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A VARIABLE TIME-STEP IMEX-BDF2 SAV SCHEME AND ITS SHARP
ERROR ESTIMATE FOR THE NAVIER–STOKES EQUATIONS

Yana Di1,2,4, Yuheng Ma3,4, Jie Shen4,5,* and Jiwei Zhang4,6

Abstract. We generalize the implicit-explicit (IMEX) second-order backward difference (BDF2)
scalar auxiliary variable (SAV) scheme for Navier–Stokes equation with periodic boundary conditions
(Huang and Shen, SIAM J. Numer. Anal. 59 (2021) 2926–2954) to a variable time-step IMEX-BDF2
SAV scheme, and carry out a rigorous stability and convergence analysis. The key ingredients of our
analysis are a new modified discrete Grönwall inequality, exploration of the discrete orthogonal convolu-
tion (DOC) kernels, and the unconditional stability of the proposed scheme. We derive global and local
optimal 𝐻1 error estimates in 2D and 3D, respectively. Our analysis provides a theoretical support for
solving Navier–Stokes equations using variable time-step IMEX-BDF2 SAV schemes. We also design
an adaptive time-stepping strategy, and provide ample numerical examples to confirm the effectiveness
and efficiency of our proposed methods.
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1. Introduction

We here consider numerical approximation of the following incompressible Navier–Stokes (N-S) equations

𝜕𝑡𝑢− 𝜈∆𝑢 + (𝑢 · ∇𝑢) +∇𝑝 = 0, 𝑥 ∈ Ω, 𝑡 ∈ (0, 𝑇 ],
∇ · 𝑢 = 0, 𝑥 ∈ Ω, 𝑡 ∈ (0, 𝑇 ],
𝑢(𝑥, 0) = 𝑢0(𝑥), 𝑥 ∈ Ω,

(1.1)

with periodic boundary conditions, where Ω = (−𝜋, 𝜋)𝑑 (𝑑 = 2, 3) and 𝜈 > 0 represents the viscosity.
How to efficiently and accurately solve the N-S equations has been a research focus for many decades, see

[4, 7–9, 21] and the references therein. While most of the work are concerned with non periodic boundary
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conditions, the N-S equations with periodic boundary conditions, which retain the basic mathematical properties
of N-S equations with non-periodic boundary conditions but can be more efficiently solved with a Fourier-spectral
method, are also of important theoretical and practical interests, particularly in the study of well posedness [25]
and of homogeneous turbulence [19,20,24]. Recently, a high-order IMEX SAV scheme was developed for solving
the N-S equations [11], and its numerical solution is shown to be stable without any constraint on time-step
size. The results in [11] are established for schemes with constant time-step size. However, in order to efficiently
capture the dynamics at different stages of the problem, it is highly beneficial to use variable time-step schemes
[6, 10, 12, 13]. In fact, the variable time-step BDF2 scheme plays an important role in constructing efficient
and accurate algorithms for solving stiff problems, and has been used frequently for solving the parabolic-type
equations [3, 14–16, 26, 30]. Thus, it is natural to ask if the stability and convergence properties proved in [11]
still hold with variable time-step scheme.

The main contributions of this paper are the stability and convergence analysis for the variable time-step
IMEX-BDF2 SAV scheme for N-S equations, more precisely, its unconditional stability and optimal convergence
order in 𝐻1-norm. Our theoretical results are achieved under the following mild condition on the adjacent time-
step ratio

A1 : 0 < 𝑟𝑘 ≤ 𝑟max − 𝛿 for any small constant 0 < 𝛿 < 𝑟max ≈ 4.8645 and 2 ≤ 𝑘 ≤ 𝑁 , where 𝑟max is a root of
𝑥3 = 1 + 2𝑥.

We point out that the main difficulties of analyzing the variable time-step IMEX-BDF2 SAV scheme are
two-fold. On the one hand, since a first-order scheme is used in the first time step, a direct use of the standard
discrete Grönwall inequality for the error estimate in the 𝐻1-norm would lead to order reduction. This order
reduction of 𝒪(𝜏1.5) has been observed for linear parabolic equations [27,31] and N-S equations [28]. Recently,
Ma et al. proved unconditional optimal 𝒪(𝜏2) convergence in 𝐻1-norm by constructing a modified discrete
Grönwall inequality [18]. Inspired by the idea in [18], which is used to obtain the optimal convergence order in
𝐻1-norm in [18], we further generalize the discrete Grönwall inequality to make it applicable to the theoretical
analysis of IMEX-BDF2 SAV scheme for N-S equations. On the other hand, the SAV and IMEX approaches in
the variable time-step IMEX-BDF2 SAV scheme makes the analysis more difficult than a typical semi-implicit
numerical scheme. The error estimate of SAV requires the use of the stability of numerical solutions in the
𝐻2-norm, which has not been studied in the framework of the discrete orthogonal convolution (DOC) kernels,
and the existing theories require that the time-step ratio satisfies a more strict assumption than 𝑟𝑘 ≤ 4.8645
[28]. Therefore, in order to establish a rigorous theories under 𝑟𝑘 ≤ 4.8645, we need to discover new properties of
DOC kernels to circumvent the difficulties arisen from applying DOC kernels to IMEX-BDF2 SAV scheme. We
point out that for the Newton linearized variable time-step BDF2 scheme, Zhao et al. studied the unconditionally
optimal convergence in 𝐿2-norm for general semi-linear equations [31].

The remainder of this paper is organized as follows. In Section 2, we present some preliminary theories
that will be used in the paper, including important properties of the N-S equations and of IMEX-BDF2 SAV
schemes 2.2. In Section 2.3 we present some important lemmas for the DOC kernels. In Section 3, we present
our main results: the global optimal second-order 𝐻1-error estimate of the IMEX-BDF2 SAV scheme in 2D,
and a local optimal second-order 𝐻1-error estimate in 3D, and defer their proofs to Section 5. In Section 4, we
propose an adaptive time-stepping strategy, and present numerical results to validate our theoretical findings.

2. Preliminaries

2.1. Some basic functional settings and the trilinear form

The N-S equations considered here satisfy a periodic boundary condition and will be solved by Fourier spectral
methods. We now introduce some relevant functional spaces related to the periodic boundary conditions. If we
assume

∫︀
Ω

𝑢0 d𝑥 = 0, then it is easy to see that the solution 𝑢 of (1.1) also satisfies
∫︀
Ω

𝑢 d𝑥 = 0. Hence, in this
paper, we assume

∫︀
Ω

𝑢0 d𝑥 = 0 so that
∫︀
Ω

𝑢 d𝑥 = 0 at all times.
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We set

𝐻𝑘
𝑝 (Ω) =

⎧⎨⎩𝑢 : 𝑢 =
∑︁

𝑗∈𝑍𝑑

𝑐𝑗𝑒
2𝑖𝑗·𝑥, 𝑐𝑗 = 𝑐−𝑗 ,

∑︁
𝑗∈𝑍𝑑

|𝑐𝑗 |2|𝑗|2𝑘 < ∞

⎫⎬⎭, (2.1)

with norm denoted by ‖ · ‖𝑘 (for simplicity, ‖ · ‖ := ‖ · ‖0), and

�̇�𝑘
𝑝 (Ω) =

{︂
𝑢 ∈ 𝐻𝑘

𝑝 (Ω) :
∫︁

Ω

𝑢 d𝑥 = 0
}︂

.

We define below two spaces which are particularly useful for the N-S equations:

𝐻 =
{︀
𝑣 ∈ 𝐿2(Ω)|∇ · 𝑣 = 0

}︀
, 𝑉 =

{︀
𝑣 ∈ 𝐻1

𝑝 (Ω)|∇ · 𝑣 = 0
}︀
.

For periodic problems, the operators ∇,∇· and ∆−1 can be defined in Fourier space. For example, when
Ω = (−𝜋, 𝜋)2, for any 𝑢 ∈ 𝐿2(Ω), the spectrum of ∆−1𝑢 ∈ 𝐿2

0(Ω) := {𝑢 ∈ 𝐿2(Ω) :
∫︀
Ω

𝑢 d𝑥 = 0} is defined by:

∆̂−1𝑢(𝜉) := − ̂︀𝑢(𝜉)
𝜉2
1 + 𝜉2

2

, ∀𝜉 ∈ Z2 − {0} and ∆̂−1𝑢(0) := 0.

In fact, the operators commute with each other in the following way:

∇×∇× 𝑤 = −∆𝑤 +∇(∇ · 𝑤), ∀𝑤 ∈ 𝐻2
𝑝 (Ω), (2.2)

and satisfy:
‖∇ ×∇× 𝑤‖2 = ‖∆𝑤‖2 − ‖∇(∇ · 𝑤)‖2, ∀𝑤 ∈ 𝐻2

𝑝 (Ω).

According to (2.2), we can define a linear operator that will be used to simplify (1.1) later:

𝐴(𝑣) := ∇×∇×∆−1𝑣, ∀𝑣 ∈ 𝐿2
0(Ω).

One can prove that the property ∇𝐴(𝑣) = 𝐴(∇𝑣) for 𝑣 ∈ 𝐻1
𝑝 (Ω) directly using Fourier transform.

We define the following trilinear form 𝑏(·, ·, ·) and 𝑏𝐴(·, ·, ·) by

𝑏(𝑢, 𝑣, 𝑤) =
∫︁

Ω

(𝑢 · ∇)𝑣 · 𝑤 d𝑥, 𝑏𝐴(𝑢, 𝑣, 𝑤) =
∫︁

Ω

𝐴((𝑢 · ∇)𝑣) · 𝑤 d𝑥.

In particular, we have
𝑏(𝑢, 𝑣, 𝑤) = −𝑏(𝑢, 𝑤, 𝑣), ∀𝑢 ∈ 𝐻, 𝑣,𝑤 ∈ 𝐻1

𝑝 (Ω),

which implies
𝑏(𝑢, 𝑣, 𝑣) = 0, ∀𝑢 ∈ 𝐻, 𝑣 ∈ 𝐻1

𝑝 (Ω).

In the two-dimensional periodic case, 𝑏(·, ·, ·) further satisfies:

𝑏(𝑢, 𝑢, ∆𝑢) = 0, ∀𝑢 ∈ 𝐻2
𝑝 (Ω).

According to [25], the following inequalities hold, which will play an important role in our proof later:

𝑏(𝑢, 𝑣, 𝑤), 𝑏𝐴(𝑢, 𝑣, 𝑤) ≤ 𝐶‖𝑢‖1/2
1 ‖𝑢‖1/2‖𝑣‖1/2

2 ‖𝑣‖1/2
1 ‖𝑤‖, 𝑑 = 2;

𝑏(𝑢, 𝑣, 𝑤), 𝑏𝐴(𝑢, 𝑣, 𝑤) ≤ 𝐶‖𝑢‖1‖∇𝑣‖1/2‖𝑤‖, 𝑑 ≤ 3;

𝑏(𝑢, 𝑣, 𝑤), 𝑏𝐴(𝑢, 𝑣, 𝑤) ≤

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

𝐶‖𝑢‖1‖𝑣‖1‖𝑤‖1,
𝐶‖𝑢‖2‖𝑣‖0‖𝑤‖1,
𝐶‖𝑢‖2‖𝑣‖1‖𝑤‖0,
𝐶‖𝑢‖1‖𝑣‖2‖𝑤‖0,
𝐶‖𝑢‖0‖𝑣‖2‖𝑤‖1,

𝑑 ≤ 4.

(2.3)
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By using these inequalities, it is straightforward to verify

𝑏𝐴(𝑢, 𝑣, ∆𝑤) = −
∫︁

Ω

∇𝐴((𝑢 · ∇)𝑣) · ∇𝑤 d𝑥 = −
∫︁

Ω

𝐴
(︁
∇
(︀
(𝑢 · ∇)𝑣

)︀)︁
· ∇𝑤 d𝑥

= −
∑︁

𝑖

(︀
𝑏𝐴(𝑢, 𝜕𝑖𝑣, 𝜕𝑖𝑤) + 𝑏𝐴(𝜕𝑖𝑢, 𝑣, 𝜕𝑖𝑤)

)︀
,

which implies
𝑏𝐴(𝑢, 𝑣, ∆𝑤) ≤ 𝑐‖𝑢‖2‖𝑣‖2‖𝑤‖1. (2.4)

2.2. The SAV scheme

Following [11], the form of N-S equations (1.1) can be simplified to a system that only involves 𝑢. To do so,
we take the divergence on both sides of (1.1) and derive

∆𝑝 +∇ · (𝑢 · ∇𝑢) = 0.

By applying the equality (2.2), one has

∇𝑝 = ∇∆−1∆𝑝 = −∇∆−1∇ · (𝑢 · ∇𝑢) = −∇∇ ·∆−1(𝑢 · ∇𝑢)
= −(∆ +∇×∇×)∆−1(𝑢 · ∇𝑢) = −𝑢 · ∇𝑢−𝐴(𝑢 · ∇𝑢).

Thus, we equivalently reformulate the N-S equation into

𝑢𝑡 = 𝜈∆𝑢 + 𝐴(𝑢 · ∇𝑢). (2.5)

Applying the properties of trilinear form 𝑏(·, ·, ·), it is easy to check the solution to N-S equations (1.1) satisfies
the following energy dissipation law:

1
2

d
d𝑡
‖𝑢‖2 = −𝜈‖∇𝑢‖2, 𝑑 = 2, 3,

1
2

d
d𝑡
‖∇𝑢‖2 = −𝜈‖∆𝑢‖2, 𝑑 = 2.

Based on the energy law, an IMEX-BDFk SAV scheme is developed in [11] by introducing a SAV 𝛾(𝑡) =
ℰ(𝑡) + 1, and expand (1.1) as

𝑢𝑡 = 𝜈∆𝑢 + 𝐴(𝑢 · ∇𝑢), (2.6)

d𝛾

d𝑡
=

⎧⎪⎪⎨⎪⎪⎩
−𝜈

𝛾(𝑡)
ℰ(𝑢(𝑡)) + 1

‖∆𝑢(𝑡)‖2, 𝑑 = 2,

−𝜈
𝛾(𝑡)

ℰ(𝑢(𝑡)) + 1
‖∇𝑢(𝑡)‖2, 𝑑 = 3.

(2.7)

We construct below a variable time step IMEX-BDF2 scheme for the above system.
We partition the time interval [0, 𝑇 ] into a general nonuniform time mesh, i.e., 0 = 𝑡0 < 𝑡1 < · · · < 𝑡𝑀 = 𝑇 ,

with a given integer 𝑀 . Denote by 𝜏𝑘 := 𝑡𝑘 − 𝑡𝑘−1 the 𝑘th time-step size, by 𝜏 := max1≤𝑘≤𝑀 𝜏𝑘 the maximum
time-step size, and by 𝑟𝑘 = 𝜏𝑘/𝜏𝑘−1 (2 ≤ 𝑘 ≤ 𝑀), the adjacent time-step ratio. Denote by �̄�𝑛 the approximation
of the exact solution 𝑢(𝑡𝑛), and by ∇𝜏 �̄�𝑛 := �̄�𝑛− �̄�𝑛−1 the difference operator. The BDF2 with variable time-
step is defined as

𝒟2�̄�
𝑛+1 :=

1 + 2𝑟𝑛+1

𝜏𝑛+1(1 + 𝑟𝑛+1)
∇𝜏 �̄�𝑛+1 −

𝑟2
𝑛+1

𝜏𝑛+1(1 + 𝑟𝑛+1)
∇𝜏 �̄�𝑛,
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and two-step Adams–Bashforth extrapolation is defined as

𝐵2(�̄�𝑛) := (1 + 𝑟𝑛+1)�̄�𝑛 − 𝑟𝑛+1�̄�
𝑛−1.

We point out that the start of BDF2 scheme needs two steps’ information. Differing from the initial setting in
[11], we here use BDF1 (i.e., set 𝑟1 = 0), and one-step Adams–Bashforth extrapolation to compute first step value
𝑈1. By setting 𝑟1 = 0, 𝑏

(𝑛)
0 = (1 + 2𝑟𝑛)/(𝜏𝑛(1 + 𝑟𝑛)), 𝑏

(𝑛)
1 = −𝑟2

𝑛/(𝜏𝑛(1 + 𝑟𝑛)) and 𝑏
(𝑛)
𝑗 = 0 for 2 ≤ 𝑗 ≤ 𝑛− 1,

the BDF1 and BDF2 can be reformulated into a unified convolution form of

𝒟2�̄�
𝑛 =

𝑛∑︁
𝑘=1

𝑏
(𝑛)
𝑛−𝑘∇𝜏 �̄�𝑘, 𝑛 ≥ 1. (2.8)

The semi-discrete variable time-step IMEX-BDF2 SAV scheme for (2.6) and (2.7) can be written as:

(𝒟2�̄�
𝑛+1, 𝑣) + 𝜈(∇�̄�𝑛+1,∇𝑣)− (𝐴(𝐵2(𝑈𝑛) · ∇𝐵2(𝑈𝑛)), 𝑣) = 0, ∀𝑣 ∈ 𝐿2(Ω),

𝛾𝑛+1 − 𝛾𝑛

𝜏𝑛+1
=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
−𝜈

𝛾𝑛+1

ℰ(�̄�𝑛+1) + 1
‖∆�̄�𝑛+1‖2, 𝑑 = 2,

−𝜈
𝛾𝑛+1

ℰ(�̄�𝑛+1) + 1
‖∇�̄�𝑛+1‖2, 𝑑 = 3,

𝜉𝑛+1 =
𝛾𝑛+1

ℰ(�̄�𝑛+1) + 1
,

𝑈𝑛+1 = 𝜂𝑛+1�̄�𝑛+1,

(2.9)

with 𝜂𝑛+1 = 1− (1− 𝜉𝑛+1)2 and

ℰ(�̄�𝑛+1) =

⎧⎪⎨⎪⎩
1
2
‖∇�̄�𝑛+1‖2, 𝑑 = 2,

1
2
‖�̄�𝑛+1‖2, 𝑑 = 3.

Next, we construct a Fourier-spectral method for (2.9). For the sake of brevity, we only consider the three-
dimensional case with Ω = (−𝑠, 𝑠)3, the two-dimensional case can be dealt with similarly. We define the Fourier
approximation space as

𝑆𝑁 = span
{︀
𝑒𝑖𝜉𝑗𝑥𝑒𝑖𝜂𝑘𝑦𝑒𝑖𝜁𝑙𝑧 : −𝑁𝑥 ≤ 𝑗 ≤ 𝑁𝑥,−𝑁𝑦 ≤ 𝑘 ≤ 𝑁𝑦,−𝑁𝑧 ≤ 𝑙 ≤ 𝑁𝑧

}︀
,

where 𝑖 =
√
−1, 𝜉𝑗 = 𝜋𝑗/𝑠, 𝜂𝑘 = 𝜋𝑘/𝑠 and 𝜁𝑙 = 𝜋𝑙/𝑠. Then, any function 𝑢(𝑥, 𝑦, 𝑧) ∈ 𝐿2(Ω) can be approximated

by:

𝑢(𝑥, 𝑦, 𝑧) ≈ 𝑢𝑁 (𝑥, 𝑦, 𝑧) =
𝑁𝑥∑︁

𝑗=−𝑁𝑥

𝑁𝑦∑︁
𝑘=−𝑁𝑦

𝑁𝑧∑︁
𝑙=−𝑁𝑧

�̂�𝑗,𝑘,𝑙𝑒
𝑖𝜉𝑗𝑥𝑒𝑖𝜂𝑘𝑦𝑒𝑖𝜁𝑙𝑧,

with the Fourier coefficients defined as

�̂�𝑗,𝑘,𝑙 =
1
|Ω|

∫︁
Ω

𝑢 · 𝑒−𝑖(𝜉𝑗𝑥+𝜂𝑘𝑦+𝜁𝑙𝑧) d𝑥 d𝑦 d𝑧.

In remainder of this paper, we fix 𝑁𝑥 = 𝑁𝑦 = 𝑁𝑧 = 𝑁 for simplicity. It is easy to notice that 𝑆𝑁 is a subspace
that contains low frequency functions.
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Given �̄�𝑛
𝑁 , �̄�𝑛−1

𝑁 , 𝑈𝑛
𝑁 , 𝑈𝑛−1

𝑁 ∈ 𝑆𝑁 and 𝛾𝑛, we compute �̄�𝑛+1
𝑁 , 𝑈𝑛+1

𝑁 ∈ 𝑆𝑁 and 𝛾𝑛+1 by(︀
𝒟2�̄�

𝑛+1
𝑁 , 𝑣

)︀
+ 𝜈
(︀
∇�̄�𝑛+1

𝑁 ,∇𝑣
)︀
− (𝐴(𝐵2(𝑈𝑛

𝑁 ) · ∇𝐵2(𝑈𝑛
𝑁 )), 𝑣) = 0, ∀𝑣 ∈ 𝑆𝑁 ⊂ 𝐿2(Ω),

𝛾𝑛+1 − 𝛾𝑛

𝜏𝑛+1
=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
−𝜈

𝛾𝑛+1

ℰ
(︀
�̄�𝑛+1

𝑁

)︀
+ 1

⃦⃦
∆�̄�𝑛+1

𝑁

⃦⃦2
, 𝑑 = 2,

−𝜈
𝛾𝑛+1

ℰ
(︀
�̄�𝑛+1

𝑁

)︀
+ 1

⃦⃦
∇�̄�𝑛+1

𝑁

⃦⃦2
, 𝑑 = 3,

𝜉𝑛+1 =
𝛾𝑛+1

ℰ
(︀
�̄�𝑛+1

𝑁

)︀
+ 1

, 𝑈𝑛+1
𝑁 = 𝜂𝑛+1�̄�𝑛+1

𝑁 with 𝜂𝑛+1 = 1−
(︀
1− 𝜉𝑛+1

)︀2
(2.10)

where ℰ is defined as above. To get the initial value in our scheme, we define the 𝐿2-orthogonal projection
operator Π𝑁 : 𝐿2(Ω) → 𝑆𝑁 as

(Π𝑁𝑢− 𝑢, 𝜔) = 0, ∀𝜔 ∈ 𝑆𝑁 , 𝑢 ∈ 𝐿2(Ω).

Setting �̄�0
𝑁 = 𝑈0

𝑁 := Π𝑁𝑢0, 𝛾0 := 𝐸(𝑈0
𝑁 ) + 1, we have the following lemma [2].

Lemma 2.1. For any 0 ≤ 𝑘 ≤ 𝑚, ∃ 𝐶, s.t.

‖Π𝑁𝑢− 𝑢‖𝑘 ≤ 𝐶‖𝑢‖𝑚𝑁𝑘−𝑚, ∀𝑢 ∈ 𝐻𝑚
𝑝 (Ω). (2.11)

It is easy to see that the following properties hold:

– Given the initial condition 𝑢0 ∈ 𝑉 , then the IMEX-BDF2 SAV scheme (2.9) (resp. (2.10)) admits a unique
solution satisfies 𝑈𝑞𝑉 (resp. 𝑈𝑞

𝑁 ∈ 𝑆𝑁 ∪ 𝑉 ).
– Whenever the pressure is needed in (2.10), it can be computed from

𝑝𝑛+1
𝑁 = −∆−1Π𝑁∇ ·

(︀
𝑈𝑛+1

𝑁 · ∇𝑈𝑛+1
𝑁

)︀
. (2.12)

Since the mathematical properties of semi-discrete scheme (2.9) and fully discrete scheme (2.10) are similar, so
in this paper we only focus on the fully discrete scheme (2.10).

The variable time-step IMEX-BDF2 SAV scheme (2.10) satisfies the following stability result:

Theorem 2.2. Let 𝛾0 = ℰ(𝑈0
𝑁 ) + 1 ≥ 0, 𝑢0 ∈ 𝑉 ∩𝐻2

𝑝 if 𝑑 = 2, and 𝑢0 ∈ 𝑉 if 𝑑 = 3. Then, it holds

𝛾𝑛+1 − 𝛾𝑛 =

{︃
−𝜏𝑛+1𝜈𝜉𝑛+1‖∆�̄�𝑛+1

𝑁 ‖2, 𝑑 = 2,

−𝜏𝑛+1𝜈𝜉𝑛+1‖∇�̄�𝑛+1
𝑁 ‖2, 𝑑 = 3.

(2.13)

Furthermore, there exists a 𝐹 > 0 such that ‖∇𝑈𝑛
𝑁‖ ≤ 𝐹 for 𝑑 = 2, and ‖𝑈𝑛

𝑁‖ ≤ 𝐹 for 𝑑 = 3, where 𝐹 is a
constant determined by 𝛾0 only.

The proof of this theorem is exactly the same to the one in [11], and we omit it here. Note that since
�̄�𝑞

𝑁 ∈ 𝐿2
0(Ω), it also holds ‖𝑈𝑛

𝑁‖1 ≤ 𝐹 for 𝑑 = 2 thanks to the Poincaré inequality.

2.3. Some useful lemmas and their proofs

We now present several Lemmas used in our proof later. The technique of DOC kernels plays a key role in
the proof of our main results, and their definition and properties will be presented in this subsection.

Set 𝛿𝑛𝑘 = 1 if 𝑛 = 𝑘 and 𝛿𝑛𝑘 = 0 if 𝑛 ̸= 𝑘. The DOC kernels 𝜃
(𝑛)
𝑛−𝑗 are defined by

𝑛∑︁
𝑗=𝑘

𝜃
(𝑛)
𝑛−𝑗𝑏

(𝑗)
𝑗−𝑘 = 𝛿𝑛𝑘, ∀1 ≤ 𝑘 ≤ 𝑛, (2.14)

which produces the property of
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𝑛∑︁
𝑗=1

𝜃
(𝑛)
𝑛−𝑗𝒟2𝑤

𝑗 =
𝑛∑︁

𝑙=1

∇𝜏𝑤𝑙
𝑛∑︁

𝑗=𝑙

𝜃
(𝑛)
𝑛−𝑗𝑏

(𝑗)
𝑗−𝑙 = 𝑤𝑛 − 𝑤𝑛−1, 1 ≤ 𝑛 ≤ 𝑁. (2.15)

Lemma 2.3 ([30]). Assume the adjacent time-step ratio 𝑟𝑘 satisfies A1. Then for any real sequence {𝑤𝑘}𝑛
𝑘=1

and any given small constant 0 < 𝛿 < 𝑟max ≈ 4.8645 (see A1), it holds

2𝑤𝑘

𝑘∑︁
𝑗=1

𝑏
(𝑘)
𝑘−𝑗𝑤𝑗 ≥

𝑟𝑘+1
√

𝑟max

(1 + 𝑟𝑘+1)
𝑤2

𝑘

𝜏𝑘
−

𝑟𝑘
√

𝑟max

(1 + 𝑟𝑘)
𝑤2

𝑘−1

𝜏𝑘−1
+

𝛿
√

𝑟max

(1 + 𝑟max)2
𝑤2

𝑘

𝜏𝑘
, 𝑘 ≥ 2, (2.16)

2
𝑛∑︁

𝑘=1

𝑤𝑘

𝑘∑︁
𝑗=1

𝑏
(𝑘)
𝑘−𝑗𝑤𝑗 ≥

𝛿
√

𝑟max

(1 + 𝑟max)2

𝑛∑︁
𝑘=1

𝑤2
𝑘

𝜏𝑘
≥ 𝛿

20

𝑛∑︁
𝑘=1

𝑤2
𝑘

𝜏𝑘
≥ 0, for 𝑛 ≥ 1. (2.17)

Corollary 2.4. If the condition in Lemma 2.3 is satisfied, then it holds

2
𝑛∑︁

𝑘=1

𝑤𝑘

𝑘∑︁
𝑗=1

𝜃
(𝑘)
𝑘−𝑗𝑤𝑗 ≥

𝑛∑︁
𝑘=1

𝛿

20

(︁∑︀𝑛
𝑠=𝑘 𝜃

(𝑠)
𝑠−𝑘𝑤𝑠

)︁2

𝜏𝑘
≥ 0, for 𝑛 ≥ 1. (2.18)

Lemma 2.5. If 𝑟𝑘 satisfies A1, {𝑤𝑘}𝑛
𝑘=1 is a complex sequence and 𝜆 ∈ C, then it holds that

𝜆

𝑛∑︁
𝑙=1

𝑙∑︁
𝑗=1

𝜃
(𝑙)
𝑙−𝑗

(︁
𝑤𝑗 , 𝑤𝑙

)︁
+ 𝜆

𝑛∑︁
𝑙=1

𝑙∑︁
𝑗=1

𝜃
(𝑙)
𝑙−𝑗

(︁
𝑤𝑗 , 𝑤𝑙

)︁
≥ ℜ{𝜆}𝐶𝑟

𝑛∑︁
𝑙=1

𝜏𝑙|𝑤𝑙|2, for 𝑛 ≥ 1, (2.19)

where 𝐶𝑟 := 𝛿/280, and (𝑢, 𝑣) := 𝑢 · 𝑣.

Proof. By defining matrix 𝐵 and Θ in the same way in [30] as

𝐵 :=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑏
(𝑛)
0 0 0 · · · 0 0 0

𝑏
(𝑛)
1 𝑏

(𝑛−1)
0 0 · · · 0 0 0

0 𝑏
(𝑛−1)
1 𝑏

(𝑛−2)
0 · · · 0 0 0

...
...

...
. . .

...
...

...
...

...
...

. . .
...

...
...

0 0 0 · · · 𝑏
(3)
1 𝑏

(2)
0 0

0 0 0 · · · 0 𝑏
(2)
1 𝑏

(1)
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

Θ :=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝜃
(𝑛)
0 0 0 · · · 0 0 0

𝜃
(𝑛)
1 𝜃

(𝑛−1)
0 0 · · · 0 0 0

𝜃
(𝑛)
2 𝜃

(𝑛−1)
1 𝜃

(𝑛−2)
0 · · · 0 0 0

...
...

...
. . .

...
...

...
...

...
...

. . .
...

...
...

𝜃
(𝑛)
𝑛−2 𝜃

(𝑛−1)
𝑛−3 𝜃

(𝑛−2)
𝑛−4 · · · 𝜃

(3)
1 𝜃

(2)
0 0

𝜃
(𝑛)
𝑛−1 𝜃

(𝑛−1)
𝑛−2 𝜃

(𝑛−2)
𝑛−3 · · · 𝜃

(3)
2 𝜃

(2)
1 𝜃

(1)
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,
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we have
𝑛∑︁

𝑙=1

𝑤𝑙
𝑙∑︁

𝑗=1

𝜃
(𝑙)
𝑙−𝑗𝑤

𝑗 = 𝑊 𝐻Θ𝑊 ,

where 𝑊 := [𝑤𝑛, 𝑤𝑛−1, · · · , 𝑤1]𝑇 .
Let us first consider the following equation

𝑊 𝐻
(︁
𝜆Θ + 𝜆Θ𝑇

)︁
𝑊 = 𝑊 𝐻Θ𝑇

(︀
𝜆𝐵𝑇 + 𝜆𝐵

)︀
Θ𝑊 = (Θ𝑊 )𝐻(︀

𝜆𝐵𝑇 + 𝜆𝐵
)︀
(Θ𝑊 ). (2.20)

We claim that 𝜆𝐵𝑇 + 𝜆𝐵 is a Hermitian matrix. In fact, according to Lemma 2.3, we see 𝐵 is a real matrix
which has the following estimate:

𝑊 𝑇
(︀
𝐵 + 𝐵𝑇

)︀
𝑊 ≥ 𝛿

20
‖𝑇𝑊 ‖2, 𝑇 := diag

(︁
(
√

𝜏𝑛)−1
,
(︀√

𝜏𝑛−1

)︀−1
, · · · , (

√
𝜏1)−1

)︁
, ∀𝑊 ∈ R𝑛.

So, by Hermitian matrix’s properties, it is easy to check the following estimate holds in complex space:

𝑊 𝐻
(︀
𝜆𝐵 + 𝜆𝐵𝑇

)︀
𝑊 ≥ ℜ{𝜆}𝛿

20
‖𝑇𝑊 ‖2, ∀𝑊 ∈ C𝑛.

Applying the above inequality to (2.20), we have

𝑊 𝐻
(︁
𝜆Θ + 𝜆Θ𝑇

)︁
𝑊 ≥ ℜ{𝜆}𝛿

20
‖𝑇Θ𝑊 ‖2

=
ℜ{𝜆}𝛿

20
(𝑊 )𝐻

(︁
Θ𝑇 𝑇 2Θ

)︁
(𝑊 )

=
ℜ{𝜆}𝛿

20
(︀
𝑇 −1𝑊

)︀𝐻(︁
𝑇Θ𝑇 𝑇 2Θ𝑇

)︁(︀
𝑇 −1𝑊

)︀
.

(2.21)

Here 𝑇Θ𝑇 𝑇 2Θ𝑇 is a positive definite real matrix, and its inverse matrix is 𝑇−1𝐵𝑇−2𝐵𝑇 𝑇−1, which is a
positive definite matrix that could be written explicitly as:

̃︀𝐵 := 𝑇−1𝐵𝑇−2𝐵𝑇 𝑇−1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2𝐷
(𝑛)
0 𝑑

(𝑛)
1

𝑑
(𝑛)
1 2𝐷

(𝑛−1)
0

. . .

. . . . . . . . .

. . . 2𝐷
(2)
0 𝑑

(2)
1

𝑑
(2)
1 2𝐷

(1)
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (2.22)

where (for simplicity, we set 𝑟𝑛+1 = 0 here)

2𝐷
(𝑖)
0 :=

(1 + 2𝑟𝑖)
2

(1 + 𝑟𝑖)
2 +

𝑟3
𝑖+1

(1 + 𝑟𝑖+1)2
, and 𝑑

(𝑖)
1 := −

𝑟𝑖
√

𝑟𝑖

(1 + 𝑟𝑖)

(︂
1 + 2𝑟𝑖

(1 + 𝑟𝑖)
+

1 + 2𝑟𝑖−1

(1 + 𝑟𝑖)

)︂
·

This lemma is naturally proved if we can find an uniform up bound for the largest eigenvalue of ̃︀𝐵, i.e.,

2
𝑛∑︁

𝑙=1

⎛⎝ 𝑙∑︁
𝑗=1

𝑑
(𝑙)
𝑙−𝑗𝑤

𝑗 , 𝑤𝑙

⎞⎠ = 𝑊 𝑇 ̃︀𝐵𝑊 ≤ Λ‖𝑊 ‖2, ∀𝑊 ∈ R𝑛. (2.23)
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In fact, it is easy to find a proper Λ which is only decided by 𝑟max:

𝑛∑︁
𝑙=1

⎛⎝ 𝑙∑︁
𝑗=1

𝑑
(𝑙)
𝑙−𝑗𝑤

𝑗 , 𝑤𝑙

⎞⎠ ≤
𝑛−1∑︁
𝑙=1

(︁
𝑑
(𝑙)
0 |𝑤𝑙|2 + 𝑑

(𝑙+1)
1

(︀
𝑤𝑙, 𝑤𝑙+1

)︀)︁
+ 𝑑

(𝑛)
0 |𝑤𝑛|2

≤
𝑛−1∑︁
𝑙=1

(︂
𝑑
(𝑙)
0 +

1
2

⃒⃒⃒
𝑑
(𝑙+1)
1

⃒⃒⃒
+

1
2

⃒⃒⃒
𝑑
(1)
1

⃒⃒⃒)︂⃒⃒
𝑤𝑙
⃒⃒2

+
(︂

𝑑
(𝑛)
0 +

1
2

⃒⃒⃒
𝑑
(𝑛)
1

⃒⃒⃒)︂
|𝑤𝑛|2

≤ Λ
𝑛∑︁

𝑙=1

|𝑤𝑙|2,

where Λ := (1 + 2𝑟max +
√︀

𝑟3
max)2/(1 + 𝑟max)2 (i.e., Λ ≈ 13.39). By the property of positive definite matrix, it

is obvious that 𝑇Θ𝑇 𝑇 2Θ𝑇 has a smallest eigenvalue, and it is bigger than Λ−1, which together with (2.21)
derive that

𝑊 𝐻
(︁
𝜆Θ + 𝜆Θ𝑇

)︁
𝑊 ≥ ℜ{𝜆}𝛿(1 + 𝑟max)2

20
(︁

1 + 2𝑟max +
√︀

𝑟3
max

)︁2

⃦⃦
𝑇 −1𝑊

⃦⃦2 ≥ ℜ{𝜆}𝛿
280

⃦⃦
𝑇 −1𝑊

⃦⃦2
.

Taking the definition of Θ, 𝑇 into the above inequality, the proof is completed. �

Lemma 2.6 (Discrete Grönwall inequality). Assume 𝜆 > 0 and the sequences {𝑣𝑗}𝑁
𝑗=1 and {𝜂𝑗}𝑁

𝑗=0 are non-
negative. If

𝑣𝑛 ≤ 𝜆

𝑛−1∑︁
𝑗=1

𝜏𝑗𝑣𝑗 +
𝑛∑︁

𝑗=0

𝜂𝑗 , for 1 ≤ 𝑛 ≤ 𝑁,

then it holds

𝑣𝑛 ≤ exp
(︀
𝜆𝑡𝑛−1

)︀ 𝑛∑︁
𝑗=0

𝜂𝑗 , for 1 ≤ 𝑛 ≤ 𝑁.

Lemma 2.6 can be proved by the standard induction hypothesis and is omitted here. To prove the optimal
𝐻1-error estimate, we further introduce a modified Grönwall’s inequality, see also [18].

Lemma 2.7 (A modified Grönwall’s inequality). Assume a constant 𝐶 and sequences {𝑥𝑗}𝑁
𝑗=1, {𝑦𝑗}𝑁

𝑗=1, {𝑎𝑗}𝑁
𝑗=1

and {𝑏𝑗}𝑁
𝑗=1 are nonnegative. If

𝑥2
𝑛 + 𝑦𝑛 ≤ 𝐶 +

𝑛−1∑︁
𝑗=1

(︀
𝑎𝑗𝑥

2
𝑗 + 2𝑏𝑗𝑥𝑗

)︀
+ 2𝑏𝑛𝑥𝑛, for 1 ≤ 𝑛 ≤ 𝑁,

then it holds

𝑥𝑛 ≤ exp

⎛⎝1
2

𝑛−1∑︁
𝑗=1

𝑎𝑗

⎞⎠⎛⎝√𝐶 +
𝑛∑︁

𝑗=1

𝑏𝑗

⎞⎠, for 1 ≤ 𝑛 ≤ 𝑁,

𝑦𝑛 ≤ exp

⎛⎝𝑛−1∑︁
𝑗=1

𝑎𝑗

⎞⎠⎛⎝√𝐶 +
𝑛∑︁

𝑗=1

𝑏𝑗

⎞⎠2

, for 1 ≤ 𝑛 ≤ 𝑁.

(2.24)

Proof. Denote by 𝑢𝑛 := 𝐶 +
∑︀𝑛

𝑗=1(𝑎𝑗𝑥
2
𝑗 + 2𝑏𝑗𝑥𝑗) + 2𝑏𝑛+1𝑥𝑛+1 for all 1 ≤ 𝑛 ≤ 𝑁 − 1, and 𝑢0 := 𝐶 + 2𝑏1𝑥1.

Clearly we have 𝑥𝑛 ≤
√

𝑢𝑛−1. Using this property, we can get the estimate of 𝑢0 immediately:

𝑢0 ≤ 𝐶 + 2𝑏1
√

𝑢0 ⇒ 𝑢0 ≤
√

𝐶 + 2𝑏1.
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For the rest of the 𝑢𝑛, it holds

𝑢𝑛 − 𝑢𝑛−1 = 𝑎𝑛𝑥2
𝑛 + 2𝑏𝑛+1𝑥𝑛+1 ≤ 𝑎𝑛𝑢𝑛−1 + 2𝑏𝑛+1

√
𝑢𝑛, for 1 ≤ 𝑛 ≤ 𝑁 − 1, (2.25)

which implies √
𝑢𝑛 ≤ 2𝑏𝑛+1 +

√
1 + 𝑎𝑛

√
𝑢𝑛−1, for 1 ≤ 𝑛 ≤ 𝑁 − 1. (2.26)

Noting 𝑎𝑛 ≥ 0, it holds 1 ≤
√

1 + 𝑎𝑛 ≤ exp(𝑎𝑛/2), which together with the inequality above, has
√

𝑢𝑛 ≤ exp(𝑎𝑛/2)
(︀
2𝑏𝑛+1 +

√
𝑢𝑛−1

)︀
≤ exp((𝑎𝑛 + 𝑎𝑛−1)/2)

(︀
2𝑏𝑛+1 + 2𝑏𝑛 +

√
𝑢𝑛−2

)︀
≤ exp

⎛⎝1
2

𝑛∑︁
𝑗=1

𝑎𝑗

⎞⎠⎛⎝2
𝑛+1∑︁
𝑗=2

𝑏𝑗 +
√

𝑢0

⎞⎠
= exp

⎛⎝1
2

𝑛∑︁
𝑗=1

𝑎𝑗

⎞⎠⎛⎝√𝐶 + 2
𝑛+1∑︁
𝑗=1

𝑏𝑗

⎞⎠, for 1 ≤ 𝑛 ≤ 𝑁 − 1.

(2.27)

This lemma is directly proved by noticing 𝑥2
𝑛 + 𝑦𝑛 ≤ 𝑢𝑛−1. �

Lemma 2.8 ([30]). The truncation error 𝑅𝑗−1
2 = 𝒟2𝑢(𝑡𝑗)− 𝜕𝑡𝑢(𝑡𝑗) (1 ≤ 𝑗 ≤ 𝑁) can be expressed by

𝑅𝑗−1
2 =

𝑗∑︁
𝑙=1

𝑏
(𝑗)
𝑗−𝑙𝐺

𝑙 + 𝑃 𝑗 , 1 ≤ 𝑗 ≤ 𝑛, (2.28)

where

𝐺𝑙 = −1
2

∫︁ 𝑡𝑙

𝑡𝑙−1

(︀
𝑡− 𝑡𝑙−1

)︀2
𝜕𝑡𝑡𝑡𝑢 d𝑡, 1 ≤ 𝑙 ≤ 𝑁, 𝑃 1 =

1
2𝜏1

∫︁ 𝑡1

0

𝑡2𝜕𝑡𝑡𝑡𝑢 d𝑡− 1
𝜏1

∫︁ 𝑡1

0

𝑡𝑢𝑡𝑡(𝑡) d𝑡,

𝑃 𝑗 = −1
2
𝑏
(𝑗)
1 𝜏𝑗−1

∫︁ 𝑡𝑗

𝑡𝑗−1

(︀
2
(︀
𝑡− 𝑡𝑗−1

)︀
+ 𝜏𝑗−1

)︀
𝜕𝑡𝑡𝑡𝑢 d𝑡, 2 ≤ 𝑗 ≤ 𝑁.

(2.29)

One has the following estimate

𝑛+1∑︁
𝑙=1

𝑙∑︁
𝑗=1

𝜃
(𝑙)
𝑙−𝑗‖𝑅

𝑗−1
2 ‖ ≤ 𝜏2

2

∫︁ 𝑇

0

‖𝜕𝑡𝑡𝑡𝑢‖d𝑡 + 3𝜏2

∫︁ 𝑇

0

‖𝜕𝑡𝑡𝑡𝑢‖ d𝑡 + (𝜏1 + 𝜏)
∫︁ 𝑡1

0

‖𝜕𝑡𝑡𝑢‖d𝑡. (2.30)

One can refer to Lemma 2.1 and Theorem 3.4 of [30] for the proof of Lemma 2.8 in details. We now deliver
a lemma that will only be used in the analysis of local error estimates for 3D case. It is a variant of the lemma
in [17], so we omit its proof here.

Lemma 2.9. Let 𝜑 : (0,∞) → (0,∞) be continuous and increasing, and let ℱ > 0. Given 𝑇* such that
0 < 𝑇* <

∫︀∞
ℱ d𝑧/𝜑(𝑧). Suppose that sequences {𝑧𝑗}𝑁

𝑗=1, {𝑤𝑗}𝑁
𝑗=1 ≥ 0 satisfy

𝑧𝑛+1 +
𝑛∑︁

𝑘=1

𝜏𝑘𝑤𝑘 ≤ ℱ +
𝑛∑︁

𝑘=1

𝜏𝑘𝜑(𝑧𝑘), ∀𝑛 ≤ 𝑛*,

with
∑︀𝑛*

𝑘=1 𝜏𝑘 ≤ 𝑇*. Then there exists a constant 𝐶* > 0, which is independent of 𝜏𝑗 > 0 but dependent of 𝑇*,
satisfies

𝑧𝑛+1 +
𝑛∑︁

𝑘=1

𝜏𝑘𝑤𝑘 ≤ 𝐶*, 1 ≤ 𝑛 ≤ 𝑛*.
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3. Main results of variable time-step IMEX-BDF2 SAV scheme

In this section, we state the main results on the global optimal error estimate for the 2D variable time-step
IMEX-BDF2 SAV scheme in Theorem 3.1, and the local optimal error estimate for the 3D case in Theorem 3.2.
The proofs of these results are based on the stability properties given in Theorem 2.2 and will be deferred to
Section 5.

Theorem 3.1. Let 𝑑 = 2, 𝑇 > 0, 𝑢0 ∈ 𝑉 ∩ 𝐻𝑚
𝑝 with 𝑚 ≥ 3, and 𝑢 be the solution of (1.1). Assume 𝑢 ∈

𝐶(0, 𝑇 ; 𝐻𝑚
𝑝 ) with 𝑚 ≥ 3, 𝜕𝑗𝑢

𝜕𝑡𝑗 ∈ 𝐿2(0, 𝑇 ; 𝐻2
𝑝 ) with 1 ≤ 𝑗 ≤ 2, 𝜕3𝑢

𝜕𝑡3 ∈ 𝐿1(0, 𝑇 ; 𝐻1
𝑝 ). Denote by 𝜏𝑘 := 𝑡𝑘 − 𝑡𝑘−1 the

𝑘th time-step size, by 𝜏 := max1≤𝑘≤𝑀 𝜏𝑘 the maximum time-step size. Then for 𝜏 ≤ 1
2+4𝐶2

0
and 𝑁 ≥ 4𝐶2

Π + 2,
we have

‖�̄�𝑛
𝑁 − 𝑢(𝑡𝑛)‖21, ‖𝑈𝑛

𝑁 − 𝑢(𝑡𝑛)‖21 ≤ 𝐶𝜏4 + 𝐶𝑁2(1−𝑚),

and
𝑛∑︁

𝑞=1

𝜏𝑞‖�̄�𝑞
𝑁 − 𝑢(𝑡𝑞)‖22,

𝑛∑︁
𝑞=1

𝜏𝑞‖𝑈𝑞
𝑁 − 𝑢(𝑡𝑞)‖22 ≤ 𝐶𝜏4 + 𝐶𝑁2(2−𝑚),

where the constants 𝐶0, 𝐶Π and 𝐶 are independent of 𝜏,𝑁 .

As pointed out in [11], it is no longer possible to obtain a global error estimate in the 3D case. But, the
related local error estimate of 3D case in [11] can still be established for variable time-step scheme. Here we
again use the DOC kernels to overcome the analysis difficulties raised by variable time-step.

Theorem 3.2. Let 𝑑 = 3, 𝑇 > 0, 𝑢0 ∈ 𝑉 ∩ 𝐻𝑚
𝑝 with 𝑚 ≥ 3, 𝑢 be the solution of (1.1). Assume 𝑢 ∈

𝐶(0, 𝑇 ; 𝐻𝑚
𝑝 ) with 𝑚 ≥ 3, 𝜕𝑗𝑢

𝜕𝑡𝑗 ∈ 𝐿2(0, 𝑇 ; 𝐻2
𝑝 ) with 1 ≤ 𝑗 ≤ 2, and 𝜕3𝑢

𝜕𝑡3 ∈ 𝐿1(0, 𝑇 ; 𝐻1
𝑝 ). Given 𝑇* such that

0 < 𝑇* <
∫︀∞
ℱ d𝑧/𝜑(𝑧) (𝜑 will be given later in the proof), denote by 𝜏𝑘 := 𝑡𝑘 − 𝑡𝑘−1 the 𝑘th time-step size, by

𝜏 := max1≤𝑘≤𝑀 𝜏𝑘 the maximum time-step size, and ℱ is a positive constant that only depends on real solution
𝑢. If

∑︀𝑛*
𝑘=1 𝜏𝑘 ≤ 𝑇*, 𝜏 ≤ 1

2+4𝐶2
0

and 𝑁 ≥ 4𝐶2
Π + 2, it holds that

⃦⃦
�̄�𝑛

𝑁 − 𝑢(𝑡𝑛)
⃦⃦2

1
, ‖𝑈𝑛

𝑁 − 𝑢(𝑡𝑛)‖21 ≤ 𝐶𝜏4 + 𝐶𝑁2(1−𝑚), ∀𝑛 ≤ 𝑛*,
𝑛∑︁

𝑞=1

𝜏𝑞‖�̄�𝑞
𝑁 − 𝑢(𝑡𝑞)‖22,

𝑛∑︁
𝑞=1

𝜏𝑞‖𝑈𝑞
𝑁 − 𝑢(𝑡𝑞)‖22 ≤ 𝐶𝜏4 + 𝐶𝑁2(2−𝑚), ∀𝑛 ≤ 𝑛*,

where the constants 𝐶0, 𝐶Π and 𝐶 are independent of 𝜏,𝑁 .

The error analysis for the pressure 𝑝 is exactly the same as the one in [11]. We present the theorem and omit
its proof here.

Theorem 3.3. Under the same assumptions of Theorem 3.1 in 2D and Theorem 3.2 in 3D, there hold

‖𝑝𝑛
𝑁 − 𝑝(·, 𝑡𝑛)‖2 ≤

{︂
𝐶𝜏2𝑘 + 𝐶𝑁2(1−𝑚), ∀𝑛 ≥ 0, 𝑑 = 2,
𝐶𝜏2𝑘 + 𝐶𝑁2(1−𝑚), ∀𝑛 ≤ 𝑛*, 𝑑 = 3,

(3.1)

and
𝑛∑︁

𝑞=1

𝜏𝑞‖∇(𝑝𝑞
𝑁 − 𝑝(·, 𝑡𝑞))‖2 ≤

{︂
𝐶𝜏2𝑘 + 𝐶𝑁2(2−𝑚), ∀𝑛 ≥ 0, 𝑑 = 2,
𝐶𝜏2𝑘 + 𝐶𝑁2(2−𝑚), ∀𝑛 ≤ 𝑛*, 𝑑 = 3,

(3.2)

where 𝑝𝑛+1
𝑁 is computed from (2.12), 𝐶 is a constant independent of 𝜏 and 𝑁 , 𝑛* is the biggest integer satisfies∑︀𝑛*

𝑘=1 𝜏𝑘 ≤ 𝑇*, and 𝑇* is defined in Theorem 3.2.
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Table 1. Errors and temporal convergence orders with 𝑀 = 2(4:8).

𝑀 𝐻1-error Order

16 1.6129e−04 –
32 4.0055e−05 2.01
64 9.9799e−06 2.00
128 2.4907e−06 2.00
256 6.2222e−07 2.00

4. Numerical results

We now present three examples to verify the effectiveness and convergence of variable time-step IMEX-BDF2
SAV scheme (2.10). In Example 1, we use the benchmark problems given in [5,11] to investigate the convergence
order of our proposed scheme. In Example 2, we design an adaptive time-stepping strategy, and then construct
a benchmark problem with different time scales to investigate the effectiveness of our variable time-step scheme,
and also present several simulations to investigate the influence of the parameters in the adaptive time-stepping
strategy on the CPU-time, 𝐻1-error and the minimum time step-size. In Example 3, we use our adaptive time-
stepping strategy to deal with the double shear layer problem in [5,11]. The experimental results show that, in
the same total CPU time, we can successfully solve some problems by our variable time-step IMEX-BDF2 SAV
scheme, but, which fails to be solved by the constant time-step IMEX-BDF2 SAV scheme.

Example 1. We first consider the computation of the N-S equation (1.1) in Ω = (−𝜋, 𝜋)2 with periodic
boundary condition, a benchmark problem in [5], by constructing an exact solution satisfying

𝑢1(𝑥, 𝑦) = − cos(𝑥) sin(𝑦) exp(−2𝜈𝑡);
𝑢2(𝑥, 𝑦) = sin(𝑥) cos(𝑦) exp(−2𝜈𝑡);
𝑝(𝑥, 𝑦) = 0.

In the simulations, we take 𝜈 = 1, 𝑁 = 16, and divide the time interval [0, 1] by a variable time mesh with
𝜏 = 𝒪(1/𝑀). The maximum 𝐻1 errors of 𝑢𝑛

ℎ are listed in Table 1, which shows the second-order convergence
of the numerical simulations. According to Theorem 3.1, the optimal error estimate in 𝐻1-norm is at least
‖𝑢𝑛

ℎ − 𝑢(𝑡𝑛)‖1 = 𝒪(1/𝑁2 + 𝜏2), which is consistent with the results of our experiments.
To make our results more convincing, we also consider the convergence order of a benchmark problem with

external forces provided in [11]. Consider (1.1) in Ω = (−1, 1)2 such that the exact solution satisfies

𝑢1(𝑥, 𝑦) = 𝜋 exp(sin(𝜋(𝑥 + 1))) exp(sin(𝜋(𝑦 + 1))) cos(𝜋(𝑦 + 1)) sin2(𝑡);
𝑢2(𝑥, 𝑦) = −𝜋 exp(sin(𝜋(𝑥 + 1))) exp(sin(𝜋(𝑦 + 1))) cos(𝜋(𝑥 + 1)) sin2(𝑡);
𝑝(𝑥, 𝑦) = exp(cos(𝜋(𝑥 + 1)) sin(𝜋(𝑦 + 1))) sin2(𝑡).

In the simulations, we take 𝜈 = 1, 𝑁 = 40, and partition the time interval [0, 1] by a variable-time-mesh
with 𝜏 = 𝒪(1/𝑀). The maximum 𝐻1 errors of 𝑢𝑛

ℎ are listed in Table 2, which again shows the second-order
convergence in time.

Overall, both the results in Tables 1 and 2 confirm the analysis results in Theorem 3.1.

Example 2. The main advantage of the variable time-step scheme is its ability to efficiently capture the
dynamics of numerical solutions in different time scales. This enables us to obtain smaller errors using less
CPU time than the constant time-step scheme. Therefore, how to design an appropriate adaptive time-stepping
strategy plays an important role in for the variable time-step scheme.
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Table 2. Errors and temporal convergence orders with 𝑀 = 10 · 2(4:8).

𝑀 𝐻1-error Order

160 1.7524e−00 –
320 3.7830e−01 2.15
640 8.8126e−02 2.07
1280 2.1281e−02 2.03
2560 5.2295e−03 2.02

Several common strategies have been used to construct adaptive time stepping schemes. For example, adaptive
time-stepping strategies using energy have been well studied in literatures [22,23]. However some mathematical
indicators are not suitable for designing adaptive time-stepping strategies for N-S equations. In fact, when
spatial scalar is fixed and 𝜈 → 0, it will reduces to energy conservation for inviscid flows, and the energy
dissipation is almost negligible. For the 2D fluid problem we consider here (i.e., 𝑑 = 2 and 𝜈 = 0), it will satisfy
the Euler equation, the vorticity of the fluid system is also conserved. Therefore, it is not ideal to apply the
changes of energy and vorticity directly to the adaptive time-stepping strategy for N-S equations. The adaptive
time-stepping strategy in [1] uses a posteriori time error indicator that related to the changes in the adjacent
time-step 𝐻1-norm of velocity, and has successfully simulated the unsteady N-S problems.

In this paper, we will design an adaptive time-stepping strategy based on the changes of velocity. A similar
strategy is discussed in [1]. Our strategy is motivated by an idea that the errors at two adjacent steps should
be roughly equal to each other, and an observation that the changes of velocity can effectively reflect the choice
of the adaptive time steps. Specifically, our adaptive time strategy is given by

𝜏𝑛 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(1− 𝛼)𝜏𝑛−1,

ℰ
(︀
𝑈𝑛−1

𝑁 − 𝑈𝑛−2
𝑁

)︀
ℰ
(︀
𝑈𝑛−1

𝑁

)︀ > 𝜖,

min{(1 + 𝛼)𝜏𝑛−1, 𝜏max},
ℰ
(︀
𝑈𝑛−1

𝑁 − 𝑈𝑛−2
𝑁

)︀
ℰ
(︀
𝑈𝑛−1

𝑁

)︀ ≤ 𝜖,

(4.1)

where the parameters 𝜖 and 𝛼 are the given positive constant to adjust the change of time steps.

Noting
ℰ(𝑈𝑛−1

𝑁 −𝑈𝑛−2
𝑁 )

𝜏2
𝑛−1ℰ(𝑈𝑛−1

𝑁 ) ≈ ℰ(𝑢𝑛−1
𝑡 )

ℰ(𝑢𝑛−1) , the above strategy insures 𝜏𝑛−1 ≈
√︁

𝜖ℰ(𝑢𝑛−1)

ℰ(𝑢𝑛−1
𝑡 )

. For the practical simulations,

the first step-size 𝜏1 is set to be small, but our strategy can guarantee that 𝜏𝑛 will evolve to a proper size in a
few steps based on the dynamics of the solution itself.

As a benchmark example, we construct an exact solution having different time scales to verify the superi-
ority of the variable time-step IMEX-BDF2 SAV scheme. In fact, by considering the relative speed of change
‖𝑢𝑡‖/‖𝑢‖ = 𝑓(𝑡), we can choose 𝑓(𝑡) to be a function that is extremely large at some time, such as 𝐺

1+𝐺2(𝑡−𝑡0)2 ,
where 𝐺 is a large number. We now design the benchmark problem over Ω = (−1, 1)2 with the following exact
solution

𝑢1(𝑥, 𝑦) =
𝜋

100
exp(sin(𝜋𝑥)) exp(sin(𝜋𝑦)) cos(𝜋𝑦) · exp(arctan(100(𝑡− 0.5)));

𝑢2(𝑥, 𝑦) = − 𝜋

100
exp(sin(𝜋𝑥)) exp(sin(𝜋𝑦)) cos(𝜋𝑥) · exp(arctan(100(𝑡− 0.5)));

𝑝(𝑥, 𝑦) = 0.

(4.2)

In the simulations, we take 𝜈 = 1 and 𝑁 = 16. The problem will be solved by using the variable and constant
time-step strategies, respectively. In the adaptive time-stepping strategy (4.1), we choose 𝜏1 = 1.25e−7, 𝛼 = 0.2
and 𝜏max = 5.0e−03. For variable time-step scheme, we choose 𝜖 = 1.0e−05, 5.0e−06 and 1.0e−06 respectively
to solve the problem (4.2) until 𝑡 = 4. The step sizes at different time levels and the evolution of 𝜂𝑛 in the
experiments above are plotted in Figures 1a and 1b respectively.
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Table 3. Errors and parameters of experiments for solving (4.2).

𝜖 𝑀 𝜏 𝐻1-error CPU-time (s)

1.0e−05 1758 5.0000e−03 1.3250e−04 10.01
5.0e−06 2153 5.0000e−03 8.0934e−05 11.96
1.0e−06 3859 5.0000e−03 2.4751e−05 22.95
– 5000 8.0000e−04 4.5017e−04 27.37
– 10 000 4.0000e−04 1.0693e−04 51.07
– 20 000 2.0000e−04 2.6069e−05 104.13

Notes. In Table 3, the first 3 lines are experiment results using variable time-step and the last 3 lines are results using
constant time-step. We re-emphasize that 𝜏 := max1≤𝑘≤𝑀 𝜏𝑘 here.

Figure 1. (Example 2) Experimental results by variable time-step IMEX-BDF2 SAV scheme
(𝜖 = 1.0e−05, 5.0e−06, 1.0e−06) and constant time-step IMEX-BDF2 SAV scheme (𝜏 =
1/1250, 1/2500, 1/5000). (a) Time step-size at different time level. (b) Evolution of 𝜂𝑛.

As a contrast, we solve the same problem using constant-step sizes 𝜏 = 1/1250, 1/2500 and 1/5000, respec-
tively. The numerical results are listed in Table 3. Table 3 shows that the variable time-step scheme gives a
lower 𝐻1-error with lower computational costs, while the constant time-step scheme gives a large 𝐻1-error at
the almost same computational cost. For example, the 𝐻1-error of variable time-step scheme with 𝜖 = 1.0e−06
and the constant time-step scheme with 𝜏 = 2.0e−04 is similar, but the CPU-time of constant time-step scheme
is almost five times than the variable time-step one. This can also be noticed by observing the evolution of 𝜂𝑛

over time in Figure 1b, and it is noticed that 𝜂𝑛 is much closer to 1 for variable time-step scheme, while the 𝜂𝑛

is much farther than 1 for constant time-step scheme. Figure 1a shows that the variable time-step IMEX-BDF2
SAV scheme captures changes over different time scales very well, and by setting a lower 𝜖, one can get a more
accurate numerical result.

We further investigate how the parameters in the adaptive time-stepping strategy influence the CPU-time,
𝐻1-error and the minimum time step-size. Table 4 shows the CPU-time, 𝐻1-error and the minimum time step-
size (since the initial step-size is very small, we only consider steps after the 100th step here) for different 𝜖. In
this experiment, all numerical solutions are obtained by fixing 𝑁 = 16, 𝛼 = 0.2 and 𝜏max = 5.0e−03. One can
observe in Table 4 that as 𝜖 becomes smaller, the numerical error and the minimum time-step size also become
smaller, which implies one can get more accurate numerical results by lowering 𝜖. However, smaller 𝜖 may result
in longer CPU-time, and how to select appropriate 𝜖 in actual computation is worthy of further study.

Table 5 shows the CPU-time and 𝐻1-error for different parameter 𝜏max in adaptive time-stepping strategy.
Numerical solutions were obtained by setting 𝑁 = 16, 𝛼 = 0.2 and 𝜖 = 4.0e−05.
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Table 4. Numerical results by choosing different 𝜖 for solving (4.2).

𝜖 𝑀 min{𝜏𝑛>100} 𝐻1-error CPU-time (s)

1.024e−04 2184 8.2739e−05 1.1592e−05 13.44
2.560e−05 2422 4.0770e−05 1.8281e−05 13.09
6.400e−06 2944 2.0414e−05 1.3505e−05 15.93
1.600e−06 4055 1.0216e−05 7.0986e−06 22.09
4.000e−07 6364 5.0671e−06 3.1276e−06 34.36
1.000e−07 11 095 2.5346e−06 1.2053e−06 63.99

Notes. In Table 4, numerical solutions obtained by setting 𝑁 = 16, 𝛼 = 0.2 and 𝜏max = 5.0e−03.

Table 5. Numerical results by choosing different 𝜏max for solving (4.2).

𝜏max 𝑀 min{𝜏𝑛>100} 𝐻1-error CPU-time (s)

+∞ 566 5.1389e−05 7.1947e−04 3.96
3.2e−02 564 5.1143e−05 8.2145e−04 3.67
8.0e−03 628 5.1783e−05 4.4551e−04 4.15
2.0e−03 937 5.1442e−05 1.4252e−04 5.46
5.0e−04 2321 5.1244e−05 1.7853e−05 12.62
1.25e−04 8125 5.1470e−05 8.7122e−07 57.32

Notes. In Table 5, numerical solutions obtained by setting 𝑁 = 16, 𝛼 = 0.2 and 𝜖 = 4.0e−05.

One can clearly observe that when the 𝜏max gets smaller, one can have a more accurate result. By setting an
appropriate 𝜏max, one can get a much smaller error at a negligible cost in CPU-time than with no 𝜏max. But,
as the 𝜏max becomes smaller, the variable time-step scheme under this strategy will gradually degenerate into a
constant time-step scheme, and we will spend much more CPU-time to obtain a smaller 𝐻1-error.

From the above results, one can see that our adaptive time-stepping strategy (4.1) is suitable for the vari-
able time-step IMEX-BDF2 SAV scheme, which significantly improves the computational efficiency for this
benchmark problem.

Example 3. We also use our adaptive time-stepping strategy to carry out experiments on the well known e
double shear layer problem [5,11]. Consider the N-S equation (1.1) in Ω = (−0.5, 0.5)2 with periodic boundary
conditions and the initial conditions given by

𝑢1(𝑥, 𝑦, 0) =
{︂

tanh(𝜌(𝑦 + 0.25)), 𝑦 ≤ 0,

tanh(𝜌(0.25− 𝑦)), 𝑦 > 0,
𝑢2(𝑥, 𝑦, 0) = −𝛿 sin(2𝜋𝑥),

where 𝜌 determines the slope of the shear layer and 𝛿 represents the size of the perturbation. As the same setting
as [11], we fix 𝛿 = 0.05, 𝜌 = 100 and 𝜈 = 0.00005.

In [11] it has been shown that the constant time-step IMEX-BDF2 SAV scheme can compute a reasonably
correct solution at 𝑇 = 1.2 by taking 𝜏 = 2.5e−04 and 𝑁 = 128, and when the step-size is 𝜏 = 3.0e−04, the
solution at 𝑇 = 1.2 will blow up. However, through a large number of experiments and observations, we find that
it may not be sufficient to use only the vorticity contours as in [11], or to use the magnitude of 𝜂 deviation from

1 to determine whether the numerical results are correctly computed. In fact, if we examine ℰ(𝑢𝑛
𝑡 )

ℰ(𝑢𝑛) ≈
ℰ(𝑈𝑛

𝑁−𝑈𝑛−1
𝑁 )

𝜏2
𝑛ℰ(𝑈𝑛

𝑁 )

in the computation of the solution, when using step-size 𝜏 = 2.5e−04, we can see that the velocity solved by
the constant time-step scheme is not accurate enough at 𝑇 = 1.2. However, by using the variable time-step
IMEX-BDF2 SAV scheme, we may compute correct and accurate results with less computational cost.

In the simulations, we take 𝑁 = 128. The problem is solved by using the variable and constant time-step
schemes, respectively. With the adaptive time-stepping strategy (4.1), we choose 𝜏1 = 1.0e−04 and 𝜏max =
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Figure 2. (Example 3) Experimental results by variable time-step IMEX-BDF2 SAV
scheme (𝜖 = 2.4e−05) and constant time-step IMEX-BDF2 SAV scheme (𝜏 =
1.0e−04, 2.8e−04, 2.5e−04). (a) Relative change of velocity at different time level. (b) Time
step sizes at different time level used in variable stepsize IMEX-BDF2 SAV scheme.

4.5e−04, 𝜖 = 2.4e−05 and 𝛼 = 0.01 to solve the double shear layer problem until 𝑇 = 1.2. Figure 2a plots the
numerical results ℰ(𝑢𝑛

𝑡 )
ℰ(𝑢𝑛) . Figure 2a shows that the variable time-step scheme can compute the correct relative

change of velocity on [0, 1.2] with less computational cost, while the relative change of velocity computed by
the constant time-step scheme with the same or even higher computational cost will blow up. For example,
the numerical result of constant time-step scheme using 𝜏 = 2.8e−04 blows up at around 0.8. Meanwhile, for
the variable time-step scheme, the average step-size used in the simulation from 0 to 1.2 is 2.803e−04, but it
can compute the correct relative change on [0, 1.2]. We further consider the experiment in [11], i.e., using step-
size 𝜏 = 2.5e−04 to solve this problem. Although its 𝜂𝑛 does not deviate much from 1 [11], and the vorticity
contour is correctly simulated, we can still see the relative change of velocity blows up after 1.05. However,
the variable time-step scheme still works. The result of variable time-step scheme with less computational cost
behaves better, and the relative change of velocity maintains correct over the time interval [0, 1.2]. As shown
in Figure 2b, it can be seen that the variable time-step IMEX-BDF2 SAV scheme well captures the changes
of different time scales in the double shear layer problem. This is also the reason why it can obtain correct
numerical results at a lower computational cost than using the constant time-step scheme.

As a contrast, we solve the same problem using constant-step sizes 𝜏𝑛 = 1.0e−04, 2.5e−04 and 2.8e−04,
respectively, and the relative changes of velocity at different time level, i.e., ℰ(𝑈𝑛

𝑁−𝑈𝑛−1
𝑁 )

𝜏2
𝑛ℰ(𝑈𝑛

𝑁 ) ≈ ℰ(𝑢𝑛
𝑡 )

ℰ(𝑢𝑛) , are also plotted
in Figure 2a. Table 6 shows the results of constant time-step IMEX-BDF2 SAV scheme by using 𝜏 = 1.0e−04
as the reference solution, and 𝐻1-error of velocity. It can be seen that the error of variable step-size scheme is
smaller.

In order to make it easier for the readers to realize the difference in results, we compute the vorticity contours
of the difference between numerical results according to the following equation

∇×
(︀
𝑈𝑀

𝑁 − 𝑈𝑀
ref

)︀
.

Here 𝑈𝑀
𝑁 are results using constant step-size 2.5e−04 and 2.8e−04 and variable step-size when setting 𝜖 =

2.4e−05, and 𝑈𝑀
ref is the reference solution, i.e., result using constant step-size 1.0e−04. The Figure 3 shows the

vorticity contours of the difference between numerical solution 𝑈𝑀
𝑁 and reference solution 𝑈𝑀

ref at 𝑇 = 1.2.

5. Proofs of Theorems 3.1 and 3.2

We now present the proofs of Theorems 3.1 and 3.2. We carry out a complete rigorous analysis of the error
estimate in the 2D case, and only present the part of the proof for the 3D case which is different from the 2D
case.
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Table 6. Errors and parameters of experiments for solving double shear layer problem.

𝜖 𝑀 𝜏average 𝐻1-error CPU-time (s)

2.4e−05 4281 2.803e−04 9.5663e−03 284.64
– 4287 2.8e−04 7.5719e−00 275.42
– 4801 2.5e−04 5.4291e−01 312.23
– 12001 1.0e−04 – 790.29

Figure 3. (Example 3) Vorticity contours of different numerical solutions and reference solution
at 𝑇 = 1.2. (a) Constant time-step scheme using 𝜏 = 2.8e−04. (b) Constant time-step scheme
using 𝜏 = 2.5e−04. (c) variable time-step scheme using 𝜖 = 2.4e−05.

We first introduce the following denotations for errors

𝐸𝑙 := �̄� 𝑙
𝑁 − 𝑢(𝑡𝑙), 𝑒𝑙 := 𝑈 𝑙

𝑁 − 𝑢(𝑡𝑙), 𝑒𝑙
Π := Π𝑁𝑢(𝑡𝑙)− 𝑢(𝑡𝑙), 𝐸𝑙

𝑁 := Π𝑁𝐸𝑙, 𝑒𝑙
𝑁 := Π𝑁𝑒𝑙.

For brevity, the proof for the following error estimate is divided into three steps, and the technique of DOC
kernels is mainly used for the theoretical analysis in the second step.

5.1. Proof of Theorem 3.1

Proof. Similarly as in [11], the main task is to establish by induction

|1− 𝜉𝑞| ≤ 𝐶0𝜏 + 𝐶Π𝑁2−𝑚 ∀𝑞 ≤ 𝑇/𝜏. (5.1)

Clearly |1− 𝜉0| ≤ 𝐶0𝜏 +𝐶Π𝑁2−𝑚 is satisfied. Now we assume |1− 𝜉𝑞| ≤ 𝐶0𝜏 +𝐶Π𝑁2−𝑚 (∀𝑞 ≤ 𝑛), and we want
to show |1− 𝜉𝑛+1| ≤ 𝐶0𝜏 + 𝐶Π𝑁2−𝑚 where 𝐶0, 𝐶Π will be determined later.

Step 1: prove the bounds of ‖∇�̄�𝑞
𝑁‖,

∑︀𝑞
𝑙=1 𝜏𝑙‖∆�̄� 𝑙

𝑁‖2 and
∑︀𝑞

𝑙=1 𝜏𝑙‖∆𝑈 𝑙
𝑁‖2, ∀𝑞 ≤ 𝑛.

When 𝜏 ≤ 1
4𝐶2

0
< 1

2 , 𝑁 ≥ 4𝐶2
Π > 2, the direct calculation from the above assumption shows that

1− 1
4𝐶0

− 𝑁3−𝑚

4𝐶Π
≤ |𝜉𝑞| ≤ 1 +

1
4𝐶0

+
𝑁3−𝑚

4𝐶Π
, ∀𝑞 ≤ 𝑛,

(1− 𝜉𝑞)2 ≤ 𝜏

2
+

𝑁5−2𝑚

2
, ∀𝑞 ≤ 𝑛,

1
2
≤ |𝜂𝑞| < 2, ∀𝑞 ≤ 𝑛.

(5.2)



1160 Y. DI ET AL.

Noticing we have proved in Theorem 2.2 that there exists a constant 𝐹 > 0 that is decided by 𝛾0 only and
satisfies ‖𝑈𝑞

𝑁‖1 ≤ 𝐹 , so it is easy to get the bound for ‖�̄�𝑞
𝑁‖1:

⃦⃦
�̄�𝑞

𝑁

⃦⃦
1

=
⃒⃒⃒⃒

1
𝜂𝑞

⃒⃒⃒⃒
‖𝑈𝑞

𝑁‖1 ≤ 2𝐹, ∀𝑞 ≤ 𝑛.

Besides, according to theorem 2.2, we have 𝛾0 ≥ 𝜈
∑︀𝑛

𝑞=1 𝜏𝑞𝜉
𝑞‖∆�̄�𝑞

𝑁‖2, which derives the bounds for∑︀𝑞
𝑙=1 𝜏𝑙‖∆�̄� 𝑙

𝑁‖2 and
∑︀𝑞

𝑙=1 𝜏𝑙‖∆𝑈 𝑙
𝑁‖2:

𝜈

𝑛∑︁
𝑞=1

𝜏𝑞

⃦⃦
∆�̄�𝑞

𝑁

⃦⃦2 ≤ 𝛾0

min1≤𝑞≤𝑛 |𝜉𝑞|
≤ 4𝛾0, 𝐶0 ≥ 1, (5.3)

𝜈

𝑛∑︁
𝑞=1

𝜏𝑞‖∆𝑈𝑞
𝑁‖

2 ≤ 16𝛾0, 𝐶0 ≥ 1. (5.4)

Step 2: the estimates of ‖∇𝐸𝑛+1
𝑁 ‖ and

∑︀𝑛+1
𝑙=1 𝜏𝑙‖∆𝐸𝑙

𝑁‖2.
We can get the following equality by subtracting the SAV scheme (2.10) from N-S equation (2.5):(︀

𝒟2𝐸
𝑞+1, 𝑣

)︀
+ 𝜈
(︀
∇𝐸𝑞+1,∇𝑣

)︀
= (𝑅𝑞

2, 𝑣) + (𝑄𝑞
2, 𝑣), ∀𝑣 ∈ 𝑆𝑁 , 0 ≤ 𝑞 ≤ 𝑛, (5.5)

where

𝑅𝑞
2 = −𝒟2𝑢

(︀
·, 𝑡𝑞+1

)︀
+ 𝑢𝑡

(︀
𝑡𝑞+1

)︀
and 𝑄𝑞

2 = 𝐴(𝐵2𝑈
𝑞
𝑁 · ∇𝐵2𝑈

𝑞
𝑁 )−𝐴

(︀
𝑢
(︀
𝑡𝑞+1

)︀
· ∇𝑢

(︀
𝑡𝑞+1

)︀)︀
.

By multiplying (5.5) by DOC kernels, and summing them from 𝑞 = 0 to 𝑞 = 𝑙 − 1, we have

(︀
∇𝜏𝐸𝑙, 𝑣

)︀
− 𝜈

⎛⎝ 𝑙∑︁
𝑗=1

𝜃
(𝑙)
𝑙−𝑗∆𝐸𝑗 , 𝑣

⎞⎠ =
𝑙∑︁

𝑗=1

(︁
𝜃
(𝑙)
𝑙−𝑗

(︁
𝑅𝑗−1

2 + 𝑄𝑗−1
2

)︁
, 𝑣
)︁
, ∀𝑣 ∈ 𝑆𝑁 , 1 ≤ 𝑙 ≤ 𝑛 + 1. (5.6)

By setting 𝑣 = −∆𝐸𝑙
𝑁 (𝐸𝑙

𝑁 := Π𝑁𝐸𝑙), one has

⃦⃦
∇𝐸𝑙

𝑁

⃦⃦2 −
⃦⃦
∇𝐸𝑙−1

𝑁

⃦⃦2

2
+𝜈

⎛⎝ 𝑙∑︁
𝑗=1

𝜃
(𝑙)
𝑙−𝑗∆𝐸𝑗

𝑁 , ∆𝐸𝑙
𝑁

⎞⎠ ≤ −
𝑙∑︁

𝑗=1

(︁
𝜃
(𝑙)
𝑙−𝑗

(︁
𝑅𝑗−1

2 + 𝑄𝑗−1
2

)︁
, ∆𝐸𝑙

𝑁

)︁
, 1 ≤ 𝑙 ≤ 𝑛+1. (5.7)

Taking the sum of (5.7) form 𝑙 = 1 to 𝑛 + 1, and using lemma 2.5 and corollary 2.4, we have

⃦⃦
∇𝐸𝑛+1

𝑁

⃦⃦2 −
⃦⃦
∇𝐸0

𝑁

⃦⃦2

2
+

𝜈𝐶𝑟

2

𝑛+1∑︁
𝑙=1

𝜏𝑙

⃦⃦
∆𝐸𝑙

𝑁

⃦⃦2
+

𝜈

2

𝑛+1∑︁
𝑗=1

⃦⃦⃦∑︀𝑛+1
𝑙=𝑗 𝜃

(𝑙)
𝑙−𝑗∆𝐸𝑙

𝑁

⃦⃦⃦2

𝜏𝑗

≤ −
𝑛+1∑︁
𝑙=1

𝑙∑︁
𝑗=1

(︁
𝜃
(𝑙)
𝑙−𝑗

(︁
𝑅𝑗−1

2 + 𝑄𝑗−1
2

)︁
, ∆𝐸𝑙

𝑁

)︁
. (5.8)

For the first term of the right hand side, the truncation error 𝑅𝑗−1
2 satisfies the following estimate:

−
𝑛+1∑︁
𝑙=1

𝑙∑︁
𝑗=1

(︁
𝜃
(𝑙)
𝑙−𝑗𝑅

𝑗−1
2 , ∆𝐸𝑙

𝑁

)︁
=

𝑛+1∑︁
𝑙=1

𝑙∑︁
𝑗=1

(︁
𝜃
(𝑙)
𝑙−𝑗∇𝑅𝑗−1

2 ,∇𝐸𝑙
𝑁

)︁
≤

𝑛+1∑︁
𝑙=1

⃦⃦
∇𝐸𝑙

𝑁

⃦⃦ 𝑙∑︁
𝑗=1

𝜃
(𝑙)
𝑙−𝑗

⃦⃦⃦
∇𝑅𝑗−1

2

⃦⃦⃦
. (5.9)
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For the second term, we have the following decomposition:

𝑄𝑞
2 = 𝐴(𝐵2𝑈

𝑞
𝑁 · ∇𝐵2𝑈

𝑞
𝑁 )−𝐴

(︀
𝑢
(︀
𝑡𝑞+1

)︀
· ∇𝑢

(︀
𝑡𝑞+1

)︀)︀
= 𝐴(𝐵2𝑈

𝑞
𝑁 · ∇𝐵2𝑈

𝑞
𝑁 )−𝐴(𝐵2𝑢(𝑡𝑞) · ∇𝐵2𝑢(𝑡𝑞)) + 𝐴(𝐵2𝑢(𝑡𝑞) · ∇𝐵2𝑢(𝑡𝑞))−𝐴

(︀
𝑢
(︀
𝑡𝑞+1

)︀
· ∇𝑢

(︀
𝑡𝑞+1

)︀)︀
:= 𝑄𝑞

21 + 𝑄𝑞
22,

𝑄𝑞
21 = 𝐴(𝐵2𝑈

𝑞
𝑁 · ∇𝐵2(𝑈𝑞

𝑁 − 𝑢(𝑡𝑞))) + 𝐴(𝐵2(𝑈𝑞
𝑁 − 𝑢(𝑡𝑞)) · ∇𝐵2𝑢(𝑡𝑞)),

𝑄𝑞
22 = 𝐴

(︀(︀
𝐵2𝑢(𝑡𝑞)− 𝑢

(︀
𝑡𝑞+1

)︀)︀
· ∇𝐵2𝑢(𝑡𝑞)

)︀
+ 𝐴

(︀
𝑢(𝑡𝑞+1) · ∇

(︀
𝐵2𝑢(𝑡𝑞)− 𝑢

(︀
𝑡𝑞+1

)︀)︀)︀
.

(5.10)

Recalling the definition 𝑒𝑞 := 𝑈𝑞
𝑁 − 𝑢(𝑡𝑞), and applying the (2.3), we have:

−
𝑛+1∑︁
𝑙=1

𝑙∑︁
𝑗=1

(︁
𝜃
(𝑙)
𝑙−𝑗𝑄

𝑗−1
21 , ∆𝐸𝑙

𝑁

)︁
= −

𝑛+1∑︁
𝑗=1

⎛⎝𝑄𝑗−1
21 ,

𝑛+1∑︁
𝑙=𝑗

𝜃
(𝑙)
𝑙−𝑗∆𝐸𝑙

𝑁

⎞⎠
≤ 𝐶1

𝑛+1∑︁
𝑗=1

(︁⃦⃦⃦
𝐵2𝑈

𝑗−1
𝑁

⃦⃦⃦
2

+
⃦⃦
𝐵2𝑢

(︀
𝑡𝑗−1

)︀⃦⃦
2

)︁⃦⃦
𝐵2𝑒

𝑗−1
⃦⃦

1

⃦⃦⃦⃦
⃦⃦𝑛+1∑︁

𝑙=𝑗

𝜃
(𝑙)
𝑙−𝑗∆𝐸𝑙

𝑁

⃦⃦⃦⃦
⃦⃦

≤
𝑛+1∑︁
𝑗=1

⎛⎜⎝𝜈

⃦⃦⃦∑︀𝑛+1
𝑙=𝑗 𝜃

(𝑙)
𝑙−𝑗∆𝐸𝑙

𝑁

⃦⃦⃦2

2𝜏𝑗
+

𝜏𝑗𝐶
2
1

2𝜈

(︁⃦⃦⃦
𝐵2𝑈

𝑗−1
𝑁

⃦⃦⃦
2

+
⃦⃦
𝐵2𝑢

(︀
𝑡𝑗−1

)︀⃦⃦
2

)︁2⃦⃦
𝐵2𝑒

𝑗−1
⃦⃦2

1

⎞⎟⎠
≤ 𝜈

𝑛+1∑︁
𝑗=1

⃦⃦⃦∑︀𝑛+1
𝑙=𝑗 𝜃

(𝑙)
𝑙−𝑗∆𝐸𝑙

𝑁

⃦⃦⃦2

2𝜏𝑗
+

𝑛∑︁
𝑗=1

𝜏𝑗+1𝐶2

(︂⃦⃦⃦
𝐵2𝑈

𝑗
𝑁

⃦⃦⃦2

2
+
⃦⃦
𝐵2𝑢

(︀
𝑡𝑗
)︀⃦⃦2

2

)︂⃦⃦
𝑒𝑗−1

⃦⃦2

1

+
𝑛+1∑︁
𝑗=1

𝜏𝑗𝐶2

(︂⃦⃦⃦
𝐵2𝑈

𝑗−1
𝑁

⃦⃦⃦2

2
+
⃦⃦
𝐵2𝑢

(︀
𝑡𝑗−1

)︀⃦⃦2

2

)︂
‖𝑒𝑗−1‖21, (5.11)

where 𝐶2 := 𝐶2
1 (1 + 𝑟max)2/𝜈.

In (5.11), the estimate of ‖𝑒𝑗−1‖1 satisfies:⃦⃦
𝑒𝑗−1

⃦⃦
1

=
⃦⃦⃦
𝑈 𝑗−1

𝑁 − 𝑢
(︀
𝑡𝑗−1

)︀⃦⃦⃦
1
≤
⃦⃦⃦
𝐸𝑗−1

𝑁

⃦⃦⃦
1

+
⃦⃦⃦
𝑒𝑗−1
Π

⃦⃦⃦
1

+
⃦⃦⃦
�̄� 𝑗−1

𝑁

(︀
1− 𝜉𝑗−1

)︀2⃦⃦⃦
1

≤
⃦⃦⃦
𝐸𝑗−1

𝑁

⃦⃦⃦
1

+ 𝐶
⃦⃦
𝑢
(︀
𝑡𝑗−1

)︀⃦⃦
𝑚

𝑁1−𝑚 + 4𝐹
(︀
𝐶2

0𝜏2 + 𝐶2
Π𝑁4−2𝑚

)︀
.

(5.12)

For the 𝑄𝑞
22 part, we have the following estimate:

−
𝑛+1∑︁
𝑙=1

𝑙∑︁
𝑗=1

𝜃
(𝑙)
𝑙−𝑗

(︁
𝑄𝑗−1

22 , ∆𝐸𝑙
𝑁

)︁
≤ 𝐶3

𝑛+1∑︁
𝑙=1

⃦⃦
𝐸𝑙

𝑁

⃦⃦
1

𝑙∑︁
𝑗=1

𝜃
(𝑙)
𝑙−𝑗

⃦⃦
𝐵2𝑢

(︀
𝑡𝑗−1

)︀
− 𝑢
(︀
𝑡𝑗
)︀⃦⃦

2

(︀⃦⃦
𝐵2𝑢

(︀
𝑡𝑗−1

)︀⃦⃦
2

+
⃦⃦
𝑢
(︀
𝑡𝑗
)︀⃦⃦

2

)︀
,

(5.13)
where 𝐶3 = 𝐶 is the constant in inequalities (2.3).

Substituting (5.9), (5.11)–(5.13) into (5.8), we have⃦⃦
∇𝐸𝑛+1

𝑁

⃦⃦2 −
⃦⃦
∇𝐸0

𝑁

⃦⃦2

2
+

𝜈𝜆

2

𝑛+1∑︁
𝑙=1

𝜏𝑙

⃦⃦
∆𝐸𝑙

𝑁

⃦⃦2

≤
𝑛+1∑︁
𝑙=1

⃦⃦
𝐸𝑙

𝑁

⃦⃦
1

𝑙∑︁
𝑗=1

𝜃
(𝑙)
𝑙−𝑗

(︁⃦⃦⃦
∇𝑅𝑗−1

2

⃦⃦⃦
+ 𝐶3

⃦⃦
𝐵2𝑢

(︀
𝑡𝑗−1

)︀
− 𝑢
(︀
𝑡𝑗
)︀⃦⃦

2

(︀⃦⃦
𝐵2𝑢

(︀
𝑡𝑗−1

)︀⃦⃦
2

+
⃦⃦
𝑢
(︀
𝑡𝑗
)︀⃦⃦

2

)︀)︁
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+ 2𝐶2

𝑛∑︁
𝑗=1

(︂
𝜏𝑗+1

(︂⃦⃦⃦
𝐵2𝑈

𝑗
𝑁

⃦⃦⃦2

2
+
⃦⃦
𝐵2𝑢

(︀
𝑡𝑗
)︀⃦⃦2

2

)︂
+ 𝜏𝑗

(︂⃦⃦⃦
𝐵2𝑈

𝑗−1
𝑁

⃦⃦⃦2

2
+
⃦⃦
𝐵2𝑢

(︀
𝑡𝑗−1

)︀⃦⃦2

2

)︂)︂
‖𝐸𝑗−1

𝑁 ‖21

+ 𝐶4

(︀
𝐶2

0𝜏2 + 𝐶2
Π𝑁4−2𝑚 + 𝑁1−𝑚

)︀2
+ 2𝐶2𝜏𝑛+1

(︁
‖𝐵2𝑈

𝑛
𝑁‖

2
2 + ‖𝐵2𝑢(𝑡𝑛)‖22

)︁
‖𝐸𝑛

𝑁‖21, (5.14)

where

𝐶4 := max

{︃
64𝐹 2𝐶2, 4𝐶2 sup

𝑡∈[0,𝑇 ]

‖𝑢(𝑡)‖2𝑚

}︃
·

𝑛+1∑︁
𝑗=1

𝜏𝑗

(︂⃦⃦⃦
𝐵2𝑈

𝑗−1
𝑁

⃦⃦⃦2

2
+
⃦⃦
𝐵2𝑢

(︀
𝑡𝑗−1

)︀⃦⃦2

2

)︂
.

We point out that 𝐶4 is bounded thanks to (5.4).
By applying the modified Grönwall’s inequality in Lemma 2.7 to (5.14), we can prove:

‖𝐸𝑛+1
𝑁 ‖21 + 𝜈𝜆

𝑛+1∑︁
𝑙=1

𝜏𝑙‖∆𝐸𝑙
𝑁‖2

≤ exp
(︀
8𝐶2

𝑛+1∑︁
𝑗=1

𝜏𝑗(
⃦⃦⃦
𝐵2𝑈

𝑗−1
𝑁

⃦⃦⃦2

2
+
⃦⃦
𝐵2𝑢

(︀
𝑡𝑗−1

)︀⃦⃦2

2
)
)︀(︁√︀

𝐶4(𝐶2
0𝜏2 + 𝐶2

Π𝑁4−2𝑚 + 𝑁1−𝑚)

+ 2
𝑛+1∑︁
𝑙=1

𝑙∑︁
𝑗=1

𝜃
(𝑙)
𝑙−𝑗(‖∇𝑅𝑗−1

2 ‖+ 𝐶3(2 + 2𝑟max) sup
𝑡∈[0,𝑇 ]

‖𝑢(𝑡)‖2‖𝐵2𝑢
(︀
𝑡𝑗−1

)︀
− 𝑢
(︀
𝑡𝑗
)︀
‖2)
)︁2

.

(5.15)

The summation terms on the righthand side can be bounded as follows.

𝑛+1∑︁
𝑗=1

𝜏𝑗

(︂⃦⃦⃦
𝐵2𝑈

𝑗−1
𝑁

⃦⃦⃦2

2
+
⃦⃦
𝐵2𝑢

(︀
𝑡𝑗−1

)︀⃦⃦2

2

)︂
≤ 𝐶

𝑛+1∑︁
𝑗=1

𝜏𝑗

(︂⃦⃦⃦
𝑈 𝑗−1

𝑁

⃦⃦⃦2

2
+
⃦⃦
𝑢
(︀
𝑡𝑗−1

)︀⃦⃦2

2

)︂

≤ 𝐶

⎛⎝𝑟max

𝑛∑︁
𝑗=1

𝜏𝑗

⃦⃦⃦
𝑈 𝑗

𝑁

⃦⃦⃦2

2
+ 𝜏
⃦⃦
𝑈0

𝑁

⃦⃦2

2
+

𝑛+1∑︁
𝑗=1

𝜏𝑗

⃦⃦
𝑢
(︀
𝑡𝑗−1

)︀⃦⃦2

2

⎞⎠
≤ 𝐶

(︂
𝑟max

16𝛾0

𝜈
+ 𝑟max𝑇𝑀2 + 𝜏‖𝑢0‖22

)︂
+ 𝐶

𝑛+1∑︁
𝑗=1

𝜏𝑗

⃦⃦
𝑢
(︀
𝑡𝑗−1

)︀⃦⃦2

2
,

(5.16)

where we used (5.4) in the last step. The last term in (5.16) can be bounded by
∫︀ 𝑇

0
‖𝑢𝑡(𝜉)‖22 d𝜉 and

∫︀ 𝑇

0
‖𝑢(𝜉)‖22 d𝜉

in the following way:

𝑛+1∑︁
𝑗=1

𝜏𝑗

⃦⃦
𝑢
(︀
𝑡𝑗−1

)︀⃦⃦2

2
−
∫︁ 𝑡𝑛+1

0

‖𝑢(𝑠)‖22 d𝑠 ≤
𝑛+1∑︁
𝑗=1

∫︁ 𝑡𝑗

𝑡𝑗−1

⃒⃒⃒⃦⃦
𝑢
(︀
𝑡𝑗−1

)︀⃦⃦2

2
− ‖𝑢(𝑠)‖22

⃒⃒⃒
d𝑠

≤ 2
𝑛+1∑︁
𝑗=1

∫︁ 𝑡𝑗

𝑡𝑗−1

√︃∫︁ 𝑡𝑗

𝑡𝑗−1
‖𝑢(𝜉)‖22 d𝜉

∫︁ 𝑡𝑗

𝑡𝑗−1
‖𝑢𝑡(𝜉)‖22 d𝜉 d𝑠

≤ 𝜏

[︃∫︁ 𝑇

0

‖𝑢(𝜉)‖22 d𝜉 +
∫︁ 𝑇

0

‖𝑢𝑡(𝜉)‖22 d𝜉

]︃
.

Hence, there exists a constan 𝐶5 > 0 such that

𝑛+1∑︁
𝑗=1

𝜏𝑗

(︂⃦⃦⃦
𝐵2𝑈

𝑗−1
𝑁

⃦⃦⃦2

2
+
⃦⃦
𝐵2𝑢

(︀
𝑡𝑗−1

)︀⃦⃦2

2

)︂
≤ 𝐶5. (5.17)
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On the other hand, thanks to Lemma 2.8, we have

𝑛+1∑︁
𝑙=1

𝑙∑︁
𝑗=1

𝜃
(𝑙)
𝑙−𝑗

⃦⃦⃦
∇𝑅𝑗−1

2

⃦⃦⃦
≤ 𝜏2

2

∫︁ 𝑇

0

‖𝜕𝑡𝑡𝑡∇𝑢‖ d𝑡 + 3𝜏2

∫︁ 𝑇

0

‖𝜕𝑡𝑡𝑡∇𝑢‖d𝑡 + (𝜏1 + 𝜏)
∫︁ 𝑡1

0

‖𝜕𝑡𝑡∇𝑢‖ d𝑡 ≤ 𝐶6𝜏
2. (5.18)

Similarly,

𝑛+1∑︁
𝑙=1

𝑙∑︁
𝑗=1

𝜃
(𝑙)
𝑙−𝑗

⃦⃦
𝐵2𝑢

(︀
𝑡𝑗−1

)︀
− 𝑢
(︀
𝑡𝑗
)︀⃦⃦

2
=

𝑛+1∑︁
𝑗=1

⃦⃦
𝐵2𝑢

(︀
𝑡𝑗−1

)︀
− 𝑢
(︀
𝑡𝑗
)︀⃦⃦

2

𝑛+1∑︁
𝑙=𝑗

𝜃
(𝑙)
𝑙−𝑗

=
⃦⃦
𝐵1𝑢

(︀
𝑡0
)︀
− 𝑢
(︀
𝑡1
)︀⃦⃦

2

𝑛+1∑︁
𝑙=1

𝜃
(𝑙)
𝑙−1 +

𝑛+1∑︁
𝑗=2

⃦⃦
𝐵2𝑢

(︀
𝑡𝑗−1

)︀
− 𝑢
(︀
𝑡𝑗
)︀⃦⃦

2

𝑛+1∑︁
𝑙=𝑗

𝜃
(𝑙)
𝑙−𝑗

≤ 2𝜏

∫︁ 𝑡1

0

‖𝜕𝑡𝑢‖2 d𝑡 + 2𝜏
𝑛+1∑︁
𝑗=2

(1 + 𝑟max)

⃦⃦⃦⃦
⃦
∫︁ 𝑡𝑗

𝑡𝑗−1

(︀
𝑠− 𝑡𝑗−1

)︀
𝜕𝑡𝑡𝑢(𝑠) d𝑠

⃦⃦⃦⃦
⃦

2

+ 2𝜏

𝑛+1∑︁
𝑗=2

𝑟max

⃦⃦⃦⃦
⃦
∫︁ 𝑡𝑗

𝑡𝑗−2

(︀
𝑠− 𝑡𝑗−2

)︀
𝜕𝑡𝑡𝑢(𝑠) d𝑠

⃦⃦⃦⃦
⃦

2

≤ 2𝜏

∫︁ 𝑡1

0

‖𝜕𝑡𝑢‖2 d𝑡 + 10(1 + 𝑟max)𝜏2

∫︁ 𝑇

0

‖𝜕𝑡𝑡𝑢‖2 d𝑠 ≤ 𝐶7𝜏
2. (5.19)

Using (5.17)–(5.19), we derive from (5.15) that⃦⃦
𝐸𝑛+1

𝑁

⃦⃦
1
≤ 𝐶8

[︀(︀
𝐶2

0 + 1
)︀
𝜏2 + 𝐶2

Π𝑁4−2𝑚 + 𝑁1−𝑚
]︀
,

𝑛+1∑︁
𝑙=1

𝜏𝑙

⃦⃦
∆𝐸𝑙

𝑁

⃦⃦2 ≤ 𝐶9

[︀(︀
𝐶2

0 + 1
)︀
𝜏2 + 𝐶2

Π𝑁4−2𝑚 + 𝑁1−𝑚
]︀2

,

where 𝐶8, 𝐶9 are constants independent of 𝐶0, 𝐶Π. By simple computation, one also finds⃦⃦
𝐸𝑛+1

⃦⃦
1
≤ 𝐶8

[︀
(𝐶2

0 + 1)𝜏2 + 𝐶2
Π𝑁4−2𝑚 + 𝑁1−𝑚

]︀
+ 𝐶𝑁1−𝑚,

𝑛+1∑︁
𝑙=1

𝜏𝑙‖∆𝐸𝑙‖2 ≤ 𝐶9

[︀(︀
𝐶2

0 + 1
)︀
𝜏2 + 𝐶2

Π𝑁4−2𝑚 + 𝑁1−𝑚
]︀2

+ 𝐶𝑁2(2−𝑚),

⃦⃦
�̄�𝑛+1

𝑁

⃦⃦2

1
,

𝑛+1∑︁
𝑙=1

𝜏𝑙

⃦⃦
∆�̄� 𝑙

𝑁

⃦⃦2 ≤ 2𝐶10 + 2𝐶9

[︀(︀
𝐶2

0 + 1
)︀
𝜏2 + 𝐶2

Π𝑁4−2𝑚 + 𝑁1−𝑚
]︀2

+ 2𝐶𝑁2(2−𝑚)

≤ 2𝐶10 + 2𝐶9

(︂
1
8

+
1
4

+ 23−2𝑚 + 21−𝑚

)︂2

+ 2𝐶22(2−𝑚) := 𝐶11,

(5.20)

where 𝐶10 is a constant depending on the exact solution 𝑢(𝑡) only. The proof here can be easily generalized to
prove the boundedness of

∑︀𝑛+1
𝑙=1 𝜏𝑙‖�̄� 𝑙

𝑁‖22. The bound here is independent of 𝐶0, 𝐶Π and only decided by the
parameters 𝑇, 𝜈, 𝑟max, Ω and the exact solution 𝑢. For simplicity, we denote all the up bound here as 𝐶11.

Step 3: Estimate of |1− 𝜉𝑛+1|.
If we take 𝑠𝑛 := 𝛾𝑛 − 𝛾(𝑡𝑛), then the equation for {𝑠𝑞} can be written as

𝑠𝑞+1 − 𝑠𝑞 = 𝜏𝑞+1𝜈

⎛⎝⃦⃦∆𝑢
(︀
𝑡𝑞+1

)︀⃦⃦2 − 𝛾𝑞+1

ℰ
(︁
�̄�𝑞+1

𝑁

)︁
+ 1

⃦⃦⃦
∆�̄�𝑞+1

𝑁

⃦⃦⃦2

⎞⎠+ 𝑇 𝑞, ∀𝑞 ≤ 𝑛, (5.21)
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where 𝑇 𝑞 represents the truncation error as

𝑇 𝑞 = 𝛾(𝑡𝑞)− 𝛾(𝑡𝑞+1) + 𝜏𝑞+1𝛾𝑡(𝑡𝑞+1) =
∫︁ 𝑡𝑞+1

𝑡𝑞

(𝑠− 𝑡𝑞)𝛾𝑡𝑡(𝑠) d𝑠. (5.22)

Taking the sum of (5.21) for 𝑞 from 0 to 𝑛, and noting that 𝑠0 = 0, we have

𝑠𝑛+1 = 𝜈

𝑛∑︁
𝑞=0

𝜏𝑞+1

⎛⎝⃦⃦∆𝑢
(︀
𝑡𝑞+1

)︀⃦⃦2 − 𝛾𝑞+1

ℰ
(︁
�̄�𝑞+1

𝑁

)︁
+ 1

⃦⃦⃦
∆�̄�𝑞+1

𝑁

⃦⃦⃦2

⎞⎠+
𝑛∑︁

𝑞=0

𝑇 𝑞. (5.23)

We bound the right-hand side of (5.23) as follows. On the one hand, by direct calculation, we have

𝛾𝑡𝑡 =
∫︁

Ω

(︁
(∇𝑢)2𝑡 +∇𝑢(∇𝑢)𝑡𝑡

)︁
d𝑥, (5.24)

then from (5.22), we have

|𝑇 𝑞| ≤ 𝜏𝑞+1

∫︁ 𝑡𝑞+1

𝑡𝑞

|𝛾𝑡𝑡|d𝑠 ≤ 𝜏𝑞+1

∫︁ 𝑡𝑞+1

𝑡𝑞

(︁
‖𝑢𝑡‖21 + ‖𝑢𝑡𝑡‖1‖𝑢‖1

)︁
d𝑠, ∀𝑞 ≤ 𝑛.

On the other hand, by triangular inequality, we have⃒⃒⃒⃒
⃒⃒⃦⃦∆𝑢

(︀
𝑡𝑞+1

)︀⃦⃦2 − 𝛾𝑞+1

ℰ
(︁
�̄�𝑞+1

𝑁

)︁
+ 1

⃦⃦⃦
∆�̄�𝑞+1

𝑁

⃦⃦⃦2

⃒⃒⃒⃒
⃒⃒

≤
⃦⃦

∆𝑢
(︀
𝑡𝑞+1

)︀⃦⃦2

⃒⃒⃒⃒
⃒⃒1− 𝛾𝑞+1

ℰ
(︁
�̄�𝑞+1

𝑁

)︁
+ 1

⃒⃒⃒⃒
⃒⃒+

𝛾𝑞+1

ℰ
(︁
�̄�𝑞+1

𝑁

)︁
+ 1

⃒⃒⃒⃒⃦⃦
∆𝑢
(︀
𝑡𝑞+1

)︀⃦⃦2 −
⃦⃦⃦

∆�̄�𝑞+1
𝑁

⃦⃦⃦2
⃒⃒⃒⃒

:= 𝐾𝑞
1 + 𝐾𝑞

2 .

(5.25)

It follows from Theorem 2.2 that

𝐾𝑞
1 ≤ 𝐶𝑢

⃒⃒⃒⃒
⃒⃒1− 𝛾𝑞+1

ℰ
(︁
�̄�𝑞+1

𝑁

)︁
+ 1

⃒⃒⃒⃒
⃒⃒

= 𝐶𝑢

⃒⃒⃒⃒
⃒ 𝛾

(︀
𝑡𝑞+1

)︀
ℰ [𝑢(𝑡𝑞+1)] + 1

− 𝛾𝑞+1

ℰ [𝑢(𝑡𝑞+1)] + 1

⃒⃒⃒⃒
⃒+ 𝐶𝑢

⃒⃒⃒⃒
⃒⃒ 𝛾𝑞+1

ℰ [𝑢(𝑡𝑞+1)] + 1
− 𝛾𝑞+1

ℰ
(︁
�̄�𝑞+1

𝑁

)︁
+ 1

⃒⃒⃒⃒
⃒⃒

≤ 𝐶𝑢

(︁⃒⃒
𝑠𝑞+1

⃒⃒
+ 𝛾0

⃒⃒⃒
ℰ
[︀
𝑢
(︀
𝑡𝑞+1

)︀]︀
− ℰ

(︁
�̄�𝑞+1

𝑁

)︁⃒⃒⃒)︁
, ∀𝑞 ≤ 𝑛

(5.26)

with 𝐶𝑢 = sup𝑡∈[0,𝑇 ] ‖∆𝑢(𝑡)‖2, and

𝐾𝑞
2 ≤ 𝛾0

⃒⃒⃒⃒⃦⃦⃦
∆�̄�𝑞+1

𝑁

⃦⃦⃦2

−
⃦⃦

∆𝑢(𝑡𝑞+1)
⃦⃦2
⃒⃒⃒⃒

≤ 𝛾0
⃦⃦⃦

∆�̄�𝑞+1
𝑁 −∆𝑢

(︀
𝑡𝑞+1

)︀⃦⃦⃦(︁⃦⃦⃦
∆�̄�𝑞+1

𝑁

⃦⃦⃦
+
⃦⃦

∆𝑢
(︀
𝑡𝑞+1

)︀⃦⃦)︁
≤ 𝛾0

⃦⃦⃦
∆�̄�𝑞+1

𝑁

⃦⃦⃦⃦⃦
∆𝐸𝑞+1

⃦⃦
+ 𝛾0𝐶𝑢

⃦⃦
∆𝐸𝑞+1

⃦⃦
, ∀𝑞 ≤ 𝑛.

(5.27)
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We derive from the definition of ℰ(𝑢) that⃒⃒⃒
ℰ
(︀
𝑢
(︀
𝑡𝑞+1

)︀)︀
− ℰ

(︁
�̄�𝑞+1

𝑁

)︁⃒⃒⃒
≤ 1

2

(︁⃦⃦
∇𝑢
(︀
𝑡𝑞+1

)︀⃦⃦
+
⃦⃦⃦
∇�̄�𝑞+1

𝑁

⃦⃦⃦)︁⃦⃦⃦
∇𝑢
(︀
𝑡𝑞+1

)︀
−∇�̄�𝑞+1

𝑁

⃦⃦⃦
≤
√︀

𝐶11

⃦⃦
∇𝐸𝑞+1

⃦⃦
. (5.28)

It follows from (5.20) and the Cauchy–Schwarz inequality that

𝑛∑︁
𝑞=0

𝜏𝑞+1

⃦⃦⃦
∆�̄�𝑞+1

𝑁

⃦⃦⃦⃦⃦
∆𝐸𝑞+1

⃦⃦
≤

(︃
𝑛∑︁

𝑞=0

𝜏𝑞+1

⃦⃦⃦
∆�̄�𝑞+1

𝑁

⃦⃦⃦2 𝑛∑︁
𝑞=0

𝜏𝑞+1

⃦⃦
∆𝐸𝑞+1

⃦⃦2

)︃1/2

≤
√︀

𝐶11

√︁
𝐶9[(𝐶2

0 + 1)𝜏2 + 𝐶2
Π𝑁4−2𝑚 + 𝑁1−𝑚]2 + 𝐶𝑁2(2−𝑚).

(5.29)

Now we are ready to estimate 𝑠𝑛+1. Combining (5.25)–(5.29) with (5.23), we have

⃒⃒
𝑠𝑛+1

⃒⃒
≤ 𝜈

𝑛∑︁
𝑞=0

𝜏𝑞+1

⃒⃒⃒⃒
⃒⃦⃦∇𝑢

(︀
𝑡𝑞+1

)︀⃦⃦2 − 𝛾𝑞+1

𝐸
(︀
�̄�𝑞+1

)︀
+ 1

⃦⃦⃦
∇�̄�𝑞+1

𝑁

⃦⃦⃦2
⃒⃒⃒⃒
⃒+

𝑛∑︁
𝑞=0

|𝑇 𝑞|

≤ 𝜈𝐶𝑢

𝑛∑︁
𝑞=0

𝜏𝑞+1

⃒⃒
𝑠𝑞+1

⃒⃒
+ 𝜈𝐶𝑢

(︁√︀
𝐶11 + 𝛾0

)︁ 𝑛∑︁
𝑞=0

𝜏𝑞+1

⃦⃦
𝐸𝑞+1

⃦⃦
2

+ 𝜈𝛾0
𝑛∑︁

𝑞=0

𝜏𝑞+1

⃦⃦⃦
∆�̄�𝑞+1

𝑁

⃦⃦⃦⃦⃦
∆𝐸𝑞+1

⃦⃦
+ 𝜏

∫︁ 𝑡𝑛+1

0

(︁
‖𝑢𝑡‖21 + ‖𝑢𝑡𝑡‖1‖𝑢‖1

)︁
d𝑠

≤ 𝜈
(︁
𝛾0
√︀

𝐶11 + 𝐶𝑢𝛾0
√

𝑇 + 𝐶𝑢

√︀
𝑇𝐶11

)︁√︁
𝐶9[(𝐶2

0 + 1)𝜏2 + 𝐶2
Π𝑁4−2𝑚 + 𝑁1−𝑚]2 + 𝐶𝑁2(2−𝑚)

+ 𝜈𝐶𝑢

𝑛∑︁
𝑞=0

𝜏𝑞+1

⃒⃒
𝑠𝑞+1

⃒⃒
+ 𝐶𝑢𝜏. (5.30)

Finally, applying the discrete Grönwall’s inequality in Lemma 2.6 to (5.30) and taking 𝜏 < 1
2𝜈𝐶𝑢

, we obtain

⃒⃒
𝑠𝑛+1

⃒⃒
≤ 𝐶12 exp(2𝜈𝐶𝑢𝑡𝑛)

(︂√︁
𝐶9[(𝐶2

0 + 1)𝜏2 + 𝐶2
Π𝑁4−2𝑚 + 𝑁1−𝑚]2 + 𝐶𝑁2(2−𝑚) + 𝜏

)︂
≤ 𝐶13

√︀
𝐶9

(︀
1 + 𝐶2

0

)︀
𝜏2 + 𝐶13

(︁√︀
𝐶9

(︀
𝐶2

Π𝑁4−2𝑚 + 𝑁1−𝑚
)︀

+ 𝐶𝑁2−𝑚
)︁

+ 𝐶13𝜏,

(5.31)

where 𝐶12 := 2 max{𝜈(𝛾0
√

𝐶11 + 𝐶𝑢𝛾0
√

𝑇 + 𝐶𝑢

√
𝑇𝐶11), 𝐶𝑢}, and the definition of 𝐶13 is similar, both of the

two constants are independent of 𝜏,𝑁,𝐶Π and 𝐶0.
According to the (5.20), (5.26), (5.28), (5.31) and 𝑚 ≥ 3 , we have⃒⃒

1− 𝜉𝑛+1
⃒⃒
≤ 𝐶14

(︀⃒⃒
ℰ
[︀
𝑢
(︀
𝑡𝑛+1

)︀]︀
− ℰ

(︀
�̄�𝑛+1

𝑁

)︀⃒⃒
+
⃒⃒
𝑠𝑛+1

⃒⃒)︀
≤ 𝐶14

(︁√︀
𝐶11

⃦⃦
∇𝐸𝑛+1

⃦⃦
+
⃒⃒
𝑠𝑛+1

⃒⃒)︁
≤ 𝐶14

√︀
𝐶11

(︀
𝐶8

[︀(︀
𝐶2

0 + 1
)︀
𝜏2 + 𝐶2

Π𝑁4−2𝑚 + 𝑁1−𝑚
]︀

+ 𝐶𝑁1−𝑚
)︀

+ 𝐶14

(︁
𝐶13

√︀
𝐶9

(︀
1 + 𝐶2

0

)︀
𝜏2 + 𝐶13

(︁√︀
𝐶9(𝐶2

Π𝑁4−2𝑚 + 𝑁1−𝑚) + 𝐶𝑁2−𝑚
)︁

+ 𝐶13𝜏
)︁

≤ 𝐶15

(︀
1 + (1 + 𝐶2

0 )𝜏
)︀
𝜏 + 𝐶15

(︀
𝐶2

Π𝑁2−𝑚 + 1
)︀
𝑁2−𝑚, (5.32)

where the constants 𝐶14 := 𝐶𝑢 and 𝐶15 are independent of 𝐶0, 𝐶Π , 𝜏 and 𝑁 .
We now define 𝐶0, 𝐶Π. We can choose 𝐶0 = 2𝐶15 and 𝜏 ≤ 1

1+𝐶2
0

to obtain

𝐶15

(︀
1 + (1 + 𝐶2

0 )𝜏
)︀
≤ 2𝐶15 = 𝐶0, (5.33)
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and since 𝑚 ≥ 3, we can choose 𝐶Π = 2𝐶15 and 𝑁 ≥ 𝐶2
Π to obtain

𝐶15

(︀
𝐶2

Π𝑁2−𝑚 + 1
)︀
≤ 2𝐶15 = 𝐶Π. (5.34)

By mathematical induction, we proved the following inequalities

|1− 𝜉𝑛| ≤ 𝐶0𝜏 + 𝐶Π𝑁2−𝑚, ∀𝑛 ≥ 1,

under 𝜏 ≤ 1
2+4𝐶2

0
and 𝑁 ≥ 4𝐶2

Π + 2. The induction process is completed.

We point out that the constraint before (5.31) needs 𝜏 ≤ 1
2𝜈𝐶𝑢

, which naturally satisfies 𝜏 ≤ 1
2+4𝐶2

0
.

By the induction process, we obtain from (5.20) following the global error estimate in 2D case:

‖�̄�𝑛
𝑁 − 𝑢(·, 𝑡𝑛)‖1 ≤ 𝐶𝜏2 + 𝐶𝑁1−𝑚,

𝑛∑︁
𝑙=1

𝜏𝑙‖�̄� 𝑙
𝑁 − 𝑢(·, 𝑡𝑙)‖22 ≤ 𝐶𝜏4 + 𝐶𝑁2(2−𝑚), ∀𝑛 ≥ 1.

(5.35)

It remains to estimate 𝑒𝑛. We derive from (2.10) and (5.20) that⃦⃦
𝑈𝑛

𝑁 − �̄�𝑛
𝑁

⃦⃦2

1
≤ |𝜂𝑛 − 1|2

⃦⃦
�̄�𝑛

𝑁

⃦⃦2

1
≤ |𝜂𝑛 − 1|2𝐶11, (5.36)

and
𝑛∑︁

𝑞=1

𝜏𝑞

⃦⃦
𝑈𝑞

𝑁 − �̄�𝑞
𝑁

⃦⃦2

2
≤

𝑛∑︁
𝑞=1

𝜏𝑞|𝜂𝑞 − 1|2
⃦⃦
�̄�𝑞

𝑁

⃦⃦2

2

≤ max
𝑞
|𝜂𝑞 − 1|2

𝑛∑︁
𝑞=1

𝜏𝑞

⃦⃦⃦
�̄�𝑞+1

𝑁

⃦⃦⃦2

2

≤ max
𝑞
|𝜂𝑞 − 1|2𝐶11.

(5.37)

The 𝜂𝑛 in (5.36) and (5.37) holds

|𝜂𝑛 − 1| ≤ 2𝐶2
0𝜏2 + 2𝐶2

Π𝑁2(2−𝑚), ∀1 ≤ 𝑛. (5.38)

Therefore, we derive from (2.10), (5.36), (5.37), (5.38) and the triangle inequality that

‖𝑒𝑛‖21 ≤ 2‖𝐸𝑛‖21 + 2
⃦⃦
𝑈𝑛

𝑁 − �̄�𝑛
𝑁

⃦⃦2

1
≤ 𝐶𝜏4 + 𝐶𝑁2(1−𝑚), ∀1 ≤ 𝑛,

and
𝑛∑︁

𝑞=1

𝜏𝑞‖𝑒𝑞‖22 ≤ 2
𝑛∑︁

𝑞=1

𝜏𝑞‖𝐸𝑞‖22 + 2
𝑛∑︁

𝑞=1

𝜏𝑞

⃦⃦
𝑈𝑞

𝑁 − �̄�𝑞
𝑁

⃦⃦2

2
≤ 𝐶𝜏4 + 𝐶𝑁2(2−𝑚), ∀1 ≤ 𝑛

under the condition 𝜏 ≤ 1
2+4𝐶2

0
and 𝑁 ≥ 4𝐶2

Π + 2. The proof is completed since we have proved (5.20). �

5.2. Proof of Theorem 3.2

Proof. A main difficulty in the three dimensional case is that Theorem 2.2 only provides 𝐿2-stability for 𝑈𝑛
𝑁 ,

while in the two dimensional case, 𝐻1-stability for 𝑈𝑛
𝑁 is provided in Theorem 2.2. Thus, our main task here is

to prove the stability of 𝑈𝑛
𝑁 in 𝐻1-norm. The rest of the proof is similar to the one for Theorem 3.1.

We proceed by induction. Assuming |1 − 𝜉𝑞| ≤ 𝐶0𝜏 + 𝐶Π𝑁2−𝑚, ∀𝑞 ≤ 𝑛, we shall prove |1 − 𝜉𝑛+1| ≤
𝐶0𝜏 + 𝐶Π𝑁2−𝑚 where 𝐶0, 𝐶Π will be determined below, but we may need them greater than 1 without loss of
generality.
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Clearly, it is satisfied for 𝑛 = 0.
Step 1. When 𝜏 ≤ min{ 1

4𝐶2
0
, 1

2}, 𝑁 ≥ max{4𝐶2
Π, 2}, we have (5.2), namely.

1− 1
4𝐶0

− 𝑁3−𝑚

4𝐶Π
≤ |𝜉𝑞| ≤ 1 +

1
4𝐶0

+
𝑁3−𝑚

4𝐶Π
, ∀𝑞 ≤ 𝑛,

(1− 𝜉𝑞)2 ≤ 𝜏

2
+

𝑁5−2𝑚

2
, ∀𝑞 ≤ 𝑛,

1
2
≤ |𝜂𝑞| < 2, ∀𝑞 ≤ 𝑛.

Multiplying the first equation in (2.10) by DOC kernels, and summing up from 𝑞 = 0 to 𝑙 − 1, we get

(︀
∇𝜏 �̄� 𝑙

𝑁 , 𝑣
)︀
− 𝜈

⎛⎝ 𝑙∑︁
𝑗=1

𝜃
(𝑙)
𝑙−𝑗∆�̄� 𝑗

𝑁 , 𝑣

⎞⎠ =
𝑙∑︁

𝑗=1

(︁
𝜃
(𝑙)
𝑙−𝑗𝐴

(︁
𝐵2

(︁
𝑈 𝑗−1

𝑁

)︁
· ∇𝐵2

(︁
𝑈 𝑗−1

𝑁

)︁)︁
, 𝑣
)︁
, ∀𝑣 ∈ 𝑆𝑁 , 1 ≤ 𝑙 ≤ 𝑛 + 1.

(5.39)
Setting 𝑣 = −∆�̄� 𝑙

𝑁 , we get⃦⃦
∇�̄� 𝑙

𝑁‖2 − ‖∇�̄� 𝑙−1
𝑁

⃦⃦2

2
+ 𝜈

⎛⎝ 𝑙∑︁
𝑗=1

𝜃
(𝑙)
𝑙−𝑗∆�̄� 𝑗

𝑁 , ∆�̄� 𝑙
𝑁

⎞⎠ ≤ −
𝑙∑︁

𝑗=1

(︁
𝜃
(𝑙)
𝑙−𝑗𝐴

(︁
𝐵2

(︁
𝑈 𝑗−1

𝑁

)︁
· ∇𝐵2

(︁
𝑈 𝑗−1

𝑁

)︁)︁
, ∆�̄� 𝑙

𝑁

)︁
. (5.40)

Taking the sum of (5.40) form 𝑙 = 1 to 𝑛 + 1, and using Lemma 2.5 and Corollary 2.4, we have⃦⃦
∇�̄�𝑛+1

𝑁

⃦⃦2 −
⃦⃦
∇�̄�0

𝑁

⃦⃦2

2
+

𝜈𝐶𝑟

2

𝑛+1∑︁
𝑙=1

𝜏𝑙

⃦⃦
∆�̄� 𝑙

𝑁

⃦⃦2
+

𝜈

2

𝑛+1∑︁
𝑗=1

⃦⃦⃦∑︀𝑛+1
𝑙=𝑗 𝜃

(𝑙)
𝑙−𝑗∆�̄� 𝑙

𝑁

⃦⃦⃦2

𝜏𝑗

≤ −
𝑛+1∑︁
𝑙=1

𝑙∑︁
𝑗=1

(︁
𝜃
(𝑙)
𝑙−𝑗𝐴

(︁
𝐵2

(︁
𝑈 𝑗−1

𝑁

)︁
· ∇𝐵2

(︁
𝑈 𝑗−1

𝑁

)︁)︁
, ∆�̄� 𝑙

𝑁

)︁
. (5.41)

Applying the inequality in (2.3), the right term of (5.8) can be estimated by

−
𝑛+1∑︁
𝑙=1

𝑙∑︁
𝑗=1

(︁
𝜃
(𝑙)
𝑙−𝑗𝐴

(︁
𝐵2

(︁
𝑈 𝑗−1

𝑁

)︁
· ∇𝐵2

(︁
𝑈 𝑗−1

𝑁

)︁)︁
, ∆�̄� 𝑙

𝑁

)︁

= −
𝑛+1∑︁
𝑗=1

⎛⎝𝐴
(︁
𝐵2

(︁
𝑈 𝑗−1

𝑁

)︁
· ∇𝐵2

(︁
𝑈 𝑗−1

𝑁

)︁)︁
,

𝑛+1∑︁
𝑙=𝑗

𝜃
(𝑙)
𝑙−𝑗∆�̄� 𝑙

𝑁

⎞⎠
≤ 𝐶

𝑛+1∑︁
𝑗=1

⃦⃦⃦
𝐵2

(︁
𝑈 𝑗−1

𝑁

)︁⃦⃦⃦
1

⃦⃦⃦
∇𝐵2

(︁
𝑈 𝑗−1

𝑁

)︁⃦⃦⃦
1/2

⃦⃦⃦⃦
⃦⃦𝑛+1∑︁

𝑙=𝑗

𝜃
(𝑙)
𝑙−𝑗∆�̄� 𝑙

𝑁

⃦⃦⃦⃦
⃦⃦

≤ 𝐶

𝑛+1∑︁
𝑗=1

⃦⃦⃦
𝐵2

(︁
𝑈 𝑗−1

𝑁

)︁⃦⃦⃦3/2

1

⃦⃦⃦
𝐵2

(︁
𝑈 𝑗−1

𝑁

)︁⃦⃦⃦1/2

2

⃦⃦⃦⃦
⃦⃦𝑛+1∑︁

𝑙=𝑗

𝜃
(𝑙)
𝑙−𝑗∆�̄� 𝑙

𝑁

⃦⃦⃦⃦
⃦⃦

≤ 𝐶

𝑛+1∑︁
𝑗=1

𝜏𝑗

⃦⃦⃦
𝐵2

(︁
𝑈 𝑗−1

𝑁

)︁⃦⃦⃦3

1

⃦⃦⃦
𝐵2

(︁
𝑈 𝑗−1

𝑁

)︁⃦⃦⃦
2

+
𝜈

2

𝑛+1∑︁
𝑗=1

⃦⃦⃦∑︀𝑛+1
𝑙=𝑗 𝜃

(𝑙)
𝑙−𝑗∆�̄� 𝑙

𝑁

⃦⃦⃦2

𝜏𝑗

≤ 𝐶

𝑛+1∑︁
𝑗=1

𝜏𝑗

⃦⃦⃦
𝐵2

(︁
𝑈 𝑗−1

𝑁

)︁⃦⃦⃦4

1
+ 𝐶

𝑛+1∑︁
𝑗=1

𝜏𝑗

⃦⃦⃦
𝐵2

(︁
𝑈 𝑗−1

𝑁

)︁⃦⃦⃦3

1

⃦⃦⃦
∆𝐵2

(︁
𝑈 𝑗−1

𝑁

)︁⃦⃦⃦
+

𝜈

2

𝑛+1∑︁
𝑗=1

⃦⃦⃦∑︀𝑛+1
𝑙=𝑗 𝜃

(𝑙)
𝑙−𝑗∆�̄� 𝑙

𝑁

⃦⃦⃦2

𝜏𝑗
· (5.42)
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Similarly,

𝑛+1∑︁
𝑗=1

𝜏𝑗

⃦⃦⃦
𝐵2

(︁
𝑈 𝑗−1

𝑁

)︁⃦⃦⃦3

1

⃦⃦⃦
∆𝐵2

(︁
𝑈 𝑗−1

𝑁

)︁⃦⃦⃦
≤ 1

2𝜖

𝑛+1∑︁
𝑗=1

𝜏𝑗

⃦⃦⃦
𝐵2

(︁
𝑈 𝑗−1

𝑁

)︁⃦⃦⃦6

1
+

𝜖

2

𝑛+1∑︁
𝑗=1

𝜏𝑗

⃦⃦⃦
∆𝐵2

(︁
𝑈 𝑗−1

𝑁

)︁⃦⃦⃦2

≤ 1
2𝜖

𝑛+1∑︁
𝑗=1

𝜏𝑗

⃦⃦⃦
𝐵2

(︁
𝑈 𝑗−1

𝑁

)︁⃦⃦⃦6

1
+ 𝐶𝑟max

𝜖

2

𝑛+1∑︁
𝑗=1

𝜏𝑗

⃦⃦⃦
∆𝑈 𝑗−1

𝑁

⃦⃦⃦2

≤ 1
2𝜖

𝑛+1∑︁
𝑗=1

𝜏𝑗

⃦⃦⃦
𝐵2

(︁
𝑈 𝑗−1

𝑁

)︁⃦⃦⃦6

1
+ 2𝐶𝑟max𝜖

𝑛+1∑︁
𝑗=1

𝜏𝑗

⃦⃦⃦
∆�̄� 𝑗−1

𝑁

⃦⃦⃦2

≤ 1
2𝜖

𝑛+1∑︁
𝑗=1

𝜏𝑗

⃦⃦⃦
𝐵2

(︁
𝑈 𝑗−1

𝑁

)︁⃦⃦⃦6

1
+ 2𝐶𝑟max𝜖

𝑛∑︁
𝑗=1

𝜏𝑗

⃦⃦⃦
∆�̄� 𝑗

𝑁

⃦⃦⃦2

+ 2𝐶𝑟max𝜖𝜏
⃦⃦

∆�̄�0
𝑁

⃦⃦2
.

(5.43)

Choosing 𝜖 = 𝜈𝐶𝑟

8𝐶𝑟max
and combining (5.41)–(5.43) together, we have⃦⃦

∇�̄�𝑛+1
𝑁

⃦⃦2 −
⃦⃦
∇�̄�0

𝑁

⃦⃦2

2
+

𝜈𝐶𝑟

4

𝑛+1∑︁
𝑙=1

𝜏𝑙

⃦⃦
∆�̄� 𝑙

𝑁

⃦⃦2

≤ 𝐶

𝑛+1∑︁
𝑗=1

𝜏𝑗

⃦⃦⃦
𝐵2

(︁
𝑈 𝑗−1

𝑁

)︁⃦⃦⃦4

1
+ 𝐶

𝑛+1∑︁
𝑗=1

𝜏𝑗

⃦⃦⃦
𝐵2

(︁
𝑈 𝑗−1

𝑁

)︁⃦⃦⃦6

1
+ 𝐶𝜏

⃦⃦
∆�̄�0

𝑁

⃦⃦2

≤ 𝐶

𝑛∑︁
𝑗=1

𝜏𝑗

⃦⃦⃦
�̄� 𝑗

𝑁

⃦⃦⃦4

1
+ 𝐶

𝑛∑︁
𝑗=1

𝜏𝑗

⃦⃦⃦
�̄� 𝑗

𝑁

⃦⃦⃦6

1
+ 𝐶𝜏

(︁⃦⃦
∆�̄�0

𝑁

⃦⃦2
+
⃦⃦
�̄�0

𝑁

⃦⃦4

1
+
⃦⃦
�̄�0

𝑁

⃦⃦6

1

)︁
.

Thanks to the Poincaré’s inequality, there holds the following inequality:

⃦⃦
�̄�𝑛+1

𝑁

⃦⃦2

1
+

𝜈𝐶𝑟

2

𝑛+1∑︁
𝑙=1

𝜏𝑙

⃦⃦
∆�̄� 𝑙

𝑁

⃦⃦2 ≤ 𝐶

𝑛∑︁
𝑗=1

𝜏𝑗

(︂⃦⃦⃦
�̄� 𝑗

𝑁

⃦⃦⃦4

1
+
⃦⃦⃦
�̄� 𝑗

𝑁

⃦⃦⃦6

1

)︂
+ 𝐶𝑢.

Here 𝐶𝑢 is a constant decided by 𝑢0. By applying lemma 2.9, and choosing 𝜑(𝑧) = 𝑧2 + 𝑧3, there exist 0 < 𝑇* <∫︀∞
ℱ

d𝑧
𝜑(𝑧) and 𝐶* > 0 such that

⃦⃦
�̄�𝑞

𝑁

⃦⃦2

1
+

𝜈𝐶𝑟

2

𝑞∑︁
𝑙=1

𝜏𝑙

⃦⃦
∆�̄� 𝑙

𝑁

⃦⃦2 ≤ 𝐶*, 𝑞 ≤ 𝑛.

With the above bound, we can then prove the desired result by following similar procedures in Steps 2 and 3 in
the proof of Theorem 3.1. �

6. Concluding remarks

We considered in this paper an energy stable variable time-step IMEX-BDF2 SAV scheme for the Navier–
Stokes equations. Based on the energy stability, we proved the sharp global optimal error estimates by using
DOC kernels through rigorous mathematical induction process. We point out that our results are obtained
without any restriction on the ratio of time step and spatial grid sizes.

We introduced a suitable adaptive time-stepping strategy, and provided numerical examples to verify that
the variable time-step size IMEX-BDF2 SAV scheme can effectively obtain correct numerical solutions with
lower computational cost compared with a corresponding constant time-step scheme.
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We only considered the analysis for the Navier–Stokes equations with periodic boundary conditions, although
a similar variable time-step IMEX-BDF2 SAV scheme can be developed for the Navier–Stokes equation with
non-periodic boundary conditions based on the constant step size scheme in [29]. However, the analysis for the
non-periodic case is much more difficult due to the lack of a priori bound on the pressure approximation. But
the many techniques that we developed in this paper will be useful in the future study of the variable time-step
IMEX-BDF2 SAV scheme for the Navier–Stokes equation with non-periodic boundary conditions.
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