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Abstract
We propose in this paper an efficient and accurate numerical method for the spectral frac-
tional Laplacian equation using the Caffarelli–Silvestre extension. In particular, we propose
several strategies to deal with the singularity and the additional dimension associated with the
extension problem: (i) reducing the d+1 dimensional problem to a sequence of d-dimension
Poisson-type problems by using the matrix diagonalizational method; (ii) resolving the sin-
gularity by applying the enriched spectral method in the extended dimension. We carry
out rigorous analysis for the proposed numerical method, and provide abundant numerical
examples to verify the theoretical results and illustrate effectiveness of the proposed method.
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1 Introduction

We consider in this paper the fractional Laplacian equation{
(−�)su(x) = f (x), x = (x1, x2, . . . , xd) ∈ �,

u|∂� = 0,
(1.1)

where 0 < s < 1,� is an open subset ofRd , d ≥ 1 and (−�)s is defined through the spectral
decomposition of −� with homogeneous Dirichlet boundary conditions. A main difficulty
for solving the above equation is that (−�)s is a non-local operator (see [5,6]), so analytical
and numerical techniques developed for the regular PDEs with locally defined derivatives
can not be directly applied. To circumvent the nonlocal difficulty of the fractional Laplacian,
Caffarelli and Silvestre [6] (cf. also [4,7,25]) showed that the solution of the fractional
Laplacian equation u(x) can be obtained through an extension problem on Rd × [0,∞), i.e.
u(x) = U (x, 0) where U (x, y) solves:⎧⎪⎪⎨

⎪⎪⎩
∇ · (yα∇U (x, y)

) = 0, in D = � × (0,∞),

NU := − lim
y→0

yαUy(x, y) = ds f (x), on� × {0},
U = 0, on ∂LD = ∂� × [0,∞),

(1.2)

where α = 1− 2s and ds = 21−2s�(1 − s)/�(s). Hence, we only have to solve (1.2) which
only involves regular derivatives. However, there are two main difficulties w.r.t. (1.2): (i) it
involves a degenerate/singular weight yα and the solution is weakly singular at y = 0, and
(ii) it is of d + 1-dimension while the original problem is of d-dimension.

In a series of papers, Nochetto et al. [21,22] made a systematical study on the finite-
element approximation of Caffarelli–Silvestre extension (1.2), and proposed an adaptive
finite-element method for solving the d +1-dimensional extended problems and derived rig-
orous error estimates. Chen et al. [8] developed an efficient solver via multilevel techniques
to deal with the extension problem, see also a related work in [3, sect.2.7] and references
therein. However, achievable accuracy is limited by the low-order finite-element approxima-
tions used in these work. Note also that an interesting hybrid FEM-spectral method based
on a clever approximation of Laplace eigenvalues for the extension problem is developed in
[2]. Some alternative approaches for the spectral fractional Laplacian problem (1.1) include:
through the Dunford–Taylor integral [3,17,27] and through model reduction using Kato’s
formula [11].

The aim of this paper is to develop an efficient and accurate numerical method for the
Caffarelli–Silvestre extension (1.2). In particular, we will develop suitable strategies to over-
come the two main difficulties outlined above:

• Since yα is exactly the weight associated with the generalized Laguerre functions, it is
natural to use generalized Laguerre functions as basis functions in the y-direction. This
will lead to sparse stiffness and mass matrices in the y-direction. However, expansion by
the generalized Laguerre functions can not accurately approximate the weakly singular
solution at y = 0. Therefore, we first determine the singular behavior at y = 0 for
the solution of (1.2), and then enrich the approximation space by adding a few leading
singular terms of the solution.Wewill show that convergence rate of the enriched spectral
methodwill increase by one for each additional singular term in the approximation space.

• Since the extended domain is of tensor-product type, we shall use the matrix diagonal-
ization method [16,18,23] to reduce the d + 1-dimensional problem to a sequence of
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d-dimensional Poisson type equations that can be solved by your favorite method in the
original domain. Due to the high accuracy of the discretization in the y-direction, the
number of d-dimensional Poisson type equations needed to be solved is relatively small,
making the total algorithm accurate as well as efficient.

More precisely, our enriched spectral method in the extended direction coupled with one’s
favorite discretization in the original domain for (1.2) enjoys the following advantages: (i)
accuracy it can achieve high-order convergence rate in the extended y-direction despite the
weak singularity at y = 0; (ii) efficiency it only requires solving a small number of Poisson
type equation in the original domain ; (iii) flexibility it can be used with any approximation
method in the original domain. We will present ample numerical results to show that this
method is very effective in dealing with the fractional Laplacian problem. Note that the
numerical techniques proposed in this work can also be applied to solving more general
fractional elliptical problems through the Cafarelli–Silvestre extension (see [3,4,21]).

The paper is organized as follows. In the next section, we introduce some nota-
tions, describe the Caffarelli–Silvestre extension, and recall basic properties of generalized
Laguerre function and its approximation results. In Sect. 3,we develop a fast spectralGalerkin
method using the generalized Laguerre functions for the extension problem, conduct error
analysis, and present some supporting numerical results. In Sect. 4, we construct an efficient
enriched spectral method to deal with the weak singularity at y = 0 for (1.2), carry out a
detailed analysis, and present numerical results to validate our analysis. We conclude with a
few remarks in Sect. 5.

2 Preliminaries

2.1 Some Functional Spaces andWeak Formulation of the Caffarelli–Silvestre
Extension

Let � be an open, bounded and connected domain in R
d (d ≥ 1) with Lipschitz boundary

∂�, and � := (0,∞). We denote the semi-infinite cylinder in Rd+1 and its lateral boundary
by

D := � × �, ∂LD := ∂� × �̄. (2.1)

We denote a vector in Rd+1 by

(x, y) = (x1, x2, . . . , xd , y).

Let Z be either � or � or D, and ω be a positive weight function. We denote

(
p, q

)
ω,Z :=

∫
Z

p(z)q(z)ω(z)dz, ‖p‖ω,Z = (
p, p

)
ω,Z , (2.2)

and

H1
ω(Z) := {v ∈ L2

ω(Z) : ∇v ∈ L2
ω(Z)}, (2.3)

equipped with norm and semi-norm

‖v‖ω,Z := (
v, v

)
ω,Z , ‖v‖1,ω,Z := (‖v‖2ω,Z + ‖∇v‖2ω,Z)1/2. (2.4)

We will omit the weight ω from the notations when ω ≡ 1.
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In order to study the extension problem (1.2), we define

H1,b
yα (D) := {∇v ∈ L2

yα (D) : lim
y→∞ v(x, y) = 0, v(x, y)|∂LD = 0,

}
(2.5)

with the norm

‖v‖H1,b
yα (D)

= ‖∇v‖yα,D. (2.6)

Denote the trace of any function v ∈ H1,b
yα (D) by

tr{v}(x) := v(x, 0).

We recall the following result [22, Proposition 2.5]:

Lemma 2.1 Let� ⊂ R
d be a bounded Lipschitz domain and α = 1−2s. The trace operator

tr satisfies trH1,b
yα (D) = H

s(�) and

‖trv‖Hs (�) ≤ c‖v‖H1,b
yα (D)

, ∀v ∈ H1,b
yα (D).

Then, the weak formulation of (1.2) is: Given f ∈ H
−s(�), find U ∈ H1,b

yα (D) such that

(
yα∇U ,∇V

)
D = ds

(
f , tr{V })

�
, ∀V ∈ H1,b

yα (D). (2.7)

The wellposedness of the above weak formulation is a direct consequence of Lax–Milgram
lemma and Lemma 2.1.

2.2 Fractional Laplace Operator (Fractional Laplacian)

There are essentially twoways to define the fractional Laplacian operator (−�)s in a bounded
domain, one is defined in the integral form and the other in spectral form [4,20]. In this paper,
we will consider the latter. More precisely, let {λn, ϕn} be the eigenvalues and orthonormal
eigenfunctions of the Laplacian with homogeneous Dirichlet boundary conditions, i.e.,

− �ϕn = λnϕn, ϕn |∂� = 0; (ϕn, ϕn) = 1. (2.8)

It is well-known that 0 < λ1 ≤ λ2 ≤ · · · ≤ λn → +∞, and {ϕn} forms an orthonormal
basis in L2(�) space (see [12]). Then, the fractional Laplacian is defined by:

(−�)sv =
∞∑
n=1

v̂n λsn ϕn, v̂n =
∫

�

vϕn . (2.9)

We aslo define the Hilbert space associated with the spectrum of the Laplacian:

H
r (�) = {

v =
∞∑
n=1

v̂n ϕn ∈ L2(�) : |v|2
Hr (�) =

∞∑
n=1

(λn)
r |v̂n |2 < ∞}

.

Obviously, for any s < r , there exists

|v|Hs (�) ≤ c|v|Hr (�). (2.10)
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2.3 Generalized Laguerre Functions

Since (2.7) involves a singular weight function yα , it is natural to use the generalized Laguerre
function {L̂ (α)

n (y)} which are orthogonal with respect to the weight yα .
We start by reviewing some basic properties of the generalized Laguerre functions

L̂
(α)
n (y) := e− y

2 L
(α)
n (y), whereL (α)

n (y) is the generalized Laguerre polynomial [1,24,26].
It is clear that {L̂ (α)

n (y)} forms a complete basis in L2
yα (�), and they are mutually orthogonal

with respect to the weight yα:∫ ∞

0
L̂ (α)

n (y) L̂ (α)
m (y) yα dy = γ (α)

n δmn, γ (α)
n = �(n + α + 1)

�(n + 1)
. (2.11)

The generalized Laguerre functions can be efficiently and stably computed by the three-
term recurrence formula

L̂
(α)
−1(y) ≡ 0, L̂

(α)
0 (y) = e−y/2,

L̂
(α)
n+1(y) = 2n + α + 1 − y

n + 1
L̂ (α)

n (y) − n + α

n + 1
L̂

(α)
n−1(y).

(2.12)

Denote P̂ y
N = span{L̂ (α)

n (y), 0 ≤ n ≤ N }. For any u ∈ L2
yα (�), we define(

π
y
N u − u, v

) = 0 ∀v ∈ P̂ y
N . (2.13)

Next, we define a generalized derivative by ∂̂y = ∂y+ 1
2 and the corresponding non-uniformly

weighted Sobolev space

B̂m
α (�) := {

v : ∂̂ l
yv ∈ L2

yα+l (�), 0 ≤ l ≤ m
}
, α > −1, m ∈ N.

Lemma 2.2 [24, Theorem 7.9] For any u ∈ B̂m
α (�) and 0 ≤ m ≤ N + 1,

‖̂∂ l
y (u − π

y
N u)‖yα+l ,� ≤

√
(N − m + 1)!
(N − l + 1)! ‖̂∂my u‖yα+m ,�, 0 ≤ l ≤ m. (2.14)

3 A First Galerkin Approximation

In this section, we investigate the Galerkin approximation to (2.7) with generalized Laguerre
functions as basis functions in the extended dimension. We shall first derive a fast algorithm
for solving the resultant linear system, and then derive an error analysis which reveals, in
particular, how the convergence rate is affected by the singularity at y = 0.

3.1 Galerkin Approximation

Since the domain D is a tensor-product domain, it is natural to use a tensor-product approx-
imation. Let Xh be a suitable approximation space in the x-direction,

Xh = span{φx
m(x) : 1 ≤ m ≤ M}, (3.1)

and

YN = span{φy
n (y) = L̂

(α)
n−2(y) − L̂

(α)
n−1(y) : 1 ≤ n ≤ N }. (3.2)
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Then, the Galerkin method for (2.7) is to find Uh
N ∈ Xh × YN such that(

yα∇Uh
N ,∇V

)
D = ds

(
f , tr{V })

�
∀ V ∈ Xh × YN . (3.3)

We denote

Sx = (sxml)M×M , Mx = (mx
ml)M×M , sxml = (∇xφ

x
l ,∇xφ

x
m

)
�
, mx

ml = (
φx
l , φx

m

)
�
,

Sy = (synp)N×N , My = (my
np)N×N , synp = (

yα∂yφ
y
p, ∂yφ

y
n
)
�
, my

np = (
yαφ

y
p, φ

y
n
)
�
,

F = ( fmn)M×N , fmn = dsφ
y
n (0)

(
f , φx

m

)
�
,

whereMx and Sx are the mass and stiffness matrices in x-direction(s), andMy and Sy are the
mass and stiffness matrices in the extended y-direction. We start by deriving explicit formula
forMy and Sy .

Using the relation [24, (7.26)], we find

∂̂yL̂
(α)
n (y) = (∂y + 1

2
)L̂ (α)

n (y) = −L̂
(α+1)
n−1 (y) = −

n−1∑
n=0

L̂
(α)
k (y), (3.4)

which implies

∂yL̂
(α)
n = −

n−1∑
j=0

L̂
(α)
j − 1

2
L̂ (α)

n .

Hence,

∂yφ
y
n = ∂yL̂

(α)
n−2 − ∂yL̂

(α)
n−1 = 1

2
(L̂

(α)
n−2 + L̂

(α)
n−1). (3.5)

Then, by the orthogonality (2.11), we find that both My and Sy are symmetric tridiagonal
with non-zero entries given by

synp = 1

4

⎧⎪⎨
⎪⎩

γ
(α)
n−2 + γ

(α)
n−1, p = n,

γ
(α)
n−1, p = n + 1,

γ
(α)
n−2, p = n − 1,

my
np =

⎧⎪⎨
⎪⎩

γ
(α)
n−2 + γ

(α)
n−1, p = n,

−γ
(α)
n−1, p = n + 1,

−γ
(α)
n−2, p = n − 1,

(3.6)

where γ
(α)
−1 = 0 and γ

(α)
k = �(k + α + 1)/�(k + 1).

Setting in (3.3)

Uh
N (x, y) =

M∑
m=1

N∑
n=1

ũmnφ
x
m(x)φy

n (y),

and taking, successively, V (x, y) = φx
i (x)φy

j (y), the equation (3.3) is reduced to the matrix
system

Sx UMy + Mx USy = F. (3.7)

3.2 Fast Algorithmwith Diagonalization in the Extended Direction

The linear system (3.7) can be efficiently solved by the matrix decomposition method [18],
which is also known in the field of spectral methods as the matrix diagonalization method
(cf. [16,23]), as follows.
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We first precompute the generalized eigenvalue problem

My ei = λiSy ei
∣∣
i=1,2,...,N ⇐⇒ My E = Sy E�, (3.8)

where� is a diagonal matrix whose diagonal entries are eigenvalues {λi }, and the i-th column
of E is the eigenvector ei . Then, setting U = VET and using (3.8), we can rewrite (3.7) as

Sx V�ET Sy + Mx VET Sy = F, (3.9)

which, thanks to the fact ETE = I , is equivalent to

Sx V� + Mx V = G := F(Sy)−1E. (3.10)

Let vi and gi be the i-th row of V and G, respectively, we find

(λiSx + Mx )vi = gi , i = 1, 2, . . . , N . (3.11)

We observe that for each i , (3.11) is simply the linear system resulted from the Galerkin
approximation in Xh of the Poisson type equation

−λi�vi + vi = gi , vi |∂� = 0,

which can be efficiently solved by your favorite method at a cost of C(M) flops, where, for
instance, C(M) = O(M) with a multigrid finite-element method, or C(M) = O(M (d+1))

with a spectral method with d being the spatial dimension.
To summarize, we can solve (3.7) with the following procedure:

Step 1 Compute G = F(Sy)−1E (O(N 2M) flops since Sy is tridiagonal );
Step 2 Solve vi from (3.11) for i = 1, . . . , N (NC(M) flops);
Step 3 Set U = VET , (O(N 2M) flops).

We hope that N � M so the cost is dominated by the second step, which is a small number
N times the cost for solving one regular Poisson type equation in �.

3.3 Error Estimate

To better describe the error, we introduce the weighted Hilbert space

H1
yα (�) = {v ∈ L2

yα (�) : ∂yv ∈ L2
yα (�)}, α > −1.

The results in Lemma 2.2 does not provide a projection error in the H1
yα (�) norm. It has

to be derived separately as follows.

Lemma 3.1 For any u ∈ H1
yα (�) ∩ B̂m

α (�) and ∂yu ∈ B̂m−1
α (�), m ≥ 2, we have

‖∂y(u − π
y
N u)‖yα,� ≤ cN

2−m
2 ‖̂∂my u‖yα+m−1,� (3.12)

where generalized derivative operator ∂̂y = ∂y + 1/2 is defined in (3.4).

Proof For any u ∈ L2
yα (�), we can expand u and its projection as follows

u =
∞∑
n=0

ũnL̂
(α)
n , π

y
N u =

N∑
n=0

ũnL̂
(α)
n , ũn = (

γ (α)
n

)−1
(u, L̂ (α)

n )yα,�. (3.13)
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We denote ũsk =
∞∑

n=k+1
ũn . Applying (3.4) and the definition ∂̂y = ∂y + 1/2 into the above

expansion leads to

∂yu + 1

2
u = ∂̂yu =

∞∑
n=0

ũn ∂̂yL̂
(α)
n = −

∞∑
n=1

ũn

n−1∑
k=0

L̂
(α)
k = −

∞∑
k=0

ũskL̂
(α)
k ,

π
y
N ∂yu + 1

2
π
y
N u = −

N∑
k=0

ũskL̂
(α)
k , π

y
N−1∂̂yu − ∂̂yu =

∞∑
k=N

ũskL̂
(α)
k .

Similarly, we have

∂yπ
y
N u + 1

2
π
y
N u = ∂̂yπ

y
N u = −

N−1∑
k=0

(ũsk − ũsN )L̂
(α)
k .

Combing the above identities, we derive

‖∂yπ y
N u − π

y
N ∂yu‖2yα,� = ‖ũsN

N∑
k=0

L̂
(α)
k ‖2yα,� = |ũsN |2γ (α)

N

N∑
k=0

γ
(α)
k (γ

(α)
N )−1.

For any ∂̂yu ∈ B̂m−1
α (�), α > −1, we have

|ũsN |2γ (α)
N ≤

∞∑
k=N

|ũsk |2γ (α)
k = ‖π y

N−1∂̂yu − ∂̂yu‖2yα,� ≤ cN 1−m ‖̂∂my u‖2yα+m−1,�
(3.14)

Moreover, thanks to [15, (3.8)–(3.10)], there exist a positive constant c such that

N∑
k=0

γ
(α)
k (γ

(α)
N )−1 ≤ c(N + 1). (3.15)

Then, using the triangle inequality

‖∂y(π y
N u − u)‖yα,� ≤ ‖∂yπ y

N u − π
y
N ∂yu‖yα,� + ‖π y

N ∂yu − ∂yu‖yα,�, (3.16)

and combing (3.14)–(3.16) and Lemma 2.2, we arrive at

‖∂y(u − π
y
N u)‖yα,� ≤ c(N

2−m
2 ‖̂∂my u‖yα+m−1,� + N

1−m
2 ‖̂∂m−1

y ∂yu‖yα+m−1,�).

��
The following result is now a direct consequence of the above lemma and Lemma 2.2

with l = 0.

Theorem 3.1 For any u ∈ H1
yα (�) ∩ B̂m

α (�) and ∂yu ∈ B̂m−1
α (�), 2 ≤ m ≤ N + 1,

‖π y
N u − u‖1,yα,� ≤ c N−m

2
(‖̂∂my u‖yα+m ,� + N ‖̂∂my u‖yα+m−1,�

)
. (3.17)

We are now in position to derive error estimate for our Galerkin approximation (3.3).

Theorem 3.2 Let U and Uh
N be the solutions to the weak problem (2.7) and the numerical

problem (3.3), respectively. If U (x, ·) ∈ H1
yα (�) ∩ B̂m

α (�) and ∂yU (x, ·) ∈ B̂m−1
α (�),

2 ≤ m ≤ N + 1, then there exists

‖U −Uh
N‖H1,b

yα (D)
≤ c‖∇x (π

x
h − I)U‖yα,D + c‖(π x

h − I) ∂̂2yU‖yα+1,D.

+ c N−m
2
(‖∇x (̂∂

m
y U )‖yα+m ,D + N ‖̂∂my U‖yα+m−1,D

)
.

(3.18)
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Proof From (2.7) and (3.3), we find(
yα∇(U −Uh

N ),∇V
)
D = 0 ∀ V ∈ Xh × YN ,

which implies that

‖U −Uh
N‖2H1,b

yα (D)
= (

yα∇(U −Uh
N ),∇(U − V )

)
D

≤ ‖U −Uh
N‖H1,b

yα (D)
‖U − V ‖H1,b

yα (D)
,

namely,

‖U −Uh
N‖H1,b

yα (D)
≤ inf

V∈Xh×Y k
N

‖U − V ‖H1,b
yα (D)

. (3.19)

Next, letπ y
N be the Laguerre orthogonal projection defined in (2.13) andπ x

h be a projection
operator defined by

‖u − π x
h u‖H1(�) � inf

uh∈Xh
‖u − uh‖H1(�). (3.20)

Substituting V = π
y
Nπ x

h U in (3.19) results in

‖U − V ‖H1,b
yα (D)

≤ ‖∇(π
y
Nπ x

h U −U )‖yα,D.

Let I be the identity operator, then

‖∇(π
y
N ◦ π x

h U −U )‖yα,D ≤ ‖∇(π x
h − I) ◦ π

y
N U )‖yα,D + ‖∇(π

y
N − I)U‖yα,D.

Thanks to Lemmas 2.2 and 3.1, the first term on the right hand side satisfies

‖∇(π x
h − I) ◦ π

y
N U‖yα,D ≤ ‖∇x (π

x
h − I) ◦ π

y
N U‖yα,D + ‖∂y(π x

h − I) ◦ π
y
N U‖yα,D

≤ c‖∇x (π
x
h − I)U‖yα,D + c‖(π x

h − I) ∂̂2yU‖yα+1,D.

Furthermore, via (2.14) and (3.12), the second term can be estimated that

‖∇(π
y
N − I)U‖yα,D ≤ ‖∇x (π

y
N − I)U‖yα,D + ‖∂y(π y

N − I)U‖yα,D

≤ c N−m
2
(‖∇x (̂∂

m
y U )‖yα+m ,D + N ‖̂∂my U‖yα+m−1,D

)
.

Finally we end the proof by combing the above estimates. ��

3.4 Numerical Examples

The result (3.18) indicates that the error estimate for the extension problem consists of two
parts: the first two terms are the approximation errors of Xh in the x-direction; the last
term is a typical Laguerre-spectral approximation result in the extended direction y, whose
convergence rate only depends on the solution’s regularity in the specified norms, with the
potential of being faster than any algebraic rate should the solution in the specified norms be
bounded for any m. Unfortunately, unless with s = 0.5, solutions of the extension problem
do not have enough regularity in the specified norm as we show below.

Consider, for example, the following one-dimension fractional Laplacian problem{
(−�)su(x) = f (x), x ∈ � = (−1, 1),

u(−1) = u(1) = 0.
(3.21)
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Fig. 1 Left: N = 60, Right: M = 30

The associated Caffarelli–Silvestre extension problem can be read as⎧⎪⎪⎨
⎪⎪⎩

∇ · (yα∇U (x, y)
) = 0, (x, y) ∈ (−1, 1) × (0,∞),

− lim
y→0

yαUy(x, y) = ds f (x),

U (±1, y) = 0, y ∈ (0,∞).

(3.22)

where ds = 21−2s �(1−s)
�(s) and α = 1 − 2s, 0 < s < 1, s �= 1

2 . Then, we have the following

numerical scheme: Find Uh
N ∈ Xh × YN such that

(
y1−2s∇Uh

N ,∇V
)
D =

∫ 1

−1
f (x) V (x, 0)dx ∀ V ∈ Xh × YN . (3.23)

We select the generalized Jacobi polynomials [10,13,14,26]

φx
m(x) = P(−1,−1)

m+1 (x) := −1

4
(1 − x2)P(1,1)

m−1 (x), m = 1, 2, . . .

as the basis in x direction to derive the corresponding stiffness matrix Sx and mass matrix
Mx . Indeed, via the relations(
φm

)′ = (
P(−1,−1)
m+1

)′ = m

2
P(0,0)
m , P(−1,−1)

m+1 = m

2(2m + 1)

(
P(0,0)
m+1 − P(0,0)

m−1

)
, m ≥ 1,

their entries can be calculated out exactly that

sxml = m2

2(2m + 1)
δml , mx

ml = mx
lm =

⎧⎪⎪⎨
⎪⎪⎩

m2

(2m−1)(2m+1)(2m+3) , l = m;
−m(m+2)

2(2m+1)(2m+3)(2m+5) , l = m + 2;
0, otherwise.

(3.24)

For the resource term f (x) = π2s sin(πx), the solution u(x) = sin(πx) can be detected
from the definition of the fractional Laplace operator. We first test the efficiency of the
numerical method to the extension problem (3.22) with smooth solution with s = 0.5. Figure
1 exhibits the high accuracy and efficiency (exponential decay) of the spectral scheme (3.23),
in which M and N are degrees of the freedom in x direction and y direction respectively, the
’error’ is the difference between Uh

N (x, 0) and u(x).
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Fig. 2 Left: N = 60, Right: M = 30

The approximation result (3.18) showed that the convergence rate doesn’t only rely on the
regularity in the x direction, the regularity of the y direction also can determine the efficiency
of the spectral method. In fact, we will provide a detail in the next section that the regularity
of the solution U (x, y) is quite low in y direction except the special case s = 0.5. Hence,
the convergence rate is slow even though we choose the smooth function u = sin(πx) as the
solution of the fractional Laplacian problem (3.21). Figure 2 verified the theoretical result of
Theorem 3.2, in which we test the numerical method with different parameter s. Besides the
case s = 0.5, the others converge to the solution u inefficiently due to the low regularity of
solutions in y direction.

4 Galerkin Approximation with Enriched Space in Extended Direction

The Caffarelli–Silvestre extension transformed the complicated d-dimension fractional
Laplacian problem into a simple d + 1-dimension second order differential equation which
provided a new strategy to deal with problems involving fractional Laplacian. The Galerkin
method proposed in the previous section shows the convenience of the fast algorithm. How-
ever, as stated in the numerical examples of the previous section, the low regularity in y
direction seriously deteriorates the convergence rate of the usual numerical method. To over-
come this, wewill use the enriched spectralmethod (see [9]) to improve the numericalmethod
and enhance its convergence rate in this section.

4.1 Enriched Spectral Method for a Sturm–Liouville Problem

We are concerned with the implementation of the enriched spectral method to the following
Sturm–Liouville problem⎧⎨

⎩
−ψ ′′(y) − α

y
ψ ′(y) + λ ψ(y) = 0, y ∈ � = (0,∞),

ψ(0) = 1, lim
y→∞ ψ(y) = 0,

(4.1)

where λ > 0 and α = 1− 2s, s ∈ (0, 1). The solution ψ(y) with different parameter λ > 0
coincides with the basis arisen in the solution of the Caffarelli–Silvestre extension. So It’s
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absolutely necessary to figure out the above Sturm–Liouville problem for designing efficient
and accurate numerical method to solve the d + 1 dimensional extension problem.

Thanks to [7, Proposition 2.1], the solution of the above problem could be written as

ψ(y) =
⎧⎨
⎩e−√

λy, s = 1

2
;

21−s

�(s) (
√

λy)s Ks(
√

λy), s ∈ (0, 1)/{ 12 },
(4.2)

where Bessel functions

Ks(z) := π

2

I−s(z) − Is(z)

sin(sπ)
, Is(z) :=

∞∑
j=0

1

j !�( j + 1 + s)

( z
2

)2 j+s
.

In detail, for s ∈ (0, 1)/{ 12 },

ψ(y) = 21−s

�(s)
(
√

λy)s Ks(
√

λy) = π

2ssin(sπ)�(s)

{
(
√

λy)s I−s(
√

λy) − (
√

λy)s Is(
√

λy)
}

= π

2ssin(sπ)�(s)

⎛
⎝ ∞∑

j=0

(
√

λy)2 j

22 j−s j !�( j + 1 − s)
−

∞∑
j=0

(
√

λy)2 j+2s

22 j+s j !�( j + 1 + s)

⎞
⎠ .

(4.3)

Furthermore, it can be detected that

lim
y→0

yαψ ′(y) = −dsλ
s, ds = 21−2s �(1 − s)

�(s)
.

That results in∫
�

yα[−ψ ′′(y) − α

y
ψ ′(y)]v(y)dy =

∫
�

−(
yαψ ′(y)

)′
v(y)dy = (

yαψ ′, v′) − dsλ
sv(0).

4.1.1 Laguerre Spectral Method

Now we are ready to construct the variational formula of the Sturm–Liouville problem (4.1),
it can be read as to find ψ ∈ H1

yα (�) such that

a(ψ, v) := (
yαψ ′, v′)

�
+ λ

(
yαψ, v

)
�

= dsλ
sv(0), v ∈ H1

yα (�). (4.4)

It’s evident that for any λ > 0,

a(w,w) ≥ min{1, λ}‖w‖21,yα,�, a(w, z) ≤ ‖w‖1,yα,�‖z‖1,yα,�. (4.5)

Moreover, for any −1 < α < 1,

(v(0))2 =
(∫ ∞

0
∂y(v(y)e−y/2) dy

)2

=
(∫ ∞

0

(
∂yv − v/2

)
e−y/2 dy

)2

≤
∫ ∞

0
y−αe−y dy

(‖v‖2yα,�/4 + ‖∂yv‖yα,� −
∫ ∞

0
v∂yvy

α dy
)

≤ 2�(1 − α)‖v‖21,yα,�.

Then, owe to Lax–Milgram Lemma, the variational problem admits an unique solution.
In accordance with the variational formulation (4.4), the related Laguerre-spectral scheme

is to find ψN ∈ YN such that

a(ψN , v) = dsλ
sv(0) ∀v ∈ YN , (4.6)
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where 0 < s < 1, λ > 0 and ds = 21−2s�(1 − s)/�(s) are the same as before. By elliptic
condition (4.5), it’s easy to obtain by following classical Galerkin method that

‖ψN − ψ‖1,yα,� ≤ (min{1, λ})−1 inf
v∈YN

‖v − ψ‖1,yα,�.

Then, by taking v = π
y
Nψ , it can be derived from Theorem 3.1 that

‖ψN − ψ‖1,yα,� ≤ cmax{1, λ−1} N 1−m
2
(‖̂∂my ψ‖yα+m ,� + √

N ‖̂∂my ψ‖yα+m−1,�

)
. (4.7)

The convergence rate indexm strictly relies on the regularity of the solutionψ . It’s easy to
observe from (4.3) that the regularity of the function ψ is quite low near y = 0 and behaves
as

ψ(y) ∼ 1 + s1y
2sg(y) = 1 + s1y

1−αg(y), g(y) ∼ 1 as y → 0,

where g(y) is smooth near the origin y = 0.

Remark 4.1 Via the expression (4.3), the coefficient s1 can be exactly calculated out that

s1 = −π

4s sin(sπ)�(s)�(1 + s)
λs = −�(1 − s)

4s�(1 + s)
λs, (4.8)

in which the second equality owes to Euler reflection formula π/ sin(sπ) = �(s)�(1 − s).

Remark 4.2 The above singularity analysis near y = 0 is indispensable for subsequent error
analysis of the Caffarelli–Silvestre extension in the next section.

In fact, for any α ∈ (−1, 1)/{0}, in order to bound ‖̂∂my ψ‖yα+m ,� and ‖̂∂my ψ‖yα+m−1,�,
the indexm must be less than 2−α. This is a quite low convergence rate which leads to low-
efficiency of the Laguerre-spectral method, so we need to design a more efficient numerical
method for solving Sturm–Liouville problem (4.1).

A reasonable attack is to split several low regular terms from the solution ψ as the basis
adding into the original smooth basis space YN . In reality, near the origin y = 0, function
ψ(y) can be expanded by Taylor formula as

ψ(y) = 1 + y−α
∞∑
i=1

si y
i , y → 0.

Moreover, functions ψ is completely monotonic (see [19]), which implies that the solution
ψ exponentially converges to zero as y → ∞. Hence, the solution ψ can be split into

ψ(y) = e−y/2 + s1[y1−αe−y/2 + a2y
2−αe−y/2 + · · · + ak y

k−αe−y/2 + yk+1−α g̃(y)]

= e−y/2 +
k∑

i=1

si y
i−αe−y/2 + s1y

k+1−α g̃(y), y ∈ � = (0,∞),
(4.9)

where constants si = s1ci , i = 2, . . . , k and g̃(y) is a smooth function defined on � ∪ {0}.
For the sake of simplicity, we denote

Y k
N := YN ⊕ span

{Si}ki=1, Si (y) := yi−αe−y/2. (4.10)

123



   17 Page 14 of 25 Journal of Scientific Computing            (2020) 82:17 

4.1.2 Enriched Laguerre Spectral Method

Our new numerical method can be read as: find ψk
N ∈ Y k

N such that

a(ψk
N , v) = dsλ

sv(0) ∀v ∈ Y k
N . (4.11)

Following the same way as the spectral method results in the estimate below

‖ψk
N − ψ‖1,yα,� ≤ max{1, λ−1} inf

v∈Y k
N

‖v − ψ‖1,yα,�.

Due to

ψ(y) = ψ̃(y) +
k∑

i=1

si Si (y), ψ̃(y) = e−y/2 + yk+1−α g̃(y)

then, by taking

v = �̂
y
N ψ̃(y) +

k∑
i=1

si Si (y)

and applying Theorem 3.1, we have

‖v − ψ‖1,yα,� ≤ ‖�̂y
N ψ̃ − ψ̃‖1,yα,� ≤ c N−m

2
(‖̂∂my ψ̃‖yα+m ,� + N ‖̂∂my ψ̃‖yα+m−1,�

)
in which m is the largest integer such that ‖̂∂my ψ̃‖yα+m−1 < ∞, ∂̂my = (∂y + 1/2)m .

Hence, the approximate estimate of the enriched spectral method can be concluded as a
theorem as follows

Theorem 4.1 Let ψk
N and ψ be solutions of the enriched spectral scheme (4.11) and the

variational form (4.4), respectively. Then it holds

‖ψk
N − ψ‖1,yα,� ≤ cN− [2−α]

2 −k max{1, λ−1}(‖̂∂my ψ̃‖yα+m ,� + N ‖̂∂my ψ̃‖yα+m−1,�

)
,

where m = 2k + 1 + [1 − α] and [1 − α] is the integer part of 1 − α = 2s.

Remark 4.3 Since ψ is monotonic (see [19]), function ψ̃(y) = ψ(y) − ∑k
i=1 si Si (y) is

smooth in � except at the origin y = 0. Moreover, we can detect from the above analysis
that: i) the range of the function ψ̃ relies on parameter

√
λ; ii) the singularity near y = 0

behaves as yk+1−α .

Remark 4.4 In view of the expression of functions

ψ(y) =
⎧⎨
⎩e−√

λy, s = 1

2
;

21−s

�(s) (
√

λy)s Ks(
√

λy), s ∈ (0, 1)/{ 12 },
it can be shown that for λ � 1,

‖̂∂my ψ̃‖yα+m ,� = O(λ
m−1−α

4 ), ‖̂∂my ψ̃‖yα+m−1,� = O(λ
m−α
4 ). (4.12)

In fact, via the derivative relation ∂my = λ
m
2 ∂mz , z = √

λy and ∂̂y = ∂y + 1/2, the above
relations are the direct consequence.
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4.1.3 Numerical Implementation

In order to derive a fast algorithm for enriched spectral method, we choose the basis and test
functions as follows

φ
y
n (y) = L̂

(α)
n−2(y) − L̂

(α)
n−1(y), n ≥ 1; Si (y), i = 1, 2, . . . k.

The numerical solution of the enriched spectral method can be expanded as

ψk
N (y) =

N∑
n=1

c̃nφ
y
n (y) +

k∑
i=1

s̃iSi (y).

Then, by taking v = φ
y
n (y), Si (y), n = 1, 2, . . . , N , i = 1, 2, . . . , k successively, the

enriched Laguerre-spectral scheme (4.11) is equivalent to matrix system below([
SeA SeB
SeC SeD

]
+ λ

[
Me

A Me
B

Me
C Me

D

])[
c
s

]
=
[
f
h

]
(4.13)

where the coefficient vectors c = [c̃1 c̃2 . . . c̃N ]T and s = [s̃1 s̃2 . . . s̃k]T and

SeA = (s Anp)N×N , Me
A = (mA

np)N×N , s Anp = (
yα∂yφ

y
p, ∂yφ

y
n
)
�
, mA

np = (
yαφ

y
p, φ

y
n
)
�
;

SeB = (sBni )N×k, Me
B = (mB

ni )N×k, sBni = (
yα∂ySi , ∂yφy

n
)
�
, mB

np = (
yαSi , φy

n
)
�
;

SeC = (s Ain)k×N , Me
C = (mC

in)k×N , sCin = (
yα∂yφ

y
n , ∂ySi

)
�
, mC

in = (
yαφ

y
n ,Si

)
�
;

SeD = (sDi j )k×k, Me
D = (mD

i j )k×k, sDi j = (
yα∂yS j , ∂ySi

)
�
, mD

i j = (
yαS j ,Si

)
�
;

f = ( fn)N×1, h = (hi )k×1, fn = dsλsφ
y
n (0), hi = dsλsSi (0) = 0.

(4.14)

The reader undoubtedly has already found that SeA andMe
A are the same as the y directional

matrixes Sy and My defined in the previous section.
Since the low regularity (when y → 0+) severely deteriorates the convergence rate of

spectral scheme (4.6), we prefer to use enriched spectral scheme (4.11) to improve the
computional efficiency. However, matrixes

Se :=
[
SeA SeB
SeC SeD

]
, Me :=

[
Me

A Me
B

Me
C Me

D

]
(4.15)

are ill-conditional due to combining two distinct basis groups {φy
n }Nn=1 and {Si }ki=1 in the

same numerical scheme. To circumvent this barrier, we apply Schur complement method in
the practical implementation. Indeed, we can rewrite the matrix system (4.13) as[

A B
C D

] [
c
s

]
=
[
f
h

]
. (4.16)

Alternatively,

Ac + Bs = f, Cc + Ds = h

where

A = SeA + λMe
A, B = SeB + λMe

B , C = SeC + λMe
C , D = SeD + λMe

D .

Then, the coefficient vectors s and c can be derived from Schur complement

(CA−1B − D)s = CA−1f − h, Ac = f − Bs. (4.17)
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Fig. 3 Left: λ = 2, s = 0.5, 0.31, 0.82. Right: λ = 2, s = 0.31

Table 1 λ = 10, s = 0.3, k = 3

N : Degree of polynomial N = 5 N = 15 N = 25 N = 35

s1: Exact value −1.903947334 −1.903947334 −1.903947334 −1.903947334

s̃1: Approximate value −1.883879268 −1.904573650 −1.904015257 −1.903950897

Owe to A = SeA + λMe
A is tridiagonal, matrixes A−1B, A−1f and vector c can be obtained

in O(N ) operations instead of O(N 3) required by Gaussian elimination.

4.1.4 Numerical Results

From the observation of the exact solution (4.2), we know that ψ(y) = e−√
λy is a smooth

function when s = 0.5, i.e. α = 1 − 2s = 0, so the spectral scheme (4.6) is efficient to
approximate the solution, which can be verified by the numerical experiment in the left of
the Fig. 3. However, the cases with s = 0.31 and s = 0.82 show that the same method
does not work well for s ∈ (0, 1)/{0.5} due to the low regularity of the solution ψ(y) =
21−s

�(s) (
√

λy)s Ks(
√

λy).
Theorem 4.1 showed that the enriched spectral method (4.11) can enhance the compu-

tational efficiency and improve the numerical results. We apply this method to the singular
case with s = 0.31. The results are shown in the right of the Fig. 3 which exhibits that the
enriched spectral method does enhance the convergence rate significantly by adding k lead-
ing singular terms. However, since the singular terms are not orthogonal, they lead to very
ill conditioned system as k increases. we observe in Fig. 3 that, if adding too many singular
terms, the convergence rate may deteriorate due to the ill-conditioning.

FromRemark 4.1, we have the exact value of the coefficient of the singular termS1(y) that
s1 = −�(1−s)

4s�(1+s) λ
s . The corresponding approximate value s̃1 can be derived from the Schur

complement method (4.17). In Table 1, we fix parameters λ = 10, s = 0.3 and k = 3,
and test the accuracy of the approximate value of the coefficient s1. In Table 2, we test the
accuracy for different values of the parameter λ with fixed N = 80. The numerical results
show that the accuracy is lower for the two extremes ( λ = 1000 or λ = 10−5). This verifies
the result of Theorem 4.1 that the error estimate relies on max{1, λ−1}, and function ∂̂my ψ̃

involving the parameter λ.
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Table 2 N = 80, s = 0.3, k = 3

λ: Parameter λ = 10−5 λ = 1 λ = 10 λ = 1000

s1: Exact value −0.030175531 −0.954234097 −1.903947334 −7.579750862

s̃1: Approximate value −0.035897847 −0.954233208 −1.903905991 −7.482972485
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Fig. 4 Left: λ = 2, s = 0.31. Right: λ = 2, s = 0.82

Theorem 4.1 showed that the error ‖ψk
N − ψ‖1,yα,� enjoys the convergence rate

N− [1+2s]
2 −k . In order to further verify the theoretical result, we plot the error curves and

their theoretical convergence rate in Fig. 4.

4.2 Enriched Spectral Method for the Caffarelli–Silvestre Extension

The solution of the fractional Laplacian problem (1.1) can be derived from the Caffarelli–
Silvestre extension (1.2), i.e. u(x) = U (x, 0). Indeed, owe to [4, Lemma 2.2] and [7,
Proposition 2.1],

U (x, y) =
∞∑
n=1

ũnφn(x)ψn(y), (4.18)

where ψn(y), n = 1, 2, . . . are the eigenfunctions of the Sturm–Liouville problem (4.1)
with some determined eigenvalues λn . That implies that there exists singularity in y direction
affects the convergence rate, we need to apply enriched spectral method in y-axis.

4.2.1 Enriched Spectral Scheme

The enriched spectral approximation is to find Uh
N ,k ∈ Xh × Y k

N such that(
yα∇Uh

N ,k,∇V
)
D = ds

(
f , tr{V })

�
∀ V ∈ Xh × Y k

N . (4.19)

Obviously, the numerical solution can be expanded as

UMN (x, y) =
M∑

m=1

N∑
n=1

ũmnφ
x
m(x)φy

n (y) +
M∑

m=1

k∑
l=1

ũsmiφ
x
m(x)Si (y),
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where φ
y
n (y) and Si (y) are the same as the basis in the Sturm–Liouville case. By taking

V (x, y)=φx
m(x)φy

n (y), and φx
m(x)Si (y), m=1, 2, . . . , M, n=1, 2, . . . , N , i=1, 2, . . ., k

successively, we obtain the matrix system{[
Me

A Me
B

Me
C Me

D

]
⊗ Sx +

[
SeA SeB
SeC SeD

]
⊗ Mx

}[−→
U−→
Us

]
=
[−→
F−→
Fs

]
(4.20)

where U := (ũmn)M×N and Us := (ũsmj )M×k are the coefficients matrixes and

Sx = (sxml)M×M , Mx = (mx
ml)M×M , sxml = (∇xφx

l ,∇xφx
m

)
�
, mx

ml = (
φx
l , φx

m

)
�
;

F = ( fmn)M×N , Fs = ( f smi )M×k, fmn = dsφ
y
n (0)

(
f , φx

m

)
�
, f smi = dsSi (0)

(
f , φx

m

)
�
.

The y-directional matrixes

Se :=
[
Sy
A Sy

B

Sy
C Sy

D

]
, Me :=

[
My

A My
B

My
C My

D

]

are the same as (4.15) arose in the case of the Sturm–Liouville problem. The notation ⊗
represents the Kronecker product and

−→
X is the vectorization of the matrix X formed by

stacking the columns of X into a single column vector.
We further denote

Ue := [
U Us

]
, Fe := [

F Fs
]
,

then there exists a equivalent form of the matrix system (4.20) below,

Sx Ue Me + Mx Ue Se = Fe. (4.21)

Using the fast algorithm provided in Sect. 3.2, the above matrix system can be resolved
efficiently by matrix diagonalization method in y direction.

4.3 Error Estimate

Combing variational formulation (2.7) and numerical scheme (4.19) leads to(
yα∇(U −Uh

N ,k),∇V
)
D = 0, ∀ V ∈ Xh × Y k

N .

Then, via Cauchy–Schwarz inequality, we have that for any � ∈ Xh × Y k
N

‖U −Uh
N ,k‖2H1,b

yα (D)
= (

yα∇(U −Uh
N ,k),∇(U − �)

)
D

≤ ‖U −Uh
N ,k‖H1,b

yα (D)
‖U − �‖H1,b

yα (D)
,

namely,

‖U −Uh
N ,k‖H1,b

yα (D)
≤ inf

�∈Xh×Y k
N

‖U − �‖H1,b
yα (D)

. (4.22)

As shown in (4.18) that the solutions of the Caffarelli–Silvestre extension problem and
the related fractional Laplacian problem could be respectively expressed as

U (x, y) =
∞∑
n=1

ũnφn(x)ψn(y), u(x) = U (x, 0) =
∞∑
n=1

ũnφn(x),
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where the orthonormal basis φn(x) is the eigenfunction of the classical Laplace eigenvalue
problem (2.8) with the corresponding eigenvalue λn ; the function ψn(y) is the solution of
the Sturm–Liouville problem (4.1) with parameter λ = λn .

Owe to the analysis of Sturm–Liouville problem in previous section, the function ψn(y)
can be split as

ψn(y) = c1nS1(y) + c2nS2(y) + · · · + cknSk(y) + ψ̃n(y),

where constants {cin}ki=1 are the coefficients of the weak singular terms {Si (y) =
yi−αe− y

2 }ki=1. So function ψ̃n(y) is a smooth function in�with regularity behaves as yk+1−α

near y = 0. Similar to the analysis in Remark 4.4, it holds that for λ � 1,

‖̂∂my ψ̃n‖yα+m ,� = O(λ
m−1−α

4 ), ‖̂∂my ψ̃n‖yα+m−1,� = O(λ
m−α
4 ). (4.23)

Without loss of generality,wedenoteπ x
h an efficient approximation operator in x directions

and assume that for σ = 0, 1 and positive integer r

‖∇σ
x (π x

h v − v)‖ ≤ hr−σ ‖∇rv‖� ∀v ∈ Hr (�), (4.24)

where operator ∇2k := �k and ∇2k+1 := ∇�k for any integer k.
Then, by taking � ∈ Xh × Y k

N such that

U (x, y) − �(x, y) =
∞∑
n=1

ũnφn(x)ψ̃n(y) − π x
h

( ∞∑
n=1

ũnφn(x) π
y
N ψ̃n(y)

)
(4.25)

we have the following error estimate.

Theorem 4.2 Let U and Uh
N ,k be the solutions to the weak problem (2.7) and the numerical

problem (4.19), respectively. If f ∈ H
l−s(�), l = max{m2 , r + 1

2 }, then it holds

‖U −Uh
N ,k‖H1,b

yα (D)
≤cN−m

2 | f |
H

m
2 −s

(�)
+ cN 1−m

2 | f |
H

m−1
2 −s

(�)

+ chr | f |
H
r+ 1

2 −s
(�)

+ chr−1| f |Hr−1−s (�),
(4.26)

where α = 1 − 2s and m = 2k + 1 + [2s].

Proof Owe to the inequality (4.22) and the triangle inequality, we have

‖U −Uh
N ,k‖H1,b

yα (D)
≤ ‖U − �‖H1,b

yα (D)
≤ I1 + I2, (4.27)

where

I1 = ∥∥ ∞∑
n=1

ũnφn(ψ̃n − π
y
N ψ̃n)

∥∥
H1,b

yα (D)
,

I2 = ∥∥ ∞∑
n=1

ũnφnπ
y
N ψ̃n − π x

h

( ∞∑
n=1

ũnφn π
y
N ψ̃n

)∥∥
H1,b

yα (D)
.
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First of all, Thanks to Lemmas 2.2 and 3.1 and the equation (4.25), we can derive that

(I1)
2 = ‖

∞∑
n=1

ũnφn(ψ̃n − π
y
N ψ̃n)‖2H1,b

yα (D)
= ‖∇( ∞∑

n=1

ũnφn(ψ̃n − π
y
N ψ̃n)

)‖2yα,D

=
∞∑
n=1

|ũn |2
(‖∇xφn‖2�‖ψ̃n − π

y
N ψ̃n‖2yα,� + ‖φn‖2�‖∂y(ψ̃n − π

y
N ψ̃n)‖2yα,�

)

≤ c
∞∑
n=1

|ũn |2(λnN−m ‖̂∂my ψ̃n‖2yα+m + N 2−m ‖̂∂my ψ̃n‖2yα+m−1,�
)

≤ c
∞∑
n=1

|ũn |2
(
(λn)

m+1−α
2 N−m + (λn)

m−α
2 N 2−m).

Then, via the relation f̃n = ũn(λn)s = ũn(λn)
1−α
2 , it holds

I1 ≤ cN−m
2 | f |

H
m
2 −s

(�)
+ N 1−m

2 | f |
H

m−1
2 −s

(�)
(4.28)

Next, for notational simplicity, we denote ŨN := ∑∞
n=1 ũnφn(x) π

y
N ψ̃n(y), then

I2 = ‖π x
h ŨN − ŨN‖H1,b

yα (D)
= ‖∇(π x

h ŨN − ŨN )‖yα,D

= ‖∇x (π
x
h ŨN − ŨN )‖yα,D + ‖∂y(π x

h ŨN − ŨN )‖yα,D
≤ hr−1 ‖∇r

x ŨN‖yα,D + hr‖∇r
x∂yŨN )‖yα,D

The last inequality of the above equation holds due to f ∈ H
r+α/2(�) implies the bound-

edness of the above norms ‖∇r
x ŨN‖2yα,D and ‖∇r

x∂yŨN )‖2yα,D . In fact, owe to Lemmas 2.2,
3.1 and relation (4.23), we have

‖π y
N ψ̃n‖yα,� ≤ ‖ψ̃n‖yα,� = O(λ

−1−α
4

n )

and

‖∂yπ y
N ψ̃n‖yα,� ≤ ‖̂∂yψ̃n‖yα,� + ‖̂∂2y ψ̃n‖yα+1,� = O(λ

2−α
4

n ),

In addition,

‖∇r
xφn‖2� = (∇r

xφn,∇r
xφn)� = (λn)

r .

Then, via the above relations, it can be shown that

(I2)
2 ≤ ch2r−2

∞∑
n=1

|ũn |2(λn)r+ −1−α
2 + ch2r

∞∑
n=1

|ũn |2(λn)r+ 2−α
2 .

Using the relation f̃n = ũn(λn)s = ũn(λn)
1−α
2 again, we have

I2 ≤ chr−1| f |Hr−1−s (�) + chr | f |
H
r+ 1

2 −s
(�)

. (4.29)

Finally, we end the proof by combing (4.27)–(4.29). ��
Thanks to Lemma 2.1, we have the error estimate for the original fractional Laplacian

problem below

123



Journal of Scientific Computing            (2020) 82:17 Page 21 of 25    17 

Theorem 4.3 Let u and Uh
N ,k be the solutions to the fractional Laplacian problem (1.1) and

the numerical problem (4.19), respectively. If

f ∈ H
l−s(�), l = max{k + (1 + [2s])/2, r + 1/2}

then it holds

‖u −Uh
N ,k(·, 0)‖Hs (�) ≤ cN−m

2 | f |
H

m
2 −s

(�)
+ cN 1−m

2 | f |
H

m−1
2 −s

(�)

+ chr | f |
H
r+ 1

2 −s
(�)

+ chr−1| f |Hr−1−s (�).

Remark 4.5 One can selects a preferred method to deal with x directions, the operator π x
h

is determined by the related numerical method. What we are concerned with in the above
consequence is to remove the effect of the y directional singularity caused by the Caffarelli–
Silvestre extension.

4.4 Numerical Examples

By following the procedure (4.19)–(4.20), we can solve the Caffarelli–Silvestre extension by
the enriched spectral method. To complete the implementation, it remains to select the basis
defined on � to obtain the corresponding stiffness matrix Sx and mass matrix Mx . For the
sake of simplicity, we will only consider the rectangular domains � = (−1, 1)d , although
one can easily deal with general domains with finite elements.

For each i = 1, · · · , d , let {φm(xi )}Mi
m=1 be a set of basis functions in the direction xi

satisfying φm(±1) = 0, and set

Xxi
hi

:= span{φm(xi ) : m = 1, 2, . . . , Mi }, 1 ≤ i ≤ d.

Then we define our d-dimensional approximation space by

Xh = Xx1
h1

× Xx2
h2

× · · · × Xxd
hd

.

Let Mx
i and Sxi be respectively the one dimensional mass and stiffness matrices, then the

d-dimensional mass and stiffness matrices can be written as the following Kroneck product
form

Mx = Mx
1 ⊗ Mx

2 ⊗ · · · ⊗ Mx
d , Sx =

d∑
i=1

Mx
1 ⊗ · · ·Mx

i−1 ⊗ Sxi ⊗ Mx
i+1 · · · ⊗ Mx

d .

Then our enriched Jacobi–Laguerre spectral scheme is to findUh
N ,k ∈ Xh ×Y k

N such that

(
y1−2s∇Uh

N ,k,∇V
)
D =

∫ 1

−1
f (x) V (x, 0)dx, ∀ V ∈ Xh × Y k

N . (4.30)

where Y k
N is the same as (4.10). We recall that the above enriched spectral method can be

reduced to a sequence of Poisson type problem (3.11) which can then be solved efficiently
by using a matrix diagonalization approach.

We shall consider two specific choices for φm(xi ) below.

• Piecewise linear finite elements We choose φm(xi ) to be the usual hat function.
• Spectral methodsWe take φm(xi ) = P−1,−1

m+1 (xi ) where {P−1,−1
j (x)} are the generalized

Jacobi function of index (−1,−1).
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Fig. 5 Left: s = 0.7, r = 0, Right: s = 0.7, r = 1

Since the exact solution u is usually not available for general f , so a reasonable approach
is to take a reference solution uK , K � 1 via the definition of the fractional Laplacian (2.9).
In fact, the eigenvalues and eigenfunctions of the problem (2.8) to our case are

λn = (nπ)2

4
, ϕn(x) = sin

(nπ

2
(x + 1)

)
, n = 1, 2, . . . ,

we have the reference solution uK = ∑K
n=1 λ−s

n f̃nϕn(x), where { f̃n}∞n=1 are the coefficients
such that f (x) = ∑∞

n=1 f̃nϕn(x).
As the first example, we take f = (1 − x2)r and compute a reference resolution as

described above. We use the piecewise linear finite element method in the x-direction, and
plot the numerical convergence rates with r = 0, 1 and s = 0.7 in Fig. 5. We observe that the
usual spectral method (in the y-direction) barely converges, but the enriched spectral method
improves the convergence rate significantly.

Next, we consider a two-dimensional example with

f (x) = (2π2)s sin(πx1) sin(πx2), x = (x1, x2) ∈ (−1, 1)2.

Thanks to the definition of the fractional Laplacian (2.9), we can easily find the exact solution
to be u(x1, x2) = sin(πx1) sin(πx2). This example was also considered in [22].

We first use the finite element method in the spatial directions and plot the convergence
rates in Fig. 6. We observe that even though the exact solution is smooth, the usual spectral
method in the extended direction still barely converges due to the singularity of the extension
problem. However, the enriched spectral method improves the convergence rate significantly.

Note also that for both examples, the convergence rates with respect to h = 1/M are
essentially second order, which is the expected rate for the L2-error by the piecewise linear
finite-elements, until the errors are dominated by the errors in the extended direction.

Then, we use the spectral method in the spatial directions, and plot the results in Fig. 7.
On the left of Fig. 7, we fix the number of modes in each spatial direction at M = 20 which
is enough since the exact solution is smooth, and plot the convergence rates with respect
to N for various s with k = 2. As expected, the convergence rate is algebraic due to the
singularity at y = 0. On the right of Fig. 7, we fix N = 80 and k = 2 so that for the range
of M considered, the dominating error is in the spatial direction. We observe that the error
converges exponentially with respect to the number of modes in each spatial direction.
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Fig. 7 Left: M = M1 = M2 = 20, k = 2, Right: N = 80, k = 2

We also observe in these examples that only very few degrees of freedom, N + k, in the
extended direction y are needed to achieve high accuracy in the y direction. So the enriched
spectral method with the matrix diagonalization method allows us to solve the fractional
Laplacian problem by solving only a relative small number of Poisson type equations in the
original domain.

5 Concluding Remarks

We proposed in this paper an efficient numerical method for the spectral fraction Laplacian
problem through the Caffarelli–Silvestre extension. The method combines a generalized
Laguerre approximation with an enriched spectral method in the extended direction to deal
with the singularity at y = 0, and uses a diagonalization approach to decouple the d + 1
dimensional extension problem into a sequence of Poisson type equations in the original
domain which can be solved with one’s favorite method. The new method enjoys high-order
accuracy, efficiency and flexibility. We also derived error estimates which show that we can
achieve arbitrary high-order accuracy in the extended direction using the enriched spectral
method, although the enriched method leads to very ill conditioned system which effectively
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limits the number of enriched terms that can be added, but our numerical results indicate
that only a few (usually less than three) singular functions would dramatically improve the
accuracy to a satisfactory level.
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