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Abstract. An efficient and accurate spectral method is presented for scattering prob-
lems with rough surfaces. A probabilistic framework is adopted by modeling the surface
roughness as random process. An improved boundary perturbation technique is em-
ployed to transform the original Helmholtz equation in a random domain into a stochas-
tic Helmholtz equation in a fixed domain. The generalized polynomial chaos (gPC) is
then used to discretize the random space; and a Fourier-Legendre method to discretize
the physical space. These result in a highly efficient and accurate spectral algorithm for
acoustic scattering from rough surfaces. Numerical examples are presented to illustrate
the accuracy and efficiency of the present algorithm.

Key words: Acoustic scattering; spectral methods; stochastic inputs; differential equations; un-
certainty quantification.

1 Introduction

Wave scattering from (random) rough surfaces is a very common physical phenomenon and
is at the core of a variety of technologies ranging from SAR imaging and remote sensing
to underwater acoustics, optical lithography, and meteorology. The design of numerical
methods to faithfully simulate such scattering processes presents significant challenges,
largely due to the need to resolve wave oscillations and interactions, and in many cases,
high accuracy requirements.

A wide variety of techniques have been proposed for wave scattering from irregular
obstacles, e.g., small-slope approximation, Kirchhoff approximation, momentum transfer
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expansion, etc. (see the survey paper [25] and the references therein). Among the most
compelling of these are those based on boundary perturbations which can be traced to
the work of Rayleigh [16] and Rice [17]. These methods are fast, straightforward to
implement, and quite accurate within their domain of applicability. It has been shown
rigorously that the scattered fields are analytical functions of the grating height (slope)
parameter ( [2, 8]), and this provides justifications for boundary perturbations. However,
the traditional approaches of [16, 17] become ill-conditioned at high orders because they
rely on significant cancellations for convergence ( [12, 13]). Subsequently, an improved
boundary perturbation algorithm was proposed in [13] to overcome the issue of poor
conditioning. This method, termed “Transformed Field Expansions” (TFE), employs
a change of variables which “flattens” the shape of the scatter to a flat configuration
and is shown to be accurate and robust at high orders. In [14], the TFE technique is
combined with a highly efficient spectral Galerkin method in polar coordinates and applied
to bounded obstacles. Extensive numerical experiments were conducted to demonstrate
the efficiency and accuracy of the method.

Due to the lack of knowledge and/or measurement of realistic rough surfaces, it is
natural to adopt a probabilistic framework, where rough surfaces are modeled as random
processes which are typically characterized by surface height probability distributions and
their cross correlations. Most of the existing numerical approaches adopt one of the afore-
mentioned methods for a single deterministic irregular surface. Statistical averaging is
then applied over an ensemble of such deterministic simulations to generate probabilistic
information of the scattered fields, e.g., mean, standard deviation, etc. This is the classi-
cal Monte Carlo type procedure and can be computationally intensive as the convergence
rate of the statistics is relatively slow, e.g., the mean field usually converges as 1/

√
K

where K is the number of realizations. A large solution ensemble involving many real-
izations of deterministic simulations are required to obtain sufficiently accurate solution
statistics. Recently, a high-order non-sampling method based on Generalized Polynomial
Chaos (gPC) was developed for differential equations with random inputs [29]. It is a
generalization of the Wiener-Hermite expansion [26] and is essentially a spectral approx-
imation of functionals in random space. The basis functions include global orthogonal
polynomials [4, 5, 29], piecewise polynomials [1], and wavelets [6]. Along with Galerkin
projection, the resulting stochastic Galerkin (SG) algorithm can be highly efficient in
many applications with random initial/boundary conditions, uncertain parameters, etc.
See, for example, [28, 30] for numerical examples, [1] for analysis on elliptic equations
and [3] on Burgers’ equation.

Stochastic modeling in (random) rough domains, despite its practical and theoreti-
cal importance, is relatively underdeveloped. Efficient numerical algorithms using gPC
expansions were developed in [31] and [24], where a robust numerical mapping and an
analytical mapping, respectively, were employed to transform the problems into fixed do-
mains. In this paper, we extend the TFE boundary perturbation method to scattering
of random rough surfaces. The surfaces are to be modeled as random processes and the
resulting governing equations, Helmholtz equation for acoustic scattering, become stochas-
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tic partial differential equations. The gPC expansion is employed as a spectral method
in random space, and a Galerkin method is used to obtain the governing equations for
the gPC expansion coefficients. A high-order stochastic collocation method ( [27]) is also
employed to facilitate the Galerkin projection of the right-hand-side, which takes a com-
plicated form in this case, of the governing stochastic Helmholtz equations. The resulting
equations are deterministic and standard numerical techniques can be applied. We will
focus, in this paper, acoustic scattering of two-dimensional bounded obstacles. A highly
efficient spectral-Galerkin method will be used as spatial discretization in physical space.
Such a method was developed for elliptic equations in bounded domains in [19–21] and was
recently extended to the Helmholtz equation in exterior domains through the Dirichlet-to-
Neumann operator [14]. The overall algorithm is a unified spectral method for scattering
problems over random rough surfaces. It yields spectral accuracy in both physical space
and random space.

In the next section we will present the mathematical formulations in stochastic frame-
work. Details of numerical procedures will be presented in Section 3. Several numerical
examples are given in Section 4 to illustrate convergence and efficiency of the new algo-
rithm. we summarize the paper in Section 5.

2 Mathematical formulations

In this study we will focus on the problem of solving electromagnetic and acoustic plane-
wave scattering from bounded obstacles with rough boundaries. For simplicity we restrict
our attention to the scalar case in two dimensions, and leave the more general three
dimensional setting for future work.

2.1 Deterministic governing equations

Let us assume that

D = {(r, θ) : r ≤ a+ g̃(θ), 0 ≤ θ < 2π} (2.1)

is a bounded domain in R
2 representing an impenetrable body with boundary ∂D =

{(r, θ) : r = a + g̃(θ), 0 ≤ θ ≤ 2π}. For an incident time-harmonic (plane) wave vinc illu-
minating the scatterer in an isotropic medium, the diffracted field v satisfies the following
exterior boundary value problem:

∆v + k2v = 0, r < a+ g̃(θ), (2.2a)

v = ξ or ∂nv = ξ, r = a+ g̃(θ), (2.2b)

lim
r→∞

r1/2(∂rv − ikv) = 0, r → ∞, (2.2c)

where k is the wavenumber and n is the unit outward normal. The boundary condition
depends on the physical problem — it is Dirichlet for sound-soft problems and Neumann for
sound-hard problems. Finally, the Sommerfeld radiation condition is imposed at infinity.
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For notational convenience, we will restrict our discussions to the Dirichlet case in the
following.

An equivalent statement which poses the problem on a bounded domain can be made in
terms of the Dirichlet–Neumann operator (DNO), also called the Dirichlet–to–Neumann
(DtN) map. Let b > a+ |g̃|L∞ , then, using a classical argument of separation of variables,
the general solution of (2.2a)–(2.2c) for r ≥ b can be expressed as

v(r, θ) =

∞∑

p=−∞

apH
(1)
p (kr)eipθ,

where H
(1)
p is the p-th degree Hankel function of the first kind. Therefore, if v(b, θ) is

given, we can write

v(b, θ) = ψ(θ) =
∞∑

p=−∞

ψ̂pe
ipθ.

Hence, the coefficients {ap} can be uniquely determined, namely, we have

v(r, θ) =

∞∑

p=−∞

ψ̂p
H

(1)
p (kr)

H
(1)
p (kb)

eipθ.

We now define the Dirichlet–to–Neumann operator T by

T ψ ≡ ∂rv(b, θ) =
∞∑

p=−∞

k
dzH

(1)
p (kb)

H
(1)
p (kb)

ψ̂pe
ipθ, (2.3)

where

dzH
(1)
p (kb) =

dH
(1)
p (z)

dz

∣∣∣∣∣
z=kb

,

which maps the Dirichlet data ψ to the Neumann data ∂rv|r=b. Thus, (2.2) can be
equivalently restated as

∆v + k2v = 0, (r, θ) ∈ Da+eg,b, (2.4a)

v(a+ g̃(θ), θ) = ξ(θ), (2.4b)

∂rv(b, θ) − T v(b, θ) = 0. (2.4c)

where

Da+eg,b = {(r, θ) : a+ g̃(θ) < r < b, 0 ≤ θ < 2π}.
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2.2 Probabilistic modeling of rough surfaces

To incorporate the ubiquitous uncertainty and geometrical “imperfection” in realistic scat-
ter surfaces, we adopt a probabilistic setting and model the surfaces as random processes.
Let (Ω,A,P) be a properly defined complete probability space, where Ω is the event space,
A its σ-algebra, and P a probability measure. We consider, for P-a.e. ω ∈ Ω, the following
random domain

D(ω) = {(r, θ, ω) : r ≤ a+ g̃(θ, ω), 0 ≤ θ < 2π}, (2.5)

where g̃(θ, ω) is a random process characterizing the geometrical uncertainty of the scatter
boundary. For any fixed ω, g̃(θ, ·) is a deterministic function representing a realization of
the surface geometry; and at a given location with fixed θ, g̃(·, ω) is a random variable

representing the uncertain height of the surface at this location.

For numerical simulations, continuous random processes such as g̃(θ, ω) need to be
discretized. This is accomplished by representing/approximating g̃(·, ω) by a function
with only finite number of random variables, i.e.,

g̃(θ, ω) ≈ g(θ, Y 1(ω), . . . , Y N (ω)), (2.6)

where {Y n(ω)}N
n=1 is a set of mutually independent random variables. The requirement

of independence is essential for numerical simulations, because most, if not all, random
number generators nowadays generate independent series of random numbers.

Gaussian processes can be completely specified by their first two moments (mean and
covariance functions), and their finite-term approximation procedure (2.6) is relatively
straightforward. The most widely used methods are spectral expansion [22] and Karhunen-
Loève (KL) expansion [7]. In spectral methods a Gaussian process is expressed as a
finite-term Fourier series with uncorrelated Gaussian random frequency whose amplitudes
are determined by matching the power spectra of the process, while in KL expansion a
Gaussian process is approximated by a finite-term summation of the eigenfunctions of
its covariance function with uncorrelated Gaussian random coefficients. (Note that for
Gaussian distribution, independence is equivalent to uncorrelation.)

Although both the spectral method and the KL expansion work well for Gaussian
processes where the dominating approximation errors stem from the finite-term trunca-
tions, it is much more challenging to simulate non-Gaussian processes, whose complete
specifications involve all joint probability distributions at all locations in physical space.
The task is often reduced to matching only the pointwise marginal distributions at given
locations in physical space and their cross-correlations. Typical methods are often based
on iterative corrections to spectral expansion (e.g., [32]) or KL expansion (e.g. [18]). Many
issues are still under investigation and belong to the topic of “digital generations of non-
Gaussian random fields”, which remains an active research field.

In this paper we will assume that a satisfactory representation/approximation of a
given random surface in the form of (2.6) has been established, and the errors associated
with the model been quantified. The actual procedure to obtain (2.6) is beyond the scope
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of this paper and the readers are referred to [18,32], and the references therein, for more
details.

Let ρi : Γi → R
+ be the probability density functions of the random variable Y i(ω),

and its image Γi ≡ Y i(Ω) ∈ R be intervals in R for i = 1, . . . , N . Then

ρ(y) =

N∏

i=1

ρi(Y
i), ∀y ∈ Γ (2.7)

is the joint probability density of the random vector y = (Y 1, · · · , Y N ) with the support

Γ ≡
N∏

i=1

Γi ⊂ R
N . (2.8)

This allows us to conduct numerical formulations in a finite dimensional (N -dimensional)
random space Γ, in replacement of the infinite dimensional space Ω.

2.3 Stochastic governing equations

The computational domain of interest now becomes

D(ω) = {(r, θ, y(ω)) : r ≤ a+ g(θ, y(ω)), 0 ≤ θ < 2π}, (2.9)

where
y(ω) = (Y 1(ω, . . . , Y N (ω))

is the finite-variate random vector in (2.6) whose components are mutually independent.
According to Doob-Dynkin lemma [15], the scattered field is also a function of this finite-
variate random vector. The stochastic version of the governing equations are, for all
y(ω) ∈ Γ,

∆v(r, θ, y) + k2v(r, θ, y) = 0, (r, θ) ∈ Da+g,b(ω), (2.10a)

v(a+ g(θ, y), θ) = ξ(θ), (2.10b)

∂rv(b, θ, y) − T v(b, θ, y) = 0. (2.10c)

where
Da+g,b(ω) = {(r, θ, y(ω)) : a+ g(θ, y(ω)) < r < b, 0 ≤ θ < 2π}.

Note that the only randomness is from the uncertain geometry of the domain D(ω).

3 Numerical methods

In what follows, we consider sufficiently smooth (random) boundary deformations of the
form g(θ, y(ω)) = εf(θ, y(ω)), where |f |L∞ ∼ O(1) for all y(ω) and 0 < ε < 1 controls the
amplitude of boundary perturbation. Following [2,8,12,13], the scattered field v depends
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analytically on the parameter ε, and we have a strongly convergent expansion, for all
y ∈ Γ,

v(r, θ, y(ω); ε) =

∞∑

n=0

vn(r, θ, y) · εn. (3.1)

Our numerical procedure for system (2.10) consists of three essential steps: (i) using the
Transformed Field Expansion (TFE) to derive the (stochastic) governing equations for
{vn}; (ii) using the generalized Polynomial Chaos (gPC) expansion along with stochastic
Galerkin (SG) and stochastic collocation (SC) methods to convert the stochastic equations
for {vn} to a set of deterministic governing equations; and (iii) solving these deterministic
equations by an efficient spectral method in physical space.

3.1 Transformed field expansion

The idea behind the traditional “field expansion” (FE) method is to solve {vn} in (3.1)
recursively as solutions of a sequence of Helmholtz problems in the unperturbed domain

Da,b = {(r, θ) : a < r < b, 0 ≤ θ < 2π}.
As shown in [12, 13], such an approach suffers from severe ill-conditioning at high orders
due to significant cancellations in the recursion. As a remedy, the “transformed field
expansion” (TFE) was developed in [8–13], where a change of variables coupled to the FE
design leads to a stable and robust high-order boundary perturbation scheme. The change
of variables takes the following form, for all y ∈ Γ,

r′ =
(b− a)r − bg(θ)

(b− a) − g(θ)
=
dr − bg

d− g
, θ′ = θ,

where d = (b−a), maps the perturbed geometry Da+g,b to the annulusDa,b. The governing
equation (2.10) in these transformed coordinates becomes, upon dropping the primes in
(r′, θ′),

D2
ru+ ∂2

θu+ r2k2u = F (r, θ, y;u), (r, θ) ∈ Da,b, (3.2a)

u(a, θ, y) = ξ(θ), (3.2b)

∂ru(b, θ, y) − T u(b, θ, y) = J(θ, y), (3.2c)

where Dr = r∂r,

u(r, θ, y) = v(r +A/d, θ, y), dJ(θ, y) = −g(θ, y)Tu(b, θ, y).

−d2F = dA∂rDru+ dDr[A∂ru] +A∂r[A∂ru]

−dg∂2
θu− d∂θ[g∂θu] + g∂θ[g∂θu] − dB∂r∂θu+B∂r[g∂θu]

−d∂θ[B∂ru] + g∂θ[B∂ru] +B∂r[B∂ru]

+d(∂θg)∂θu− g(∂θg)∂θu− (∂θg)B∂ru+

4∑

j=1

Cj(g)k
2u,

A(r, θ, y) = g(θ, y)(b − r), B(r, θ, y) = ∂θA = (∂θg(θ, y))(b − r),
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and

C1(g) = −2d g(r)2 + 2d Ar,

C2(g) = g2(r)2 − 4gAr +A2,

C3(g) = (2/d)Ag2r − (2/d)gA2,

C4(g) = (1/d2)g2A2.

Note that the transformation converts (2.10), a deterministic problem in a random domain,
to (3.2), a stochastic problem in a fixed domain. More details on the transformation can
be found in [14].

Again, letting g = εf , for f sufficiently smooth, the analyticity of the transformed field
u (see [8]) implies that

u(r, θ, y; ε) =

nmax∑

n=0

un(r, θ, y) εn, nmax → ∞. (3.3)

Inserting the above in (3.2), it is straightforward, albeit tedious, to derive the following
recursions, for {un}: for all y ∈ Γ,

D2
run + ∂2

θun + r2k2un = Fn(r, θ, y), (r, θ) ∈ Da,b, (3.4a)

un(a, θ, y) = δn,0 ξ(θ), (3.4b)

∂run(b, θ, y) − T un(b, θ, y) = Jn(θ, y), (3.4c)

where

−d2Fn = dA∂rDrun−1 + dDr[A∂run−1] +A∂r[A∂run−2] − df∂2
θun−1

−d∂θ[f∂θun−1] + f∂θ[f∂θun−2] − dB∂r∂θun−1 +B∂r[f∂θun−2]

−d∂θ[B∂run−1] + f∂θ[B∂run−2] +B∂r[B∂run−2]

+d(∂θf)∂θun−1 − f(∂θf)∂θun−2 − (∂θf)B∂run−2

+
4∑

j=1

Cj(f)k2un−j, (3.4d)

dJn = −fTun−1(b, θ, y). (3.4e)

For details of the derivation, see [14].

3.2 Spectral discretizations in random space: gPC

In the finite dimensional random space Γ defined in (2.8), the gPC expansion seeks to
approximate a random function via orthogonal polynomials of random variables. Let us
define one-dimensional orthogonal polynomial spaces with respect to the measure ρi(Y

i)dy
in Γi, i = 1, . . . , N ,

W i,pi ≡
{
v : Γi → R : v ∈ span

{
φm(Y i)

}pi

m=0

}
, i = 1, · · · , N, (3.5)



62 D. Xiu and J. Shen / Commun. Comput. Phys., 2 (2007), pp. 54-72

where {φm(Y i)} are a set of orthogonal polynomials satisfying the orthogonality conditions

∫

Γi

ρi(Y
i)φm(Y i)φn(Y i)dY i = h2

mδmn, (3.6)

with normalization factors h2
m =

∫
Γi
ρiφ

2
mdY

i. The type of the orthogonal polynomials

{φm(Y i)} in (3.6) is determined by ρi(Y
i), the probability density function of Y i(ω), for

i = 1, · · · , N . For example, uniform distributions are associated with Legendre polynomi-
als, and Gaussian distributions are associated with Hermite polynomials. (See [28,29] for
a detailed list of correspondences.)

The corresponding N -variate orthogonal polynomial space in Γ is defined as

WP
N ≡

⊗

|p|≤P

W i,pi , (3.7)

where the tensor product is over all possible combinations of the multi-index p = (p1, · · · ,
pN ) ∈ N

N
0 satisfying |p| =

∑N
i=1 pi ≤ P . Thus, WP

N is the space of N -variate orthogonal
polynomials of total degree at most P , and the number of basis functions in (3.7) is
dim(WP

N ) =
(N+P

N

)
. Such spaces are often employed in the (generalized) polynomial

chaos expansions [5, 28,30].

The finite order, P th-order, gPC approximation of a given function in v(y) in the space
Γ is

vP
N (y) =

M∑

m=1

v̂mΦm(y), M =

(
N + P

N

)
, (3.8)

where

v̂m =
1

h2
m

∫

Γ
v(y)Φm(y)ρ(y)dy, m = 1, . . . ,M.

The convergence of ‖v − vP
N‖L2

ρ(Γ) depends on the regularity of v(y), and can be very

fast when v(y) is sufficiently smooth. For low to moderate value of N , stochastic Galerkin
methods are preferred because their high accuracy and fast convergence; and for large
value of N ≫ 1, the rapidly growing number of basis functions effectively reduces its
efficiency. In this case, the Monte Carlo method should be considered. However, if a
highly accurate stochastic solution is desired, then stochastic Galerkin methods can be
more efficient even for relatively large values of N . (This was shown rigorously in [1], and
demonstrated numerically for N > 20 in [27,31]).

3.2.1 gPC Galerkin approach for governing equations

The stochastic Galerkin method for a stochastic differential equation like (3.4) is better
illustrated in the following general form. For a given stochastic boundary value problem,

L (y, x;u) = s(y, x), (y, x) ∈ Γ ×D, (3.9)
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subject to the boundary condition

B(y, x;u) = r(y, x), (y, x) ∈ Γ × ∂D, (3.10)

where B is the boundary condition operator. We seek uP
N (y, x) ∈WP

N (y) such that

∫

Γ
ρ(y)L

(
y, x;uP

N

)
v(y)dy =

∫

Γ
ρ(y)s(y, x)v(y)dy, ∀v(y) ∈WP

N , x ∈ D, (3.11)

∫

Γ
ρ(y)B(y, x, uP

N )v(y)dy =

∫

Γ
ρ(y)r(y, x)v(y)dy, ∀v(y) ∈WP

N , x ∈ ∂D (3.12)

The resulting problem (3.11)–(3.12) thus becomes a deterministic problem in the physical
domain D, and can be solved by a standard discretization technique, e.g., finite elements,
finite volume, etc.

In the TFE approach (3.3)–(3.4), the random quantities {un(r, θ, y)} in (3.3) are ex-
panded by gPC expansion

un(r, θ, y(ω)) ≈
M∑

m=1

ûn,m(r, θ)Φm(y(ω)), n = 0, 1, . . . ,∞. (3.13)

By applying the stochastic Galerkin procedure to system (3.4), we obtain, for n = 0, . . . ,
nmax, m = 1, . . . ,M ,

D2
r ûn,m + ∂2

θ ûn,m + r2k2ûn,m = F̂n,m(r, θ), (r, θ) ∈ Da,b, (3.14a)

ûn,m(a, θ) = δn,0δm,0ξ(θ), (3.14b)

∂rûn,m(b, θ) − T ûn,m(b, θ) = Ĵn,m(θ), (3.14c)

where

F̂n,m =

∫

Γ
Fn(r, θ, y)Φm(y)ρ(y)dy, and Ĵn,m =

∫

Γ
Jn(θ, y)Φm(y)ρ(y)dy (3.15)

are the gPC coefficients for {Fn} and {Jn}, respectively. Note that {ûn,m} are determin-
istic quantities and problem (3.14) is a set of deterministic equations.

3.2.2 gPC collocation approach for source terms

The coefficients {Fn} and {Jn} take rather complicated form, as shown in (3.4d) and (3.4e).
Hence, analytical evaluations of their gPC expansion coefficients, {F̂n,m} and {Ĵn,m} in
(3.15), are not straightforward, if not impossible. To circumvent this difficulty, we employ
the stochastic collocation technique, where the integrals in (3.15) are approximated by the
following summation,

F̂n,j ≈
Qn∑

k=1

Fn(r, θ, yk)Φj(yk)wk, (3.16)
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Figure 1: Two-dimensional (N = 2) nodes based on the extrema of Chebyshev polynomials. Left: Sparse grid
from Smolyak algorithm. Total number of points is 145. Right: Tensor product grid constructed from the same
one-dimensional nodes. Total number of nodes is 1, 089.

and

Ĵn,j ≈
Qn∑

k=1

Jn(θ, yk)Φj(yk)wk, (3.17)

where {yk, wk}Qn

j=1 are a set of nodes and weights in the N -dimensional space Γ.
Although there are plenty of choices for the nodal set in one dimensional random

space (N = 1), e.g., quadrature rules, it is more difficult to design an efficient nodal set
in higher dimensions (N > 1). A simple tensor product of one-dimensional quadratures
is impractical as the total number of nodes grows too fast for N ≫ 1. (With tensor
product, a one-dimensional nodal set with m nodes will have mN nodes in N -dimensional
space.) It was shown in [27] that the collocation nodes defined by Smolyak sparse grids
( [23]) are particularly efficient for stochastic equations — the number of nodes depends
weakly on the dimension of the random space, and the integration orders, i.e., polynomial
exactness, can be refined to arbitrarily high orders. Hence, we will use the sparse grid
to approximate integrals (3.15) via (3.16)–(3.17). For a systematical study of high-order
stochastic collocation methods, we refer to [27]. An example of sparse grid and tensor grid
in two-dimensional space is illustrated in Fig. 1.

3.3 Spectral Galerkin approximation in physical space

The governing equations for the gPC coefficients in (3.14) are a set of deterministic

Helmholtz equations in an annular domain with the non–standard outer boundary condi-
tion (expressed using a Dirichlet–Neumann operator). Since the equation (3.14) has to be
solved for multiple ((nmax + 1) ×M) number of times, it is very important to employ an
efficient and accurate algorithm for (3.14). Since the equation (3.14) is set on a fixed annu-
lus, it is natural to use a spectral method. We now briefly describe the spectral–Galerkin
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method developed very recently in [14] for the following problem (which is slightly more
general than (3.14a)–(3.14c)):

D2
rU + ∂2

θU + r2k2U = G, (r, θ) ∈ Da,b, (3.18a)

U(a, θ) = ζ(θ), (3.18b)

∂rU(b, θ) − T U(b, θ) = η(θ), (3.18c)

where G(r, θ), ζ(θ) and η(θ) are given functions. The key observation is that the DNO T
defined in (2.3), while global in physical space, is local in Fourier coefficient space. Hence,
substituting U(r, θ), G(r, θ), ζ(θ) and η(θ) in (3.18) by their Fourier expansion, i.e.,

(U(r, θ), G(r, θ)) =

∞∑

p=−∞

(ûp(r), ĝp(r))e
ipθ, (ζ(θ), η(θ)) =

∞∑

p=−∞

(ζ̂p, η̂p)e
ipθ,

and using (2.3), we can decompose (3.18) into the following sequence of one–dimensional
problems (p = 0,±1,±2, . . . ):

D2
r ûp + (r2k2 − p2)ûp = ĝp, r ∈ (a, b), (3.19a)

ûp(a) = ζ̂p, (3.19b)

∂rûp(b) − k
dzH

(1)
p (kb)

H
(1)
p (kb)

ûp(b) = η̂p, (3.19c)

which can then be efficiently solved by using a spectral-Galerkin method. More precisely,
assuming Nr and Nθ are the number of points used in the radial and azimuthal directions,
then the total number of operations needed for solving the equation (3.18) is a small
multiple of N2

rNθ log(Nθ). We refer to [14] for a detailed description of this algorithm.

4 Numerical examples

In this section we provide numerical examples to examine the accuracy and efficiency of the
present algorithm. Our focus here is two-dimensional scattering over bounded obstacles
with rough surfaces.

4.1 Acoustic scattering of rough cylinders

We first consider scattering of a cylinder with uncertain rough surfaces.

4.1.1 A model problem

We first present numerical results of a diagnostic case, whose exact solution is available.
We consider a cylinder with uncertain surface height of the form ra(θ, y) = a+g(θ, y) where
g(θ, y) = εyf(θ), with y(ω) ∈ (−1, 1)N a N -variate random vector uniformly distributed
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in (−1, 1)N , and ε > 0 a real parameter controlling the level of uncertainty. We construct
an exact solution of the form

vp(r, θ, y) = apH
(1)
p (kr(y))eipθ (4.1)

by setting the boundary condition

ξ(θ, y) = vp(ra(θ, y), θ).

Hence, when (ε, f(θ), ξ) are provided, the stochastic TFE algorithm can deliver approxi-
mations to the field to be compared with the exact field, vp. To test numerical results, we
focus on the surface current at the obstacle, where the effects of geometric perturbations
are felt most strongly. The surface current is defined as

ν(θ, y) = ∇v|r=ra
·Ng,

where Ng = ((a + g),−∂θg)
T is chosen unnormalized to match the definition of the

Dirichlet–Neumann operator (DNO) (see [8, 12,13]). Subsequently,

ν(θ, y) = (a+ g) ∂rv|r=ra
− (∂θg)

(a+ g)
∂θv|r=ra

. (4.2)

In the first test, we set f(θ) = cos(θ), ε = 0.05, and N = 1. We employ stochastic col-
location with 8th-order accuracy in random space to evaluate the complicated right-hand-
side of (3.16) and (3.17) in order to ensure the errors induced by stochastic collocation
is sub-dominant. In physical space, we use grid of Nr = 64 and Nθ = 32, and employ
10th-order TFE expansion. Such resolutions are chosen based on comprehensive numerical
tests and yield errors in physical space of order O(10−10).

Fig. 2 shows the mean-square error convergence with increasing orders of gPC expan-
sion. The mean-square errors are defined as

ǫ2 = E [(ν − νexact)
2] =

∫

Γ
(ν − νexact)

2ρ(y)dy,

and the integral is again evaluated by the collocation procedure as in Section 3.2.2. The
error convergence with respect to the order of gPC expansion is shown in Fig. 2, and
we observe an exponential convergence as the order of expansion increases. Such fast
convergence is common for gPC expansion when the solution is sufficiently smooth in
random space.

4.1.2 Rough random surface

To model a more realistic random surface on a circle, we employ a Fourier expansion for
a periodic random process f̃(t, ω), i.e.,

f(t, ω) =

K∑

n=−K

fn(ω)e−int (4.3)
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Figure 2: Mean square errors of model case with increasing order of gPC expansions.
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Figure 3: Construction of a 2π-periodic covariance function Cf . (a) Decay of Fourier cosine coefficients
Cn, n = 0, 1, · · · ; (b) Reconstructed periodic covariance function (solid line) by extending the regular Gaussian
covariance function (dashed line) CG(t) = exp(t2/b2) with correlation length b = 0.4.

Here, the coefficients fn(ω) = f r
n(ω)+ if i

n(ω) are complex random variables. It is straight-
forward to show that if f r

n and f i
n are statistically independent for all n, and have zero mean

and variance of Cn/4, where Cn = 1
π

∫ 2π
0 C ef (t) cos(nt)dt are the coefficients of the Fourier

cosine series of the 2π-periodic covariance function C ef , then the random field f(t, ω) given

by (4.3) approximates the prescribed 2π-periodic covariance function Cf → C ef as K → ∞.

Let y(ω) = (f r
0 , f

r
1 , f

i
1, · · · , f r

K , f
i
K), then f(t, ω) ≡ f(t, y(ω)) has (2K + 1) random dimen-

sions. (Note that f i
0 = 0 for f real.) Obviously, f(t, y(ω)) is an approximation of f̃(t, ω),

as (4.3) is a finite-term summation. In practice, we choose the number of expansion terms
so that the contributions from the truncated terms are sufficiently small.
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Figure 4: Realizations of rough circular surface generated with the 17-term (N = 17) Fourier expansion (4.3).
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Figure 5: Acoustic scattering over cylinder with rough surface. The arrow indicates the direction of the incident
plane wave. (a) The mean solution of RCS. The thick circle is the mean boundary of the scatterer; (b) Standard
deviation of the RCS profile. Here the thick circle is only a reference of the location of the cylinder because of
the scale difference.

In this numerical example, we choose a 2π-periodic covariance function Cf by ex-
tending the standard Gaussian covariance function CG(t) = exp(−t2/b2) to the periodic
domain (0, 2π), where b is the correlation length. Hereafter we choose a moderately short
correlation length b = 0.4. In Fig. 3(a), the decay of the Fourier cosine coefficient of C ef
is shown. Due to the relatively fast decay of these coefficients, we choose to use K = 8
in the truncated series (4.3). Thus, f(t, y) has N = 2K + 1 = 17 random dimensions.
The constructed covariance function Cf (t) is shown in Fig. 3(b), along with the standard
non-periodic Gaussian covariance function CG.
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Figure 6: RCS profile of scattering over a rough cylinder. (a) Mean; (b) standard deviation.

Fig. 4 shows four (arbitrarily chosen) realizations of f(t, y), constructed by N = 17
(K = 8) dimensions with correlation length b = 0.4 and ε = 0.1.

An incident plane wave of the form vinc = exp(ikx) with k = 5 is introduced. We
examine the bistatic radar cross section (RCS) defined as (in two spatial dimensions)

s(θ, y) = lim
r→∞

2πr
|v|

|vinc| .

In all the following computations, the fixed computational domain is the annulus Da,b

with a = 1 and b = 10. Extensive resolution independence tests were conducted and the
reported results are produced with Nr = 128, Nθ = 96 in physical domain (see Section
3.3), nmax = 10 for the order of TFE expansion (see (3.3)), and P = 2 for the order of gPC
expansion (see (3.13)). With random dimension of N = 17, 2nd-order gPC has M = 171
expansion terms (see (3.8)) for each {un} in (3.13).

In Fig. 6, the mean profile of RCS is shown, along with its standard deviation (STD)
in Cartesian coordinates. For reference purpose, a rescaled circle, representing the mean
shape of the obstacle, is drawn to indicate the location of the cylinder. While the mean
RCS does not deviate too much from the corresponding deterministic case, we observe
a much larger standard deviation in the back-scattering direction — suggesting that the
surface uncertainty has more pronounced effects in back-scattering. To validate the results,
we also conducted Monte Carlo simulations (MCS) for the same problem. Comparisons
of mean and standard deviation of RCS are shown in Fig. 5 in polar coordinates. We
observe a good agreement between the two approaches, and the standard deviation using
MCS converges to that using gPC as the number of realizations in MCS increased from
100, 500, to 1,000. (We recall that 171 expansion terms is used in gPC.)
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Figure 7: Acoustic scattering over cylinder with rough surface. The arrow indicates the direction of the incident
plane wave. (a) The mean solution of RCS. The thick line is the mean boundary of the gear-shaped obstable;
(b) Standard deviation of the RCS profile. Here the thick line is only a reference of the location of the obstable
because of the scale difference.
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Figure 8: RCS profile of scattering over a rough gear-shaped obstacle. (a) Mean; (b) standard deviation.

4.2 Acoustic scattering of rough oscillatory-shaped objects

We now simulate a plane wave scattering over a gear-shaped obstacle with uncertain
surfaces. Here the surface is constructed as ra(θ, y) = 1 + ε[cos(16θ) + σf(θ, y)], where
f(θ, y) is the same periodic random process generated in (4.3). Fig. 7 shows the mean and
STD profile of RCS, with ε = 0.1 and σ = 0.2. Again, for reference purpose, a rescaled
mean shape of the rough gear is drawn to indicate the location of the obstacle. Again
we observe enhanced uncertainty (STD) in RCS in back-scattering. The STD weakens
in the direct back-scatter direction around θ = π. Comparisons of mean and standard
deviation of RCS against MCS are shown in Fig. 8 in polar coordinates. We observe good
agreements and the convergence of MCS results, as the number of realizations increases,
to the converged gPC results.
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5 Summary

In this paper we presented an efficient method for scattering problems over bounded rough
surfaces. The surface roughness is modeled as random processes, and the governing equa-
tion, i.e., Helmholtz equation, is casted in a stochastic framework. The transformed field
expansion (TFE) is employed to express the solution as a series expansions of bound-
ary perturbations. The resulting (stochastic) equations are a set of recursive Helmholtz
equations for the expansion coefficients. As a result, the original deterministic Helmholtz
equation in a random domain is transformed into a set of stochastic equations in a fixed
domain. Our numerical discretization is a unified spectral method. The generalized poly-
nomial chaos (gPC) representation in properly defined random space is employed, and a
stochastic Galerkin and collocation methods are used to convert the governing stochas-
tic equations into a set of deterministic equations. A highly efficient Fourier-Legendre
Galerkin method is then employed to solve the resulting deterministic equations.

We carried out numerical simulations for acoustic wave scattering over a cylindrical
and a gear-like shapes with rough surfaces. Exponential error convergence is obtained
for a model problem whose exact solution is available. For more realistic rough surface
models, we employed Monte Carlo simulations to validate our computational results. Good
agreements are obtained at much lower computational cost compared to Monte Carlo
sampling.

More in-depth analysis, especially regarding the efficiency of the method with respect
to the boundary regularity, and extension to three-dimensional obstacle are under inves-
tigation.
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