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Abstract. We study a finite element approximation for the consistent split-
ting scheme proposed in [11] for the time dependent Navier-Stokes equations.
At each time step, we only need to solve a Poisson type equation for each com-
ponent of the velocity and the pressure. We cast the finite element approx-
imation in an abstract form using appropriately defined discrete differential
operators, and derive optimal error estimates for both velocity and pressure
under the inf-sup assumption.

1. Introduction. A main difficulty for the numerical simulation of incompressible
flows is caused by the incompressibility constraint which couples the velocity and
the pressure. Since Chorin [4] and Temam [28] introduced in the later sixties the
original projection method which provided a strategy to decouple the computation
of the pressure from that of the velocity, an enormous body of work has been devoted
to the analysis and the implementation of various versions of the projection type
method. For the up-to-date review on this subject, we refer to [9], where, the authors
classified various projection type schemes into three classes, namely the pressure-
correction (cf., for instance, [5, 8, 13, 22, 25, 26, 27, 20]), the velocity correction (cf.
[12, 19, 21, 24]) and the consistent splitting [11, 18] (which is equivalent, only in
semi-discretized form, to the gauge method [6, 23]).

The consistent splitting schemes we consider in this paper were proposed by
Guermond and Shen in [11]. The consistent splitting scheme is based on replac-
ing the divergence free condition in the time-dependent Stokes equations (6) by a
formally equivalent pressure Poisson equation

(∇p,∇q) = (f −∇×∇× u,∇q), ∀q ∈ H1(Ω). (1)

It updates the velocity through the momentum equation with an explicit treatment
for the pressure and then updates the pressure through (1). Hence, it does not
involve a projection step, and consequently, the velocity approximation is never
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divergence free but the divergence is slow to converge to zero as the discretization
parameters tend to zero.

It is shown in [11], by ample numerical results, that the consistent splitting
schemes are free of splitting errors and lead to optimal (in time) results for the
velocity as well as for the pressure. In this regard, the consistent splitting schemes
are more attractive than the corresponding pressure-correction [20, 13] or velocity-
correction schemes [19, 12] which involve a projection step and the accuracy of the
pressure approximation is affected by a splitting error (see, for instance, [9] for a
recent review on this subject).

However, there are only very limited analytical results on the stability and error
analysis for the consistent splitting schemes. In [11], the authors provided an a
priori estimate, which could be regarded as a proof of stability, for the semi-discrete
first-order consistent splitting scheme. In [18], a normal mode analysis for a second-
order consistent splitting scheme was carried out for the case of a periodic channel.
In particular, how to prove the stability of the second-order consistent splitting
scheme (which is found to be unconditionally stable in practice) in the general
setting remains to be open. Hence, we shall concentrate in this paper on the first-
order consistent splitting scheme.

For the fully discrete case, the issues are further complicated by the fact that
there are two entirely different ways to discretize the consistent splitting scheme
(cf. [11]). Given a suitable set of approximation spaces Xh ×Mh for the velocity
and the pressure, the first version of the first-order consistent splitting scheme for
the time dependent Stokes equations (6) is: find uk

h ∈ Xh, p
k
h ∈Mh such that

(

uk+1

h
−uk

h

δt , vh

)

+ (∇uk+1
h ,∇vh) − (pk

h,∇ · vh) = (f(tk+1), vh), ∀vh ∈ Xh, (2)

(∇(pk+1
h − pk

h + Πh∇ · uk+1
h ),∇qh) = (

uk+1

h
−uk

h

δt ,∇qh), ∀qh ∈Mh. (3)

(where Πh is a projection operator defined in (22)) while the second version is: find
uk

h ∈ Xh, p
k
h ∈Mh such that

(

uk+1

h
−uk

h

δt , vh

)

+ (∇uk+1
h ,∇vh) − (pk

h,∇ · vh) = (f(tk+1), vh), ∀vh ∈ Xh, (4)

(∇pk+1
h ,∇qh) = (f(tk+1),∇qh) −

∫

∂Ω ∇× uk+1
h · ∇ × qh, ∀qh ∈Mh. (5)

It is argued in [11] (see also [9]) by some heuristic arguments that the inf-sup con-
dition for Xh ×Mh is needed for the first version to achieve optimal error estimates
for both velocity and pressure while the inf-sup condition is not needed for the
second version. The main purpose of this paper is to carry out a rigorous stabil-
ity and error analysis for the finite-element approximation of the time-dependent
Stokes equation using the first version of the consistent splitting method. We shall
show that it indeed leads to optimal error estimates for both velocity and pressure
provided that the inf-sup condition is satisfied. The stability and error analysis for
the second version, with or without the inf-sup condition, remains to be a major
open problem.

The rest of paper is organized as follows. In section 2, we introduce notations
and present some preliminary results for the finite element approximations. In
Section 3, we prove a stability result as well as optimal error estimates for the first-
order consistent splitting scheme. In Section 4, we present some numerical results
confirming our analysis and conclude with a few remarks.
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2. Preliminaries. Since it is now well-known that a consistent treatment of non-
linear terms in the Navier-Stokes equations will not affect the formal accuracy of
a splitting scheme (cf. [9, 15]), we shall restrict ourselves to the time-dependent
Stokes problem:







∂u

∂t
−∇2u+ ∇p = f in Ω × [0, T ],

div u = 0 in Ω × [0, T ].
(6)

with initial and boundary conditions

u|t=0 = v0 in Ω, u|∂Ω = 0. (7)

where f is the body force, Ω is an open bounded domain in Rd (d = 2 or 3) with a
sufficiently smooth boundary.

We now introduce some notations. Let W s,p(Ω) and W s,p
0 (Ω) denote the usual

Sobolev spaces equipped with the norm ‖ · ‖s,p for 0 ≤ s ≤ ∞, 0 ≤ p ≤ ∞. In
particular, we denote the Hilbert spaces W s,2(Ω) by Hs(Ω) (s = 0,±1, · · · ) with
norm ‖ · ‖s and semi norm | · |s. The norm and inner product of L2(Ω) = H0(Ω)
are denoted by ‖ · ‖0 and (·, ·) respectively.

We use dt and ∂t to denote the derivative and partial derivative with respect to
time, respectively. Let δt > 0 be the time step and set tk = kδt for 0 ≤ k ≤ K =
[T/δt]. For any function which is continuous in time, φ(t), we denote φk = φ(tk)
and define the difference operator δ by δφk = φk −φk−1. Let W be a Banach space,
we set Lp(W ) = Lp(0, T ;W ). We denote by ℓp(W ) the discrete Lp space for the
vector {w = (w0, w1, · · · , wK), wk ∈W, 0 ≤ k ≤ K} with norm:

‖φ‖ℓp(W ) :=

(

δt
K
∑

k=0

‖φk‖p
W

)

1
p

, ‖φ‖ℓ∞(W ) := max0≤k≤K

(

‖φk‖W

)

. (8)

We denote by c a generic constant that is independent of h and δt but possibly
depends on the data and the solution. We shall use the expression A . B to say
that there is a generic constant such that A ≤ cB.

We define the following Hilbert spaces

X = H1
0 (Ω)d = {v ∈ H1(Ω)d, v|∂Ω = 0}, (9)

L2
0(Ω) = {q ∈ L2(Ω),

∫

Ω

q = 0}, (10)

Q = H1(Ω), M = L2
0(Ω) ∩H1(Ω). (11)

Let Σh = {J} be a quasi-uniform triangulation of the domain Ω. We denote
by (Xh, Qh) a suitable internal approximation to (X,Q) satisfying the following
approximation properties: there exists an integer l > 0 such that











infvh∈Xh
{‖v − vh‖0 + h‖v − vh‖1} . hr+1‖v‖r+1,

∀v ∈ Hr+1(Ω)d ∩H1
0 (Ω)d, r ∈ [0, l].

infqh∈Qh
{‖q − qh‖0 + h‖q − qh‖1} . hr‖q‖r, ∀q ∈ Hr(Ω), r ∈ [1, l].

(12)

Setting Mh = Qh ∩L2
0(Ω), we also assume the pair Xh ×Mh satisfies the Babŭska-

Brezzi inf-sup condition (cf. [1, 3]):

∃c > 0, infqh∈Mh
supvh∈Xh

(∇ · vh, qh)

‖∇vh‖0

≥ c‖qh‖0. (13)
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An example of such a pair is the Taylor-Hood element with l ≥ 2:

Xh = {vh ∈ C0(Ω)d ∩X, vh|J ∈ Pl(J)d, ∀J ∈ Σh}, (14)

Mh = {qh ∈ C0(Ω) ∩M, qh|J ∈ Pl−1(J), ∀J ∈ Σh}. (15)

In order to reformulate the finite element approximation of the consistent split-
ting scheme into a suitable operator form, we introduce several discrete differential
operators as in [14].

• Discrete Laplacian operator: Ah : Xh → X ′
h such that

(Ahuh, vh) = (∇uh,∇vh), ∀(uh, vh) ∈ Xh ×Xh, (16)

where X ′
h is the dual space of Xh; X ′

h is identical to Xh in term of vector
space but is equipped with the dual norm.

• Discrete divergence operator: Bh : Xh → Mh and discrete gradient operator
Bt

h : Mh → X ′
h such that

(Bhvh, ph) = −(∇ · vh, ph) = (vh, B
t
hph), ∀(vh, ph) ∈ Xh ×Mh. (17)

We also define πh : H−1(Ω)d → X ′
h such that

(πhf, vh) = (f, vh), vh ∈ Xh. (18)

In the functional framework defined above, the mixed finite element approxima-
tion to the time-dependent Stokes problem (6) can be formulated as follows. For
fh(t) ∈ X ′

h and v0,h ∈ Xh, find (uh(t), ph(t)) ∈ Xh ×Mh such that















duh

dt
+Ahuh +Bt

hph = fh, 0 < t ≤ T,

Bhuh = 0,

uh|t=0 = v0,h.

(19)

Where fh = πhf and v0,h is a suitable approximation of v0 in Xh. It is well-known
that the problem has the unique solution (uh(t), ph(t)), and the solution is stable
with respect to the data. Furthermore, because Xh and Mh are convergent and
stable approximations of H1

0 (Ω)d and H1(Ω)/R, the solution of (19) converges in
an appropriate sense to that of the continuous problem (6). For more details on
finite element approximations to the Stokes/Navier-Stokes equations, we refer to,
for instance, [7, 16, 17].

In order to describe the consistent splitting scheme, we introduce the vector space
Yh = Xh+∇Mh and equip it with the norm of L2(Ω)d. It is clear that Xh ⊂ Yh. We
denote ih : Xh → Yh the natural injection of Xh into Yh, and ith the L2 projection
of Yh in Xh. Obviously,

∀vh ∈ Yh, ‖ithvh‖0 ≤ ‖vh‖0. (20)

We define another discrete divergence operator Ch : Yh → Mh and its transpose
Ct

h : Mh → Yh by

(Chvh, qh) = (vh,∇qh) = (vh, C
t
hqh), ∀(vh, qh) ∈ Yh ×Mh. (21)

The following relationships between Bh and Ch are proved in [14]:

Lemma 2.1. Ch is an extension of Bh, i.e., Chih = Bh, ithC
t
h = Bt

h. Ct
h is the

restriction of ∇ to Mh, i.e. Ct
hqh = ∇qh, ∀qh ∈Mh.

Finally, we define Πh as the orthogonal projector from L2(Ω) onto Qh by

(Πhφ− φ, ψh) = 0, ∀ψh ∈ Qh. (22)



ERROR ESTIMATES FOR THE CONSISTENT SPLITTING SCHEMES 667

3. Stability and error estimates.

3.1. Stability analysis. The first step is to rewrite the FEM approximation to the
first-order consistent splitting scheme (2-3), which is in differential form, into the
following operator form using the discrete operators introduced in the last section:
find uk

h ∈ Xh, p
k
h ∈Mh such that

uk+1
h − uk

h

δt
+Ahu

k+1
h +Bt

hp
k
h = fk+1

h , (23)

(Ct
h(pk+1

h − pk
h −Bhu

k+1
h ), Ct

hq) = (
ihu

k+1
h − ihu

k
h

δt
, Ct

hq), ∀q ∈Mh. (24)

where fk+1
h = πhf(tk+1).

With the above operator formulation, we are now in position to establish the
following a priori estimate :

Lemma 3.1. The solution of the scheme (23)- (24) is bounded in the following
sense:

‖δun+1
h ‖2

0 + δt‖Bhu
n+1
h ‖2

0 + δt

n
∑

k=1

δt‖Ct
hψ

k+1
h ‖2

0 ≤ C(‖δu0
h‖

2

+ δt‖Bhu
0
h‖

2 + δt
n
∑

k=0

‖δfk+1
h ‖2

0)

Proof. The proof in [11] for the semi-discretized consistent splitting scheme makes
essential use of the identity −∆u = ∇×∇×u−∇∇·u which is not well defined for
u ∈ Xh. Therefore, we consider Ahu−B

t
hBhu as a discrete counterpart of ∇×∇×u.

Then, the proof of this result can proceed essentially the same as in [11].

Applying the operator δ to (23) and adding a zero term to it, −Bt
hBhδu

k+1
h +

Bt
hBhδu

k+1
h , we find that

δuk+1
h − δuk

h

δt
+Ahδu

k+1
h −Bt

hBhδu
k+1
h +Bt

hBhu
k+1
h +Bt

hψ
k
h = δfk+1

h , (25)

where we have set ψk
h = δpk

h −Bhu
k
h. Thanks to Lemma 2.1, we have

(Ct
hδψ

k+1
h , Ct

hq) = (
δuk+1

h − δuk
h

δt
, Bt

hq). (26)

Taking the inner product of (25) with 2δtδuk+1
h and using the identity 2(a−b, a) =

|a|2 − |b|2 + |a− b|2, we derive

‖δuk+1
h ‖2

0 − ‖δuk
h‖

2
0 + ‖δ2uk+1

h ‖2
0 + 2δt‖∇δuk+1

h ‖2
0 − 2δt‖Bhδu

k+1
h ‖2

0

+ δt(‖Bhu
k+1
h ‖2

0 − ‖Bhu
k
h‖

2
0) + δt‖Bhδu

k+1
h ‖2

0

+ 2δt(Bt
hψ

k
h, δu

k+1
h )

= 2δt(δfk+1
h , δuk+1

h ).

(27)

Then, take q = 2δt2ψk
h in (26), we find

δt2(‖Ct
hψ

k+1
h ‖2

0 − ‖Ct
hψ

k
h‖

2
0) − δt2‖Ct

hδψ
k+1
h ‖2

0 = 2δt(δuk+1
h − δuk

h, B
t
hψ

k
h). (28)

Next, we take q = 2δt2ψk+1
h in (26) and replace k + 1 by k to obtain

2δt2‖Ct
hψ

k
h‖

2
0 = 2δt(δuk

h, B
t
hψ

k
h). (29)
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We take q = δt2δψk+1
h in (26) again and use the Cauchy-Schwarz inequality to find

δt2‖Ct
hδψ

k+1
h ‖2

0 ≤ ‖δ2uk+1
h ‖2

0. (30)

Summing up (27)∼(30), and noticing that ‖Bhvh‖0 ≤ ‖∇vh‖0, ∀vh ∈ Xh, we
obtain

‖δuk+1
h ‖2

0 − ‖δuk
h‖

2
0 + δt(‖Bhu

k+1
h ‖2

0 − ‖Bhu
k
h‖

2
0)

+ δt2(‖Ct
hψ

k+1
h ‖2

0 + ‖Ct
hψ

k
h‖

2
0)

= 2δt(δfk+1, δuk+1
h ) ≤ δt‖δuk+1

h ‖2
0 + δt‖δfk+1

h ‖2
0.

(31)

Finally, taking the sum of above relation from k = 0 to n ≤ [T/δt]− 1, we derive

‖δun+1
h ‖2

0 + δt‖Bhu
n+1
h ‖2

0 + δt

n
∑

k=1

δt‖Ct
hψ

k+1
h ‖2

0

. ‖δu0
h‖

2
0 + δt‖Bhu

0
h‖

2
0 + δt

n
∑

k=0

‖δuk+1
h ‖2

0 + δt
n
∑

k=0

‖δfk+1
h ‖2

0.

(32)

We conclude (25) by applying the discrete Gronwall Lemma to the above.

3.2. Error estimates. In order to simplify the error analysis, instead of comparing
directly our numerical solution (uk

h, p
k
h) with the exact solution (u(tk), p(tk)), we

shall compare (uk
h, p

k
h) with (wh(tk), qh(tk)) ∈ Xh ×Mh where (wh(t), qh(t)) is the

mixed approximation of (u(t), p(t)) defined as follows:
{

(∇wh(t),∇vh) + (Bt
hqh(t), vh) = (∇u(t),∇vh) − (p(t),∇ · vh), ∀vh ∈ Xh,

(Bhwh(t), rh) = 0, ∀rh ∈Mh.
(33)

It is well-known from the regularity properties of the Stokes problem that we have
the following error estimates (see, for instance, [7, 10]):

Lemma 3.2. If u(j) ∈ Lβ(H l+1(Ω)d) ∩H1
0 (Ω)d), p(j) ∈ Lβ(H l(Ω)) for 1 ≤ β ≤ ∞

and j = 0, 1, · · · , then

‖u(j) − w
(j)
h ‖Lβ(L2(Ω)d) + h

(

‖u(j) − w
(j)
h ‖Lβ(H1(Ω)d) + ‖p(j) − q

(j)
h ‖Lβ(L2(Ω))

)

. hl+1
(

‖u(j)‖Lβ(Hl+1(Ω)d) + ‖p(j)‖Lβ(Hl(Ω))

)

.
(34)

Lemma 3.3. If u(j) ∈ Lβ(H2(Ω)d ∩ H1
0 (Ω)d) and p(j) ∈ Lβ(H1(Ω)) for all j =

0, 1, · · · , and 1 ≤ β ≤ ∞. Then,

‖w
(j)
h ‖Lβ(W 0,∞(Ω)d∩W 1,3(Ω)d) + ‖Ct

hq
(j)
h ‖Lβ(L2(Ω))

. ‖u(j)‖Lβ(H2(Ω)d) + ‖p(j)‖Lβ(H1(Ω)).
(35)

For convenience, we denote














wk
h = wh(tk), qk

h = qh(tk), uk = u(tk)

ek
h = wk

h − uk
h, εk

h = qk
h − pk

h,

φk
h = εk

h − εk−1
h −Bhe

k
h.

(36)

Let us assume

(H1) ‖e0h‖0 . min (hl+1, δt3/2hl−1), ‖ε0h‖0 . δthl−1,

(H2) u(j) ∈ L2(H l+1(Ω)d), 0 ≤ j ≤ 3, u(4) ∈ L2(L2(Ω)d);

p(j) ∈ L2(H1(Ω)), j = 1, 2; p ∈ L2(H l(Ω)).
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Remark 1. If we set u0
h = w0

h and p0
h = q0h, then the hypothesis (H1) is naturally

satisfied.
To simplify the analysis, we assume that the solution is sufficiently smooth as

specified in (H2). The assumption can be somewhat weakened at the expense of a
more complicated analysis.

The main result is the following:

Theorem 3.4. Assuming (H1-H2), we have

‖u− uh‖ℓ2(H1(Ω)d) + ‖p− ph‖ℓ2(L2(Ω)) . δt+ hl,

‖u− uh‖ℓ2(L2(Ω)d) . δt+ hl+1.
(37)

The proof of this result will be carried out with the help of a sequence of lemmas
which we establish below.

Lemma 3.5. We define

Rk+1
h =

wk+1
h − wk

h

δt
− ∂tu

k+1.

Then, we have the following bounds:

‖Rh‖l2(L2(Ω)d) . δt‖utt‖L2(L2) + hl+1‖ut‖L2(Hl+1), (38)

‖δRh‖l2(L2(Ω)d) . δt2‖u(3)‖L2(L2) + δthl+1‖utt‖L2(Hl+1), (39)

‖δ2Rh‖l2(L2(Ω)d) . δt2‖u(4)‖L2(L2) + δthl+1‖u(3)‖L2(Hl+1). (40)

Proof. We rewrite the residue as

Rk+1
h =

1

δt

∫ tk+1

tk

∂t(wh(t) − u(t))dt+
uk+1 − uk

δt
− ∂tu

k+1. (41)

Thanks to Lemma 3.2 and Cauchy-Schwarz inequality, we can derive (38) from
the following two inequalities:

δt

K
∑

k=0

1

δt2
‖

∫ tk+1

tk

∂t(wh − u)dt‖2
0 ≤

K
∑

k=0

∫ tk+1

tk

‖∂t(wh − u)‖2
0dt . h2l+2‖ut‖

2
L2(Hl+1).

δt

K
∑

k=0

‖
uk+1 − uk

δt
− ∂tu

k+1‖2
0 = δt

K
∑

k=0

‖
1

δt

∫ tk+1

tk

(t− tk)utt(t)dt‖
2
0

≤ δt2
K
∑

k=0

∫ tk+1

tk

‖utt‖
2
0dt . δt2‖utt‖

2
L2(L2).

(42)

We can derive (39) and (40) by using a similar procedure.

Lemma 3.6. We have the following estimates:

‖δeh‖ℓ∞(L2(Ω)d) . δt3/2 + δthl+1, (43)

‖Bheh‖ℓ∞(L2(Ω)d) . δt+ δt1/2hl+1, (44)

and

‖δ2eh‖ℓ∞(L2(Ω)d) . δt5/2 + δt2hl+1, (45)

‖Bhδeh‖ℓ∞(L2(Ω)d) . δt2 + δt3/2hl+1. (46)
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Proof. Rewriting (33) using the discrete operators and comparing with (6), we find
that (wh(t), qh(t)) satisfies at time t = tk+1,











wk+1
h − wk

h

δt
+Ahw

k+1
h +Bt

hq
k+1
h = fk+1

h + R̃k+1
h ,

Bhw
k+1
h = 0.

(47)

where

R̃k+1
h =

wk+1
h − wk

h

δt
− πh∂tu(t

k+1). (48)

Subtracting the equation (47) from (23), we find the error equation

ek+1
h − ek

h

δt
+Ahe

k+1
h +Bt

hε
k
h = R̃k+1

h +Bt
h(qk

h − qk+1
h ). (49)

On the other hand, by adding some zero terms to (24) and using Lemma 2.1, we
can rewrite (24) as

(Ct
hφ

k+1
h , Ct

hq) = (Ct
hδq

k+1
h , Ct

hq) + (
ek+1

h − ek
h

δt
, Bt

hq). (50)

Applying the operator δ to the above two relations, we obtain

δek+1
h − δek

h

δt
+Ahδe

k+1
h −Bt

hBhδe
k+1
h +Bt

hBhe
k+1
h +Bt

hBhφ
k
h (51)

= δR̃k+1
h −Bt

hδ
2qk+1

h ,

(Ct
hδφ

k+1
h , Ct

hq) = (Ct
hδ

2qk+1
h , Ct

hq) + (
δek+1

h − δek
h

δt
, Bt

hq). (52)

Taking the inner product of (51) with 2δtδek+1
h , we get

‖δek+1
h ‖2

0 − ‖δek
h‖

2
0 + ‖δ2ek+1

h ‖2
0 + 2δt‖∇δek+1

h ‖2
0 − 2δt‖Bhδe

k+1
h ‖2

0

+ δt(‖Bhe
k+1
h ‖2

0 − ‖Bhe
k
h‖

2
0) + δt‖Bhδe

k+1
h ‖2

0

+ 2δt(Bt
hφ

k
h, δe

k+1
h ) = 2δt(δR̃k+1

h , δek+1
h ) − 2δt(δ2qk+1

h , Bhδe
k+1
h ).

(53)

Taking q = 2δt2φk
h in (52), we find

δt2(‖Ct
hφ

k+1
h ‖2

0 − ‖Ct
hφ

k
h‖

2
0) − δt2‖Ct

hδφ
k+1
h ‖2

0

= 2δt(δek+1
h , Bt

hφ
k
h) − 2δt(δek

h, B
t
hφ

k
h) + 2δt2(Ct

hδ
2qk+1

h , Ct
hφ

k
h).

(54)

Taking q = 2δt2φk+1
h in (50), and replacing k + 1 by k, we derive

2δt2‖Ct
hφ

k
h‖

2
0 = 2δt(δek

h, B
t
hφ

k
h) + 2δt2(Ct

hδq
k
h, C

t
hφ

k
h). (55)

Applying δ to (24) and adding the term ihδw
k+1
h − ihδw

k
h to the right hand side,

we get

(Ct
h(δpk+1

h − δpk
h −Bhδu

k+1
h ), Ct

hq) = (
δek+1

h − δek
h

δt
, Bt

hq). (56)

We now take q = (δpk+1
h −δpk

h−Bhδu
k+1
h ) in the above and use the Caughy-Schwarz

inequality to get

δt2‖Ct
h(δpk+1

h − δpk
h −Bhδu

k+1
h )‖2

0 ≤ ‖δek+1
h − δek

h‖
2
0. (57)

We then derive from the above that

δt2‖Ct
hδφ

k+1
h ‖2

0 ≤ ‖δek+1
h − δek

h‖
2
0 + δt2‖Ct

hδ
2qk+1

h ‖2
0. (58)
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Summing up (53)∼ (55) and (58) and dropping some unnecessary positive terms,
we obtain

‖δek+1
h ‖2

0 − ‖δek
h‖

2
0 + δt(‖Bhe

k+1
h ‖2

0 − ‖Bhe
k
h‖

2
0) + δt‖Bhδe

k+1
h ‖2

0

+ δt2(‖Ct
hφ

k+1
h ‖2

0 − ‖Ct
hφ

k
h‖

2
0) + 2δt2‖Ct

hφ
k
h‖

2
0

≤ 2δt(δR̃k+1
h , δek+1

h ) − 2δt(δ2qk+1
h , Bhδe

k+1
h )

+ 2δt2(Ct
hδ

2qk+1
h , Ct

hφ
k
h) + 2δt2(Ct

hδq
k
h, C

t
hφ

k
h)

+ δt2‖Ct
hδ

2qk+1
h ‖2

0.

(59)

We now estimate the terms on the right hand side by using Lemma 2.1 and
Cauchy-Schwarz inequality,

2δt(δR̃k+1
h , δek+1

h ) = 2δt(δRk+1
h , δek+1

h ) . δt‖δRk+1
h ‖2

0 + δt‖δek+1
h ‖2

0, (60)

2δt(δ2qk+1
h , Bhδe

k+1
h ) . δt‖δ2qk+1

h ‖2
0 + δt‖Bhδe

k+1
h ‖2

0, (61)

2δt2(Ct
hδ

2qk+1
h , Ct

hφ
k
h) .

1

2
δt2‖Ct

hφ
k
h‖

2
0 + δt2‖Ct

hδ
2qk+1

h ‖2
0, (62)

2δt2(Ct
hδq

k+1
h , Ct

hφ
k
h) .

1

2
δt2‖Ct

hφ
k
h‖

2
0 + δt2‖Ct

hδq
k+1
h ‖2

0. (63)

Plugging the above estimates in (59), we find

‖δek+1
h ‖2

0 − ‖δek
h‖

2
0 + δt(‖Bhe

k+1
h ‖2

0 − ‖Bhe
k
h‖

2
0) + δt2(‖Ct

hφ
k+1
h ‖2

0 − ‖Ct
hφ

k
h‖

2
0)

≤ δt‖δRk+1
h ‖2

0 + δt‖δ2qk+1
h ‖2

0 + δt2‖Ct
hδ

2qk+1
h ‖2

0 + δt2‖Ct
hδq

k+1
h ‖2

0.
(64)

Thanks to Lemma 3.3 and (H2), we derive easily that

n
∑

k=1

(

δt‖δ2qk+1
h ‖2

0 + δt2‖Ct
hδ

2qk+1
h ‖2

0 + δt2‖Ct
hδq

k+1
h ‖2

0

)

. δt3.

Summing up the above for k from 1 to n ≤ [T/δt] − 1, we infer from Lemmas 3.3
and 3.5 that

‖δen+1
h ‖2

0 + δt‖Bhe
n+1
h ‖2

0 + δt2‖Ct
hφ

n+1
h ‖2

0

. ‖δe1h‖
2
0 + δt‖Bhe

1
h‖

2
0 + δt2‖Ct

hφ
1
h‖

2
0 + δt3 + δt2h2l+2.

(65)

In order to estimate the first three terms on the right hand side, we take the
inner product of (49) at k = 0 with 2δte1h, and take q = 2δt2Ct

hφ
1
h in (50) at k = 0.

Summing up the two relations, we find

‖e1h‖
2
0 + ‖δe1h‖

2
0 + 2δt‖∇e1h‖

2
0 + 2δt2‖Ct

hφ
1
h‖

2
0

= ‖e0h‖
2
0 + 2δt(R1

h, e
1
h) − 2δt(Bt

hδq
1
h, e

1
h) − 2δt(Bt

hε
0
h, e

1
h)

+ 2δt2(Ct
hδq

1
h, C

t
hφ

1
h) + 2δt(e1h − e0h, B

t
hφ

1
h).

(66)

By the hypothesis (H1), we have
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2δt(R1
h, e

1
h) .

1

3
‖e1h‖

2
0 + δt2‖R1

h‖
2
0,

2δt(Bt
hδq

1
h, e

1
h) .

1

3
‖e1h‖

2
0 + δt2‖Bt

hδq
1
h‖

2
0,

2δt2(Ct
hδq

1
h, C

t
hφ

1
h) .

1

3
δt2‖Ct

hφ
1
h‖

2
0 + δt2‖Ct

hδq
1
h‖

2
0,

2δt(δe1h, B
t
hφ

1
h) ≤

4

3
δt2‖Bt

hφ
1
h‖

2
0 +

3

4
‖δe1h‖

2
0,

‖e0h‖
2
0 . δt3h2l−2,

2δt(Bt
hε

0
h, e

1
h) . δt‖∇e1h‖

2
0 + δt3h2l−2.

(67)

Notice that Lemma 2.1 implies that ‖Bt
hφh‖ ≤ Ct

hφh‖ for all φh ∈Mh, we can then
conclude (43) and (44) from the above and (65).

By applying the operator δ again and repeating the same procedure as above,
we can establish (45) and (46).

For the next estimate, we need to use the discrete inverse Stokes operator :
Sh : X ′

h → Xh which is defined in such a way that for all vh ∈ Xh, (Sh(vh), γh) ∈
(Xh,Mh) is the solution of the following discrete stokes system:

{

At
hSh(vh) +Bt

hγh = vh,

BhSh(vh) = 0.
(68)

We recall (cf. [10]) that there exists a constant c1 > 0, s.t.

‖Sh(vh)‖1 + ‖γh‖0 ≤ c1‖vh‖−1, (69)

and that the linear form X ′
h → (vh, Sh(vh))

1
2 induces a semi-norm on Vh, which we

denote by ‖vh‖⋆ = (vh, Sh(vh))
1
2 , and we have

‖Sh(vh)‖1 ≤ c‖vh‖⋆. (70)

Lemma 3.7. The following estimates hold:

‖eh‖ℓ2(L2(Ω)d) . δt+ hl+1, (71)

‖δeh‖ℓ2(L2(Ω)d) . δt2 + δthl+1. (72)

Proof. Taking the inner product of (49) with 2δtSh(ek+1
h ) and noticing that

BhSh(ek+1
h ) = 0 and

(Ahe
k+1
h , Sh(ek+1

h )) = (ek+1
h , At

hSh(ek+1
h )) = ‖ek+1

h ‖0 − (γh, Bhe
k+1
h ).

we obtain

‖ek+1
h ‖2

⋆ − ‖ek
h‖

2
⋆ + ‖δek+1

h ‖2
⋆ + 2δt‖ek+1

h ‖2
0 − 2δt(γh, Bhe

k+1
h )

= 2δt(Rk+1
h , Sh(ek+1

h )).
(73)

From Lemmas 3.5, 3.6 and (69),

2δt(γh, Bhe
k+1
h ) ≤ 2δt‖γh‖0‖Bhe

k+1
h ‖0

≤ c1δt‖e
k+1
h ‖−1‖Bhe

k+1
h ‖0

.
1

2
δt‖ek+1

h ‖2
0 + δt3 + δt2h2l+2,

(74)
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2δt(Rk+1
h , Sh(ek+1

h )) ≤ 2δt‖Sh(ek+1
h )‖1‖R

k+1
h ‖−1

.
1

2
δt‖ek+1

h ‖2
0 + δt‖Rk+1

h ‖2
0

(75)

Taking the summation of (73) for k = 0 to n ≤ [T/δt]− 1, Thanks to the above two
inequalities, Lemma 3.5 and (H1), we obtain

‖en+1
h ‖2

⋆ +

n
∑

k=1

‖δek+1
h ‖2

⋆ + δt

n
∑

k=1

‖ek+1
h ‖2

0

. δt2 + δth2l+2 + ‖e0h‖
2
⋆ + ‖Rh‖

2
l2(L2(Ω)d)

. δt2 + h2l+2.

(76)

which implies in particular (71).
We can derive (72) in a similar fashion by applying the operator δ to (49) and

taking the inner product with with Sh(δek+1
h ).

Proof of Theorem 3.4. Since we rewrite the error equations of (49) and (50) as a

discrete non-homogeneous stokes system for (ek+1
h , εk

h) ∈ Xh ×Mh











Ahe
k+1
h +Bt

hε
k
h = Rk+1

h +Bt
h(qk

h − qk+1
h ) −

ek+1
h − ek

h

δt
,

Bhe
k+1
h = Bhe

k+1
h .

(77)

Now, the standard result for the discrete non-homogeneous Stokes system leads
to

‖ek+1
h ‖1 + ‖εk

h‖0 ≤ ‖Rk+1
h ‖−1 + ‖Bt

h(qk
h − qk+1

h )‖−1

+
1

δt
‖ek+1

h − ek
h‖−1 + ‖Bhe

k+1
h ‖0.

(78)

Thanks to Lemmas 3.3, 3.5, 3.6 and 3.7, we have the following bounds:

‖Rh‖l2(H−1(Ω)d) . ‖Rh‖l2(L2(Ω)d) . δt+ hl+1,

‖Bt
hδqh‖l2(H−1(Ω)d) . ‖∇δqh‖l2(L2(Ω)d) . δt,

δt

K
∑

k=1

(1/δt2‖ek+1
h − ek

h‖
2
0) . δt2 + h2l+2.

(79)

Then the proof is complete by summing up (78) and using Lemma 3.2.

4. Concluding remarks. In [11], ample numerical results, with sufficiently fine
spatial discretization such that the errors are dominated by that of the time dis-
cretization, are presented to show that the consistent splitting schemes lead to
optimal error estimates in time for both velocity and pressure. The results in the
last section show that the first-order consistent splitting scheme also leads to op-
timal error estimates in space for both velocity and pressure, provided that the
inf-sup condition is satisfied.
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Figure 1. Convergence rates using P2/P1 finite elements

Now, we present some numerical experiments to verify our error estimates. We
set the exact solution of (6) to be

u(x, y) = sin t (π sin(2πy) sin2(πx),−π sin(2πx) sin2(πy))t,

p(x, y) = sin t cos(πx) sin(πy).
(80)

and we choose δt sufficiently small so that the errors are dominated by the spatial
discretization error. In Figure 1, we plot the errors of the scheme (2-3) with P2/P1

finite elements for various mesh size h. Second-order convergence rates are observed
for the H1-errors of the velocity and for L2-errors of the pressure, while third-order
convergence rates are observed for the L2-errors of the velocity. There results are
in full agreement with Theorem 3.4 for l = 2.

Although we presented our analysis using the finite element framework, we can
also carry out the same procedure for a spectral or spectral element method as
long as the strong (with c independent of h in (13)) inf-sup condition is satisfied.
We recall that there are at least two pairs of spectral approximation spaces that
satisfy the strong inf-sup condition (13) (cf. [2]). However, the most popular pair
PN × PN−2 (N plays the role of 1/h) only satisfies a “weaker” inf-sup condition
with

infqh∈Mh
supvh∈Xh

(∇ · vh, qh)

‖∇vh‖0

≥ ch‖qh‖0. (81)

with ch := βN = N−
1−d
2 → 0 as N → ∞ (d = 2 or 3 is the dimension; see, for

instance, [2]). The stability analysis in Section 3.1 will still carry through with this
“weaker” inf-sup condition, however, an error analysis by using the same procedure
as in Section 3.2 will lead to error estimates of the form

‖ek
h‖ℓ2(H1(Ω)d) + ch‖q

k
h‖ℓ2(L2(Ω)d) . c−1

h (δt+ hl). (82)
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We recall that numerical results in [11] seem to indicate that the term c−1
h should

not be present in the above estimate. Thus, how to remove the term c−1
h in (82) is

still an open problem.
Acknowledgment. The authors would like to thank Professor Jean-Luc Guer-
mond for stimulating discussions and for providing the finite element numerical
results.
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