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Abstract. Mathematical modeling and numerical simulation of smectic C liq-
uid crystals which possess the spontaneous polarization are considered in this
paper. In particular, the model allows for a system with a zero net polarization
which is one of the ubiquitous systems of the polarized liquid crystals. Theoret-
ical and numerical investigations are conducted to study effects of the energy
associated with the polarization, switching patterns between two uniform states
by an externally applied field and random noise, as well as a relation between
polarization and applied field near the phase transition from the smectic A and
smectic C.

1. Introduction. We study in this paper the role of the energy associated with
the polarization in smectic C liquid crystals. We mainly deal with the total energy
of liquid crystals confined between two plates, and study properties of the energy
in connection with physical phenomena.

Upon lowering temperature from the isotropic phase, we obtain the nematic
phase in which the molecules tend to align along their long axes. In this case, the
average long axis of the molecules defines the molecular director n. With further
cooling, there is locally a one-dimensional formation of layers with the director n

being parallel to the layer normal, and the SmA phase emerges. The SmC phase
can be obtained by lowering temperature from the SmA phase. In addition to the
one-dimensional layer structure, in the SmC phase the molecules are tilted away
from the layer normal, but free to rotate around it. We describe the SmC phase
by the director n and the complex field ψ = ρeiω: level sets of the phase function
ω correspond to the smectic layers and ρ to centers of mass of the molecules. If
molecules are chiral in the SmC phase (labeled the SmC∗), the molecules rotate
around the layer normal in a helical fashion. In SmC∗ phase, there is also a spon-
taneous polarization field P in each layer due to the loss of mirror symmetry [8]. In
this case, it is observed that the field P tends to perpendicular to both the director
and layer normal, i.e. P = b0n × ∇ω for constant b0. The helical structure in
the SmC∗ phase can be suppressed by interactions with the surfaces of bounding
plates in a thin cell (SSFLC) with P being perpendicular to the bounding plates. In
the bent core molecules, a local uniform packing direction of the molecules within

2000 Mathematics Subject Classification. Primary: 76A15, 82D45; Secondary: 35Q35, 65M70,
65N35.

Key words and phrases. Antiferroelectric, Electrostatic, Equilibrium, Ferroelectric, Legendre
collocation, Polarization, Smectic C, Switching.

This work is partially supported by NSF grants DMS-0456286, DMS-0610646 and AFOSR
grant FA9550-08-1-0416.

1419

http://dx.doi.org/10.3934/dcds.2010.26.1419


1420 JINHAE PARK, FENG CHEN AND JIE SHEN

layers determines the direction of the polarization field P (cf. Section 1 in [14]).
Hereafter, we shall use ferroelectric liquid crystals to denote the SmC∗ and bent
core molecules.

In ferroelectric liquid crystals, two fundamental types are found: ferroelectric and
antiferroelectric phases. In ferroelectric phases, all the polarization vectors point
in the same direction, resulting in a nonzero net polarization. In antiferroelectric
phases (SmC∗

A), the polarization vectors in subsequent layers point in the opposite
directions by rotating 180◦ around the layer normal from one layer to the next,
inducing a zero net polarization. It is also observed in the literature that mixed
states of ferro-and antiferroelectric phases are possible in appropriate temperature
ranges [21, 28]. This is responsible for the observations of multiple periodic phases
with a stripe texture indicating that the layers are locally flat and parallel [15, 26].
Most of the known SmC∗

A phase appear at lower temperature than ferroelectric
ones, which is opposite to the situation in solid state [19]. In a SSFLC, the SmC∗

A

phase exhibits zero net polarization in the absence of applied fields. Upon applica-
tion of an applied field (above a small threshold field), switching to a ferroelectric
state takes place, reminiscent of SSFLC bistable switching in the SmC∗. With the
removal of the applied field the molecules reorient to stabilize the system with a
zero net polarization. This is the signature of existing small energy barriers be-
tween antiferroelectric and ferroelectric states resulting in a fast switching. In this
case, switching between two ferroelectric states always undergoes antiferroelectric
state. This induces a typical antiferroelectric hysteresis loop between polarization
and applied field [3]. It is analogous to the situation in ferroelectric solids where
a material in the cubic phase possesses zero polarization corresponding to anti-
ferroelectric phase, particularly in the perovskite family. The cubic phase can be
transformed into ferroelectric phases (tetragonal, orthorhombic and rhombohedral
phases) by applied electric fields [4]. This leads us to include the following term in
the Ginzburg-Landau energy associated with the polarization as considered in [28]:

a1|P|2 + a11|P|4 + a111|P|6,

with a1, a11, and a111 being constants. From now on, we abuse notation to denote
by antiferroelectric phase the system of a ferroelectric liquid crystal allowing for
P = 0 locally.

In this paper, we restrict ourselves to the system of a liquid crystal confined
between two plates with uniform layer structures. We mainly focus on the an-
tiferroelectric phases whose mathematical properties were not well studied in the
literature, and investigate the minimizers of the governing energy functional in a
thin domain. More specifically, we study how different energy terms affect on the
structures of liquid crystal molecules in the system and establish numerical com-
putations in order to understand the role of coefficients of the energy and random
noise.

This paper is organized as follows. In Section 2, we introduce the total energy
functional of ferroelectric liquid crystals accounting for mixture of ferroelectric and
antiferroelectric phases. We then discuss the energy with the bookshelf geome-
try in Section 3. In Section 4, we study equilibrium solutions of the energy in
the SmC∗ phase. By the standard theories of bifurcations, we prove that surface
energy interaction results in periodic equilibrium configurations nucleating from a
ferroelectric state. These periodic solutions allow sharp interfaces at finite points
when the thickness of the sample approaches zero. In other words, liquid crystal
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molecules at these points rotate rapidly around the layer normal by π (see Figure
1). We then study minimizers of the energy functional focusing on the electro-
static energy in Section 5. Using the Young measure argument, we prove that the
electrostatic energy favors fine structure of polarization in order to lower the total
energy. These results are responsible for existence of mixture of two uniform states
appearing in the physics literature [19, 22], resulting in a possibility of antiferroelec-
tric state for an equilibrium state. In order to study the role of Ginzburg-Landau
energy, we consider in Section 6 the system near the phase transition between the
SmA and ferroelectric SmC phases. In the antiferroelectric phase, we note that the
molecules exhibit a double hysteresis loop between polarization and applied fields,
which agrees qualitatively with experimental data reported in [3]. We consider in
Section 7 numerical simulations of the switching problem. In order to account for
the presence of random noise due to impurities or thermal noise in the system, we
add a stochastic term to the model, and use the Wentzell-Freidlin theory [11] to
reformulate the problem as a minimization of the action functional. Then, we adapt
the L-BFGS method (cf. [29]) coupled with a spectral discretization in space-time
to simulate optimal switching patterns between two ferroelectric states. In Section
8, we present numerical approximations for local minimizers with an emphasis on
the role of spontaneous twist and bend. We conclude with some remarks in the
final section.

2. Energy functional. In this section, we discuss the energy functional for ferro-
electric liquid crystals. The total energy functional of the continuum model for a
system of a liquid crystal occupying a domain Ω is given by

E =

∫

Ω

{FN + FSm + FP + FE} dx +

∫

∂Ω

FS dS − 1

2
ε0

∫

R3\Ω

|E|2 dx (1)

subject to the Maxwell’s equations
{

−∇ · [(ε⊥χΩ + ε0χR3\Ω)E)] = ∇ · (pχΩ) in R3,
∇× E = 0 in R3,

(2)

where ε⊥ > 0, ε0 > 0, χΩ is the characteristic function in Ω, i.e. χΩ(x) = 1 for
x ∈ Ω and 0 otherwise and

FN = K1(∇ · n)2 +K2(n · ∇ × n + τ)2 +K3|n× (∇× n) − γ0P|2

+(K2 +K4)(tr(∇n)
2 − (∇ · n)

2
),

FSm = D(D2Ψ)(D2Ψ)∗ + [C||ninj + C⊥(δij − ninj)](DiΨ)(DjΨ)∗

+r|Ψ|2 +
g

2
|Ψ|4,

FP = B|∇P|2 +Kc

[

(n ×∇ω · P)2(n · ∇ω)2 − χ2
0|P|2|∇ω|4

]2

+a1|P|2 + a11|P|4 + a111|P|6,
FS =

(

1 − ωn(n · ν)2
)

+
(

1 − ωp

P0
(P · ν)

)

+
(

1 − ωr

P 2
0

(P · ν)2
)

,

FE = −1

2
ε⊥|E|2 − P ·E.

The physical meanings of these energies are described below.
The energy FN is the Oseen-Frank energy for the director field n [8], taking

into account the flexoelectric effect. The classical Oseen-Frank energy for nematic
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liquid crystals corresponds to the case that γ0 = 0. The constant τ is the twist for
cholesteric (chiral) liquid crystals depending on the material and the natural pitch
is 2π

τ .
The smectic energy FSm [20] is obtained from the original Chen-Lubensky model

in [7] by taking isotropic term D(D2Ψ)(D2Ψ)∗ instead of D⊥(δij − ninj)(δkl −
nknl)(DiDjΨ)(DkDlΨ)∗, where D ≡ ∇ − iqn, q is the modulation wave number
of the smectic layer, and r = a(T − T ∗), a > 0; here T denotes the (constant)
temperature of the material and T ∗ is the transition temperature from nematic
to smectic. The smectic A phase corresponds to the case of C⊥ > 0. But in
the smectic C phase, the constant C⊥ could be negative so that D(> 0)-term is
introduced to obtain coercivity of the energy. The de Gennes model for the chiral
SmA corresponds to the case that C‖ −C⊥ = 0 and D = 0. In the case that |Ψ| is
constant ( say |Ψ| = 1), we rewrite FSm as

FSm = D(∆ω − q∇ · n)2 +D

(

|∇ω − qn|2 +
C⊥

2D

)2

(3)

+Ca(∇ω · n − q)2 +

(

r +
g

2
− C2

⊥

2D

)

,

where Ca = C‖ − C⊥. If Ca is large, then n tends to tilt at a definite angle to the
layer normal.

The energy FP is the energy associated with the polarization P, where P0 is
the typical length of the polarization vector in the system. The Kc term is due to
molecular packing between the smectic layers. A slightly different form of this term
was considered in [2]. This can be formally justified by the interaction between
polarization P and pseudo-vector (n · k)(n × k) from the viewpoint of the Landau
model [22, 23]. For this, the energy of polar and nonpolar effects is given by

− α(n · k)(n × k · p) + β(n · k)2(n × k · p)2, (4)

where k = ∇ω
|∇ω| ,p = P

|P| , α > 0, β > 0. After dividing (4) by β we express the
energy as

[(n · k)(n × k · p) − χ0]
2 − α2

4β
, (5)

where χ0 = α
2β . From the first term in (5), we obtain the penalty term

[

(n · ∇ω)(n ×∇ω ·P) − χ0|∇ω|2|P|
]2

. (6)

Since almost all systems of bent-core molecules allow for both handedness of three
vectors, {n,∇ω,P}, the Kc-term is introduced

Kc

[

(n · ∇ω)2(n ×∇ω · P)2 − χ2
0|∇ω|4|P|2

]2

. (7)

We note that this term vanishes at P = 0 and the constant Kc is generally large [2].
The last three terms in FP is a typical Ginzburg-Landau energy. The first constant
a1 depends on the temperature. Suppose that a11 > 0 and a111 = 0. In this case,
polar material(ferroelectric) corresponds to a1 < 0; nonpolar material to a1 > 0. If
a1 < 0, then we write

a1|P|2 + a11|P|4 = a11

(

|P|2 +
a1

2a11

)2

− a2
1

4a11
.
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In the case that a11 is negative, a111(> 0)-term should be included in order for the
system to have a finite energy. Then we get

a1|P|2 + a11|P|4 + a111|P|6 = a111|P|2
[

(

|P|2 +
a11

2a111

)2

− γ

]

,

where γ =
(a2

11−4a1a111)

4a2
111

.

This term allows for coexistence (mesophase) of polar and nonpolar states of the
material. We note that nonpolar state corresponds to antiferroelectric state. We
define g as

g(P) =

{ 1
4η2 (|P|2 − P 2

0 )2, ferroelectric phase,
1

6η2 |P|2((|P|2 − P 2
0 )2 − γ), antiferroelectric phase,

(8)

where η 6= 0, P0 is the typical length of P, and γ depends on the temperature.
The anchoring energy FS is the typical Rapini-Papoular surface energy. The

constants ωn, ωp, and ωr are material constants [8, 19, 22]. The energy FE is the
electrostatic energy. We refer the reader to [25] for more details about this energy.

Throughout this paper, we assume that the constitutive parameters satisfy






D > 0, C⊥ < 0, Ca > 0, r < 0, g > 0,
Kc > 0, χ0 6= 0, η 6= 0, τ ≥ 0, B > 0,

c1 ≥ K2 +K4,min{K1,K2,K3} ≥ K2 +K4,K4 ≤ 0.
(9)

The inequalities in the first row correspond to the SmC phase and the inequalities
in the third row are necessary conditions for coercivity of the energy.

Remark 1. It follows from (3) [25] that the ground state of FN +FSm is given by










ω = qz
c , n∗ = a

(

cos τz
a2 e1 + sin τz

a2 e2

)

+ ce3,
P∗ = cτ

aγ0

(

sin τz
a2 e1 − cos τz

a2 e2

)

,

a = sin θc, c = cos θc, tan2 θc = |C⊥|
2Dq2 .

(10)

3. Energy in the bookshelf geometry. The total energy described in the last
section is too complicated for detailed study so that we consider, for the rest of
the paper, a bounded domain Ω confined between two plates, and restrict ourselves
to the case that ρ is constant (say ρ = 1). Suppose that D,Ca, and C⊥ satisfy

0 < |C⊥|
2Dq2 ≤ 1. We further assume the following bookshelf geometry:

ω = kz, tan2 θc =
|C⊥|
2Dq2

, ∇ω · n = |∇ω| cos θc = q. (11)

As seen in Remark 1, this geometry corresponds to the local smectic layer structure
in the bulk. We then approximate FSm + FN by

Fn = (K1 +Dq2)(∇ · n)
2

+K2(n · ∇ × n + τ)
2

+K3|n× (∇× n) − γ0P|2

+(K2 +K4)(tr(∇n)2 − (∇ · n)2) +
1

ǫ2

[

(n3 − c)2 +
(

n2
1 + n2

2 − a2
)2

]

,

where ǫ > 0, a = sin θc, c = cos θc, and n = (n1, n2, n3). It is easy to see that
∫

Ω(FN + FSm) dx and
∫

Ω Fn dx have the same ground states.
In the following, we consider the total energy functional

E(n,P) =

∫

Ω

{Fn + FP + Fϕ} −
1

2

∫

R3\Ω

ε0|∇ϕ|2 dx +

∫

∂Ω

Fsurf (n,P, ν) ds,
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where

Fp = B|∇P|2 +Kck
8
[

(n × e3 · P)2(n · e3)
2 − χ2

0|P|2
]2

+ g(P),

Fϕ = −1

2
ε⊥|∇ϕ|2 − P · ∇ϕ,

and E = ∇ϕ satisfies (2). We then define an admissible set

A =
{

(n,P, ϕ)|n ∈W 1,2(Ω, S2),P ∈ W 1,2(Ω,R3), ϕ ∈ W 1,2(R3),

||P||∞ ≤ P0, and (n,P, ϕ) satisfy (2)
}

.

Theorem 3.1. There exists a minimizing triple (n̄, P̄, ϕ̄) ∈ A of E so that

E(n̄, P̄, ϕ̄) = inf
(n,P,ϕ)∈A

E(n,P, ϕ) < M

for some M > 0.

The proof of the theorem follows from [25] with some minor changes. Moreover,
n̄, P̄ and ϕ̄ are locally Hölder continuous on Ω \ Z for a subset Z of Ω with one
dimensional Hausdorff measure zero [17].

For the rest of this paper, for simplicity we assume that

Ω = {(x, y, z) ∈ R3 : 0 < x < d1, 0 < y < d2, 0 < z < d3},
K1 + q2D = K2 = K3 = K > 0, K4 = 0, B > 0.

Then Fn is given by

Fn = K|∇n|2 + 2Kτ(n · ∇ × n) − 2Kγ0 (n×∇× n · P)

+
1

ǫ2

[

(n3 − c)2 +
(

n2
1 + n2

2 − a2
)2

]

+Kγ2
0 |P|2.

4. Periodic configurations due to surface energy. In this section, we discuss
the effect of the surface energy in connection with a surface stabilized ferroelectric
liquid crystal (SSFLC). In a very thin domain, we show that due to surface energy
there exist finitely many periodic configurations which have sharp interfaces at finite
points as the thickness approaches zero.

Let us assume that d2 = d3 = l > 0, ωn < 0, and ωr > 0. Choose admissible
fields n, P such that

n = (a cosφ, a sinφ, c), P = P0(sinφ,− cosφ, 0) = P0
n × e3

|n × e3|
,

where φ depends on y and z. Let

Dl = {(y, z) : 0 < y < l, 0 < z < l},
and we impose the Dirichlet boundary condition, φ = 0 on ∂Dl, and ignore the
electrostatic energy. After dividing E by d1 we express the energy functional in
term of φ (still labeled E)

E(φ) =

∫

Dl

{

Fn + FP − ωna
2

d1
cos2 φ− ωrP

2
0

d1
sin2 φ

}

dx,

=

∫

Dl

{

(Ka2 +BP 2
0 )|∇φ|2 − 1

d1
(ωrP

2
0 − ωna

2) sin2 φ

}

dx +M,

for some M and dx denotes dydz.
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Let

ȳ =
y

l
, z̄ =

z

l
, Ē(φ) =

1

(a2K +BP 2
0 )

[E(φ) −M ] .

Write Ē(φ) in terms of ȳ and z̄, and drop the bars in order to obtain
{

E(φ) =
∫

D1

{

|∇φ|2 − λ sin2 φ
}

dx,

φ = 0 on ∂D1,

where λ =
L2(ωrP 2

0 −ωna2)

d1(a2K+BP 2
0
)

. The corresponding Euler-Lagrange equation is

{

−∆φ− λ sin 2φ = 0 in D1,
φ = 0 on ∂D1.

(12)

Let {µk : 0 < µ1 < µ2 < · · · < µk < · · · , k = 1, 2, ...} be the set of eigenvalues of
{

−∆φk = µkφk in D1,
φk = 0 on ∂D1,

where ||φk||L2 = 1 for k ∈ N.
Thanks to the results in [6, 9] we have the following theorem.

Theorem 4.1. If λ > µ1 and φ0 is a global minimizer, then −φ0 is also a global
minimizer and −π

2 ≤ φ0 ≤ π
2 in D1. Furthermore, the Euler-Lagrange equation

(12) admits a unique positive solution ψ ∈ H1(D1)∩C2,δ(D1) satisfying 0 < ψ < π
2

in D1 where 0 < δ ≤ 1. If λ > µ2, then there are at least four nontrivial solutions.
If λ > µk, then there are at least k different nontrivial solutions. Furthermore, the
unique positive solution ψ is a global minimizer for λ > µ1.

Remark 2. The uniqueness of the positive solution in theorem 4.1 is true for all
convex domain D1 [9]. But it is still an open problem whether it is true for a general
domain although there is a positive numerical evidence for a dumbbell-like domain.
For more detail, we refer the reader to [9].

The results in Theorem 4.1 are consistent with a surface stabilized ferroelectric
liquid crystal (SSFLC) [19]. In a SSFLC, the direction field prefers to tilt right
(φ = π

2 ) or left (φ = −π
2 ) because of the surface energy. The two solutions ±ψ

correspond to two ferroelectric states. If the thickness d1 is small, the sample may
exhibit non uniform structures other than ±ψ as proved in the previous theorem. In
this case, application of an applied field parallel to x−axis causes a reorientation of
the polarization, which leads to one of ferroelectric states (say ψ). This ferroelectric
state remains unchanged upon the removal of the applied field because ±ψ are global
minimizers. The other ferroelectric state is obtained by application of the field of
opposite sign. This mechanism is known as bistable switching.

In the absence of applied fields, it is observed in the literature that the molecules
in a SSFLC exhibit periodic structures by precession of the director 180◦ rotating
around the layer normal [13]. In the following, we study these periodic solutions
which depend on z. This leads to the problem

{

E(φ) =
∫ 1

0

{

(φ′)2 − λ sin2 φ
}

dz,
φ(0) = −φ(1), φ′(0) = φ′(1) = 0.

(13)

Setting u = 2φ, we find that u satisfies the Euler-Lagrange equation
{

u′′ + λ sinu = 0 in (0, 1),
u(0) = −u(1), u′(0) = u′(1) = 0.

(14)
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Define

X = {u ∈ C2[0, 1] : u(0) = −u(1), u′(0) = u′(1) = 0}, Z = C[0, 1].

Let F : X × R → Z be defined by F (u, λ) = u′′ + λ sinu. It is clear that (0, λ) is
a solution pair of F (u, λ) = 0. First we note that DuF (0, λ)ψ = 0, ψ ∈ X if and
only if ψ′′ + λψ = 0 ∈ Z, ψ(0) = −ψ(1), ψ′(0) = ψ′(1) = 0. It is easy to show
that the boundary value problem has a solution (ψ, λ), λ > 0, ψ 6= 0 if and only if
λ = λk = (2k − 1)2π2, k ∈ N and ψ is a multiple of ψk(s) = cos[(2k − 1)πs]. So,
dimkerDuF (0, λk) = 1 for each k ∈ N. Set Lk = DuF (0, λk).

Then R(Lk) = {v ∈ Z :
∫ 1

0
v(s)ψk(s) ds = 0}, and Z0 = span{ψk} = R(Lk)⊥ =

kerL∗
k, because Lk is a self adjoint operator.

By the standard local and global bifurcation theorems [1, 12], it is easy to check
that each point (0, λk) is a pitchfork bifurcation point and there exists a global
nontrivial solution branch of solutions emanating from (0, λk). Let Sk be the set of
all nontrivial solutions bifurcating from (0, λk). Then for each λ > λk, there exists
uk

λ ∈ Sk satisfying (14). Moreover, uk
λ has exactly 2k−1 roots. Letting λ→ ∞ it is

seen that |uk
λ(x)| → π modulo 2π, a.e. x ∈ [0, 1]. Hence, if d1 << l2, there exist at

leastM such solutions whereM is the largest integer such that (2M−1)2π2 ≤M0
l2

d1
,

M0 =
ωrP 2

0 −ωna2

a2K+BP 2
0

. This proves the existence of mixture of two ferroelectric states

in a thin SSFLC due to surface interactions. This is responsible for the existence
of multiple periodic solutions in switching between two ferroelectric states φ = ±π

2 .
It should be mentioned that these nontrivial solutions bifurcate from a ferroelectric
phase φ = 0 different from ±π

2 . We summarize as a lemma.

Lemma 4.2. Let λ =
l2(ωrP 2

0 −ωna2)

d1(a2K+BP 2
0
)
. Let M be the largest integer such that

(2M − 1)2π2 ≤ λ.

Then for each 1 ≤ k ≤ M , there exists at least one nontrivial solution uk
λ of (14)

such that uk
λ has exactly (2k − 1) roots and |uk

λ(x)| → π modulo 2π as λ → ∞ for
almost all x ∈ [0, 1].

In Figure 1, we plot uk
λ(k = 1, 2, 3) for several values of λ. We see that uk

λ(x)
approaches to ±π as we increase the values of λ except finite points.
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Figure 1. λ = lπ2, left: l = 0.5, 2, 3, 5, 7, 16, 25, 36; center: l =
6, 10, 16, 25, 36, 49, 64; right: l = 10, 27, 36, 42, 49, 64, 81.
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5. Electrostatic energy and fine structure. In the present section, we study
the effect of the electrostatic energy when the ratio of the elastic constants to the
size of domain goes to zero. We assume that n depends on x and z, and that

{

Ka2 = BP 2
0 = K0, d1 = d3 = L, d2 = 1, ωn < 0, ωp = 0,

ωr > 0, τ = 0, γ0 = 0, n = (au1, au2, c), P = P0(p1, p2, p3).
(15)

It follows from the assumption (15) that the angle between n and the layer normal
is fixed. Since τ = 0 and γ0 = 0, the molecules we consider here are not chiral and
there is no flexoelectric effect.

Since

(∇ · n)2 + |∇ × n|2 = a2|∇u|2,

the total energy functional reads

E(u,p, ϕ) =

∫

[0,L]×[0,L]

{

Fn + FP − ωna
2

2
n2

1 −
ωr

2
P 2

0 p
2
1

}

dxdz

−1

2
P0

∫

R2

{pχ[0,L]×[0,L] · E} dxdz,

where u = (u1, u2)
t, p = (p1, p2, p3)

t, and

Fn + FP = K0|∇u|2 +K0|∇p|2 +
1

4ξ2
P 4

0 (|p|2 − 1)2

+Kck
8P 4

0

[

a2c2(u2p1 − u1p2)
2 − χ2

0|p|2
]2
.

Choose ξ, χ0 such that χ0

ac = 1, P 4
0 = ξ2 and set

u = (cosφ, sinφ), β = Kck
8P 4

0 .

We scale y, z by y
L ,

z
L , and denote K0

L2 by ε2. Replace F by 1
L2 (F + ωr

2 P
2
0 ) to obtain

E(u,p) =

∫

Ω

{

ε2|∇φ|2 + ε2|∇p|2 + βχ4
0

[

(p1 sinφ− p2 cosφ)2 − |p|2
]2

+
1

4
(|p|2 − 1)2 − ωna

2

2
cos2 φ+

P 2
0 ωr

2
(1 − p2

1)
}

dx − 1

2
P0

∫

R2

pχΩ ·E dx

subject to

−∇ · [(ε⊥χΩ + ε0χR2\Ω)∇ϕ)] = ∇ · (pχΩ) in R2, (16)

where E = ∇ϕ, dx = dxdz, and Ω = [0, 1]× [0, 1].
Let B be a ball containing Ω and define

Ã =
{

(φ,p, ϕ) : (φ,p) ∈W 1,2(Ω, [−π/2, π/2])×W 1,2(Ω,R3),

||p||∞ ≤ 1, ϕ ∈ V and (φ,p, ϕ) satisfies (16)
}

,

V =

{

ϕ : ϕ
∣

∣

B
∈W 1,2(B,R), ∇ϕ ∈ L2(R2),

∫

B

ϕdx = 0

}

.

We define inner product < , > by

< u, v >=

∫

B

uv dx + ε⊥

∫

R3

∇u · ∇v dx.
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By the direct method of calculus of variations, for each ε > 0 there exists a minimizer
of Eε on Ã. From (16), we notice that ϕ is not a constant function so that

min
(u,p,ϕ)∈Ã

Eε(u,p, ϕ) > 0 for ε > 0.

In order to see the effect of electrostatic energy for a small ε, let us denote by ζ
a smooth function in C∞(R, [−1, 1]) satisfying

ζ(t) =

{

−1 if t ≤ 0,
1 if t ≥ 1.

For fixed 0 ≤ θ ≤ 1 and s ≥ 3, let

ak =
1

2k
− θ

(

1

2k
− 1

ks

)

− 1

ks
, bk =

1

2k
− θ

(

1

2k
− 1

ks

)

,

ck =
1

2k
+ θ

(

1

2k
− 1

ks

)

, dk =
1

2k
+ θ

(

1

2k
− 1

ks

)

+
1

ks
.

For each k, let hk : Ω → [−1, 1] be a periodic function in z with the period 1
k

satisfying

hk(x, z) =























−1 if 0 ≤ z ≤ ak,
ζ (ks(z − ak)) if ak ≤ z ≤ bk,

1 if bk ≤ z ≤ ck,
ζ (ks(dk − z)) if ck ≤ z ≤ dk,

−1 if dk ≤ z ≤ 1
k .

Let

φk(x, z) =
π

2
hk(z), pk(x, z) =

(

sin
(π

2
hk(z)

)

,− cos
(π

2
hk(z)

)

, 0
)

.

It is not hard to see that
∫

Ω

{

|∇φk|2 + |∇pk|2
}

dx ≤ Ck2s+1

∫ ∞

−∞

ζ′(t)2 dt,

(φk,pk) ⇀
(

(2θ − 1)
π

2
, (2θ − 1)e1

)

in L2(Ω),

f(φk,pk) → 0 in L1(Ω),

where

f(φ,p) = βχ4
0

[

(p1 sinφ− p2 sinφ)2 − |p|2
]2

+
1

4
(|p|2 − 1)2 − ωna

2

2
cos2 φ+

P 2
0 ωr

2
(1 − p2

1).

Let ϕk be the solution of (16) corresponding to pkχΩ. It is standard to show that
ϕk ⇀ 0 in V so that ϕk → 0 in L2(Ω) and ϕk|∂Ω → 0 in L2(∂Ω). This implies that

1

2

∫

Ω

pk · ∇ϕk dx

= −1

2

∫

Ω

∇ · pkϕk dx +
1

2

∫

∂Ω

ϕkpk · ν dS → 0 as j → 0.

Furthermore, by the choice of εk = 1
ks+1 we have

ε2k

∫

Ω

{

|∇uk|2 + |∇pk|2
}

dx → 0 as k → ∞.
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Since Eεk
(u,p, ϕ) > 0 from (16), we get

0 = lim
k→∞

Eεk
(uk,pk, ϕk) ≥ lim

k→∞
min

(u,p,ϕ)∈Ã
Eεk

(u,p, ϕ) ≥ 0.

Hence, we conclude the following lemma:

Lemma 5.1. If (uε,pε, ϕε) ∈ Ã is a minimizer of Eε, then

lim
ε→0

Eε(uε,pε, ϕε) = 0.

Furthermore, we have the following:

Theorem 5.2. Let {(φε,pε, ϕε)} be a minimizing sequence. Then there exists
a subsequence, still denoted by the same notation, such that {(φε,pε)} converges
weakly star to (φ̄, p̄) in L∞(Ω) where (φ̄(x), p̄(x)) = 1

2δ(−π/2,e1)(x)+ 1
2δ(π/2,−e1)(x).

Proof. The proof of this theorem is almost the same as in [16] for ferromagnetic ma-
terials. For the completeness, we sketch the proof in the following. Let (φε,pε, ϕε)
be a sequence of minimizers. The boundedness of the {(φε,pε)} in L∞(Ω) means
that there exists a subsequence, not relabeled, and (φ̄, p̄) ∈ L∞ such that

φε ∗−⇀ φ̄, and supp(φ̄) ⊂ Ω,

pε ∗−⇀ p̄, and supp(p̄) ⊂ Ω.

From (16) and lemma 5.1, we get
∫

R2

p̄ · ∇η dx = 0, for η ∈ C∞
0 (R2). (17)

Let (µx)x∈Ω be a Young measure generated by {(φε,pε)}. By properties of Young
measure [27], we get

(φ̄(x), p̄(x)) =

∫

R2

(φ,p) dµx(φ,p),

∫

Ω

f(φ̄, p̄) dx =

∫

Ω

∫

R2

f(φ,p)µx(φ,p) dx.

Since f(φε,pε) → 0 as ε→ 0,
∫

R2

f(φ,p) dµx(φ,p) = 0.

This implies that supp(µx) ⊂ {(−π/2, e1), (π/2,−e1)}, and

µx = λ(x)δ(−π/2,e1) + (1 − λ(x))δ(π/2,−e1).

From (17), we obtain

0 =

∫

R2

p̄ · ∇η dx =

∫

R2

(2λ(x) − 1)e1χΩ · ∇η dx, for all η ∈ C∞
0 (R2).

In other words, we have
∫

R2

(2λ(x) − 1)χΩ
∂η

∂x1
dx = 0, for all η ∈ C∞

0 (R2),

and thus (2λ(x) − 1)χΩ is independent of x1. Since its support is in Ω,

2λ(x) − 1 = 0 for all x ∈ Ω.
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Therefore we get

µx =
1

2
δ(−π/2,e1) +

1

2
δ(π/2,−e1).

From the above analysis, we observe that if the ratio of elastic constant K to the
domain size L approaches to zero, the minimizer of the limiting energy is a Young
measure with equal probabilities of two uniform states.

6. Near the transition from the SmA phase to the ferroelectric SmC. In
this section, we discuss switching problems between uniform states by an externally
applied field in a one dimensional problem. We ignore the electrostatic energy and
obtain a simplified version of the energy.

Assume that equilibrium configurations are independent of y, and that the system
satisfies the following ansatz:

{

τ = γ0 = 0, ωn < 0, ωp = 0, ωr > 0, χ0 = sin θc cos θc,
d1 < θc << 1, d2 = d3 = 1, ∂n

∂ν = ∂P
∂ν = 0 on z = 0, 1.

(18)

It follows that the ground states of the energy E (without the surface energy) is
given by

{

n = (sin[θcuc] cosφ, sin[θcuc] sinφ, cos[θcuc]),
P = ±

(

1
2 sin[2θcuc]

)

(sinφ,− cosφ, 0) ,
(19)

where θc > 0 is the fixed angle between n and the normal vector to smectic layers,
uc = ±1, and φ is the angle between e1 and n− (n · e3)e3 (the projection of n onto
the xy plane). Since d1 << 1, the surface anchoring energy FS is so strong that
the angle φ is close to ±π

2 . This leads us to assume that φ = ±π
2 . This is known as

surface-stabilized ferroelectric liquid crystals (SSFLC) [19, pp. 67].
From the bulk energy, the part of the total energy which dominates on the

interface between u = 1 and u = −1 is

K|∇n|2 +Dq2(∇ · n)2 +B|∇P|2 + g(P) − P ·E,
where E = (Ea, 0, 0) is an applied field and

{

n = (0, sin[θcu(z)], cos[θcu(z)]) ,
P = 1

2 (sin[2θcu(z)]) (1, 0, 0).

Denote

δ2

2
=

(Kθ2c +Dq2θ2c +Bθ2c )ξ2

P r
0

, E =
ξ2Ea

P r−1
0

, α =
γ

P 4
0

,

where P0 = 1
2 sin[2θc] and r = 4 for ferroelectric phases while r = 6 corresponds

to antiferroelectric phases. We approximate cos[θcu] and P · E by 1 and P0Eau

respectively (since θc << 1). Multiplying E by ξ2

P r

0

, we obtain the reduced energy

functional (still labeled E)

E(u) =

∫ 1

0

{

δ2

2
(u′(z))2 + f(u) − Eu

}

dz, (20)

where

f(u) =

{

1
4 (u2 − 1)2 for ferroelectric phases,

1
6u

2
[

(u2 − 1)2 − α
]

for antiferroelectric phases.
(21)
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In the antiferroelectric phases, in the absence of applied fields, the free energy of
u = 0 is smaller than the free energies of u = ±1 if α < 0. In this case, an
applied electric field along the positive x−axis lowers the free energy of u = 1 and
switching to u = 1 takes place when E reaches critical fields. If α is a negative large
number, then removal of the applied filed results in a reorientation of molecules
to stabilize the system and switching to u = −1 occurs upon application of the
field of opposite sign. In this way, the switching between two ferroelectric states
is faster than the bistable switching in ferroelectrics. This switching is known as
tristable switching. The problem (20) also appears in the Landau-Devonshire model
of ferroelectric solids, particularly materials in the perovskite family, although the
role of the polarization in a ferroelectric solid is different from that of a ferroelectric
liquid crystal. In antiferroelectric phase, it can be shown [24] that the problem (20)
with the Neumann boundary condition u′(0) = u′(1) = 0 exhibits a static hysteresis
loop, whose schematic picture is shown in Figure 2 with some appropriate values of
α and δ. This agrees qualitatively with experimental data obtained in [3].

E

P

Figure 2. Hysteresis between polarization and applied field

7. Numerical approximations of the switching problems. In the present
section, we study the effects of impurities or thermal noise on the switching problem
between two uniform state u± = ±1 near the phase transition from the smectic A
to the smectic C. In the case that α < 0, we know f(0) < f(±1). So, if energy
barriers between u = 0 and u± = ±1 are small, the molecules tend to reorient and
the system starts to relax slowly to the ground state of antiferroelectric phases so
as to lower the free energy. In this case, presence of impurities or thermal noise in
the system may come into play in the switching. In this section we consider

{

ut = δuxx − 1
δ f

′(u) +
√
εη in [0, 1],

u(0, t) = −1, u(1, t) = 1,
(22)

where ε > 0 and η is a space-time Gaussian white noise with covariance

< η(x, t), η(y, s) >= δ(x− y)δ(t− s),

with the Dirac delta δ(·) as considered in [10].
Notice that the two uniform states u± = ±1 does not satisfy the boundary

conditions u±(±1) = ±1 in (22). To overcome this difficulty, we replace them by
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two approximate solutions, cf. Figure 3, of

δuxx − 1

δ
f ′(u) = 0, u(0) = −1, u(1) = 1. (23)

0 0.2 0.4 0.6 0.8 1
−1.5

−1

−0.5

0

0.5

1
u_

0 0.2 0.4 0.6 0.8 1
−1

−0.5

0

0.5

1

1.5

u
+

Figure 3. Two boundary layer solutions of (23) for antiferroelectrics

By the theory of Wentzell-Freidlin [11], the switching from u+ to u− can be
understood by the minimization of the action functional

{

min{ST [u] : u|t=0 = u+, u|t=T = u−, u|x=0 = −1, u|x=1 = 1},
ST [u] =

∫ T

0

∫ 1

0

[

ut − δuxx + 1
δ f

′(u)
]2
dx dt.

(24)

The solution of the above minimization problem represents the optimal switching
path between u+ and u− in the sense that the probabilities of switching through
other paths are exponentially small. The probability of the switching is approxi-
mately e−ST [u]/δ if u is a minimizer of the problem (24). The sharp interface limit of
the action minimization for Allen-Cahn equation is studied in [18]. In [10], the au-
thors studied the optimal switching paths in such systems using the L-BFGS method
[29], which is an implementation of a limited memory quasi-Newton method for the
nonlinear minimization, coupled with a finite difference discretization in space and
time. We shall take a similar approach but with a spectrally accurate Legendre
collocation discretization in space and time.

7.1. Numerical scheme. We now present our numerical scheme for (24) using
a Legendre collocation method for the space-time discretization and the L-BFGS
method for nonlinear minimization.

Let us first describe the Legendre collocation method (cf. for instance [5]) for ap-
proximating the functional ST [u]. To this end, we transform both the time interval
[0, T ] and the spatial interval [0, 1] to the standard interval [−1, 1]. By setting

x̃ = 2x− 1 ∈ [−1, 1], (25)

t̃ =
2t

T
− 1 ∈ [−1, 1], (26)

we rewrite ST [u] as

ST [u] =
T

4

∫ 1

−1

∫ 1

−1

(
2

T
ut − 4δuxx + δ−1f ′(u))2dxdt, (27)

where, for the sake of notational simplicity, we still use x, t to denote x̃, t̃, and
u(x, t) to denote the transformed function.
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Given a pair of integers (N,M), we denote PNM = PN × PM where PN (resp.
PM ) is the space of polynomials of degree less or equal than N (resp. M). Let
{xi}N

i=0 and {tj}M
j=0 be the Legendre-Gauss-Lobatto points in x and t. We set

uN,±(x) =
∑N

i=0 u±(xi)h
N
i (x) which are the interpolating polynomials of u± based

on {xi}N
i=0. Let

G(u) =
2

T
ut − 4δuxx + δ−1f ′(u), (28)

and set
XNM = {u ∈ PNM : u|t=±1 = uN,±(x), u|x=±1 = ±1}, (29)

our discrete minimization problem is:

min
uNM∈XNM

ST [uNM ] = min
uNM∈XNM

T

4

N
∑

i=0

M
∑

j=0

G2
ijω

N
i ωM

j (30)

where Gi,j = G(uNM (xi, tj)), and ωN
i , ω

M
j are the weights of the Legendre-Gauss-

Lobatto quadratures associated with {xi}N
i=0 and {tj}M

j=0, respectively.

Now let us denote by hN
i (x) and hM

j (t) the Lagrange polynomials associated with

{xi}N
i=0 and {tj}M

j=0. We can then write

uNM (x, t) =

N
∑

i=0

M
∑

j=0

uNM (xi, tj)h
N
i (x)hM

j (t) ∈ PNM .

To simplify the notation, we write vij = uNM (xi, tj). The derivatives of uNM at
the collocation points (xi, tj) can be computed directly and exactly as follows:

vt
ij :=

∂

∂t
uNM (xi, tj) =

M
∑

m=0

vim
d

dt
hM

m (tj),

vxx
ij :=

∂2

∂x2
uNM (xi, tj) =

N
∑

n=0

vnj
d2

dx2
hN

n (xi).

(31)

The formulas of d
dth

M
k (tj) and d2

dx2h
N
k (xi) can be found, for example, in [5].

For uNM ∈ XNM , we have vi0 = u−(xi), viM = u+(xi) and v0j = −1, vNj = 1.
Hence, the unknowns are {vij}1≤i≤N−1, 1≤j≤M−1.

In order to apply the L-BFGS method, we need to compute ∂ST [uNM ]
∂vkl

for 1 ≤
k ≤ N − 1, 1 ≤ l ≤M − 1. We derive from (30)

∂ST [uNM ]

∂vkl
=
T

2

N
∑

i=0

M
∑

j=0

ωN
i ω

M
j Gij

∂Gij

∂vkl
. (32)

The last term in the summation can be computed as follows:
From (28) and (31), we obtain that

∂Gij

∂vkl
=

2

T

∂vt
ij

∂vkl
− 4δ

∂vxx
ij

∂vkl
+ δ−1 ∂f

′(vij)

∂vkl

=
2

T
δik

d

dt
hM

l (tj) − 4δjl
d2

dx2
hN

k (xi) + δ−1 ∂f
′(vij)

∂vkl
(33)

where δik and δjl are Kronecker delta functions. Since f ′(u) = 1
3 (3u5 − 4u3 + (1 −

α)u), we have
∂f ′(vij)

∂vkl
=

1

3
δikδjl(15v4

kl − 12v2
kl + (1 − α)). (34)
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Figure 4. Switching patterns between the two states u±

Hence, for given uNM , the partial derivatives ∂ST [uNM ]
∂vkl

with 1 ≤ k ≤ N − 1, 1 ≤
l ≤ M − 1 can be efficiently computed with spectral accuracy, so we can use the
L-BFGS algorithm to solve the discrete minimization problem (30).
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Figure 5. Switching patterns between the two states u± with re-
spect to impurities and a small applied field
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7.2. Numerical results. We now present some numerical simulation for the switch-
ing problem. The numerical parameters used for these simulations are N = 80 and
M = 40. To ensure that converged solutions are obtained, we have also used a
larger pair of (N,M) and obtained virtually identical results.

In Figure 4, we plot the simulated switching patterns between the two states
u±. Switchings in antiferroelectrics are represented in the first four rows from the
top and nucleations of periodic solutions appear during the polarization reversal
process. Since u = 0 is a local minimizer of f(u), we see that almost all switchings,
except the case α = 1 and T = 0.8, pass through u = 0 for the most part of
the interval [0, 1]. Note that if α < 0 then f(0) < f(±1). This explains why u
stays loner near the state 0 for the case α = −1. However, for α > 0, we have
f(0) > f(±1). So u is not expected to stay as long near the state 0 (cf. the first two
rows in Fig. 4) as in the case α < 0. In this case, switching undergoes nucleations
since energy barrier between u = 0 and u = ±1 is getting larger. These simulations
indicate that the switching is faster with smaller α when α > 0, which is consistent
with the fact that a smaller value of α leads to a smaller energy barrier between 0
and ±1.

When we increase the switching time T from 0.8 to 1.6, we observe that all
switchings go near the state u = 0 for the first four rows from the top (antiferro-
electrics). For α > 0, switching for T = 1.6 also seems to go through nucleations,
but it produces slightly milder oscillations. Similarly, we can expect that when we
decrease the switching time (say from T = 0.8 to T = 0.1), more nucleations will
take place for the switching to occur. It should be noted that the switching we
study here is a rare event and the probability of the switching is very low.

As a comparison, we plot in the last row of Figure 4 the switching process between
two solutions u± satisfying (23) for ferroelectrics, where f(u) = 1

4 (1 − u2)2 is the
double well potential. There appears to be more oscillations instead of having a
plateau near u = 0. In this case, the switching proceeds by nucleations. We refer
the reader to [10, 18] for more detail in this regard.

Next, we study the optimal switching patterns with respect to impurities and a
small applied field E. To this end, we substitute f(u) by f(u)+Eu with a constant
field E and consider only antiferroelectrics. We plot in Figure 5 the switching
patterns from u+ to u− (see Figure 3) upon application of an electric field −E(E >
0). It appears that switching proceeds faster as we decrease the values of α and most
of switchings do not nucleate bumps except in the case that α = 3 and T = 0.8.
Increasing the strength of E appears to make the switching faster. For a small
electric field, it is expected that nucleations will also occur during the switching
when we decrease the switching time.

8. Numerical simulation of minimum configurations. In this section, we
study local minimizers of the energy in a one-dimensional problem. In particular, we
investigate the role of spontaneous twist and bend in the minimum configurations.
Let n and p be periodic functions depending only on z and satisfy

n = (au1, au2, c), p = (q1, q2, 0), u2
1 + u2

2 = 1.

The energy functional we consider is

∫ L

0

F (u,q) dz,
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where u = (u1, u2), q = (q1, q2) and

F =
1

K
(FSm + FN + FP −Kτ2)

= a2

∣

∣

∣

∣

du

dz

∣

∣

∣

∣

2

+
L1

2

∣

∣

∣

∣

dq

dz

∣

∣

∣

∣

2

+ L2u ·
(

−du2

dz
,
du1

dz

)

+ L3q · du
dz

+ γ2
0P

2
0 |q|2

+L4

[

a2c2(u2q1 − u1q2)
2 − χ2

0|q|2
]2

+
1

ǭ2
(|u|2 − 1)2 +

1

4η̄2
(|q|2 − 1)2,

with

L1 =
2BP 2

0

K
, L2 = 2a2τ, L3 = 2acγ0P0, ac = χ0,

L4 =
Kck

8P 4
0

2K
, ǭ2 =

Kǫ2

a4
, η̄2 =

Kη2

P 4
0

.

For numerical simulations, we let γ0 vary from −3 to 3 and set

a = sin 30◦, τ = 2a2, 2B = K, P0 = 1, L4 = 5,

a2c2 = χ2
0,

1

ǭ2
= 4,

1

4η̄2
= 10.

We use L-BFGS to approximate local minimizers of the energy functional
∫ L

0 F (u,q) dz with L = 2π. Since u and q are periodic functions, we use a
Fourier collocation method (cf. [5]) to approximate the function. The setup of the
Fourier-collocation method is similar to the procedure for setting up the Legendre-
collocation method presented in the last section so we omit the detail here.

In the simulations, we introduce two different sets of initial guesses to find dif-
ferent local minimizers. One is given by

{

u0 =
(

cos τz
a2 , sin

τz
a2

)

, u0(z) = u0(L),
q0(z) =

(

sin τz
a2 ,− cos τz

a2

)

,q0(0) = q0(L).
(35)

With this initial guess, we obtain a pair of nontrivial periodic functions (uper ,qper)

as a local minimizer for
∫ L

0 F dz.
The other set of initial guess is given by

{

u0 =
(

0.06 cos τz
a2 , 0.06 sin τz

a2 + 0.5
)

, u0(z) = u0(L),
q0(z) =

(

0.06 sin τz
a2 + 0.5,−0.06 cos τz

a2

)

,q0(0) = q0(L).
(36)

We obtain a pair of constant functions (uc,qc) as a local minimizer.
In Figure 6, we plot energies for (uper ,qper) and (uc,qc) with respect to γ0 ∈

[−3, 3]. The dotted curve is the energy for (uper ,qper) with γ0 varying from −3 to
3 while the solid curve is the one for (uc,qc). These graphs explain that constant
configurations are preferred if γ0 ∈ [−3, s1) ∪ (s2, 3], where s1 is a constant in
(−2.35,−2.3) and s2 is close to 0.6 as in Figure 7. For γ0 ∈ (s1, s2), energies
for periodic solutions are smaller than those for constant solutions. The energies
for constant and periodic solutions are denoted by two small boxes on the curves
when γ0 = cτ

a = sin 60◦ in Figure 6. In this case, it is observed in the literature
that spontaneous twist and bend contribute equally in the system, resulting in an
unwounded state, i.e. constant configuration [8, pp. 384]. Our results also show
that the unwounded state remains for γ0 ∈ (s1, s2),

aτ
c < s2.
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Figure 6. Energies for constant (solid curve) and periodic (dotted
curve) solutions for −3 ≤ γ0 ≤ 3
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Figure 7. Left: −2.35 < s1 < −2.3, right: 0.5 < s2 < 0.6

9. Conclusion. We presented in this paper a modeling and simulation of ferro-
electric liquid crystals accounting for antiferroelectric phases.

We studied, in the case of bookshelf geometry in connection with a SSFLC, the
existence of multi-phases with sharp interfaces in the system by means of bifurcation
and Young measure arguments. In the vicinity of the phase transition between the
SmA phase and ferroelectric SmC, we showed that the present model exhibits
hysteresis loops between polarization and applied field. This agrees qualitatively
with early experimental data reported in [3].

By adding stochastic noise to the problem, so as to model the inclusion of impuri-
ties, we simulated optimal switching pattern by using the L-BFGS method coupled
with a spectral discretization in space and time. We studied switching patterns
with respect to the time and a parameter α depending on a1, a11, a111 (cf. 21). Our
numerical results reveals that the switching between two ferroelectric states tends
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to antiferroelectric state, due to the antiferroelectric potential. In the absence of
stochastic noise, we observed from our numerical simulations that the competi-
tion between twist and bending terms leads to periodic structures and there exists
regimes in which either constant or periodic states are favored.

We carried out numerical approximations to local minimizers with an emphasis
on the role of spontaneous twist and bend. We found that, although molecules in
the SmC∗ phase tend to be aligned in a helical pattern, the helical structure can
be suppressed due to the competition between them. We also investigated energy
landscape with respect to various coefficients in the energy functional.

Acknowledgments. The authors would like to thank the referees for their careful
reading of the manuscript and comments.
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