluid dynamics (cf. [3, 4, 6, 27]). Regarding the analysis, the stabil-
ity of the standard form has been done in [5]. To the best of the authors’ knowledge,
currently there is no rigorous proof of the stability and convergence for its rotational
form in the fully nonlinear case. The essential difficulty lies in the intertwine of the
nonlinear term and the rotational term. The symmetry that is available in the standard
form was lost in the rotational form, because the Laplacian operator was replaced by
the curl-curl operator in the second substep. So, it becomes part of compromise on a
consequence of the asymmetric correction equation to the divergence-free condition.

To resolve this issue, we introduce a Gauge–Uzawa formulation for the rotational
form in the nonlinear case. The idea is related to earlier work on the Gauge method for
projection methods (cf. [15, 16, 18]). We rewrite ∇ ·u, a term supposing to be almost
0 on the discrete level, into a difference of Gauge series (see Eq. 3.2). This treatment
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will make the correction step symmetric. In all theorems we give in this paper, the
above idea is manifested in the step where we take symmetric inner products and
obtain telescoping terms.

The paper is organized as follows. In the next section, we describe basic notations
and assumptions used throughout the content. In Section 3, we describe the existing
formulations of the velocity correction method and introduce the new Gauge–Uzawa
formulation. The stability results are established in Section 4. In Section 5, we prove
the the O(�t) convergence in both l∞(L2)- and l2(H 1)-norms for the velocity. In
Section 6, we provide the numerical experiments. We end the paper with a short
conclusion in the last section.

2 Notations and preliminaries

In this section, we introduce notations and background materials that will be used.
Throughout the paper, c denotes a generic constant that is independent of the time
step size but may depend on the data and the regularity of the exact solution.

We denote ‖·‖m as the standard norms on Sobolev spaces Hm (m ∈ Z) defined on
�. And ‖ · ‖ denotes the L2 norm. Bold fonts are used for vector fields, e.g., u ∈ H 2.
Next, we define:

H 1
0 � {u ∈ H 1 : u|� = 0}.

Also, define the following function space:

H � {u ∈ L2 : ∇ · u = 0, u · n|� = 0}.
We define the trilinear form b(·, ·, ·) as follows:

b(u, v, w) = (u · ∇v, w) = (w, u · ∇v).

By using Hölder inequality and Sobolev imbedding, it is easy to establish the
following inequalities which are valid for d ≤ 4:

b(u, v, w) �

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

c‖u‖1‖v‖1‖w‖1,
c‖u‖‖v‖2‖w‖1,
c‖u‖1‖v‖2‖w‖,
c‖u‖‖v‖1‖w‖2,
c‖u‖2‖v‖1‖w‖.

(2.1)

For all u ∈ H , we have the following identities:

b(u, v, v) = 0, ∀v ∈ H 1
0, (2.2)

(u, ∇p) = 0, ∀p ∈ H 1, (2.3)

and for all v, w ∈ H 1
0, we have:

b(u, v, w) = −b(u, w, v).
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We assume that the Navier–Stokes Eq. 1 possesses a unique strong solution u ∈
H 1

0 ∩ H 2 and p ∈ H 1\R. Furthermore, we assume that the exact solution (u, p) is
sufficiently smooth; more precisely, we assume:

‖u(t)‖L∞(Hm) = max0�t�T ‖u(t)‖m � c, m = 0, 1, 2,

‖ut (t)‖L2(Hm) =
(∫ T

0 ‖ut (t)‖2mdt
)1/2

� c, m = 0, 1, 2,

‖ut t (t)‖L2(Hm) =
(∫ T

0 ‖ut t (t)‖2mdt
)1/2

� c, m = 0, 1, 2,

‖p(t)‖L∞(Hm) = max0�t�T ‖q(t)‖m � c, m = 1, 2,
‖f (t)‖L∞(Hm) = max0�t�T ‖f (t)‖m � c, m = 0, 1, 2.

(2.4)

Now, we introduce the discrete norms. Let {φ0, φ1, · · · , φn} be a sequence of
functions in a Hilbert space W , and �t = T/n. We introduce the following discrete
norms:

‖φ‖2
l2(W)

= �t

n∑

i=0

‖φi‖2W, ‖φ‖2l∞(W) = max
0�i�n

‖φi‖2W .

The following notations are used for finite differences:

δφi+1 = φi+1 − φi,

δ2φi+1 = φi+1 − 2φi + φi−1,

D2φi+1 = 3φi+1 − 4φi + φi−1.

We recall the following version of discrete Gronwall’s Lemma (cf. [13, 20]):

Lemma 2.1 (Discrete Gronwall’s Lemma) Let yn, hn, gn, and f n be nonnegative
series such that:

ym+�t

m∑

n=0

hn � B+�t

m∑

n=0

(gnyn+f n), �t

M∑

n=0

gn � K, 0 � m � M =[ T

�t
],

where B is a given constant typically related to the initial condition. In addition,
assume that gn�t < 1 for every n. Define ρ = max0�n�M(1 − gn�t)−1. Then:

ym + �t

m∑

n=0

hn � eρK(B + �t

m∑

n=0

f n), 0 � m � M .

Finally, the following three identities will be frequently used in the analysis:

(a − b, 2a) = (a, a) − (b, b) + (a − b, a − b), (2.5)

(3a − 4b + c, 2a) = (a, a) + (2a − b, 2a − b) − (b, b) − (2b − c, 2b − c)

+(a − 2b + c, a − 2b + c), (2.6)

(3a − 4b + c, 2(a − b)) = (a − b, a − b) − (b − c, b − c)

+(a − 2b + c, a − 2b + c) + 4(a − b, a − b). (2.7)
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3 Rotational velocity correction schemes

We describe in this section the rotational velocity correction methods for the Navier–
Stokes equations. The treatment of the nonlinear term in the schemes presented below
are slightly different from the rotational velocity correction scheme (3-4) in [5], but
consistent with the standard velocity correction scheme (17-18).

3.1 Rotational velocity correction schemes

First, we consider the first-order rotational velocity correction scheme for
Eq. 1. Assume that at each time step, {uk, ũk, pk} are given and one seeks
{uk+1, ũk+1, pk+1}. In the first substep, we solve for (uk+1, pk+1) from:

⎧
⎨

⎩

uk+1−ũk

�t
+ uk · ∇ũk + ν∇ × ∇ × ũk + ∇pk+1 = f k+1,

∇ · uk+1 = 0,
uk+1 · n|� = 0.

(3.1)

In the second substep, we correct uk+1 by solving ũk+1 from
{

ũk+1−uk+1

�t
+ uk+1 · ∇ũk+1 − uk · ∇ũk − ν�ũk+1 − ν∇ × ∇ × ũk = 0,

ũk+1|� = 0.
(3.2)

The above schemes can be easily extended to second-order as follows (cf. [5]). In
the first substep, we solve for (uk+1, pk+1) from:

⎧
⎨

⎩

3uk+1−4ũk+ũk−1

2�t
+ uk · ∇ũk + ν∇ × ∇ × ũk + ∇pk+1 = f k+1,

∇ · uk+1 = 0,
uk+1 · n|� = 0.

(3.3)

In the second substep, we correct uk+1 by solving ũk+1 from:
{

3ũk+1−3uk+1

2�t
+ uk+1 · ∇ũk+1 − uk · ∇ũk − ν�ũk+1 − ν∇ × ∇ × ũk = 0,

ũk+1|� = 0.
(3.4)

3.2 The Gauge–Uzawa reformulation

A key step in establishing the stability result is to reformulate the rotational velocity
correction schemes with a Gauge–Uzawa formulation. More precisely, we introduce
a Gauge variable, {qk}, and an axillary variable, {wk}, defined by:

q0 = 0; qk+1 = ∇ · ũk+1 + qk, k ≥ 0,

wk = ν∇ × ∇ × ũk + uk · ∇ũk − ν∇qk . (3.5a)

Note that Eq. 3.5a is reminiscent of the Uzawa algorithm for the Stokes problem.
Then, Eq. 3.2 can be reformulated as:

{
ũk+1 + �twk+1 = uk+1 + �twk,

ũk+1|� = 0.
(3.6)
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Similarly, Eq. 3.4 can also be reformulated as:
{

3ũk+1 + 2�twk+1 = 3uk+1 + 2�twk,

ũk+1|� = 0,
(3.7)

where wk is again defined in Eq. 3.2. As we will show in the following section, this
reformulation allows us to derive a stability result on (uk+1, pk+1, ũk+1) directly,
without resorting to their differences as in [11].

4 Stability analysis

In this section, we provide the stability analysis for the reformulated schemes.
Without loss of generality, we assume f ≡ 0.

4.1 First-order scheme

Theorem 4.1 The scheme Eq. 3.1 and Eq. 3.2 with f ≡ 0 is unconditionally energy
stable in the sense that, for all 0 ≤ k ≤ T/�t − 1, we have:

E (1)
k+1 − E (1)

k ≤ −ν�t‖∇ũk+1‖2,
where:

E (1)
k = ‖ũk‖2 + �t2‖wk‖2 + ν�t‖qk‖2

is the modified energy at time step k.

Proof Take the inner product of Eq. 3.1 with 2�tuk+1 and use Eq. 2.3, to have:

‖uk+1‖2−‖ũk‖2+‖uk+1− ũk‖2+2�t(uk+1, ν∇ ×∇ × ũk +uk ·∇ũk) = 0. (4.1)

On each side of the Eq. 3.6, taking the inner product of that side with itself, we find:

‖ũk+1‖2+�t2‖wk+1‖2+2�t(ũk+1, wk+1)=‖uk+1‖2+�t2‖wk‖2+2�t(uk+1, wk).
(4.2)

Using Eq. 2.2 and the definition of qk , we obtain:

(ũk+1, wk+1) = (ũk+1, ν∇ × ∇ × ũk+1 − ν∇qk+1)

= ν‖∇ × ũk+1‖2 + ν(∇ · ũk+1, qk+1),

= ν‖∇ × ũk+1‖2 + ν(qk+1 − qk, qk+1),

= ν‖∇ × ũk+1‖2 + ν
2 (‖qk+1‖2 − ‖qk‖2 + ‖qk+1 − qk‖2).

(4.3)

We derive from Eq. 2.3 that:

(uk+1, wk) = (uk+1, ν∇ × ∇ × uk + uk · ∇ũk). (4.4)

Plugging Eq. 4.3 and Eq. 4.4 into Eq. 4.2, and summing up the result with Eq. 4.1,
we obtain:

‖ũk+1‖2−‖ũk‖2+‖uk+1 − ũk‖2 + 2ν�t‖∇ × ũk+1‖2 + �t2(‖wk+1‖2−‖wk‖2)
+ν�t(‖qk+1‖2 − ‖qk‖2 + ‖qk+1 − qk‖2) = 0.

(4.5)
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We can then conclude from the above, the fact that ‖qk+1 −qk‖2 = ‖∇ · ũk+1‖2, and
the identity:

‖∇ × v‖2 + ‖∇ · v‖2 = ‖∇v‖2, ∀v ∈ H 1
0. (4.6)

Note that the Gauge-Uzawa formulation Eq. 3.6 plays a critical role in the above
proof.

4.2 Stability of the second-order scheme in the linear case

The stability proof of the second-order scheme is much more delicate due to the
special treatment required to deal with the second-order BDF formula. So, we shall
only prove a stability result without the nonlinear term and with f ≡ 0. Namely, we
consider the scheme:

⎧
⎨

⎩

3uk+1−4ũk+ũk−1

2�t
+ ν∇ × ∇ × ũk + ∇pk+1 = 0,

∇ · uk+1 = 0,
uk+1 · n|� = 0;

(4.6)

and {
3ũk+1−3uk+1

2�t
− ν�ũk+1 − ν∇ × ∇ × ũk = 0,

ũk+1|� = 0.
(4.7)

With the Gauge variable qk and an auxiliary variable wk defined by:

q0 = 0; qk+1 = ∇ · ũk+1 + qk, k ≥ 0,

wk = ν∇ × ∇ × ũk − ν∇qk, (4.8)

Equation 4.7 can also be reformulated as Eq. 3.7.

Theorem 4.2 The scheme Eq. 4.6–Eq. 4.7 is unconditionally energy stable in the
sense that, for all 0 ≤ k ≤ T/�t − 1, we have:

E (2)
k+1 − E (2)

k ≤ −2ν�t‖∇ũk+1‖2, (4.9)

where:

E (2)
k = ‖ũk‖2 + ‖2ũk − ũk−1‖2 + 2�tν

3 ‖∇ × δũk‖2 + 2�tν
3 ‖δqk‖2

+ 2�tν
3 ‖2δqk − δqk−1‖2 + 4�t2

3 ‖wk‖2 + 2ν�t‖qk‖2
is the modified energy at time step k.

Proof Taking the inner product of Eq. 4.6 with 4�tuk+1, we obtain:

I + 4ν�t(uk+1, ∇ × ∇ × ũk) = 0, (4.10)

where we have denoted:

I = (3uk+1 − 4ũk + ũk−1, 2uk+1).
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We will use a similar treatment as in [10] to deal with this term. More precisely, we
rewrite the term I as:

I =2(D2ũk+1, ũk+1)+2(D2ũk+1, uk+1−ũk+1)+6(uk+1−ũk+1, uk+1) :=I1+I2+I3.

Using identity Eq. 2.6, we can rewrite I1 as

I1 = ‖ũk+1‖2 + ‖2ũk+1 − ũk‖2 − ‖ũk‖2 − ‖2ũk − ũk−1‖2 + ‖δ2ũk+1‖2. (4.11)

Thanks to Eq. 3.7 and Eq. 4.8, we can rewrite I2 as:

I2 = 4�t
3 (D2ũk+1, wk+1 − wk)

= 4�tν
3 (D2ũk+1, ∇ × ∇ × (ũk+1−ũk)) + 4�tν

3 (D2δqk+1, δqk+1) := I2,1 + I2,2.
(4.12)

Using identity Eq. 2.7, we find:

I2,1 = 2�tν

3

(
‖∇ × δũk+1‖2 − ‖∇ × δũk‖2 + ‖∇ × δ2ũk+1‖2 + 4‖∇ × δũk+1‖2

)
.

By integration by parts, the definition of qk , and Eq. 2.6, we have:

I2,2= 2�tν

3
(‖δqk+1‖2−‖δqk‖2+‖2δqk+1−δqk‖2−‖2δqk−δqk−1‖2+‖δ2δqk+1‖2).

We derive from identity Eq. 2.5 that:

I3 = 3
(
‖uk+1‖2 − ‖ũk+1‖2 + ‖uk+1 − ũk+1‖2

)
. (4.13)

Next, taking the inner product of Eq. 3.7 with itself on both sides, we obtain:

3(‖ũk+1‖2 − ‖uk+1‖2) + 4�t2

3 (‖wk+1‖2 − ‖wk‖2) + 4�t(ũk+1, wk+1)

= 4�t(uk+1, wk) = 4�t(uk+1, ∇ × ∇ × uk),

where we applied the definition of wk for the second equality. Note that Eq. 4.3 is
still valid for (ũk+1, wk+1) so that we can rewrite the above as:

3(‖ũk+1‖2 − ‖uk+1‖2 + ‖ũk+1 − uk+1‖2) + 4�t2

3 (‖wk+1‖2 − ‖wk‖2)
+4ν�t‖∇ × ũk+1‖2 + 2ν�t(‖qk+1‖2 − ‖qk‖2 + ‖δqk+1‖2)
= 4�t(uk+1, ∇ × ∇ × uk).

(4.14)

Summing up Eq. 4.10 and Eq. 4.14, and taking into account Eq. 4.11, Eq. 4.12, and
Eq. 4.13, we obtain:

‖ũk+1‖2 + ‖2ũk+1 − ũk‖2 − ‖ũk‖2 − ‖2ũk − ũk−1‖2 + 2�tν
3

(
‖∇ × δũk+1‖2−‖∇ × δũk‖2

)

+ 2�tν
3 (‖δqk+1‖2 − ‖δqk‖2 + ‖2δqk+1 − δqk‖2 − ‖2δqk − δqk−1‖2)+

+ 4�t2

3 (‖wk+1‖2 − ‖wk‖2) + 2ν�t(‖qk+1‖2 − ‖qk‖2)
= −

(
‖δ2ũk+1‖2 + 2�tν

3 (‖∇ × δ2ũk+1‖2 + 4‖∇ × δũk+1‖2)
+ 2�tν

3 ‖δ3qk+1‖2 + 3‖uk+1 − ũk+1‖2 + 4ν�t‖∇ × ũk+1‖2 + 2ν�t‖δqk+1‖2
)
,

which leads to Eq. 4.9 with the fact that ‖δqk+1‖2 = ‖∇·ũk+1‖2 and identity Eq. 4.6.
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5 Error analysis

We carry out a convergence analysis for the Navier–Stokes equations in this section.
Since we only proved the stability of the first-order scheme for the Navier–Stokes
equations, we shall only consider the first-order scheme.

5.1 Error equations

Define the following error terms:

ek = u(·, tk) − uk, ẽk = u(·, tk) − ũk, hk = p(·, tk) − pk,

and

d̃
k = u(·, tk) · ∇u(·, tk) − uk · ∇ũk = ek · ∇u(·, tk) + uk · ∇ ẽk .

First, we approximate the original governing system Eq. 1 at tk+1 as follows:

u(·, tk+1)−u(·, tk)
�t

+u(·, tk+1)·∇u(·, tk+1)−ν�u(·, tk+1)+∇p(·, tk+1)=f (·, tk+1)+Rk+1,

(5.1)

where the error remainder term is:

Rk+1 = u(·, tk+1) − u(·, tk)
�t

− ut (·, tk+1).

We subtract Eq. 3.1 from Eq. 5.1 to obtain:

ek+1 − ẽk

�t
+(u(·, tk+1)·∇u(·, tk+1)−uk ·∇ũk)+ν∇×∇×(u(·, tk+1)−ũk)+∇hk+1 = Rk+1.

(5.2)

Regarding the second step Eq. 3.6, we have:

ẽk+1 + �tsk+1 = ek+1 + �tzk, (5.3)

where sk+1 and zk are obtained from subtracting both sides of Eq. 3.6 from:

u(·, tk+1) + �tu(·, tk+1) · ∇u(·, tk+1) + ν�t∇ × ∇ × u(·, tk+1).

Namely,

sk = ν∇ × ∇ × ẽk + d̃
k + ν∇qk,

zk = (u(·, tk+1) · ∇u(·, tk+1) − uk · ∇ũk) + ν∇ × ∇ × (u(·, tk+1)−ũk) + ν∇qk .

By assuming that ‖ut‖L2(H 2) ≤ c (the second line of Eq. 2.4), we have:

‖zk − sk‖ = ‖ν∇ × ∇ × (u(·, tk+1) − u(·, tk)) − (u(·, tk+1) · ∇u(·, tk+1)

− u(·, tk) · ∇u(·, tk))‖
= ‖ν∇ × ∇ × δu(·, tk+1) − δ

(
u(·, tk+1) · ∇u(·, tk+1)

)
‖ ≤ c�t,

(5.4)
where c is a constant independent of k.
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We can also rewrite Eq. 5.2 as:

ek+1 − ẽk

�t
+ (zk − ν∇qk) + ∇hk+1 = Rk+1. (5.5)

5.2 Error estimates for the velocity

In this subsection, we establish error estimates for the velocity.

Theorem 5.1 Assuming that the exact solution (u, p) satisfies the regularity assump-
tion in Eq. 2.4, we have the following error estimates for the scheme Eq. 3.1 and
Eq. 3.2: for all, 0 ≤ m ≤ T/�t − 1, we have:

‖ẽm+1‖2+‖em+1‖2 + �t2‖sm+1‖2+ 1

2

m∑

k=0

(ν�t‖∇ ẽk+1‖2+‖ek+1−ẽk‖2) ≤ c�t2,

where c is a constant independent of k.

Proof Take inner product of both sides of Eq. 5.5 with 2�tek+1, to have:

‖ek+1‖2 − ‖ẽk‖2 + ‖ek+1 − ẽk‖2 + 2�t(zk, ek+1) = 2�t(Rk+1, ek+1).

Take inner product of each side of Eq. 5.3 with that side itself, to have:

‖ẽk+1‖2 +�t2‖sk+1‖2 +2�t(ẽk+1, sk+1) = ‖ek+1‖2 +�t2‖zk‖2 +2�t(ek+1, zk).

By using Eq. 5.4, we can estimate ‖zk‖2 as follows:
‖zk‖2 � ‖sk + (zk − sk)‖2

� (‖sk‖ + ‖zk − sk)‖)2 = ‖sk‖2 + 2‖sk‖‖zk − sk‖ + ‖zk − sk‖2
� ‖sk‖2 + c�t‖sk‖ + c�t2 = ‖sk‖2 + c�t

1
2 �t

1
2 ‖sk‖ + c�t2

� ‖sk‖2 + c�t + c�t‖sk‖2 + c�t2

� ‖sk‖2 + c�t + c�t‖sk‖2,
where we used the same c to denote the absorbing constant. For (ẽk+1, sk+1) on the
left-hand side, we apply the definition of sk+1:

(ẽk+1, sk+1) = (ẽk+1, ν∇ × ∇ × ẽk+1 + d̃
k+1 + ν∇qk+1).

We break the above into three parts and estimate each of them below. First,

(ẽk+1, ν∇ × ∇ × ẽk+1) = ν‖∇ × ẽk+1‖2. (5.6)

Secondly, since ∇ · uk+1 = 0, we derive by using the second branch of Eq. 2.1,
the Cauchy–Schwarz inequality, and assuming that ‖u‖L∞(H 1) � c (the first line of
Eq. 2.4) that:

(ẽk+1, d̃
k+1

) = (ẽk+1, ek+1 · ∇u(·, tk+1)) + (ẽk+1, uk+1 · ∇ ẽk+1)

= (ẽk+1, ek+1 · ∇u(·, tk+1))

= (ẽk+1, (ek+1 − ẽk) · ∇u(·, tk+1)) + (ẽk+1, ẽk · ∇u(·, tk+1))

� ν
4‖∇ ẽk+1‖2 + c‖ek+1 − ẽk‖2 + c‖ẽk‖2.
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For the third term, noticing ∇ · ẽk+1 = −(qk+1 − qk), we have:

(ẽk+1, ν∇qk+1) = ν

2
(‖qk+1‖2 − ‖qk‖2 + ‖qk+1 − qk‖2).

The last term of the right hand of the above equation combines with Eq. 5.6 to give
an account of the H 1-norm of ẽk+1:

ν

2
‖qk+1 − qk‖2 + ν‖∇ × ẽk+1‖2 = ν

2
‖∇ ẽk+1‖2 + ν

2
‖∇ × ẽk+1‖2.

For the right-hand side of the error equation, we estimate it as:

(Rk+1, ek+1) = (Rk+1, ek+1−ẽk)+(Rk+1, ẽk) � c‖Rk+1‖2+1

2
‖ek+1−ẽk‖2+‖ẽk‖2.

We collect all terms with ‖ek+1−ẽk‖2 and obtain its coefficient as (
1−(c+1)�t

)
. We

choose a sufficiently small �t so that the coefficient is larger than 1/2. We combine
all the above estimates to obtain:

‖ẽk+1‖2 − ‖ẽk‖2 + 1
2‖ek+1 − ẽk‖2 + �t2(‖sk+1‖2 − ‖sk‖2) + ν�t

2 ‖∇ ẽk+1‖2
+ ν�t‖∇ × ẽk+1‖2

� c�t3 + c�t‖Rk+1‖2 + c�t‖ẽk‖2 + c�t3‖sk‖2.
We sum up the inequality from k = 0 to k = m−1 and apply the discrete Gronwall’s
Lemma (Lemma 2.1), to obtain:

‖ẽm+1‖2 + �t2‖sm+1‖2 + 1

2

m∑

k=0

(ν�t‖∇ ẽk+1‖2 + ‖ek+1 − ẽk‖2) ≤ c�t2. (5.7)

From Eq. 5.7, we also notice that ‖sm+1‖ ≤ c. Therefore, we can conclude
‖em+1‖2 ≤ c�t2, thanks to Eq. 5.4, Eq. 5.7, and:

‖ek+1‖ = ‖ẽk+1 + �t(sk+1 − zk)‖
= ‖ẽk+1 + �t[(sk+1 − sk) + (zk − sk)]‖
≤ ‖ẽk+1‖ + �t(‖sk+1‖ + ‖sk‖ + ‖zk − sk‖)
≤ c�t .

6 Numerical experiments

We present below some numerical experiments to validate the accuracy of the rota-
tional velocity correction methods. To test the order of convergence, we use the
following exact solution in � = (−1, 1)2:

⎧
⎨

⎩

u1(x, y, t) = sin2 πx sin 2πy sin t,

u2(x, y, t) = − sin 2πx sin2 πy sin t,

p(x, y, t) = cos x cos y sin t .
(6.1)

The external field f is calculated according to Eq. 6.1 and then given as inputs to
the program. We employ the Legendre-spectral method [21] in space with a mesh
size (nx, ny) = (32, 32). We take ν = 1 and computed the solution using the



F. Chen, J. Shen

first- and second-order schemes up to time T = 1, and measured the errors in the
discrete L2(0, T ; L2)- and L2(0, T ; H 1)-norms for the velocity and in the discrete
L2(0, T ; L2) norm for the pressure. The results are plotted in Fig. 1 (resp. Fig. 1)

Fig. 1 Convergence rate of the rotational velocity correction schemes: left, first-order scheme; right,
second-order scheme
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from the first-order scheme (3.1)–(3.2) (resp. the second-order scheme (3.3)–(3.4)).
We observe the convergence rate of first-order in the left figure, and of second-order
in the right figure. These convergence rates for the velocity are consistent with our
theoretical estimates in the previous section. Although we did not prove a conver-
gence rate for the pressure, we observe that its convergence rates in the discrete
L2(0, T ; L2) norm behave essentially the same as the velocity error in the discrete
L2(0, T ; H 1)-norm.

7 Concluding remarks

We studied in this paper the stability and convergence of the rotational velocity cor-
rection method for the Navier–Stokes equations. Our analysis is based on a new
Gauge–Uzawa formulation that yields an elegant treatment to the nonlinear term and
rotational term. The stability results were established for the first-order method in the
nonlinear case and the second-order method in the linear case. However, the stability
of the second-order scheme in the nonlinear case is still illusive due to the additional
difficulty associated with the BDF2 treatment.

For the convergence, we proved the O(�t) accuracy for the velocity in both
l∞(L2)-norm and l2(H 1)-norm for the first-order method. We also provided numeri-
cal experiments which confirm that that the first-order (resp. second-order) rotational
velocity correction scheme leads to the first-order (resp. second-order) convergence
rate for the velocity in both l∞(L2)-norm and l2(H 1)-norm and for the pressure in
l∞(L2)-norm.

Funding information The work of this author is partially supported by NSF grants DMS-1620262, DMS-
1720442 and AFOSR FA9550-16-1-0102.
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