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1 Introduction

We consider in this paper numerical approximation of the following magneto-hydrodynamic (MHD)

equations

ut + (u · ∇)u− νΔu +∇p− α(∇× b)× b = 0, in Ω,

bt − ηΔb+∇× (b× u) = 0, in Ω,

div u = 0, in Ω,

div b = 0, in Ω,

(1.1)

with given initial data

u(·, 0) = u0(·), b(·, 0) = b0, (1.2)

where Ω is an open bounded domain in R
d (d = 2, 3), n is unit outward normal of ∂Ω, the unknowns

are the velocity field u, magnetic field b and pressure p, the parameters ν and η are respectively the

kinematic viscosity, the magnetic diffusivity, and α = 1/(4πμρ) with μ being the magnetic permeability

and ρ the fluid density. To fix the idea, we assume the no-slip boundary condition for the velocity, and

the perfectly conducting boundary condition for the magnetic field, namely,

u|∂Ω = 0, n · b|∂Ω = 0, n× (∇× b)|∂Ω = 0. (1.3)
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The above MHD equations model an incompressible, resistive and electrically conducting fluid in a

perfectly conducting container Ω. The wellposedness of this system is similar to the corresponding

Navier-Stokes system and has been established by many authors (see [4,13]). Various numerical approx-

imations for MHD equations (stationary or time dependent) have been proposed, mostly concentrated

on developing stable finite-element discretizations which require solving a double saddle point problem

(see [1, 5, 10, 12]). On the other hand, a decoupled approach based on the commutator of Laplacian

and Leray projection is proposed in [11], and several very interesting splitting schemes based on double

projection steps were proposed in [2].

In this paper, we develop several unconditionally stable, semi-discretized linear schemes, based on

standard and rotational pressure-correctionmethods [7,9,15,16] proposed for the Navier-Stokes equations.

Unlike in [2], we do not perform a projection step for the magnetic field, avoiding additional splitting

errors and computational cost associated with the projection. We show that our schemes will lead to

divergence-free magnetic field if the initial condition b0 is divergence-free.

The rest of the paper is organized as follows. In Section 2, we construct first-order semi-discretized

schemes based standard and rotational pressure-correction methods, and show that they are uncondition-

ally stable. Second-order schemes and their stability analysis are presented in Section 3. In Section 4, we

perform an error analysis for the first-order standard pressure-correction scheme. In Section 5, we first

describe a generic spatial discretization followed by a detailed description for an efficient implementation

of Legendre-Galerkin method in space. In Section 6, we present numerical results to demonstrate the

convergence rates for our schemes and describe an adaptive time stepping strategy. Finally in Section 7,

we present some concluding remarks.

2 First-order schemes

We construct two semi-implicit time discretization schemes based on standard pressure-correction and

rotational pressure-correction for the MHD equations and show that they are unconditionally stable.

2.1 A first-order scheme based on standard pressure-correction

Inspired by the pressure-correction scheme for the Navier-Stokes equations [7, 16], we construct the fol-

lowing scheme for (1.1) with (1.3).

Given (ũn, un, bn, pn), find (ũn+1, un, bn+1, pn+1) such that⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

ũn+1 − un

δt
+ (un · ∇)ũn+1 − νΔũn+1 +∇pn − α(∇× bn+1)× bn = 0,

bn+1 − bn

δt
− ηΔbn+1 +∇× (bn × ũn+1) = 0, (2.1)

ũn+1|∂Ω = 0,

bn+1 · n|∂Ω = 0, n× (∇× bn+1)|∂Ω = 0,

and ⎧⎪⎪⎪⎨
⎪⎪⎪⎩

un+1 − ũn+1

δt
+∇(pn+1 − pn) = 0,

divun+1 = 0, (2.2)

un+1 · n|∂Ω = 0.

Note that (2.1) is a coupled but linear elliptic type system for (ũn+1, bn+1), while (2.2) can be rewritten

as

−Δ(pn+1 − pn) = − 1

δt
ũn+1,

∂

∂n
(pn+1 − pn)|∂Ω = 0,

un+1 = ũn+1 − δt∇(pn+1 − pn).
(2.3)



Choi H et al. Sci China Math August 2016 Vol. 59 No. 8 1497

Hence, the above scheme is very easy to solve numerically compared with a fully implicit coupled nonlinear

system.

Let us denote (u, v) =
∫
Ω u v dx and ‖u‖2 = (u, u).

Theorem 2.1. The scheme (2.1)–(2.2) is unconditionally energy stable in the sense that

‖un+1‖2 + α‖bn+1‖2 + δt2‖∇pn+1‖2 + (‖ũn+1 − un‖2 + 2νδt‖∇ũn+1‖2 + 2αηδt‖∇bn+1‖2)
� ‖un‖2 + α‖bn‖2 + δt2‖∇pn‖2, ∀n � 0. (2.4)

Furthermore, we have

‖divbm+1‖2 + 2δtη

m∑
k=0

‖∇divbk+1‖2 � ‖divb0‖2, ∀m > 0. (2.5)

Proof. Taking the inner product of the first equation in (2.1) with 2δtũn+1, we obtain

‖ũn+1‖2 − ‖un‖2 + ‖ũn+1 − un‖2 + 2νδt‖∇ũn+1‖2
+ 2δt(∇pn, ũn+1)− 2δtα((∇× bn+1)× bn, ũn+1) = 0, (2.6)

where we used the fact

((u · ∇)v, v) = 0, ∀u ∈ H, v ∈ H1(Ω)d. (2.7)

Taking the inner product of the second equation in (2.1) with 2δtαbn+1, we find

α‖bn+1‖2 − α‖bn‖2 + α‖bn+1 − bn‖2 + 2δtαη‖∇bn+1‖2
+ 2δtα(∇× (bn × ũn+1), bn+1) = 0. (2.8)

Next, we rewrite (2.2) as
1

δt
un+1 +∇pn+1 =

1

δt
ũn+1 +∇pn,

and take the inner product of the above with itself on both sides. We find

1

δt2
‖un+1‖2 + ‖∇pn+1‖2 =

1

δt2
‖ũn+1‖2 + ‖∇pn‖2 + 2

1

δt
(∇pn, ũn+1),

which we rearrange as

2δt(∇pn, ũn+1) = ‖un+1‖2 − ‖ũn+1‖2 + δt2(‖∇pn+1‖2 − ‖∇pn‖2). (2.9)

We have from integration by parts that

(∇× (bn × ũn+1), bn+1) = ((bn × ũn+1),∇× bn+1) = ((∇× bn+1)× bn, ũn+1). (2.10)

Taking the sum of (2.6) and (2.8), using (2.9) and (2.10), we arrive at

‖un+1‖2 − ‖un‖2 + ‖ũn+1 − un‖2 + 2δtν‖∇ũn+1‖2 + δt2(‖∇pn+1‖2 − ‖∇pn‖2)
+ α‖bn+1‖2 − α‖bn‖2 + α‖bn+1 − bn‖2 + 2δtαη‖∇bn+1‖2 = 0,

which implies (2.4).

To prove (2.5), we recall that for any smooth function b, u and φ, we have

(∇× (b× u),∇φ) = 〈n× (b× u),∇φ〉|∂Ω,
n× (b× u) = (n · u)b− (n · b)u. (2.11)

We take the inner product of the second equation in (2.1) with ∇divbn+1. Thanks to the above identities

and the boundary conditions for ũn+1 and bn, we find(
bn+1 − bn

δt
,∇divbn+1

)
− η(Δbn+1,∇divbn+1) = 0. (2.12)
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Using the identity Δb = ∇×∇× b−∇divb, and integration by parts, we obtain from the above that

1

δt
(div(bn+1 − bn), divbn+1) + η(∇divbn+1,∇divbn+1) = 0, (2.13)

from which we derive

‖divbn+1‖2 − ‖divbn‖2 + ‖div(bn+1 − bn)‖2 + 2δtη‖∇divbn+1‖2 = 0.

We obtain (2.5) by summing up the last relation for n = 0, 1, . . . ,m.

Remark 2.2. Note that we do not explicitly enforce divbn+1 = 0 in the above scheme. However,

(2.5) indicates that bn will remain divergence-free as long as its initial condition b0 is divergence-free.

Furthermore, even with incompatible b0, divbn will be quickly dissipated towards zero. This remark

applies also to other schemes presented below.

2.2 First-order scheme based on rotational pressure-correction

It is well known that the pressure-correction scheme leads to an artificial boundary condition, i.e.,
∂
∂n (p

n+1 − pn)|∂Ω = 0 in (2.3), which induces large errors for the pressure near the boundary. A ro-

tational pressure-correction scheme is introduced in [9,15] for the Navier-Stokes equations to remove the

artificial pressure boundary layer. Hence, we adopt a similar approach here and propose a rotational

pressure-correction scheme for the MHD equations below:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

ũn+1 − un

δt
+ (un · ∇)ũn+1 − νΔũn+1 +∇pn − α(∇× bn+1)× bn = 0,

bn+1 − bn

δt
− ηΔbn+1 +∇× (bn × ũn+1) = 0,

ũn+1|∂Ω = 0,

bn+1 · n|∂Ω = 0, n× (∇× bn+1)|∂Ω = 0,

(2.14)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

un+1 − ũn+1

δt
+∇ψn+1 = 0,

divun+1 = 0,

un+1 · n|∂Ω = 0,

(2.15)

and

pn+1 = ψn+1 + pn − ν∇ · ũn+1. (2.16)

Note that (2.15) can also be reformulated as a Poisson equation, so the computational procedure for this

scheme is essentially the same as the scheme (2.1)–(2.2).

Theorem 2.3. The scheme (2.14)–(2.16) is unconditionally energy stable in the sense that

‖un+1‖2 + α‖bn+1‖2 + δt2‖∇ψn+1‖2 + δt

ν
‖qn+1‖2

+ δt(2ν‖∇× ũn+1‖2 + ν‖∇ · ũn+1‖2 + 2αη‖∇bn+1‖2)
� ‖un‖2 + α‖bn‖2 + δt2‖∇ψn‖2 + δt

ν
‖qn‖2, ∀n � 0. (2.17)

Furthermore, we have

‖divbm+1‖2 + 2δtη

m∑
k=0

‖∇divbk+1‖2 � ‖divb0‖2, ∀m > 0. (2.18)
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Proof. The proof of (2.18) is exactly the same as before.

To prove (2.17), we introduce a set of new variables

qn+1 = qn − ν∇ · ũn+1, ψn+1 = pn+1 − qn+1. (2.19)

Then, we can rewrite (2.15) as ⎧⎪⎪⎪⎨
⎪⎪⎪⎩

un+1 − ũn+1

δt
+∇(ψn+1 − ψn) = 0,

divun+1 = 0, (2.20)

un+1 · n|∂Ω = 0.

Taking the inner product of the first equation in (2.14) with 2δtũn+1, and that of the section equation

in (2.14) with 2αδtbn+1, and adding them together, we obtain

‖ũn+1‖2 − ‖un‖2 + ‖ũn+1 − un‖2 + 2δtν‖∇ũn+1‖2 + 2δt(∇(ψn + qn), ũn+1)

+ α‖bn+1‖2 − α‖bn‖2 + α‖bn+1 − bn‖2 + 2δtαη‖∇bn+1‖2 = 0, (2.21)

where we used the fact that the curl terms are canceled with each other as in the proof of Theorem 2.1.

For the inner product term in the above, we have

2δt(∇ψn +∇qn, ũn+1)

= 2δt(∇ψn, ũn+1) + 2δt(∇qn, ũn+1)

= 2δt(∇ψn, un+1 + δt(∇ψn+1 −∇ψn))− 2δt(qn,∇ · ũn+1)

= δt2(‖∇ψn+1‖2 − ‖∇ψn‖2 − ‖∇ψn+1 −∇ψn‖2) + 2δt

ν
(qn, qn+1 − qn)

= δt2
(
‖∇ψn+1‖2 − ‖∇ψn‖2 − 1

δt2
‖un+1 − ũn+1‖2

)
+
δt

ν
(‖qn+1‖2 − ‖qn‖2 − ‖qn+1 − qn‖2)

= δt2(‖∇ψn+1‖2 − ‖∇ψn‖2)− ‖un+1 − ũn+1‖2 + δt

ν
(‖qn+1‖2 − ‖qn‖2 − ν2‖∇ · ũn+1‖2).

On the other hand, taking the inner product of (2.15) with 2δtun+1, we obtain

‖un+1‖2 − ‖ũn+1‖2 + ‖un+1 − ũn+1‖2 = 0.

Combining the above equalities together and using the identity ‖∇u‖2 = ‖∇ × u‖2 + ‖∇ · u‖2 for

u ∈ H1
0 (Ω)

d, we obtain

‖un+1‖2 − ‖un‖2 + ‖ũn+1 − un‖2 + 2δtν‖∇× ũn+1‖2 + νδt‖∇ · ũn+1‖2

+ δt2(‖∇ψn+1‖2 − ‖∇ψn‖2) + δt

ν
(‖qn+1‖2 − ‖qn‖2)

+ α‖bn+1‖2 − α‖bn‖2 + α‖bn+1 − bn‖2 + 2δtαη‖∇bn+1‖2
= 0,

which implies (2.17).

3 Second-order schemes

The schemes presented in last section is only first-order accurate. Similarly to that for the Navier-Stokes

equations, we can construct second-order schemes based on standard pressure-correction and rotational

pressure-correction.
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3.1 Second-order scheme based standard pressure-correction

A semi-implicit second-order scheme for (1.1)–(1.3) based on pressure-correction is as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

3ũn+1 − 4un + un−1

2δt
+ ((2un − un−1) · ∇)ũn+1 − νΔũn+1

+∇pn − α(∇× bn+1)× (2bn − bn−1) = 0,

3bn+1 − 4bn + bn−1

2δt
− ηΔbn+1 +∇× ((2bn − bn−1)× ũn+1) = 0, (3.1)

ũn+1|∂Ω = 0,

bn+1 · n|∂Ω = 0, n× (∇× bn+1)|∂Ω = 0,

and ⎧⎪⎪⎪⎨
⎪⎪⎪⎩

3un+1 − 3ũn+1

2k
+∇(pn+1 − pn) = 0,

divun+1 = 0, (3.2)

un+1 · n|∂Ω = 0.

To start up the scheme, we can use the first-order scheme (2.1)–(2.2) to obtain the approximation at the

first time step. Hence, the computational procedure of this scheme is still essentially the same as the

previous first-order schemes.

Theorem 3.1. The scheme (3.1)–(3.2) is unconditionally energy stable in the sense that

‖un+1‖2 + α‖bn+1‖2 + ‖2un+1 − un‖2 + α‖bn‖2 + α‖2bn+1 − bn‖2

+
4

3
δt2‖∇pn+1‖2 + δt(4ν‖∇ũn+1‖2 + 4αη‖∇bn+1‖2)

� ‖un‖2 + α‖bn‖2 + ‖2un − un−1‖2 + α‖2bn − bn−1‖2 + 4

3
δt2‖∇pn‖2, ∀n � 0. (3.3)

Furthermore, we have

‖divbm+1‖2 + ‖div(2bm+1 − bm)‖2 + 4δtη

m∑
k=0

‖∇divbk+1‖2

� ‖divb1‖2 + ‖div(2b1 − b0)‖2, ∀m > 0. (3.4)

Proof. Taking the inner product of the first equation in (3.1) with 4δtũn+1, using (2.7), we derive

(3ũn+1 − 4un + un−1, 2ũn+1) + 4δtν‖∇ũn+1‖2 + 4δt(∇pn, ũn+1)

− 4αδt((∇× bn+1)× (2bn − bn−1), ũn+1) = 0. (3.5)

Taking the inner product of the second equation in (3.1) with 4δtαbn+1, we derive

α(3bn+1 − 4bn + bn−1, 2bn+1) + 4ηαδt‖∇bn+1‖2
+ 4αδt(∇× ((2bn − bn−1)× ũn+1), bn+1) = 0. (3.6)

We obtain from integration by parts that

(∇× ((2bn − bn−1)× ũn+1), bn+1) = ((2bn − bn−1)× ũn+1,∇× bn+1)

= ((∇× bn+1)× (2bn − bn−1), ũn+1). (3.7)

Summing up (3.5) and (3.6), and using (3.7), we obtain

(3ũn+1 − 4un + un−1, 2ũn+1) + α(3bn+1 − 4bn + bn−1, 2bn+1)

+ 4δtν‖∇ũn+1‖2 + 4ηαδt‖∇bn+1‖2 + 4δt(∇pn, ũn+1) = 0. (3.8)
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We denote

I1 := (3ũn+1 − 4un + un−1, 2ũn+1),

I2 := α(3bn+1 − 4bn + bn−1, 2bn+1),

I3 := 4δt(∇pn, ũn+1),

(3.9)

and bound them separately below,

I1 = (3ũn+1 − 4un + un−1, 2ũn+1)

= (3un+1 − 4un + un−1, 2ũn+1)− (3un+1 − 3ũn+1, 2ũn+1)

= (3un+1 − 4un + un−1, 2un+1)− (3un+1 − 4un + un−1, 2(un+1 − ũn+1))

− (3un+1 − 3ũn+1, 2ũn+1)

=: I11 − I12 − I13. (3.10)

For any sequence {vn}, we denote δvn = vn − vn−1 and δ2vn = δ(vn − vn−1). Using the identities

(a− b, 2a) = |a|2 − |b|2 + |a− b|2, (2a− 2b, 2a) = |2a− b|2 − |b|2,
we find

I11 = (3un+1 − 4un + un−1, 2un+1)

= (un+1 − 2un + un−1, 2un+1) + (2un+1 − 2un, 2un+1)

= ‖un+1‖2 − ‖2un − un−1‖2 + ‖δ2un+1‖2 + ‖2un+1 − un‖2 − ‖un‖2, (3.11)

I12 = (3un+1 − 4un + un−1, 2(un+1 − ũn+1))

= −
(
3un+1 − 4un + un−1,

4δt

3
∇(pn+1 − pn)

)
= 0, (3.12)

and

I13 = (3un+1 − 3ũn+1, 2ũn+1) = 3(‖un+1‖2 − ‖ũn+1‖2 − ‖un+1 − ũn+1‖2). (3.13)

Similarly, we have

I2 = α(3bn+1 − 4bn + bn−1, 2bn+1)

= α((bn+1 − 2bn + bn−1, 2bn+1) + (2bn+1 − 2bn, 2bn+1))

= α(‖bn+1‖2 − ‖2bn − bn−1‖2 + ‖δ2bn+1‖2 + ‖2bn+1 − bn‖2 − ‖bn‖2). (3.14)

From the equation (3.2), we have

3un+1 + 2δt∇pn+1 = 3ũn+1 + 2δt∇pn.
Taking the inner product of the above with itself, we derive

9‖un+1‖2 + 4δt2‖∇pn+1‖2 = 9‖ũn+1‖2 + 12δt(ũn+1,∇pn) + 4δt2‖∇pn‖2,
which implies that

I3 = 4δt(ũn+1,∇pn) = 3‖un+1‖ − 3‖ũn+1‖+ 4

3
δt2(‖∇pn+1‖2 − ‖∇pn‖2). (3.15)

Combining the above identities into (3.8), we arrive at

‖un+1‖2 − ‖un‖2 + ‖2un+1 − un‖2 − ‖2un − un−1‖2 + 4δtν‖∇ũn+1‖2
+ 4αηδt‖∇bn+1‖2 + ‖δ2un+1‖2 + 3‖un+1ũn+1‖2
+ α(‖bn+1‖2 − ‖bn‖2 + ‖2bn+1 − bn‖2 − ‖2bn − bn−1‖2)
+

4

3
δt2(‖∇pn+1‖2 − ‖∇pn‖2)
= 0,

which implies (3.3).

The proof of (3.4) is similar to that of (2.5) except that we use an identity similar to (3.10).
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3.2 Second-order scheme based on rotational pressure-correction

We can also construct a second-order scheme based on rotational pressure-correction as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

3ũn+1 − 4un + un−1

2δt
+ ((2un − un−1) · ∇)ũn+1 − νΔũn+1

+∇pn − α(∇× bn+1)× (2bn − bn−1) = 0,

3bn+1 − 4bn + bn−1

2δt
− ηΔbn+1 +∇× ((2bn − bn−1)× ũn+1) = 0, (3.16)

ũn+1|∂Ω = 0,

bn+1 · n|∂Ω = 0, n× (∇× bn+1)|∂Ω = 0,

and ⎧⎪⎪⎪⎨
⎪⎪⎪⎩

3un+1 − 3ũn+1

2δt
+∇(pn+1 − pn + ν∇ · ũn+1) = 0,

divun+1 = 0, (3.17)

un+1 · n|∂Ω = 0.

Based on the results that we established in Theorem 2.3, it can be expected, and confirmed by our

numerical experiments, that the above scheme is also unconditionally stable. However, its proof appears

to be much more involved that we will not pursue here for the sake of brevity.

4 Error estimates

To illustrate the procedure for error analysis, we establish below some error estimates for the first-order

pressure-correction scheme.

We start with some notation. Given a time step δt and T > 0, let φk (k = 0, 1, . . . ,m = [T/δt]) be a

sequence of functions in a normed space E, and denote

‖φδt‖2l2(E) = δt

m∑
k=0

‖φk‖2E, ‖φδt‖l∞(E) = max
0�k�m

‖φk‖E . (4.1)

Let tn = nδt, and denote

enu = u(tn)− un, ẽnu = u(tn)− ũn, enb = b(tn)− bn, enp = p(tn)− pn. (4.2)

Theorem 4.1. Assume that the solution to (1.1)–(1.3) is sufficiently smooth. Then the solution to the

scheme (2.1)–(2.2) satisfies the following error estimates:

‖eu,δt‖l∞(L2(Ω)d) + ‖eb,δt‖l∞(L2(Ω)d) + ‖ẽu,δt‖l2(H1(Ω)d) + ‖eb,δt‖l2(H1(Ω)d) � Cδt.

Proof. We define the following truncation errors:

Rn
u =

u(tn+1)− u(tn)

δt
+ (u(tn) · ∇)u(tn+1)− νΔu(tn+1)

+∇p(tn)− α(∇× b(tn+1))× b(tn), (4.3)

Rn
b =

b(tn+1)− b(tn)

δt
− ηΔb(tn+1) +∇× (b(tn)× u(tn+1)). (4.4)

We also define

Rn
p =

u(tn+1)− u(tn)

δt
+∇(p(tn+1)− p(tn)). (4.5)

It is clear that we have

‖Ru,δt‖l∞(H1(Ω)) + ‖Rb,δt‖l∞(H1(Ω)) + ‖Rp,δt‖l∞(L2(Ω)) � cRδt, (4.6)
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where cR > 0 is independent of δt.

Subtracting the first and second equations of (2.1) and (2.2) from (4.3)–(4.5), respectively, we get the

following error equations for n � 0,

ẽn+1
u − enu
δt

+ ((u(tn) · ∇)u(tn+1)− (un · ∇)ũn+1)− νΔẽn+1
u

+∇qn − α(∇× b(tn+1))× enb − α(∇× en+1
b )× bn = Rn+1

u , (4.7)

en+1
b − enb
δt

− ηΔen+1
b +∇× (enb × u(tn+1)) +∇× (bn × ẽn+1

u ) = Rn+1
b , (4.8)

en+1
u − ẽn+1

u

δt
+∇qn+1 −∇qn = Rn+1

p . (4.9)

Taking the inner product (4.7) with 2δtẽn+1
u , we obtain

‖ẽn+1
u ‖2 − ‖enu‖2 + ‖ẽn+1

u − enu‖2 + 2δt((u(tn) · ∇)u(tn+1)− (un · ∇)ũn+1, ẽn+1
u )

+ 2δtν‖∇ẽn+1
u ‖2 + 2δt(∇qn, ẽn+1

u )− 2δtα((∇× b(tn+1))× enb , ẽ
n+1
u )

− 2δtα((∇× en+1
b )× bn, ẽn+1

u )

= 2δt(Rn
u, ẽ

n+1
u ). (4.10)

Thanks to (2.7), we have

((u(tn) · ∇)u(tn+1)− (un · ∇)ũn+1, ẽn+1
u )

= ((u(tn) · ∇)ẽn+1
u + (enu · ∇)ũn+1, ẽn+1

u )

= ((u(tn) · ∇)ẽn+1
u − (enu · ∇)ẽn+1

u + (enu · ∇)u(tn+1), ẽn+1
u )

= ((enu · ∇)u(tn+1), ẽn+1
u ).

On the other hand,

2δt(∇qn, ẽn+1
u ) = 2δt(∇qn, en+1

u + δt(∇qn+1 −∇qn)− δtRn
p )

= δt2(‖∇qn+1‖2 − ‖∇qn‖2 − ‖∇qn+1 −∇qn‖2)− 2δt2(∇qn, Rn
p ). (4.11)

We derive from (4.9) that∥∥∥∥ 1

δt
en+1
u +∇qn+1 −∇qn

∥∥∥∥
2

=

∥∥∥∥Rn
p +

1

δt
ẽn+1
u

∥∥∥∥
2

,

‖∇qn+1 −∇qn‖2 = 1

δt2
(‖ẽn+1

u ‖2 − ‖en+1
u ‖2) + ‖Rn

p‖2 +
2

δt
(Rn

p , ẽ
n+1
u ),

where we used the fact that (en+1
u ,∇qn+1 −∇qn) = 0. Hence

2δt(∇qn, ẽn+1
u ) = ‖en+1

u ‖2 − ‖ẽn+1
u ‖2 + δt2(‖∇qn+1‖2 − ‖∇qn‖2)

− δt2‖Rn
p‖2 − 2δt(Rn

p , ẽ
n+1
u )− 2δt2(∇qn, Rn

p ). (4.12)

Taking the inner product (4.8) with 2αδten+1
b , we obtain

α(‖en+1
b ‖2 − ‖enb ‖2 + ‖en+1

b − enb ‖2) + 2αδtη‖∇en+1
b ‖2

+ 2αδt(∇× (enb × u(tn+1)), en+1
b ) + 2αδt(∇× (bn × ẽn+1

u ), en+1
b )

= 2αδt(Rn
b , e

n+1
b ). (4.13)

Using integration by parts, we get

2αδt(∇× (bn × ẽn+1
u ), en+1

b ) = 2αδt((bn × ẽn+1
u ),∇× en+1

b )

= 2δtα((∇× en+1
b )× bn, ẽn+1

u ). (4.14)
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Summing up (4.10) and (4.13), using (4.12) and (4.14), we obtain

‖en+1
u ‖2 − ‖enu‖2 + ‖ẽn+1

u − enu‖2 + 2δtν‖∇ẽn+1
u ‖2

+ α(‖en+1
b ‖2 − ‖enb ‖2 + ‖en+1

b − enb ‖2) + 2αδtη‖∇en+1
b ‖2

+ δt2(‖∇qn+1‖2 − ‖∇qn‖2)− δt2‖Rn
p‖2 − 2δt(Rn

p , ẽ
n+1
u )− 2δt2(∇qn, Rn

p )

+ 2δt((enu · ∇)u(tn+1), ẽn+1
u )− 2δtα((∇× b(tn+1))× enb , ẽ

n+1
u )

+ 2αδt(∇× (enb × u(tn+1)), en+1
b )

= 2δt(Rn
u, ẽ

n+1
u ) + 2αδt(Rn

b , e
n+1
b ). (4.15)

We bound each inner product term in the above as follows:

|2kα((∇× b(tn+1))× enb , ẽ
n+1
u )| � ck‖(∇× b(tn+1))× enb ‖‖ẽn+1

u ‖
� cδt‖enb ‖‖ẽn+1

u ‖
� cδt‖enb ‖‖∇ẽn+1

u ‖
� cδt‖enb ‖2 +

ν

8
δt‖∇ẽn+1

u ‖2,
|2αδt(∇× (enb × u(tn+1)), en+1

b )| = |2αδt(enb × u(tn+1),∇× en+1
b )|

� cδt‖enb × u(tn+1)‖‖∇× en+1
b ‖

� cδt‖enb ‖‖∇en+1
b ‖

� cδt‖enb ‖2 + δt
αη

8
‖∇en+1

b ‖2,

|2δt(Rn
p , ẽ

n+1
u )| � 2δt‖Rn

p‖‖ẽn+1
u ‖ � cδt3 + δt

ν

8
‖∇ẽn+1

u ‖2,
|2k((enu · ∇)u(tn+1), ẽn+1

u )| � 2δt‖(enu · ∇)u(tn+1)‖‖ẽn+1
u ‖

� cδt‖enu‖‖ẽn+1
u ‖

� cδt‖enu‖2 + δt
ν

8
‖∇ẽn+1

u ‖2,

2δt(Rn
b , e

n+1
b ) � 2δt‖Rn

b ‖‖en+1
b ‖ � cδt3 + δtη

α

8
‖∇en+1

b ‖2,
|2δt2(∇qn, Rn

p )| = 2δt2‖∇qn‖‖Rn
p‖ � cδt3‖∇qn‖2 + cδt3.

Combining the above estimates into (4.15), we find

‖en+1
u ‖2 − ‖enu‖2 + ‖ẽn+1

u − enu‖2 + δtν‖∇ẽn+1
u ‖2

+ α(‖en+1
b ‖2 − ‖enb ‖2 + ‖en+1

b − enb ‖2) + αδtη‖∇en+1
b ‖2 + δt2(‖∇qn+1‖2 − ‖∇qn‖2)

� cδt3 + cδt(‖enu‖2 + ‖enb ‖2 + δt2‖∇qn‖2).

Summing up the above for n = 0, . . . ,m, we obtain

‖em+1
u ‖2 + α‖em+1

b ‖2 + δt2‖∇qm+1‖2 +
m∑

n=0

(‖ẽn+1
u − enu‖2

+ δtν‖∇ẽn+1
u ‖2 + αδtη‖∇en+1

b ‖2 + α‖en+1
b − enb ‖2)

� cδt2 + cδt

m∑
n=0

(‖enu‖2 + α‖enb ‖2 + δt2‖∇qn‖2).

Finally, we can obtain the desired result by applying a discrete Gronwall inequality.

Remark 4.2. It is also possible to derive rigorous error estimates for the rotational pressure-correction

and second-order schemes presented above by combining the procedures in the above proof and in [9].

However, the process is very tedious so we leave the details to the interested readers.
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5 Spatial discretizations and fully discrete schemes

We first describe briefly how to construct fully discrete schemes with a generic approximation in space,

and then describe in some detail a Legendre-Galerkin method. For the sake of simplicity, we shall consider

only the first-order scheme (2.1)–(2.2), the other schemes can be treated by the same manner.

5.1 A generic spatial approximation

Let Xh ⊂ (H1
0 (Ω))

d denote the approximation space for the intermediate velocity field,

Yh ⊂ H1
n(Ω) := {b ∈ (H1(Ω))d : b · n|∂Ω = 0}

denote the approximation space for the magnetic field,

Mh ⊂ H1∫ (Ω) :=

{
q ∈ H1(Ω) :

∫
Ω

q = 0

}

denote the approximation space for the pressure, and Zh := {v = u+∇q : u ∈ Xh, q ∈Mh}.
Then, a fully discrete scheme based on (2.1)–(2.2) and the above discrete spaces is as follows:

(i) Find ũn+1
h ∈ Xh and bn+1

h ∈ Yh such that(
1

δt
ũn+1
h , vh

)
+ b(unh, ũ

n+1
h , vh) + ν(∇ũn+1

h ,∇vh)− α(∇× bn+1
h , bnh × vh)

=

(
1

δt
unh −∇pnh, vh

)
, ∀ vh ∈ Xh, (5.1)(

α

δt
bn+1
h , wh

)
+ αη(∇bn+1

h ,∇wh) + α(bnh × ũn+1
h ,∇× wh) =

(
α

δt
bnh, wh

)
, ∀wh ∈ Yh, (5.2)

where b(uh, wh, vh) = ((uh · ∇)wh, vh) +
1
2 (divuh, wh, vh).

(ii) Find pn+1
h ∈Mh such that

(∇pn+1
h ,∇qh) =

(
∇pnh +

1

δt
ũn+1
h ,∇qh

)
, ∀ qh ∈Mh. (5.3)

(iii) Set

un+1
h = ũn+1

h − δt∇(pn+1
h − pnh) ∈ Zh. (5.4)

By using a similar procedure to that in the proof of Theorem 2.1, we can establish the following:

Theorem 5.1. The scheme (5.1)–(5.4) is unconditionally energy stable in the sense that

‖un+1
h ‖2 + α‖bn+1

h ‖2 + δt2‖∇pn+1
h ‖2

+ (‖ũn+1
h − unh‖2 + 2νδt‖∇ũn+1

h ‖2 + 2αηδt‖∇bn+1
h ‖2)

� ‖unh‖2 + α‖bnh‖2 + δt2‖∇pnh‖2, ∀n � 0.

Proof. Taking vh = 2δtũn+1
h in (5.1), we obtain

‖ũn+1
h ‖2 − ‖unh‖2 + ‖ũn+1

h − unh‖2 + 2νδt‖∇ũn+1
h ‖2

+ 2δt(∇pnh, ũn+1
h )− 2δtα(∇× bn+1

h , bnh × ũn+1
h )

= 0, (5.5)

since, by integration by parts, we have

b((uh · ∇)vh, vh) = 0, ∀uh ∈ Zh, vh ∈ Xh. (5.6)

Taking wh = 2δtαbn+1
h in (5.2), we find

α‖bn+1
h ‖2 − α‖bnh‖2 + α‖bn+1

h − bnh‖2 + 2δtαη‖∇bn+1
h ‖2
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+ 2δtα(bnh × ũn+1
h ,∇× bn+1

h ) = 0. (5.7)

We rewrite (5.4) as

un+1
h + δt∇pn+1

h = ũn+1
h + δt∇pnh.

Since both sides are in Zh, we can take the inner product of the above with itself on both sides to get

‖un+1
h ‖2 + δt2‖∇pn+1

h ‖2 = ‖ũn+1
h ‖2 + δt2‖∇pnh‖2 + 2δt(∇pnh , ũn+1

h ). (5.8)

We obtain the desired result by taking the sum of (5.5), (5.7) and (5.8).

Remark 5.2. By making standard assumptions on the approximation properties of Xh, Yh, Mh and

the usual inf-sup condition on (Xh,Mh), one can establish an error estimate, for the fully discretized

scheme (5.1)–(5.4) using a standard procedure (see [8]). We leave the details to the interested readers.

Note that ũn+1
h and bn+1

h are coupled together, and are solutions to a linear system of the form

An+1
h

(
ũn+1
h

bn+1
h

)
=

(
1
δtu

n
h −∇pnh
1
δt b

n
h

)
. (5.9)

It is easy to check that for uh ∈ Xh and bh ∈ Yh, we have((
uh

bh

)
,An+1

h

(
uh

bh

))
=

1

δt
‖uh‖2 + ν‖∇uh‖2 + α

δt
‖bh‖2 + αη‖∇bh‖2. (5.10)

Hence the matrix representation An+1
h is positive definite (but not symmetric). Therefore, (5.9) can be

solved efficiently by one’s favorite method. For example, one can use the preconditioned BiCGSTAB [6],

which does not require (An+1
h )T, with the following block diagonal operator as the preconditioner:

Ph =

(
1
δtI − νΔh 0

0 α
δt I − αηΔ̃h,

)
, (5.11)

where Δh and Δ̃h are discrete Laplacians defined by

− 〈Δhuh, vh〉 := (∇uh,∇vh), ∀uh, vh ∈ Xh,

− 〈Δ̃hbh, wh〉 := (∇bh,∇wh), ∀uh, vh ∈ Yh.
(5.12)

Hence, each BiCGSTAB iteration requires solving only two decoupled Poisson-type equations.

5.2 A Legendre-Galerkin method

As an example, we present and implement below a Legendre-Galerkin method in space. To this end, we

set Ω = (−1, 1)d. Using the convention of spectral methods, we shall use N instead of h to denote the

spatial discretization parameter.

Let PN be the space of polynomials of degree less than or equal to N in each direction. We define the

approximation spaces for the velocity u, magnetic field b and pressure p by

XN = {u ∈ (PN )d : u|∂Ω = 0},
YN = {b ∈ (PN )d : n · b|∂Ω = 0 and n× (∇× b)|∂Ω = 0},

MN =

{
p ∈ PN−2 :

∫
Ω

pdx = 0

}
,

(5.13)

respectively, and set ZN := {vN + ∇qN : vN ∈ XN , qN ∈ MN}. Note that here we choose to enforce

the boundary condition n × (∇ × b)|∂Ω = 0 explicitly in YN . As we shall see below, this allows us to

construct a more efficient algorithm.
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The Legendre-Galerkin method for (2.1) is to find ũn+1
N ∈ XN and bn+1

N ∈ YN such that(
1

δt
ũn+1
N , vN

)
+ ((unN · ∇)ũn+1

N , vN )− ν(Δũn+1
N , vN )

− α((∇× bn+1
N )× bnN , vN ) =

(
1

δt
unN −∇pnN , vN

)
, ∀ vN ∈ XN ,(

α

δt
bn+1
N , wN

)
− αη(Δbn+1

N , wN ) + α(∇× (bnN × ũn+1
N ), wN ) =

(
α

δt
bnN , wN

)
, ∀wN ∈ YN .

(5.14)

The Legendre-Galerkin method for (2.2) is to find ∇pn+1
N ∈MN such that

(∇pn+1
N ,∇qN ) =

(
∇pnN +

1

δt
ũn+1
N ,∇qN

)
, ∀ qN ∈MN , (5.15)

and

un+1
N = ũn+1

N − δt∇(pn+1
N − pnN ) ∈ ZN . (5.16)

As discussed above, we shall solve the coupled linear system (5.14) using the preconditioned BiCGSTAB

method. With the block diagonal preconditioner, each BiCGSTAB iteration requires solving consecutively

two equations of the following form: Find uN ∈ XN such that

α1(uN , vN ) + (∇uN ,∇vN ) = (f1, vN ), ∀ vN ∈ XN , (5.17)

and find bN ∈ YN such that

α2(bN , wN ) + (∇bN ,∇wN ) = (f2, wN ), ∀wN ∈ YN , (5.18)

where α1 and α2 are two constants, and f1 and f2 are two given functions.

We shall use the efficient method presented in [14] for solving (5.17), and describe below an efficient

method for solving (5.18). We consider first the two-dimensional case.

Let b = (b1, b2)
T. Then, n · b|∂Ω = 0 can be written as

b1(±1, y) = 0 and b2(x,±1) = 0, x, y ∈ (−1, 1). (5.19)

The second boundary condition

n× (∇× b) = 0

can also be separated. Indeed, since

n× (∇× b) = n× (0, ∂xb2 − ∂yb1), (5.20)

at x = ±1, we have

∂xb2(±1, y)− ∂yb1(±1, y) = 0.

Since b1(±1, y) = 0 from the first boundary condition, we have ∂xb2(±1, y) = 0. Similarly, we have

by(x,±1) = 0. Hence, the boundary conditions for b1 and b2 are completely decoupled and are given by

b1(±1, y) = 0, ∂yb1(x,±1) = 0, y ∈ (−1, 1) (5.21)

and

b2(x,±1) = 0, ∂xb1(±1, y) = 0. (5.22)

Hence we can solve for b1 and b2 separately by using the efficient Legendre-Galerkin method presented

in [14].

In the three-dimensional case, the boundary conditions no longer decouple from each other. However,

one can still develop an efficient Legendre-Galerkin solver for the coupled system as in [3].
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6 Numerical results

It is clear that the first-order schemes lead to first-order convergence rate for all quantities. But the

convergence rates of second-order schemes are more complicated [7]. Hence, we shall examine the rate

of convergence for the second-order schemes (3.1)–(3.2) and (3.16)–(3.17) with the following fabricated

exact solution (with corresponding forcing functions added in (1.1)):

u = (sin(t)sin(2πy)sin2(πx),−sin(t)sin(2πx)sin2(πy))T,

b = (sin(t)sin(πx)cos(πy),−sin(t)sin(πy)cos(πx))T,

p = sin(t) exp(x+ y).

We take ν = α = η = 1, and unless specified otherwise, we use N = 40 in our spectral approximation

which is more than enough to resolve the given solution to machine accuracy so the computed errors are

due only to the time discretizations.

In Figure 1, we plot the errors vs. δt of the scheme (3.1)–(3.2). We observe that the convergence rate

for the magnetic field b is of second-order in both L2 and H1. However, the convergence rate for the

velocity u is of second-order in L2 but of 3/2-order in H1, and the convergence rate for the pressure p in

L2 is of first-order. These are consistent with the results for Navier-Stokes equations [7].

In Figure 2, we plot the errors vs. δt of the scheme (3.16)–(3.17). We observe that the convergence

rates for all measured quantities are of second-order. Since the computational procedure and complexity

of this scheme is essentially the same as that of (3.1)–(3.2), we have that, this scheme is recommended

in practice.

u1

dt dt

dt

Pressure error

E
rr

or

E
rr

or

E
rr

or

errorerror b1

L2
H1

L2
H1

L2

Figure 1 Errors of u1, b1, p at T = 1 with the scheme (3.1)–(3.2)
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u1 errorerror b1
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rr
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E
rr
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dt dt

L2
H1

L2
H1

Pressure error
E

rr
or

dt

L2

Figure 2 Errors of u1, b1, p at T = 1 with the scheme (3.16)–(3.17)

Time

dt
dt
dt
dt

Figure 3 Evolution of BiCGSTAB iteration numbers

Next, we examine the convergence performance of the preconditioned BiCGSTAB for solving (5.9). In

Figure 3, the iteration numbers of BiCGSTAB for various δt are plotted for a tolerance of

τ = 10−10.

We observe that convergences are achieved with a few iterations for all cases, and as δt decreases, the

number of iterations required decreases.
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7 Concluding remarks

In this paper, we developed several semi-discretized schemes for the MHD equations. These schemes are

based on the standard and rotational pressure-correction schemes for the Navier-Stokes equations, and

enjoy the following properties:

• There are unconditionally energy stable. Hence, a suitable time adaptive strategy can be used.

• They lead to, at each time step, a coupled linear system for the velocity and magnetic field, and a

Poisson equation for the pressure. The coupled linear system is positive definite so it can be efficiently

solved by one’s favorite method, in particular, by a preconditioned BiCGSTAB method with the block

diagonal preconditioner.

• The schemes do not enforce explicitly the divergence-free condition for the magnetic field, or in

other words, do not involve a projection step as in [2]. However, it is shown that our schemes lead to

divergence-free magnetic field if the initial magnetic field is divergence-free.

Hence, these schemes are very effective and easy to implement, and we believe that they can be very

useful in numerical simulation of MHD flows.
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