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Abstract
The operator splitting method has shown to be an effective approach for solving the linear
complementarity problem for pricing American options. It has been successfully applied
to various Black–Scholes models, and it is implementation friendly because the differential
equation and the complementarity conditions are decoupled and easily solved on its own part.
However, despite its popularity, no stability and error analysis is available for these operator
splitting methods. The challenge mainly arises from the special splitting associated with
the slack function and the complementarity constraints. In this paper, we establish stability
results for the operator splitting schemes based on the backward Euler and BDF2 methods,
as well as an error estimate for the scheme based on the backward Euler method. We also
provide numerical experiments to demonstrate the convergence behaviors of the two operator
splitting methods.

Keywords Operator splitting · Black–Scholes · American option · Linear complementarity
problem · Stability

1 Introduction

TheBlack–Sholesmodel is one of themost importantmodels for pricing option contracts. The
first mathematical formulation of the model was proposed in [4]. The Black–Sholes partial
differential equation for European options is an initial boundary value problemwith advection
and diffusion terms. And the system that governs the price of an American option consists
of a differential inequality and its complementarity conditions, because the American option
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allows its holder to exercise it earlier than the maturity. It can be categorized as a linear com-
plementarity problem,which is harder to solve than a standard initial boundary value problem.
Many interesting questions have been raised surrounding this ubiquitous mathematical prob-
lem, including uniqueness and regularity, analytic form of the exact solution, numerical
approximation, and its link to quadratic programming, variational calculus, and optimiza-
tion. In this paper, we focus on numerical approximations of the classic Black–Scholesmodel
for American options, and carry on rigorous analysis for the associated numerical methods.

Numerical approximations of American options are distinctly different from those of
European options, due to the constraints and themoving boundary. In this paper, we primarily
consider the approximation in time. The projected Gaussian elimination in [5] is the first
attempt to this problem in a complementarity formulation. Later we have the projected SOR
method in [11], the penalty method in [8], the front fixing method with a spectral accuracy
in [29], and the front tracking method in [30]. Recently, the two phase method in [10], the
projection and contraction method in [28], the active set method in [27], and the reduced
basis method in [2] have been introduced.

In this paper, we consider an important class of methods for solving the LCP, the operator
splitting method introduced in [18]. The idea was originated from the splitting and projection
schemes in computational fluid dynamics. In essence, it decouples the complementarity
conditions and the differential equation, so that they can be solved separately. Therefore, this
type of methods is implementation friendly, since it does not require any iterative procedures.
It has been successfully applied to many variants of the Black–Scholes model, including the
Heston model in [16,19,20,25], the Merton and the Kon’s jump diffusion model in [22], the
infinite jump-diffusion model in [23], the regime-switching model in [24], and the fractional
Black–Scholes model in [6]. However, no stability and convergence results are established
in any of the above mentioned operator-splitting methods. We should mention that authors
of [20] showed that the difference between the coupled Crank–Nicolson method and the
operator splitting Crank–Nicolson method is of second-order in time for the option price, but
no stability result is established. We refer to [17] for a review of the topic.

The goal of this paper is to establish stability results for the first- and second-order splitting
schemes, and prove an error estimate for the first-order splitting scheme. The main challenge
is how to prove the stability of the operator splitting schemes. The key is to recognize the
similarity between these operator splitting schemes and the pressure-correction method for
incompressible Navier–Stokes equations (cf. [12,13,31]), and adopt some of the essential
procedures in the stability proofs of the pressure-correction scheme in [13,26]. We also carry
out ample numerical experiments to demonstrate the convergence behaviors of the backward
Euler and the BDF2 methods under different parameter regimes.

The paper is organized as follows. In the next section, we describe basic notations and
assumptions used throughout the paper. In Sect. 3, we describe the formulation of the linear
complementarity problem and related properties. In Sect. 4, we present the operator splitting
methods, and prove their stability. In Sect. 5, we carry out an error analysis for the first-order
method. In Sect. 6, we present some numerical results and related discussions.

2 Notations and Preliminaries

In this section, we introduce notations as well as some background materials that will be
used. Throughout the paper, c denotes a generic constant that is independent of the time step
size, �t , but may depend on the data and the regularity of the exact solution.
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Wedenote the L2 norm by ‖·‖.We also introduce the discrete norms. Let {φ0, φ1, . . . , φn}
be a sequence of functions in a Hilbert spaceW , and �t = T /n. We introduce the following
discrete norms:

‖φ‖2l2(W )
= �t

n∑

i=0

‖φi‖2W , ‖φ‖2l∞(W ) = max
0�i�n

‖φi‖2W . (2.1)

The following notations are used for discrete differences:

δφi+1 = φi+1 − φi , (2.2)

δ2φi+1 = φi+1 − 2φi + φi−1, (2.3)

D2φi+1 = 3φi+1 − 4φi + φi−1. (2.4)

We will frequently apply these algebraic identities:

2(a − b)a = a2 − b2 + (a − b)2, (2.5)

2(3a − 4b + c)a = a2 + (2a − b)2 − b2 − (2b − c)2 + (a − 2b + c)2, (2.6)

2(3a − 4b + c)(a − b) = (a − b)2 − (b − c)2 + (a − 2b + c)2 + 4(a − b)2. (2.7)

We will frequently apply the following version of discrete Gronwall’s Lemma (cf. [14,26]):

Lemma 2.1 (Discrete Gronwall’s Lemma) Let yn, hn, gn, and f n be nonnegative series such
that

ym + �t
m∑

n=0

hn � B + �t
m∑

n=0

(gn yn + f n), �t
M∑

n=0

gn � c, 0 � m � M =
[
T

�t

]
.

(2.8)

In addition, assume that gn�t < 1 for every n. Define ν = max0�n�M (1− gn�t)−1. Then

ym + �t
m∑

n=0

hn � eνK

(
B + �t

m∑

n=0

f n
)

, 0 � m � M . (2.9)

3 The Linear Complementarity Problem

Let S be the stock price, τ is the time and t = T − τ be the time to maturity T . The volatility
σ and the interest rate r are assumed as constants. For any value of S and t , the price of an
American option V (S, t) satisfies the following linear complementarity problem (LCP):

Vt � LV , (3.1a)

V � g, (3.1b)

(Vt − LV )(V − g) = 0, (3.1c)

where the spatial differential operator L is defined as

LV (S, t) = σ 2S2

2
VSS + r SVS − rV . (3.2)

In the above g = g(S) is a final pay-off function. For example, the put option is equipped
with

g(S) = max{K − S, 0}. (3.3)
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We briefly explain the meaning of (3.1). First, the return on a delta-hedged portfolio cannot
be greater than that from a risk-free bank interest, because the American option may be
exercised any time before expiration [32]. Thus we have (3.1a). Secondly, the option holder
has the right to exercise it any time according the payoff, implying the option value is at least
its payoff or (3.1b). Lastly, the option value is simply equal to its payoff when the option
holder chooses to exercise it. Otherwise, the option value will be equal to the risk-neutral
evaluation of a European option at that time period. One of the above two cases has to happen.
It is why we have a quadratic expression in (3.1c). The above arguments hold for any (S, t),
so system (3.1) always holds.

By introducing a slack function ψ(S, t), we reformulate (3.1) into

Vt = LV + ψ, (3.4a)

ψ � 0, (3.4b)

V � g, (3.4c)

ψ(V − g) = 0. (3.4d)

We assume the following initial and boundary conditions:

V (S, 0) = g(S), (3.5a)

V (0, t) = K , lim
S→∞ V (S, t) = 0. (3.5b)

Regarding the operator L, two integrations by parts lead to

(LV , V ) = σ 2

2
(S2VSS, V ) + r(SVS, V ) − r(V , V )

= −σ 2

2
(SVS, SVS) + (r − σ 2)(SVS, V ) − r(V , V )

= −σ 2

2
‖SVS‖2 + σ 2 − 3r

2
‖V ‖2,

(3.6)

where we have assumed limS→∞ S2VSV (S, t) = 0 and limS→∞ SV 2(S, t) = 0 (cf. [1]).
Therefore, −L is a strongly elliptic operator if σ 2 − 3r ≤ 0. Formally, one can show that
the system (3.4) and (3.5) possesses a unique solution through a discounted expectation
evaluated at the optimal stopping time [21]. And its precise meaning can be given through
the variational inequality [3,9,21]. The LCP approach was generalized to many kinds of
options in [32] and was later studied in [15].

According to [21], the solution to the LCP (3.4) and (3.5) is continuously differentiable
in the stock price. Regarding the time variable, we assume the following regularity results

V (S, t + k) − V (S, t)

k
− Vt (S, t) = ck, ψ(S, t + k) − ψ(S, t) = ck, ∀t . (3.7)

In this study, both σ and r are assumed as constants.

4 Numerical Methods and Stability Analysis

In this section, we describe a first-order and a second-order operator splitting methods, and
prove that they are unconditionally stable.

The system (3.4) and (3.5) is first discretized in time on a uniform grid:

�t = k = T /M, tn = n�t, 0 � n � M . (4.1)
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We start from V0(S) = g(S) and seek a sequence of functions,

V1(S), V2(S), . . . , Vn(S), . . . , VM (S), (4.2)

each of which is an approximation to V (S, t) at the corresponding grid point tn . Vn(S) is
often abbreviated as Vn . Similar notations are used for ψ(S, t) and other involved variables.
The initial conditions are V0 = g and ψ0 = 0.

Let Smax denote the domain truncation for the semi-infinite domain, which is typically set
as a multiple of K in numerical experiments.

4.1 The Operator SplittingMethods

We describe first the operator splitting method based on the backward Euler scheme [18].
Assume that Vn and ψn have been obtained from the time step of tn . Two substeps will be
performed at the step tn+1. In the first substep, we solve for an intermediate solution Ṽn+1

from the boundary value problem (BVP):
⎧
⎪⎨

⎪⎩

Ṽn+1 − Vn
�t

− LṼn+1 = ψn,

Ṽn+1(0) = K , Ṽn+1(Smax) = 0.

(4.3)

In the second substep, we project Ṽn+1 to the constraint space to obtain Vn+1. Specifically,
we perform the following correction:

Vn+1 − Ṽn+1

�t
= ψn+1 − ψn, (4.4a)

ψn+1 � 0, Vn+1 � g, ψn+1(Vn+1 − g) = 0. (4.4b)

The system (4.4) is easy to solve in the (ψn+1, Vn+1) plane. Indeed, we have

(ψn+1, Vn+1) =

⎧
⎪⎪⎨

⎪⎪⎩

(0, Ṽn+1 − �tψn), if − �tψn + Ṽn+1 � g,
(
g − Ṽn+1

�t
+ ψn, g

)
, otherwise.

(4.5)

To validate the discretization, we sum up (4.3) and (4.4) to get
⎧
⎨

⎩

Vn+1 − Vn
�t

− LṼn+1 = ψn+1,

ψ j � 0, Vn+1 � g, ψn+1(Vn+1 − g) = 0.
(4.6)

According to (4.4a), we have

Ṽn+1 = Vn+1 − �t(ψn+1 − ψn), (4.7)

which implies that Ṽn+1 is also an approximation to V (S, tn+1).
Note that the scheme (4.3), (4.4) is reminiscent of the pressure-correction method for

incompressible Navier–Stokes equations [12,13,31]. Indeed, the slack function ψ plays a
similar role as the pressure, and is introduced to enforce (4.4b) which is similar to the
divergence-free condition in the incompressible Navier–Stokes equations.

We now describe a second-order method based on the BDF2 discretization [18]. Assume
that {Vn, Vn−1} and {ψn, ψn−1} have been obtained from time steps of tn and tn−1. Two
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substeps will be performed at the step tn+1. In the first substep, we solve for an intermediate
solution Ṽn+1 from the BVP:

⎧
⎪⎨

⎪⎩

3Ṽn+1 − 4Vn + Vn−1

2�t
− LṼn+1 = ψn,

Ṽn+1(0) = K , Ṽn+1(Smax) = 0.

(4.8)

In the second substep, we project Ṽn+1 to the constraint space to obtain Vn+1 with the
following correction:

3(Vn+1 − Ṽn+1)

2�t
= ψn+1 − ψn, (4.9a)

ψn+1 � 0, Vn+1 � g, ψn+1(Vn+1 − g) = 0. (4.9b)

Similarly as before, the system (4.9) is easy to solve in the (ψn+1, Vn+1) plane, since we
have

(ψn+1, Vn+1) =

⎧
⎪⎪⎨

⎪⎪⎩

(0, Ṽn+1 − 2�t

3
ψn), if − 2�t

3
ψn + Ṽn+1 � g,

(
3(g − Ṽn+1)

2�t
+ ψn, g), otherwise.

(4.10)

To validate the discretization, we sum up (4.8) and (4.9) to get
⎧
⎨

⎩

3Vn+1 − 4Vn + Vn−1

2�t
− LṼn+1 = ψn+1,

ψ j � 0, Vn+1 � g, ψn+1(Vn+1 − g) = 0.
(4.11)

Similar to the first-order case, it is clear now that the scheme (4.8), (4.9) is reminiscent
of the second-order pressure-correction method for incompressible Navier–Stokes equations
[12,13,31].

4.2 Stability Results

We introduce new sequences {Zn}Mn=0 and {Z̃n}Mn=0 defined as

Zn = Vn − g, Z̃n = Ṽn − g, (4.12)

and rewrite the method (4.3) and (4.4) as
⎧
⎪⎨

⎪⎩

Z̃n+1 − Zn

�t
= LZ̃n+1 + Lg + ψn,

Z̃n+1(0) = 0, Z̃n+1(Smax) = 0.

(4.13)

and

Zn+1 − Z̃n+1

�t
= ψn+1 − ψn, (4.14a)

ψn+1 � 0, Zn+1 � 0, ψn+1Zn+1 = 0. (4.14b)

We have the following stability result for the above scheme.
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Theorem 4.1 We assume either σ 2 − 3r � 0 or �t � 1
4(σ 2−3r)+2

if σ 2 − 3r > 0. Then, the
scheme (4.13) and (4.14) (or (4.3) and (4.4)) is stable in the sense that for all m � 0 we have

‖Zm‖2 + 1

2

m∑

n=1

‖Z̃n − Zn−1‖2 + �t2‖ψm‖2 + σ 2�t
m∑

n=0

‖S(Z̃n)S‖2

� c(B + �t
m∑

n=0

‖Lg‖2), ∀1 ≤ m ≤ T /�t,

where B is related to the initial data:

B = ‖Z0‖2 + �t2‖ψ0‖2 + σ 2�t‖S(Z̃0)S‖2 = ‖g‖2 + �t2‖ψ0‖2 + σ 2�t‖SgS‖2.
(4.15)

Proof First, take the inner product of (4.13) with 2�t Z̃n+1 to have

‖Z̃n+1‖2 − ‖Zn‖2 + ‖Z̃n+1 − Zn‖2 = 2�t(LZ̃n+1, Z̃n+1)

+ 2�t(Lg, Z̃n+1) + 2�t(ψn, Z̃n+1). (4.16)

For the term 2�t(LZ̃n+1, Z̃n+1) we have

2�t(LZ̃n+1, Z̃n+1) = −�tσ 2‖S(Z̃n+1)S‖2 + �t(σ 2 − 3r)‖Z̃n+1‖2. (4.17)

If β = σ 2 − 3r > 0, we can bound the last term by

�t(σ 2 − 3r)‖Z̃n+1‖2 � 2�tβ‖(Z̃n+1 − Zn‖2 + ‖Zn‖2). (4.18)

For the term 2�t(Lg, Z̃n+1), we have

2�t(Lg, Z̃n+1) = 2�t(Lg, Z̃n+1 − Zn) + 2�t(Lg, Zn)

� 2�t2‖Lg‖2 + 1

2
‖Z̃n+1 − Zn‖2 + �t(‖Lg‖2 + ‖Zn‖2).

(4.19)

Next, we rewrite (4.14a) as

Zn+1 − �tψn+1 = Z̃n+1 − �tψn . (4.20)

Taking the inner product on each side of (4.20) with itself, we obtain

‖Zn+1‖2 − 2�t(Zn+1, ψn+1) + �t2‖ψn+1‖2 = ‖Z̃n+1‖2 − 2�t(Z̃n+1, ψn) + �t2‖ψn‖2.
(4.21)

Notice that Zn+1ψn+1 = 0 and the term 2�t(Z̃n+1, ψn) will cancel between (4.16) and
(4.21). We add up the above results to obtain: (i) if σ 2 − 3r � 0, we have

‖Zn+1‖2 − ‖Zn‖2 + 1

2
‖Z̃n+1 − Zn‖2 + �t2‖ψn+1‖2 − �t2‖ψn‖2 + �tσ 2‖S(Z̃n+1)S‖2

� �t‖Zn‖2 + c�t‖Lg‖2; (4.22)

and (ii) if σ 2 − 3r > 0, we have

‖Zn+1‖2 − ‖Zn‖2 + ‖Z̃n+1 − Zn‖2 + �t2‖ψn+1‖2 − �t2‖ψn‖2 + �tσ 2‖S(Z̃n+1)S‖2
� �t(2β + 1)‖Z̃n+1 − Zn‖2 + �t(2β + 1)‖Zn‖2 + c�t‖Lg‖2, (4.23)
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which, under the assumption that �t(2β + 1) � 1
2 , implies

‖Zn+1‖2 − ‖Zn‖2 + 1

2
‖Z̃n+1 − Zn‖2 + �t2‖ψn+1‖2 − �t2‖ψn‖2 + �tσ 2‖S(Z̃n+1)S‖2

� �t(2β + 1)‖Zn‖2 + c�t‖Lg‖2. (4.24)

Summing up the inequalities (4.22) and (4.24) from n = 0 to n = m − 1, respectively, and
applying the discrete Gronwall’s Lemma (Lemma 2.1), we obtain the desired result. ��

Next, we consider the second-order operator splitting method based on BDF2. We intro-
duce the same variables defined in (4.12) and rewrite the BDF2 method (4.8) and (4.9) into
the following procedure. In the first sub-step, we solve

⎧
⎪⎨

⎪⎩

3Z̃n+1 − 4Zn + Zn−1

2�t
= LZ̃n+1 + Lg + ψn,

Z̃n+1(0) = 0, Z̃n+1(Smax) = 0.

(4.25)

In the second substep, we project Z̃n+1 to the constraint space to obtain Zn+1 with the
following correction:

3(Zn+1 − Z̃n+1)

2�t
= ψn+1 − ψn, (4.26a)

ψn+1 � 0, Zn+1 � 0, ψn+1Zn+1 = 0. (4.26b)

Theorem 4.2 We assume either σ 2 − 3r � 0 or �t � 1
4(σ 2−3r)+2

if σ 2 − 3r > 0. Then, the
second-order scheme (4.25) and (4.26) (or (4.8) and (4.9)) is stable in the sense that for all
m � 0 we have

‖Zm‖2 + ‖2Zm − Zm−1‖2 + 4�t2

3
‖ψm‖2

+
m−1∑

n=0

‖Z̃n+1 − Zn+1‖2 + 2�tσ 2
m∑

n=0

‖S(Z̃n)S‖2

� c(B + �t
m∑

n=0

‖Lg‖2), ∀1 ≤ m ≤ T /�t,

where B is related to the initial data:

B = ‖Z0‖2 + ‖2Z1 − Z0‖2 + 4�t2

3
‖ψ0‖2 + 2�tσ 2‖SgS‖2. (4.27)

Proof First, take the inner product of (4.25) with 4�t Z̃n+1, to obtain

2(3Z̃n+1 − 4Zn + Zn−1, Z̃n+1) = 4�t(LZ̃n+1, Z̃n+1)

+ 4�t(Lg, Z̃n+1) + 4�t(ψn, Z̃n+1). (4.28)

We rewrite the left hand side of (4.28) into

2(3Z̃n+1 − 4Zn + Zn−1, Z̃n+1) = 2(3Zn+1 − 4Zn + Zn−1, Z̃n+1) + 6(Z̃n+1 − Zn+1, Z̃n+1)

= 2(D2Zn+1, Zn+1) + 2(3Zn+1 − 4Zn + Zn−1, Z̃n+1 − Zn+1) + 6(Z̃n+1 − Zn+1, Z̃n+1).
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For the term 2(D2Zn+1, Zn+1) we apply (2.6) and have

2(D2Zn+1, Zn+1) = ‖Zn+1‖2 − ‖Zn‖2 + ‖2Zn+1 − Zn‖2
− ‖2Zn − Zn−1‖2 + ‖δ2Zn+1‖2. (4.29)

Next, we have

2(3Zn+1 − 4Zn + Zn−1, Z̃n+1 − Zn+1)

= 2(δ2Zn+1, Z̃n+1 − Zn+1) + 4(Zn+1 − Zn, Z̃n+1 − Zn+1).
(4.30)

For the term 2(δ2Zn+1, Z̃n+1 − Zn+1), we use Cauchy-Schwarz to get
∣∣∣2(δ2Zn+1, Z̃n+1 − Zn+1)

∣∣∣ � ‖δ2Zn+1‖2 + ‖Z̃n+1 − Zn+1‖2. (4.31)

For the cross term 4(Zn+1 − Zn, Z̃n+1 − Zn+1)), we use (4.26) to obtain

4(Zn+1 − Zn, Z̃n+1 − Zn+1)) = −8�t

3
(Zn+1 − Zn, ψn+1 − ψn)

= −8�t

3

(
(Zn+1, ψn+1) + (Zn, ψn) − (Zn+1, ψn) − (Zn, ψn+1)

)

= 8�t

3

(
(Zn+1, ψn) + (Zn, ψn+1)

)
� 0,

(4.32)

since (Zn, ψn) = 0 and ψn, Zn � 0 for all n.
For the term 6(Z̃n+1 − Zn+1, Z̃n+1), we have

6(Z̃n+1 − Zn+1, Z̃n+1) = 3(‖Z̃n+1‖2 − ‖Zn+1‖2 + ‖Z̃n+1 − Zn+1‖2). (4.33)

Next, we rewrite the second sub-step as

3Zn+1 − 2�tψn+1 = 3Z̃n+1 − 2�tψn . (4.34)

Taking the inner product of each side of the above equation with itself, we obtain, after
dividing both by 3 and since (Zn+1, ψn+1) = 0, that

3‖Zn+1‖2 + 4

3
�t2‖ψn+1‖2 = 3‖Z̃n+1‖2 − 4�t(Z̃n+1, ψn) + 4

3
�t2‖ψn‖2. (4.35)

Combining the above relations, we obtain

‖Zn+1‖2 − ‖Zn‖2 + ‖2Zn+1 − Zn‖2 − ‖2Zn − Zn−1‖2 + 4�t2

3
(‖ψn+1‖2 − ‖ψn‖2)

+ 2‖Z̃n+1 − Zn+1‖2 � 4�t(LZ̃n+1, Z̃n+1) + 4�t(Lg, Z̃n+1). (4.36)

For the term 4�t(LZ̃n+1, Z̃n+1), we proceed as in the first-order case. Namely, if β =
σ 2 − 3r > 0, we bound it by

4�t(LZ̃n+1, Z̃n+1) � −2�tσ 2‖S(Z̃n+1)S‖2 + 4�tβ‖Z̃n+1 − Zn+1‖2 + 4�tβ‖Zn+1‖2.
(4.37)

Similarly, for the term 4�t(Lg, Z̃n+1) we have

4�t(Lg, Z̃n+1) = 4�t(Lg, Z̃n+1 − Zn+1) + 4�t(Lg, Zn+1)

� 4�t2‖Lg‖2 + ‖Z̃n+1 − Zn+1‖2 + 2�t(‖Lg‖2 + ‖Zn+1‖2).
(4.38)

123



   33 Page 10 of 17 Journal of Scientific Computing            (2020) 82:33 

Then under the assumption that σ 2−3r � 0 or�t(2β +1) � 1
2 if σ

2−3r > 0, we combine
all the above results into (4.36) to get

‖Zn+1‖2 − ‖Zn‖2 + ‖2Zn+1 − Zn‖2 − ‖2Zn − Zn−1‖2

+ ‖δ2Zn+1‖2 + 4�t2

3
(‖ψn+1‖2 − ‖ψn‖2)

+ ‖Z̃n+1 − Zn+1‖2 + 2�tσ 2‖S(Z̃n+1)S‖2 � c�t‖Lg‖2 + c�t‖Zn+1‖2.
Summing up the above inequality from n = 0 to n = m − 1 and applying the discrete
Gronwall’s Lemma (Lemma 2.1), we obtain the desired result. ��
Remark 4.3 Note that the conditions on�t in the above theorems are just sufficient conditions
for the stability.No special effort ismade to optimize these conditions, and they can be slightly
relaxed with a refined analysis.

5 Error Estimates

With the stability results established in the last section, one can then derive corresponding
error estimates by assuming adequate regularity on the exact solution. For the sake of brevity,
we establish in this section error estimates for the first-order method only.

First, we introduce error functions and error equations. Denote the exact solution Z(S, t)
at tn by Z(·, tn), and similar for other related variables. We define

en = Z(·, tn) − Zn, ẽn = Z(·, tn) − Z̃n,

hn = ψ(·, tn) − ψn, fn = hn + ψ(·, tn+1) − ψ(·, tn), (5.1)

and assume that ψ is sufficiently smooth such that

‖ fn‖ ≤ ‖hn‖ + c�t, (5.2)

where c is independent of n. From the continuous system (3.4), we have

Z(·, tn+1) − Z(·, tn)
�t

= LZ(·, tn+1) + Lg + ψ(·, tn+1) + Rn+1. (5.3)

To obtain the error equation, we subtract (5.3) from (4.13), to have

ẽn+1 − en
�t

= Lẽn+1 + fn + Rn+1. (5.4)

We can obtain another error equation from the second sub-step (4.4), as follows,

en+1 − ẽn+1

�t
= hn+1 − hn − (ψ(·, tn+1) − ψ(·, tn)), (5.5)

or,

en+1 − �t hn+1 = ẽn+1 − �t fn, (5.6)

Theorem 5.1 We assume either σ 2 − 3r � 0 or �t � 1
4(σ 2−3r)+2

if σ 2 − 3r > 0, and that
the solution (Z , ψ) is sufficiently smooth. Then, the following error estimates hold for the
method (4.13), (4.14) (or (4.3), (4.4)):
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‖em‖2 + �t
m−1∑

n=0

‖S(ẽn+1)S‖2 � c�t2, ∀1 ≤ m ≤ T /�t .

Proof First, take the inner product of (5.4) with 2�t ẽn+1 to have

‖ẽn+1‖2 − ‖en‖2 + ‖ẽn+1 − en‖2 = 2�t(Lẽn+1, ẽn+1)

+2�t( fn, ẽn+1) + 2�t(Rn+1, ẽn+1). (5.7)

Next, take the inner product of (5.6) on each side with itself, we obtain

‖en+1‖2 − 2�t(en+1, hn+1) + �t2‖hn+1‖2 = ‖ẽn+1‖2 − 2�t(ẽn+1, fn) + �t2‖ fn‖2.
(5.8)

Combine (5.7) and (5.8) to get

‖en+1‖2 − ‖en‖2 + ‖ẽn+1 − en‖2 + �t2(‖hn+1‖2 − ‖ fn‖2) (5.9)

= 2�t(Lẽn+1, ẽn+1) + 2�t(en+1, hn+1) + 2�t(Rn+1, ẽn+1). (5.10)

For the term 2�t(Lẽn+1, ẽn+1), similar to (4.17), we have

2�t(Lẽn+1, ẽn+1) = −�tσ 2‖S(ẽn+1)S‖2 + �t(σ 2 − 3r)‖ẽn+1‖2. (5.11)

If β = σ 2 − 3r > 0, we bound the last term by

�t(σ 2 − 3r)‖ẽn+1‖2 � 2�tβ‖(ẽn+1 − en‖2 + ‖en‖2). (5.12)

For the term 2�t(en+1, hn+1) we notice that

(en+1, hn+1) = (Z(·, tn+1) − Zn+1, ψ(·, tn+1) − ψn+1)

= (Z(·, tn+1), ψ(·, tn+1)) − (Z(·, tn+1), ψn+1) − (Zn+1, ψ(·, tn+1)) + (Zn+1, ψn+1).

Since Z(·, tn+1)ψ(·, tn+1) = 0 and Zn+1ψn+1 = 0, we have

(en+1, hn+1) = −(Z(·, tn+1), ψn+1) − (Zn+1, ψ(·, tn+1)). (5.13)

Furthermore, since Z(·, tn+1), ψ(·, tn+1), Zn+1, and ψn+1 are all nonnegative, we derive
from the above that

2�t(en+1, hn+1) � 0. (5.14)

For the term 2�t(Rn+1, ẽn+1), we have

2�t(Rn+1, ẽn+1) = 2�t(Rn+1, ẽn+1 − en) + 2�t(Rn+1, en)

� �t(‖Rn+1‖2 + ‖ẽn+1 − en‖2) + �t(‖Rn+1‖2 + ‖en‖2).
(5.15)

We derive from (5.2) that

‖ fn‖2 � ‖hn‖2 + c�t‖hn‖ + c�t2 ≤ ‖hn‖2 + c�t‖hn‖2 + c�t .

If β = σ 2 − 3r � 0 or �t(2β + 1) � 1
2 if β = σ 2 − 3r > 0, we add up the above results to

obtain

‖en+1‖2 − ‖en‖2 + 1

2
‖ẽn+1 − en‖2 + �t2‖hn+1‖2 − �t2‖hn‖2 + �tσ 2‖S(ẽn+1)S‖2

� �t(2β + 1)‖en‖2 + c�t3‖hn‖2 + c�t3 + 2�t‖Rn+1‖2.
Summing up the above inequality from n = 0 to n = m − 1 and applying the discrete
Gronwall’s Lemma (Lemma 2.1), we obtain the desired result. ��
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6 Numerical Results and Discussions

In this section, we present some numerical results and discuss their performance of the two
schemes.

6.1 Spatial Discretization

At each time step, we need to solve a boundary value problem (4.13) or (4.25). We employ
two methods in space: a central finite difference method on the truncated domain (0, Smax)

with uniform grid and a spectral element method on the semi-infinite domain with Gaussian
points [7].

The mesh for the finite difference method is given as

0 = S0 < S1 < · · · < SN = Smax, Si+1 − Si = h = �S = Smax/N . (6.1)

Then at each time step, we need to solve the following equation:

c1S
2u′′(S) + c2Su

′(S) + c3u = f , S ∈ (0, SN ),

a1u(0) + b1u
′(0) = g1, a2u(SN ) + b2u

′(SN ) = g2.
(6.2)

We discretize the above equation with the second-order centered finite difference method:

c1S
2
i
ui+1 − 2ui + ui−1

h2
+ c2Si

ui+1 − ui−1

2h
+ c3ui = fi , 1 � i � N − 1, (6.3)

where ui denotes the numerical approximation to u(Si ). And the boundary conditions are
discretized with BDF2 formulas:

a1u0 − b1
u2 − 4u1 + 3u0

2h
= g1,

a2uN + b2
3uN − 4uN−1 + uN−2

2h
= g2.

(6.4)

As indicated in the previous section, we use the Dirichlet boundary condition where u0 = K
and uN = 0. Hence, the linear system is tridiagonal.

For the spectral element method, we use Legendre polynomials in finite subdomains and
Laguerre functions on the semi-infinite subdomain. Linear hat functions were used to connect
basis on neighboring subdomains. Detailed descriptions of the spectral element method refer
to Sect. 4.1 in [7].

6.2 Stability and Order of Convergence

We perform numerical experiments with the following set of parameters:

T = 1, K = 50, r = 0.01, Smax = 2K . (6.5)

We measure the point-wise error at the strike K (as | · |K ), the l∞ error (as ‖ · ‖∞), and the
l2 error (as ‖ · ‖2). In all our numerical tests, the two operator splitting schemes are always
stable with with a wide range of σ and r .

For the finite difference method, we use a sufficiently fine mesh h = 1/210 in space so
that the errors are dominated by time discretization. In the following, we take σ = 0.01 or
0.2. Note that for σ = 0.01 we have σ 2 − 3r < 0, while for σ = 0.2 we have σ 2 − 3r > 0.
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Table 1 (With the finite difference method) The order of convergence 
 for the first-order method (4.3) and
(4.4), with parameters in (6.5) and σ = 0.01

M = 2i ‖e(2k)‖2 
 ‖e(2k)‖∞ 
 |e(2k)|K 


i = 4 2.92E−04 – 4.86E−04 – 3.15E−04 –

i = 5 1.76E−04 0.73 2.89E−04 0.75 2.46E−04 0.35

i = 6 9.49E−05 0.89 1.55E−04 0.91 1.39E−04 0.83

i = 7 4.95E−05 0.94 8.00E−05 0.95 7.34E−05 0.92

i = 8 2.47E−05 1.00 3.98E−05 1.01 3.68E−05 0.99

i = 9 1.17E−05 1.08 1.88E−05 1.08 1.75E−05 1.07

i = 10 5.06E−06 1.21 8.13E−06 1.21 7.57E−06 1.21

Table 2 (With the finite difference method) The order of convergence 
 for the first-order method (4.3) and
(4.4), with parameters in (6.5) and σ = 0.2

M = 2i ‖e(2k)‖2 
 ‖e(2k)‖∞ 
 |e(2k)|K 


i = 4 1.30E−01 – 3.73E−02 – 3.73E−02 –

i = 5 6.70E−02 0.95 1.92E−02 0.96 1.92E−02 0.96

i = 6 3.42E−02 0.97 9.78E−03 0.97 9.78E−03 0.97

i = 7 1.73E−02 0.99 4.93E−03 0.99 4.93E−03 0.99

i = 8 8.54E−03 1.02 2.44E−03 1.02 2.44E−03 1.02

i = 9 4.06E−03 1.07 1.16E−03 1.07 1.16E−03 1.07

i = 10 1.77E−03 1.20 5.04E−04 1.20 5.03E−04 1.20

We shall use M = 2k uniform points in time. The order of convergence 
 is computed
by


 = log2
‖e(2k)‖
‖e(k)‖ . (6.6)

In the above, e(k) is defined as

e(k) = V(k) − V�, (6.7)

where V(k) denotes the numerical solution with time step size k and V� denotes a reference
solution computed with M� = 212 points.

Results from Table 1, 2, 3 and 4 are obtained with the finite difference method. In
Table 1, we present the order of convergence of the first-order method (4.3) and (4.4) with
σ = 0.01. Table 2 lists the results with σ = 0.2. In both cases, the convergence rate reaches
its asymptotic rate of first-order when the time step size is sufficiently fine (�t ≤ 2−7).

In Tables 3 and 4 , we list the order of convergence for the BDF2 method with σ = 0.01
and σ = 0.2, respectively.We observe that, when σ = 0.01, the order of convergence quickly
reaches its asymptotic rate of 2. However, when σ = 0.2, the order of convergence would
only reach its asymptotic rate with much smaller time step sizes.

Results from Table 5, 6, 7 and 8 are obtained with the spectral element method. We use 3
elements as follows:

I1 = [0, K ], I2 = [K , 2K ], I3 = [2K ,∞), (6.8)
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Table 3 (With the finite difference method) The order of convergence 
 for the BDF2 method (4.8) and (4.9),
with parameters in (6.5) and σ = 0.01

M = 2i ‖e(2k)‖2 
 ‖e(2k)‖∞ 
 |e(2k)|K 


i = 4 9.21E−05 – 2.33E−04 – 1.41E−04 –

i = 5 2.06E−05 2.16 5.17E−05 2.17 3.21E−05 2.13

i = 6 4.93E−06 2.06 1.24E−05 2.06 7.56E−06 2.08

i = 7 1.25E−06 1.99 3.11E−06 1.99 1.95E−06 1.96

i = 8 2.97E−07 2.07 7.40E−07 2.07 4.33E−07 2.17

i = 9 7.14E−08 2.06 1.75E−07 2.08 9.58E−08 2.18

i = 10 1.69E−08 2.08 4.08E−08 2.10 2.15E−08 2.16

Table 4 (With the finite difference method) The order of convergence 
 for the BDF2 method (4.8) and (4.9),
with parameters in (6.5) and σ = 0.2

M = 2i ‖e(2k)‖2 
 ‖e(2k)‖∞ 
 |e(2k)|K 


i = 4 1.97E−02 – 4.93E−03 – 4.76E−03 –

i = 5 7.03E−03 1.48 1.77E−03 1.48 1.77E−03 1.43

i = 6 2.63E−03 1.42 6.56E−04 1.43 6.49E−04 1.45

i = 7 1.00E−03 1.39 2.45E−04 1.42 2.34E−04 1.47

i = 8 3.87E−04 1.37 1.00E−04 1.29 8.34E−05 1.49

i = 9 1.43E−04 1.44 3.50E−05 1.51 2.84E−05 1.55

i = 10 4.89E−05 1.54 1.30E−05 1.43 9.13E−06 1.64

i = 11 1.25E−05 1.97 2.90E−06 2.16 2.28E−06 2.00

Table 5 (With the spectral
elmement method) The order of
convergence 
 for the first-order
method (4.3) and (4.4), with
parameters in (6.5) and σ = 0.04

M = 2i ‖e(2k)‖2 
 ‖e(2k)‖∞ 
 |e(2k)|K 


i = 2 1.40E−1 1.10 9.36E−2 1.21 9.30E−2 1.22

i = 3 6.76E−2 1.05 4.44E−2 1.08 4.41E−2 1.08

i = 4 3.36E−2 1.01 2.18E−2 1.03 2.17E−2 1.02

i = 5 1.68E−2 1.00 1.09E−2 1.01 1.08E−2 1.00

i = 6 8.48E−3 0.99 5.43E−3 1.00 5.41E−3 1.00

i = 7 4.26E−3 0.99 2.72E−3 1.00 2.70E−3 1.00

i = 8 2.10E−3 1.02 1.34E−3 1.02 1.33E−3 1.02

i = 9 9.98E−4 1.08 6.33E−4 1.08 6.31E−4 1.08

i = 10 4.33E−4 1.20 2.75E−4 1.20 2.74E−4 1.20

i = 11 1.46E−4 1.57 9.22E−5 1.57 9.20E−5 1.57

with N1 = 128, N2 = 512, and N3 = 128 (Ni + 1 is the number of quadrature points in the
subdomain Ii .) For I3, we set the largest Laguerre point on the right end to be 3K . In terms
of convergence in time, we can observe behaviors similar to those from the finite difference
method.
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Table 6 (With the spectral
elmement method) The order of
convergence 
 for the first-order
method (4.3) and (4.4), with
parameters in (6.5) and σ = 0.2

M = 2i ‖e(2k)‖2 
 ‖e(2k)‖∞ 
 |e(2k)|K 


i = 2 2.26E+0 1.03 6.29E−1 1.14 6.26E−1 1.14

i = 3 1.13E+0 1.00 3.03E−1 1.05 3.02E−1 1.05

i = 4 5.65E−1 1.00 1.50E−1 1.02 1.49E−1 1.02

i = 5 2.83E−1 1.00 7.45E−2 1.01 7.43E−2 1.01

i = 6 1.41E−1 1.00 3.71E−2 1.01 3.70E−2 1.01

i = 7 7.01E−2 1.01 1.83E−2 1.02 1.83E−2 1.02

i = 8 3.42E−2 1.04 8.91E−3 1.04 8.89E−3 1.04

i = 9 1.60E−2 1.09 4.18E−3 1.09 4.17E−3 1.09

i = 10 6.92E−3 1.21 1.80E−3 1.22 1.80E−3 1.21

i = 11 2.32E−3 1.58 6.03E−4 1.58 6.01E−4 1.58

Table 7 (With the spectral
elmement method) The order of
convergence 
 for the BDF2
method (4.8) and (4.9), with
parameters in (6.5) and σ = 0.04

M = 2i ‖e(2k)‖2 
 ‖e(2k)‖∞ 
 |e(2k)|K 


i = 2 2.08E−2 1.96 1.66E−2 2.01 1.10E−2 2.04

i = 3 4.49E−3 2.21 2.86E−3 2.54 2.38E−3 2.21

i = 4 2.33E−3 0.95 3.09E−3 -0.11 4.96E−4 2.26

i = 5 8.21E−4 1.50 8.31E−4 1.89 8.34E−5 2.57

i = 6 2.25E−4 1.87 2.11E−4 1.98 1.00E−5 3.06

i = 7 6.96E−5 1.69 5.48E−5 1.94 6.79E−6 0.56

i = 8 2.20E−5 1.66 1.29E−5 2.09 6.05E−6 0.17

i = 9 9.02E−6 1.29 5.56E−6 1.21 4.24E−6 0.51

i = 10 4.72E−6 0.94 2.89E−6 0.94 2.63E−6 0.69

i = 11 1.46E−6 1.69 8.89E−7 1.70 8.37E−7 1.65

Table 8 (With the spectral
elmement method) The order of
convergence 
 for the BDF2
method (4.8) and (4.9), with
parameters in (6.5) and σ = 0.2

M = 2i ‖e(2k)‖2 
 ‖e(2k)‖∞ 
 |e(2k)|K 


i = 2 1.96E−1 1.64 5.03E−2 1.65 3.62E−2 2.01

i = 3 5.98E−2 1.71 1.46E−2 1.79 1.27E−2 1.51

i = 4 1.98E−2 1.59 4.89E−3 1.57 4.75E−3 1.42

i = 5 7.02E−3 1.50 1.77E−3 1.46 1.77E−3 1.42

i = 6 2.64E−3 1.41 8.39E−4 1.08 6.38E−4 1.47

i = 7 9.96E−4 1.41 2.73E−4 1.62 2.35E−4 1.44

i = 8 3.72E−4 1.42 9.31E−5 1.55 8.76E−5 1.42

i = 9 1.47E−4 1.34 3.70E−5 1.33 3.50E−5 1.32

i = 10 5.67E−5 1.37 1.41E−5 1.39 1.36E−5 1.37

i = 11 1.71E−5 1.73 4.21E−6 1.75 4.09E−6 1.73

6.3 Summary

We considered two operator splitting methods for American options under the classic Black–
Scholes model. The two operator splitting methods that we consider are reminiscent to the
first and second-order pressure-correctionmethods. By adopting some essential procedures in
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the stability proof of pressure-correction methods, we were able to establish the first rigorous
stability results for the first and second-order splitting methods. We have also derived error
estimates for the first-order splitting method, and presented numerical results to demonstrate
the convergence behaviors of the two operating splitting methods.

References

1. Achdou, Y., Pironneau, O.: ComputationalMethods for Option Pricing. Society for Industrial andApplied
Mathematic, Philadelphia (2005)

2. Balajewicz, M., Toivanen, J.: Reduced order models for pricing European and American options under
stochastic volatility and jump-diffusion models. J. Comput. Sci. 20, 198–204 (2017)

3. Bensoussan, A., Lions, J.-L.: Optimal stopping-time problems and variational inequalities. In: Studies
in Mathematics and Its Applications, vol. 12 of Applications of Variational Inequalities in Stochastic
Control, pp. 187–493. Elsevier, Amsterdam (1982, January)

4. Black, F., Scholes, M.: The pricing of options and corporate liabilities. J. Polit. Econ. 81(3), 637–654
(1973)

5. Brennan, M.J., Schwartz, E.S., Schwartz, E.S.: The valuation of American put options. J Finance 32(2),
449–462 (1977)

6. Chen, C., Wang, Z., Yang, Y.: A new operator splitting method for American options under fractional
Black–Scholes models. Comput. Math. Appl. (2018). https://doi.org/10.1016/j.camwa.2018.12.007

7. Chen, F., Shen, J., Haijun, Y.: A new spectral element method for pricing European options under the
Black–Scholes and merton jump diffusion models. J. Sci. Comput. 52(3), 499–518 (2012)

8. d’Halluin, Y., Forsyth, P.A., Labahn, G.: A penalty method for American options with jump diffusion
processes. Numer. Math. 97(2), 321–352 (2004)

9. Elliott, C.M., Ockendon, J.R.: Weak and Variational Methods for Free and Moving Boundary Problems.
Pitman Publishing, Boston (1982)

10. Feng, L., Linetsky, V., LuisMorales, J.: On the solution of complementarity problems arising in American
options pricing. Optim. Methods Softw. 26(4–5), 813–825 (2011)

11. Glowinski, R.: NumericalMethods for Nonlinear Variational Problems. Scientific Computation. Springer,
Berlin (1984)

12. Guermond, J.L.,Minev, P., Shen, J.:An overviewof projectionmethods for incompressible flows.Comput.
Methods Appl. Mech. Eng. 195(44–47), 6011–6045 (2006)

13. Guermond, J.L., Shen, J.: On the error estimates for the rotational pressure-correction projectionmethods.
Math. Comput. 73(248), 1719–1737 (2004)

14. Heywood, J.G., Rannacher, R.: Finite-element approximation of the nonstationaryNavier–Stokes problem
part IV: error analysis for second-order time discretization. SIAM J. Numer. Anal. 27(2), 353–384 (1990)

15. Huang, J., Pang, J.-S.: Option pricing and linear complementarity. J. Comput. Finance 2(1), 31–60 (1998)
16. Hundsdorfer, W., in’t Hout, K.: On multistep stabilizing correction splitting methods with applications to

the Heston model. SIAM J. Sci. Comput. 40(3), A1408–A1429 (2018)
17. In’t Hout, K., Toivanen, J.: Application of operator splitting methods in finance. In: Glowinski, R., Osher,

S.J., Yin, W. (eds.) Splitting Methods in Communication. Imaging, Science, and Engineering, Scientific
Computation, pp. 541–575. Springer, Cham (2016)

18. Ikonen, S., Toivanen, J.: Operator splitting methods for American option pricing. Appl. Math. Lett. 17(7),
809–814 (2004)

19. Ikonen, S., Toivanen, J.: Componentwise splitting methods for pricing american options under stochastic
volatility. Int. J. Theor. Appl. Finance 10(02), 331–361 (2007)

20. Ikonen, S., Toivanen, J.: Operator splitting methods for pricing American options under stochastic volatil-
ity. Numer. Math. 113(2), 299–324 (2009)

21. Jaillet, P., Lamberton, D., Lapeyre, B.: Variational inequalities and the pricing of American options. Acta
Appl. Math. 21(3), 263–289 (1990)

22. Kwon, Y.H., Lee, Y.: A second-order tridiagonal method for American options under jump-diffusion
models. SIAM J. Sci. Comput. 33(4), 1860 (2011)

23. Lee, J., Lee, Y.: Tridiagonal implicit method to evaluate European and American options under infinite
activity Lévy models. J. Comput. Appl. Math. 237(1), 234–243 (2013)

24. Lee, Y.: Financial options pricing with regime-switching jump-diffusions. Comput. Math. Appl. 68(3),
392–404 (2014)

123

https://doi.org/10.1016/j.camwa.2018.12.007


Journal of Scientific Computing            (2020) 82:33 Page 17 of 17    33 

25. Safaei, M., Neisy, A., Nematollahi, N.: New splitting scheme for pricing American options under the
Heston model. Comput. Econ. 52(2), 405–420 (2018)

26. Shen, J.: On error estimates of the projection methods for the Navier–Stokes equations: second-order
schemes. Math. Comput. 65(215), 1039–1066 (1996)

27. Song, H., Wang, X., Zhang, K., Zhang, Q.: Primal-dual active set method for American lookback put
option pricing. East Asian J. Appl. Math. 7(3), 603–614 (2017)

28. Song, H., Zhang, R.: Projection and contraction method for the valuation of American options. East Asian
J. Appl. Math. 5(1), 48–60 (2015)

29. Song, H., Zhang, R., Tian, W.Y.: Spectral method for the Black–Schles model of American options
valuation. J. Math. Stud. 47, 47–64 (2014)

30. Toivanen, J.: A high-order front-tracking finite difference method for pricing American options under
jump-diffusion models. J. Comput. Finance 13(3), 61 (2010)

31. van Kan, J.: A second-order accurate pressure-correction scheme for viscous incompressible flow. SIAM
J. Sci. Stat. Comput. 7(3), 870–891 (1986)

32. Wilmott, P., Howison, S., Dewynne, J.: TheMathematics of Financial Derivatives: A Student Introduction.
Cambridge University Press, Cambridge (1995)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

123


	Stability and Error Analysis of Operator Splitting Methods  for American Options Under the Black–Scholes Model
	Abstract
	1 Introduction
	2 Notations and Preliminaries
	3 The Linear Complementarity Problem
	4 Numerical Methods and Stability Analysis
	4.1 The Operator Splitting Methods
	4.2 Stability Results

	5 Error Estimates
	6 Numerical Results and Discussions
	6.1 Spatial Discretization
	6.2 Stability and Order of Convergence
	6.3 Summary

	References




