
Journal of Scientific Computing           (2021) 88:69 
https://doi.org/10.1007/s10915-021-01576-y

Second-Order SAV Schemes for the Nonlinear Schrödinger
Equation and Their Error Analysis

Beichuan Deng1 · Jie Shen1 ·Qingqu Zhuang2

Received: 3 October 2020 / Revised: 2 May 2021 / Accepted: 4 July 2021
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021

Abstract
We consider a second-order SAV scheme for the nonlinear Schrödinger equation in the whole
space with typical generalized nonlinearities, and carry out a rigorous error analysis. We also
develop a fully discretized SAV scheme with Hermite–Galerkin approximation for the space
variables, and present numerical experiments to validate our theoretical results.
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1 Introduction

We consider in this paper numerical approximation of the following nonlinear Schrodinger
(NLS) equation [20]:

{
i ∂u

∂t = −α�u − 2β f (|u|2)u, x ∈ R
d , t > 0,

u(x, 0) = u0(x), x ∈ R
d (d = 1, 2, 3),

(1.1)

with the initial and boundary conditions

u(x, 0) = u0(x), lim|x |→∞ |u(x, t)| = 0, t ≥ 0. (1.2)
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In the above,α > 0 andβ ∈ R are twodimensionless constantswithβ < 0 for the repulsive or
defocusing interaction and β > 0 for the attractive or focusing interaction, i is the imaginary
unit, u(·, t) : Rd → C for any t > 0, and f (·) is a real-valued smooth function. In this work,
we will consider the following typical cases:

(1) f (ρ) = ρσ , where σ is a positive integer, referred to as polynomial nonlinearity with
f (ρ) = ρ to be the usual cubic nonlinearity [20].

(2) f (ρ) = ρ
1+γρ

with γ > 0, referred to as the saturation of the intensity nonlinearity [1].

The NLS equation arises in many areas of sciences and engineering, in particular, it is a
mean-field approximation of many-body problems in quantum physics and chemistry [20].
Its analysis, approximation and simulation have attracted enormous attention in past decades,
we refer to [12,25] for its mathematical properties and [3,4] for reviews of its numerical
approximation.

TheNLSequation enjoysmanydistinctivemathematical properties, including in particular
conservations of energy (or Hamiltonian)

Etotal [u](t) :=
∫
Rd

α

2
|∇u(x, t)|2 − 2βF(|u(x, t)|2)dx ≡ Etotal [u](0), ∀t ≥ 0, (1.3)

where F(ρ) := ∫ ρ

0 f (s)ds, and conservation of mass

N [u](t) :=
∫
Rd

|u(x, t)|2dx ≡ N [u](0), ∀t ≥ 0. (1.4)

Thus, it is important for a numerical scheme to conserve (or accurately approximate) the
discrete energy and mass. Among the many existing schemes for the NLS equation (1.1), the
implicit Crank–Nicolson scheme [2] is perhaps the only scheme which can conserve both
energy andmass for general f , and the relaxation finite-difference scheme [5,6,10] conserves
both energy and mass for the special case of cubic nonlinearity. The implicit Crank–Nicolson
scheme leads to a nonlinear system at each time step while the relaxation finite-difference
scheme leads to a linear system with variable coefficients at each time step. Both are second-
order accurate in time. We refer to [4,8,9,17,26] for more detail on the various numerical
schemes for the NLS equation.

Recently, a powerful approach, the so called scalar auxiliary variable (SAV) approach
[22,23], was introduced for gradient flows. The SAV approach leads to numerical schemes
with some remarkable properties: (i) unconditionally energy stable; (ii) only requiring solv-
ing decoupled linear systems with constant coefficients at each time step. Since the NLS
equation also has a variational structure with respect to the free energy (1.3), we can apply
the SAV approach to the NLS equation to construct an efficient and accurate discretization
in time scheme with the following properties: (i) it is second-order, unconditionally stable
and conserve a modified energy; (ii) it only requires solving two Poisson-type equations at
each time step. The semi-discrete scheme can be combined with any consistent Galerkin
type spatial discretization such as finite-elements [28–30] or spectral methods [11,14,18] to
construct fully discrete schemes with the same properties as the semi-discrete scheme. In
this paper, we treat the unbounded domain directly using a Hermite-spectral method so as to
eliminate the domain truncation error.

While the construction of the SAV scheme for theNLS equation using the SAV approach is
quite straightforward since the NLS equation can be reformulated as a gradient flow system,
its error analysis can not follow from the analysis in [21]which used essentially the dissipative
property of gradient flows to derive a uniform H2 bound for the numerical solution. However,
the NLS equation is dispersive and conserves the energy so there is no dissipation. Therefore,
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more delicate analyses are needed for the error estimates. The main goals of this paper are
to derive optimal error estimates for the semi-discrete SAV scheme.

The rest of the paper is organized as follows. In Sect. 2, we describe the second-order
Crank–Nicolson scheme with Adams–Bashforth extrapolation based on the SAV approach
in the semi-discrete form, and prove its stability and energy conservation. In Sect. 3, we
carry out a rigorous error analysis for the semi-discrete SAV scheme. In Sect. 4, we construct
the fully discrete Hermite SAV scheme, and perform some numerical results to verify our
theoretical results. Some concluding remarks are given in the last section.

We now describe some notations. We denote 	 = R
d , d = 1, 2, 3. For any complex

function v, v̄ denotes its complex conjugate, and the inner product in L2(	) is

(w, v) :=
∫

	

wvdx .

We will use the standard notations L2(	), Hk(	) and Hk
0 (	) to denote the usual Sobolev

spaces of complex functions over 	. The norm corresponding to Hk(	) will be denoted
simply by ‖ · ‖k . In particular, we use ‖ · ‖ to denote the norm in L2(	). We shall use C to
denote a generic positive constant independent of the time step size τ , and occassionaly we
use A � B to denote that A ≤ C B for some constant C independent of τ .

We recall a regularity result for (1.1) which plays an important role in the subsequent error
analysis.

Theorem 1 (see, for instance, [12], Theorem 4.10.1) Let s > d
2 be an integer. For every

u0 ∈ Hs(Rd), there exists Tmax > 0, such that

• there is a unique, maximal solution u ∈ C([0, Tmax ); Hs(Rd)) for (1.1);
• if β < 0, then Tmax = ∞;
• if Tmax < ∞, then limt→Tmax ‖u(·, t)‖Hs → ∞.

2 A Semi-discrete SAV Scheme

While the SAV approach was originally introduced for dissipative gradient flows, it can be
directly applied to dispersive equations such as NLS with variational structures. Indeed, the
key in the SAV approach is to introduce a scalar auxiliary variable (SAV) r(t) := √

E[u](t)
where, for a given C0 > 0 and F(ρ) := ∫ ρ

0 f (s)ds,

E[u](t) :=
∫

	

F(|u(x, t)|2)dx + C0. (2.1)

We choose C0 such that E[u]+C0 ≥ δ > 0 for any u. Note that it is important not to include
“−2β” in the definition of E[u](t) because, for β > 0, −2β

∫
	

F(|u(x, t)|2)dx can not be
bounded from below for all u.

We reformulate (1.1) as:{
i ∂u

∂t = −α�u − 2β r√
E[u] f (|u|2)u,

dr
dt = 1√

E[u]
∫
	

f (|u|2)Re(u · ūt )dx,
(2.2)

with the initial and boundary conditions. To simplify the presentation, we shall omit the
boundary conditions in (1.2) in all subsequent equations.

Let 0 < T < Tmax . Given a time step τ , we set M = T
τ
. Then a second-order SAV scheme

for (2.2) based on Crank–Nicolson with Adams–Bashforth extrapolation is:
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Let U 0 = u0, r0 = r(0), and denote H [w] = f (|w|2)√
E[w] . We compute U 1 and r1 by a

Crank–Nicholson scheme with a first-order extrapolation

i
U 1 − U 0

τ
= −α�

U 1 + U0

2
− 2β

r1 + r0

2
H [U0]U0, (2.3)

r1 − r0 =
∫

	

H [U0]Re(U0 · U 1 − U0)dx . (2.4)

Then for n = 1, 2, . . . , M − 1,

i
U n+1 − U n

τ
= −α�

(
U n+1 + U n

2

)
− 2β

rn+1 + rn

2
H
[
Ũ n+ 1

2
]
Ũ n+ 1

2 , (2.5)

rn+1 − rn =
∫

	

H
[
Ũ n+ 1

2
]
Re

[
Ũ n+ 1

2 · (U n+1 − U n
)]

dx, (2.6)

where Ũ n+ 1
2 = 3

2U n − 1
2U n−1. We note that the first-order extrapolation used in (2.3)–(2.4)

has a second-order local truncation error so the overall accuracy is still second-order. In a
recent paper [7], a similar scheme is constructed but the first-step is computed by a nonlinear
Crank–Nicolson scheme.

It is clear that the scheme (2.5)–(2.6) is linear but coupled. We show below that it can be
efficiently solved. Writing

U n+1 = φn+1 + rn+1ϕn+1, (2.7)

in (2.5), we find that φn+1 and ϕn+1 satisfy

i

τ
φn+1 + α

2
�φn+1 = Qn, (2.8)

i

τ
ϕn+1 + α

2
�ϕn+1 = −β H

[
Ũ n+ 1

2
]
Ũ n+ 1

2 , (2.9)

with

Qn = i

τ
U n − α

2
�U n − βrn H

[
Ũ n+ 1

2
]
Ũ n+ 1

2 .

Then, plugging (2.7) in (2.6), we find

rn+1 = rn + ∫
	

H
[
Ũ n+ 1

2
]
Re

(
Ũ n+ 1

2 · φn+1 − U n
)
dx

1 − ∫
	

H
[
Ũ n+ 1

2
]
Re

(
Ũ n+ 1

2 · ϕn+1
)
dx

. (2.10)

In summary, the solution of (2.5)–(2.6) can be determined as follows:

1. Determine φ and ϕ from (2.8) and (2.9), respectively;
2. Compute rn+1 from (2.10);
3. Obtain U n+1 from (2.7).

Hence, the main computational cost of the scheme (2.5)–(2.6) is to solve the two decoupled
linear systems with constant coefficients (2.8)–(2.9), which can be efficiently solved by one’s
favorite method. The first step (2.3)–(2.4) can be solved similarly.

Theorem 2 The SAV scheme (2.3)–(2.6) preserves a modified Hamiltonian unconditionally
in the sense that

α

2

∥∥∇U n+1
∥∥2 − β

(
rn+1)2 = α

2
‖∇U n‖2 − β

(
rn)2, n = 0, 1, . . . , M − 1.
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Proof Multiplying Eq. (2.5) by U n+1 − U n , then integrating it over 	 and taking the real
part, we obtain

0 = α

2

(
‖∇U n+1‖2 − ‖∇U n‖2

)
− 2β

rn+1 + rn

2

∫
	

H
[
Ũ n+ 1

2
]
Re

(
Ũ n+ 1

2 · U n+1 − U n
)
dx .

Then, by plugging (2.6) into the above equation, it yields

α

2

∥∥∇U n+1
∥∥2 − β

(
rn+1)2 = α

2

∥∥∇U n
∥∥2 − β

(
rn)2, n = 1, . . . , M − 1.

We can obtain energy conservation of the first step by applying the same process to (2.3)–
(2.4). �
Remark 1 By Theorem 2, we have

α
∥∥∇U n

∥∥2 − 2β
(
rn)2 = α‖∇u0‖2 − 2β

(∫
	

F
(|u0|2

)
dx + C0

)
, n = 0, 1, . . . , M .

Hence, when β < 0 (the repulsive case), {rn}M
n=0 is uniformly bounded:

|rn | ≤ E0 :=
(
α‖∇u0‖2 + 2|β|

∫
	

F
(|u0|2

)
dx + C0

) 1
2
, n = 0, 1, . . . , M . (2.11)

When β > 0 (the attractive case), we have

(rn)2 = α

2|β| ‖∇U n‖2 + D0, where D0 := − α

2|β| ‖∇u0‖2 +
∫

	

F
(|u0|2

)
dx + C0,

which implies

|rn | ≤
√

α

2β
‖∇U n‖ + √|D0|, n = 0, 1, . . . , M . (2.12)

3 Error Analysis for the Semi-discretized Scheme

The error analysis will be carried out in two main steps. In the first step, we derive a local
(in time) Hs bound for the numerical solution. Then, in the second step, we first use the the
local Hs bound to derive a local error estimate, followed by a continuation process to extend
the Hs bound and the error estimate to the whole interval [0, T ].

3.1 Local Hs Bound of the Numerical Solution

We recall a useful result which will be used in the sequel.

Lemma 1 (see [10], Lemma 2.2) Let use define

A :=
(
1 − i

2
ατ�

)−1 (
1 + i

2
ατ�

)
, B :=

(
1 − i

2
ατ�

)−1

. (3.1)

Then for any s > 0, we have

• A is a unitary operator on Hs.
• B is a bounded operator on Hs: ‖B‖s ≤ 1.
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Next, we shall use Lemma 1 to prove that solutions of the scheme (2.3)–(2.6) are uniformly
bounded in Hs . To this end, we express solutions of (2.3)–(2.6) using the operators in (3.1)
as follows:

U 1 = Au0 + βiτ · (r1 + r0
)
BW 0,

U n+1 = AU n + βiτ BW n+ 1
2

(
rn + rn+1

)
, n = 1, 2, . . . , M − 1,

where

W n+ 1
2 = 1√

E[Ũ n+ 1
2 ]

f
(∣∣∣Ũ n+ 1

2

∣∣∣2)Ũ n+ 1
2 , n = 0, 1, . . . , M − 1. (3.2)

Summing them up, we obtain

U n+1 = An+1u0 + βiτ
[
r0An BW 0 + r1

(
An BW 0 + An−1BW

3
2

)

+
n∑

k=2

rk
(

An+1−k BW k− 1
2 + An−k BW k+ 1

2

)]
+ βiτ BW n+ 1

2 · rn+1. (3.3)

We first establish a result on the local-in-time boundedness of U n in Hs .

Theorem 3 Let u0 ∈ Hs(Rd), with s > d
2 + 1. Then there exist T ∗ and C > 0, independent

of τ but dependent on ‖u0‖Hs , such that

max
1≤n≤M∗=T ∗/τ

{‖U n‖Hs } ≤ C = C(‖u0‖Hs ),

unconditionally when β < 0; and conditionally for τ ≤ τ0 when β > 0, where τ0 depends
on ‖u0‖Hs only.

Proof We derive from (3.3) and Lemma 1 that

‖U n+1‖Hs ≤ ‖An Au0‖Hs + |β|τ
[
|r0|‖An BW 0‖Hs + |r1|(‖An BW 0‖Hs + ‖An−1BW

3
2 ‖Hs

)

+
n−1∑
k=2

|rk |(‖An+1−k BW k− 1
2 ‖Hs + ‖An−k BW k+ 1

2 ‖Hs
)] + τ |βrn+1|‖BW n+ 1

2 ‖Hs

≤ ‖u0‖Hs + |β|τ
[
|r0|‖W 0‖Hs + |r1|(‖W 0‖Hs + ‖W

3
2 ‖Hs

)

+
(

n−1∑
k=2

|rk |(‖W k− 1
2 ‖Hs + ‖W k+ 1

2 ‖Hs
)) + |rn+1|‖W n+ 1

2 ‖Hs

]
. (3.4)

Given u0 ∈ Hs(Rd), we define R such that ‖u0‖Hs = R
4 , and we define the set

BR :=
{
φ ∈ Hs(Rd), ‖φ‖Hs ≤ R

2

}
.

It is clear that U n+1 is uniquely determined by (3.3). Next, we prove by induction that there
exists T ∗ > 0 such that U n+1 ∈ BR , for all n = 0, 1 . . . , T ∗/τ − 1.

Obviously u0 ∈ BR . assuming that U k ∈ BR , k = 1, 2, . . . , n, we have

max
1≤k≤n

{∥∥∥∥32U k − 1

2
U k−1

∥∥∥∥
Hs

}
≤ R.
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Since both Hs(Rd) and Hs−1(Rd) ↪→ L∞(Rd) by the Sobolev embedding theorem, there
exists a constant C1 depending on l and s only, s.t.

‖gl‖Hs ≤ C1‖g‖l
Hs , ∀g ∈ Hs .

So for f (u) = (u)σ , we have
∥∥∥ f

(∣∣∣3
2

U n − 1

2
U n−1

∣∣∣2)(3
2

U n − 1

2
U n−1

)∥∥∥
Hs

≤ C1R2σ+1,

while for f (u) = (u)
1+γ (u)

≤ u, we have
∥∥∥ f

(∣∣∣ 3
2

Un − 1

2
Un−1

∣∣∣2)( 3
2

Un − 1

2
Un−1

)∥∥∥
Hs

≤
∥∥∥
∣∣∣ 3
2

Un − 1

2
Un−1

∣∣∣2( 3
2

Un − 1

2
Un−1

)∥∥∥
Hs

≤ C1R3.

Setting

p0 =
{
2σ + 1, if f (u) = (u)σ , for σ ∈ Z+
3, if f (u) = (u)

1+γ (u)

,

we derive from the above and (3.2) that

‖‖BW n+ 1
2 ‖Hs ≤ C1

δ
R p0 , ∀n. (3.5)

We now proceed as follows:
Case 1 β < 0. By using (2.11), there is a uniform constant K which only depends on u0,

such that

|rk |√
E
[ 3
2U k−1 − 1

2U k−2
] ≤ K ,

|rk |√
E
[ 3
2U k − 1

2U k−1
] ≤ K , ∀2 ≤ k ≤ n.

Then we derive from (3.4) and (3.5) that there is a constant C2 independent of n and τ , s.t.

‖U n+1‖Hs ≤ ‖u0‖Hs + C2T K R p0 .

Hence, for T ∗ ≤ 1
4C2K R p0−1 , we have

‖U n+1‖Hs ≤ ‖u0‖Hs + C2T K R p0 ≤ R

2
. (3.6)

Case 2 β > 0: By using (2.12) and (3.4), we have

∥∥U n+1
∥∥

Hs ≤ ‖u0‖Hs + √
αβτ

(
‖∇U 0‖‖W 0‖Hs + ∥∥∇U n+1

∥∥∥∥W n+ 1
2
∥∥

Hs

)
+ √

αβτ

×
[∥∥∇U 1

∥∥ (∥∥W
1
2
∥∥

Hs + ∥∥W
3
2
∥∥

Hs

)
+

n−1∑
k=2

‖∇U k‖
(
‖W k− 1

2 ‖Hs + ∥∥W k+ 1
2
∥∥

Hs

)]

+βτ
√|D0|

[(∥∥W
1
2
∥∥

Hs + ∥∥W
3
2
∥∥

Hs

)
+

n∑
k=2

(∥∥W k− 1
2
∥∥

Hs + ∥∥W k+ 1
2
∥∥

Hs

)]
.

Since s > 1, ‖∇U k‖ ≤ ‖U k‖Hs ≤ R
2 , for any k = 1, 2, . . . , n, and ‖∇U n+1‖ ≤

‖U n+1‖Hs . We derive from the above and (3.5) that there is a constant C3 independent
to n and τ , s.t.(

1 − τC1
√

αβ R p0
)‖U n+1‖Hs ≤ ‖u0‖Hs + C3T

(
R + √|D0|

)
R p0 . (3.7)
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Hence, for τ ≤ τ0 := 1
4C1

√
αβ R p0

and T ∗ ≤ 1
8C3(R+√|D0|)R p0−1 , we derive from the above that

‖U n+1‖Hs ≤ R
2 . This completes the induction, and consequently, the proof of the Theorem.

�

3.2 Error Estimates

We shall make frequent use of the following version of the discrete Gronwall lemma.

Lemma 2 Let ai , bi , ci , di , τ and e0, for integers i ≥ 0, be non-negative numbers such that

an + τ

n∑
i=0

bi ≤ τ

n−1∑
i=0

di ai + τ

n−1∑
i=0

ci + e0, ∀n ≥ 0.

Then

an + τ

n∑
i=0

bi ≤
(

e0 + τ

n−1∑
i=0

ci

)
exp

(
τ

n−1∑
i=0

di

)
, ∀n ≥ 0.

We assume that the solution of (1.1) is sufficiently smooth, more precisely,

u0 ∈ Hs(
R

d), u ∈ H3(0, T ; Hs(
R

d)) ∩ H2(0, T ; Hs+2(
R

d)), (3.8)

with s ≥ 2 when d = 1 and s > d
2 + 1 when d = 2, 3.

Lemma 3 Assuming (3.8), then for any T < Tmax , there exists K0 > 0 such that

‖rt‖L∞[0,T ] + ‖rtt‖L∞[0,T ] + ‖rttt‖L∞[0,T ] ≤ K0.

Proof By the definition in (2.1), the desired results can be proved immediately by expressing
rtt and rttt in terms of the integrals of u, ut , utt and uttt , respectively. �
We denote tn = nτ , un(·) = u(·, tn), and

en = un − U n, εn = r(tn) − rn, n = 0, 1, 2 . . . , M,

where ‖e0‖ = ε0 = 0.

Lemma 4 Let H [u] = f (|u|2)√
E(u)

. Then, we have

‖H [w] − H [v]‖ ≤ C‖w − v‖ ∀w, v ∈ L2(	) ∩ L∞(	). (3.9)

Furthermore, for any T < Tmax , if ‖u‖L∞(0,T ;H2)∩W 2,∞(0,T ;L2) +‖U‖l∞(0,T ;H2) ≤ K , there
exists C > 0 s.t.

∥∥H
[
Ũ n+ 1

2
] − H

[
ũn+ 1

2
]∥∥ ≤ C

(
3

2
‖en‖ + 1

2
‖en−1‖

)
, (3.10)

∥∥H
[
ũn+ 1

2
] − H

[
un+ 1

2
]∥∥ ≤ Cτ 2 max

t∈[0,T ] ‖utt (·, t)‖, (3.11)

∥∥H
[
un+ 1

2
]
un+ 1

2 − H
[
un− 1

2
]
un− 1

2
∥∥ ≤ Cτ max

t∈[0,T ] ‖ut (·, t)‖, (3.12)

for all 1 ≤ n ≤ M − 1 with M = T /τ .
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Proof By the triangle inequality, we have

‖H [w] − H [v]‖ ≤ 2

∣∣∣E[v] − E[w]
∣∣∣

√
E[v]E[w](√E[v] + √

E[w])‖w‖4L4 + 2√
E[v]

∥∥∥|w|2 − |v|2
∥∥∥ := B1 + B2.

Since w(x), v(x) ∈ L2(	) ∩ L∞(	), then w(x), v(x) ∈ L4(	), and

0 < E[w] = ‖w‖4L4(	)
< ∞, and, 0 < E[v] = ‖v‖4L4(	)

< ∞.

Then by Holder’s inequality, we have

B1 ≤ C
∣∣∣E[w] − E[v]

∣∣∣ ≤ C
(‖w‖2L∞ + ‖v‖2L∞

)
(‖w‖ + ‖v‖)‖w − v‖,

B2 ≤ C(‖w‖L∞ + ‖v‖L∞)‖w − v‖.
On the other hand, by the embedding theorem, we have

‖u‖L∞(0,T ;L∞), ‖U‖L∞(0,T ;L∞) ≤ cK , for any n = 1, . . . , M .

By definition, E[U n], E[un+ 1
2 ] and E[un] are uniformly bounded from below, i.e. there

exists K1 > 0, s.t.

1

E[U n] ,
1

E[un] ,
1

E[un− 1
2 ]

≤ K1 for any n = 1, . . . , M .

Therefore, by setting C = 4K 2
1 c2K 3 + 2c

√
K1K , we have

∥∥H
[
Ũ n+ 1

2
] − H

[
ũn+ 1

2
]∥∥ ≤ C

∥∥Ũ n+ 1
2 − ũn+ 1

2
∥∥ = C

∥∥∥∥32en − 1

2
en−1

∥∥∥∥ ,

∥∥H
[
ũn+ 1

2
] − H

[
un+ 1

2
]∥∥ ≤ C

∥∥ũn+ 1
2 − un+ 1

2
∥∥ = C

∥∥ ∫ tn+1

tn
utt (x, s)(tn+1 − s)ds

∥∥
� τ 2

∥∥utt (·, ξn)
∥∥,

and ∥∥H
[
un+ 1

2
]
un+ 1

2 − H
[
un− 1

2
]
un− 1

2
∥∥

≤ ∥∥H
[
un+ 1

2
]
un+ 1

2 − H
[
un+ 1

2
]
un− 1

2
∥∥ + ∥∥H

[
un+ 1

2
]
un− 1

2 − H
[
un− 1

2
]
un− 1

2
∥∥

≤ cK1K 3
∥∥un+ 1

2 − un− 1
2
∥∥ � τ

∥∥ut (·, ξn)
∥∥ with ξn ∈ (

tn−1/2, tn+1/2
)
.

The proof is complete. �
We are now in position to prove our main result.

Theorem 4 Given s ≥ 2 when d = 1 and s > d
2 + 1 when d = 2, 3. We assume that the

solution to (1.1) satisfies (3.8). Then, for any T < Tmax , there exists a constant C independent
of τ and n, such that, for τ sufficiently small, we have

‖U n − u(·, tn)‖Hs + |rn − r(tn)| ≤ Cτ 2, ∀n = 0, 1, . . . , M = T /τ.

Proof First, we subtract the PDE from the scheme to obtain the error equations:

i
e1

τ
= −α

2
�e1 − 2β D1 + T 1, (3.13)
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i

(
en+1 − en

τ

)
= −α�

en+1 + en

2
− 2β Dn+1 + T n+1, n ≥ 1, (3.14)

where

D1 =
[

f (|u1|2)u1 − f (|u0|2)u0

]
+ r(t1)√

E[u0] + √
E[u1] f

(|u0|2
)
u0

×
[

1√
E[u1] − 1√

E[u0]

]
+ ε1

f (|u0|2)u0√
E[u0] , (3.15)

with

ε1 =
∫

	

H [u0]Re
[(

u0

( ∫ τ

0
utt (x, s)(τ − s)ds

)]
dx +

∫
	

Re
[

H [u0]u0e1
]
dx

+τ

∫ τ

0
rt (s)ds + τ

∫
	

Re
[(

H [u0]u0 − H [u1]u1) ut
]

dx, (3.16)

and

Dn+1 = εn + εn+1

2
√

E
[
Ũ n+ 1

2
] f

(|un+ 1
2 |)un+ 1

2

−
(

r(tn) + r(tn+1)
)

f
(|un+ 1

2 |)un+ 1
2

2
√

E
[
un+ 1

2
]√

E
[
Ũ n+ 1

2
](√

E
[
un+ 1

2
] +

√
E
[
Ũ n+ 1

2
])

(
E
[
un+ 1

2
] − E

[
Ũ n+ 1

2
])

+ rn + rn+1

2
√

E
[
Ũ n+ 1

2
]
[(

f
(|un+ 1

2 |)un+ 1
2 − f

(|ũn+ 1
2 |)ũn+ 1

2

)

+
(

f
(|ũn+ 1

2 |)ũn+ 1
2 − f

(|Ũ n+ 1
2 |)Ũ n+ 1

2

)]
:= D1 + D2 + D3, (3.17)

T n+1 = i

τ

∫ tn+1

tn
uttt (x, s)(tn+1 − s)2ds +

∫ tn+1

tn
�utt (x, s)(tn+1 − s)ds

+
( ∫ tn+1

tn
rtt (s)(tn+1 − s)ds

)
f
(|un+ 1

2 |2)un+ 1
2 , n ≥ 0, (3.18)

with

εn+1 − εn =
∫

	

H
[
un+ 1

2
]
Re

[
un+ 1

2
(
en+1 − en − τT u

1

)]
dx

+
∫

	

H
[
un+ 1

2
]
Re

[(
ẽn+ 1

2 + T u
3

)(
U n+1 − U n

)]
dx

+
∫

	

(
H
[
Ũ n+ 1

2
] − H

[
un+ 1

2
])

Re
[
Ũ n+ 1

2
(
U n+1 − U n

)]
dx + τT r

1 , (3.19)

where for any function f ,

T f
1 = ft

(
tn+ 1

2

) − f (tn+1) − f (tn)

τ
= 1

τ

∫ tn+1

tn
ft t t (s)(tn+1 − s)2ds,

T f
3 = f

(
tn+ 1

2

) −
(3
2

f (tn) − 1

2
f (tn−1)

)
=

∫ tn

tn−1

ftt (s)(tn − s)ds.
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We can also rewrite the error Eqs. (3.13)–(3.14) as

e1 = iτ B
( − 2β D1 + T 1), (3.20)

en+1 = Aen + iτ B
( − 2β Dn+1 + T n+1),

so that for n = 0, . . . , M − 1,

en+1 = iτ
(

An B
( − 2β D1 + T 1) +

n+1∑
k=2

An+1−k B
( − 2β Dk + T k)). (3.21)

Now let T ∗ ≤ T be defined in Theorem 3 and set M∗ = T ∗/τ . Since s ≥ 2, Theorem 3
implies there exists K1 > 0, s.t.

∥∥∥Un+1 − Un

τ

∥∥∥ ≤ ‖Un+1 + Un‖H2 + ∥∥ f
(∣∣Ũn+ 1

2
∣∣)Ũn+ 1

2
∥∥ ≤ K1, ∀n = 0, 1, . . . , M∗ − 1.

By using the Holder’s inequality, Lemmas 3 and 4 and Sobolev embedding that H3(R) ↪→
W 2,∞(R), we find from (3.16) that

|ε1| ≤ ‖H [u0]u0‖
(∥∥∥

∫ τ

0
utt (x, s)(τ − s)ds

∥∥∥ + ‖e1‖
)

+ τ 2‖rt‖L∞(0,T )

+τ‖H [u0]u0 − H [u1]u1‖ · ‖ut‖
≤ ‖H [u0]u0‖

(
τ 2‖utt‖L∞(0,τ ;L2) + ‖e1‖

)
+ τ 2‖rt‖L∞(0,τ )

+τ 2‖ut‖2L∞(0,τ,L2)
≤ C(τ 2 + ‖e1‖).

We rewrite (3.19) as

εn+1 −
∫

	

H
[
un+ 1

2
]
Re

[
un+ 1

2 en+1
]
dx

=
(

εn −
∫

	

H
[
un+ 1

2
]
Re

[
un+ 1

2 en
]
dx

)
− τ

∫
	

H
[
un+ 1

2
]
Re

[
un+ 1

2 T u
1

]
dx

+
∫

	

H
[
un+ 1

2
]
Re

[
ẽn+ 1

2
(
U n+1 − U n

)]
dx +

∫
	

H
[
un+ 1

2
]
Re

[
T u
3

(
U n+1 − U n

)]
dx

+
∫

	

(
H
[
Ũ n+ 1

2
] − H

[
un+ 1

2
])

Re
[
Ũ n+ 1

2
(
U n+1 − U n

)]
dx + τT r

1 .

Denote

Gn := εn −
∫

	

H
[
un− 1

2
]
Re

[
un− 1

2 en
]
dx, n = 1, . . . , M∗,

Then, we have

εn −
∫

	

H
[
un+ 1

2
]
Re

[
un+ 1

2 en
]
dx = Gn +

∫
	

Re
[(

H
[
un+ 1

2
]
un+ 1

2 − H
[
un− 1

2
]
un− 1

2

)
en
]
dx,

and

Gn+1 = Gn +
∫

	

Re
[(

H
[
un+ 1

2
]
un+ 1

2 − H
[
un− 1

2
]
un− 1

2

)
en
]
dx

+
∫

	

H
[
un+ 1

2
]
Re

[
ẽn+ 1

2
(
U n+1 − U n

)]
dx
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+
∫

	

(
H
[
Ũ n+ 1

2
] − H

[
un+ 1

2
])

Re
[
Ũ n+ 1

2
(
U n+1 − U n

)]
dx

+τ
(

T r
1 −

∫
	

H
[
un+ 1

2
]
Re

[
un+ 1

2 T u
1

]
dx

)
+

∫
	

H
[
un+ 1

2
]
Re

[
T u
3

(
U n+1 − U n

)]
dx

:= Gn + G1 + G2 + G3 + G4 + G5.

The terms G j can be bounded as follows:

|G1| ≤ τC‖ut‖ · ‖en‖ ≤ Cτ‖en‖,
|G2| ≤ C‖un+ 1

2 ‖3L∞
(3
2
‖en‖ + 1

2
‖en−1‖

)(
‖U n+1 − U n‖

)
≤ Cτ

(3
2
‖en‖ + 1

2
‖en−1‖

)
,

|G3| ≤
(3
2
‖U n‖L∞ + 1

2
‖U n−1‖L∞

)(
‖U n+1 − U n‖

)(∥∥H
[
Ũ n+ 1

2
]

−H
[
ũn+ 1

2
]∥∥ + ∥∥H

[
ũn+ 1

2 ] − H
[
un+ 1

2
]∥∥)

≤ Cτ
(3
2
‖en‖ + 1

2
‖en−1‖

)
+ Cτ 2

∫ tn+1

tn
‖utt‖ds,

|G4| ≤ τ 2
∫ tn+1

tn

(
|rttt | + ‖uttt‖

)
ds,

|G5| ≤ C‖U n+1 − U n‖‖T u
3 ‖ = Cτ 2

∫ tn+1

tn
‖utt‖ds.

Therefore,

|Gn+1| ≤ |Gn | + Cτ(‖en‖ + ‖en−1‖) + Cτ 2
∫ tn+1

tn
|rttt | + ‖utt‖ + ‖uttt‖ds.

Clearly |G1| � τ 2. Then, for any n ≤ M ,

|Gn | ≤ |G1| + Cτ

n−1∑
k=1

(
‖ek‖ + τ 2

∫ tk

tk−1

|rttt | + ‖utt‖ + ‖uttt‖ds
)

≤ C

(
τ 2 + τ

n−1∑
k=1

‖ek‖ + τ 2
∫ tn

0
|rttt | + ‖utt‖ + ‖uttt‖ds

)
. (3.22)

Therefore, by the Holder’s inequality, there is a uniform constant Cr , s.t.

|εn | ≤ |Gn | +
∣∣∣
∫
	

H
[
un− 1

2
]
Re

[
un− 1

2 en
]
dx

∣∣∣ ≤ Cr

⎛
⎝τ2 + ‖en‖ + τ

n−1∑
k=1

‖ek‖
⎞
⎠ , ∀n ≤ M∗.

(3.23)

Then, we evaluate L2 norm on both sides of (3.21) and use Lemma 1, we have:

‖en+1‖ ≤ 2|β|τ‖An B D1‖ + 2|β|τ‖T 1‖ + τ

n+1∑
k=2

(
2|β|‖An+1−k B Dk‖ + ‖An+1−k BT k‖

)

≤ 2|β|
(

τ‖D1‖ + τ

n+1∑
k=2

‖Dk‖
)

+
(

τ‖T 1‖ + τ

n+1∑
k=2

‖T k‖
)

. (3.24)
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It is easy to see that ‖D1‖, ‖T 1‖ � τ . For all k ≥ 2, there is a uniform constant C ≥
Cr ‖ f (|uk− 1

2 |)uk− 1
2 ‖

2
√

C0
> 0, such that the following expressions can be derived from (3.17) and

(3.18):

‖Dk‖ ≤ ‖D1‖ + ‖D2‖ + ‖D3‖

≤ Cr
∥∥ f

(|uk− 1
2 |)uk− 1

2
∥∥

2
√

C0

(
2τ 2 + ‖ek‖ + ‖ek−1‖ + 2τ

k−1∑
i=1

‖ei ‖
)

+
(
maxt∈[0,T ] r(t)

)∥∥ f
(|uk− 1

2 |)uk− 1
2
∥∥

√
C0

∥∥uk− 1
2

+ Ũ k− 1
2
∥∥3

L6

(3
2
‖ek−1‖ + 1

2
‖ek−2‖ +

∥∥∥
∫ tk

tk−1

utt (·, s)(tk − s)ds
∥∥∥)

+ rk−1 + rk

2
√

E[Ũ k− 1
2 ]

[
3
(∥∥ f

(|uk− 1
2 |2)∥∥L∞

+ ∥∥ f
(|Ũ k− 1

2 |2)∥∥L∞
)(3

2
‖ek−1‖ + 1

2
‖ek−2‖

)
+ ‖

∫ tk

tk−1

utt (·, s)(tk − s)ds‖
]

≤ Cr
∥∥ f

(|uk− 1
2 |)uk− 1

2
∥∥

2
√

C0
‖ek‖ + C

(
‖ek−1‖ + ‖ek−2‖ + τ

k−1∑
i=1

‖ei ‖ + τ

∫ tk

tk−1

‖utt‖ds
)
,

(3.25)

‖T k‖ ≤ τ
( ∫ tk

tk−1

‖uttt‖ + ‖utt‖H2 + |rtt | + |rttt |ds
)
. (3.26)

Then, from (3.24), we have:

(
1 − τ

|β|Cr
∥∥ f

(|un+ 1
2 |)un+ 1

2
∥∥

√
C0

)
‖en+1‖ ≤ τ

n∑
k=1

C
(
2 + (n + 1 − k)τ

)
‖ek‖

+
(
τ
(‖D1‖ + ‖T 1‖) + τ 2

∫ T

0
‖uttt‖ + ‖utt‖H2 + |rtt | + |rttt |ds

)

≤ τ

n∑
k=1

(2C + CT )‖ek‖ + Cτ 2
(
1 +

∫ T

0
‖uttt‖ + ‖utt‖H2 + |rtt | + |rttt |ds

)

Let τ and C0 be appropriate numbers, s.t τ
|β|Cr ‖ f (|un+ 1

2 |)un+ 1
2 ‖√

C0
≤ 1

2 . Then, by applying
Lemma 2, we arrive at

‖en+1‖ ≤ τ 22Ce4CT +CT 2
(
1 +

∫ T

0
‖uttt‖ + ‖utt‖H2 + |rtt | + |rttt |ds

)
, ∀n ≤ M∗ − 1.

We also derive from (3.23) that:

|εn | ≤ Cr

(
τ 2 + ‖en‖ + τ

n−1∑
k=1

‖ek‖
)

� τ 2, ∀n ≤ M∗.

123



   69 Page 14 of 24 Journal of Scientific Computing            (2021) 88:69 

Next we shall use a similar procedure to derive the error estimates in Hs-norm. To this end,
we evaluate the Hs norm on both sides of (3.21) and apply Lemma 1 again to obtain

‖en+1‖Hs ≤ 2|β|
⎛
⎝τ‖D1‖Hs + τ

n+1∑
k=2

‖Dk‖Hs

⎞
⎠ +

⎛
⎝τ‖T 1‖Hs + τ

n+1∑
k=2

‖T k‖Hs

⎞
⎠ , ∀n ≤ M∗ − 1.

For s > d/2 + 1, both Hs(Rd) and Hs−1(Rd) ↪→ L∞(Rd) by the Sobolev embedding
theorem. Hence, there exists a constant c depending on l and s only, s.t.

∥∥ f
(|g1|2)g1 − f

(|g2|2)g2∥∥Hs ≤ c
(‖g1‖p0−1

Hs + ‖g2‖p0−1
Hs

)‖g1 − g2‖Hs , ∀g1, g2 ∈ Hs .

Then we can repeat the process of the error estimates in L2 above to obtain the Hs estimates.
More precisely, we can derive

‖Dk‖Hs ≤
∥∥ f

(|uk− 1
2 |)uk− 1

2
∥∥

Hs

2
√

C0

|εn | + |εn+1|
2

+max{r(t)} · ∥∥uk− 1
2 + Ũ k− 1

2
∥∥3

L6 · ∥∥ f
(|uk− 1

2 |)uk− 1
2
∥∥

Hs√
C0(3

2
‖ek−1‖ + 1

2
‖ek−2‖ +

∥∥∥
∫ tk

tk−1

utt (·, s)(tk − s)ds
∥∥∥)

+ rk−1 + rk

2
√

E
[
Ũ k− 1

2
]
[
c
(∥∥uk− 1

2
∥∥p0−1

Hs + ∥∥Ũ k− 1
2
∥∥p0−1

Hs

)(3
2
‖ek−1‖Hs

+1

2
‖ek−2‖Hs

)
+

∥∥∥
∫ tk

tk−1

utt (·, s)(tk − s)ds
∥∥∥

Hs

]

≤ C
(
τ 2 + ‖ek−1‖Hs + ‖ek−2‖Hs + τ

∫ tk

tk−1

‖utt‖Hs ds
)
,

‖T k‖Hs ≤ τ
( ∫ tk

tk−1

‖uttt‖Hs + ‖utt‖Hs+2 + |rtt | + |rttt |ds
)
,

which leads to

‖en+1‖Hs ≤ 2Cτ

n∑
k=0

‖ek‖Hs

+Cτ 2
(
1 +

∫ T

0
‖uttt‖Hs + ‖utt‖Hs+2 + |rtt | + |rttt |ds

)
, ∀n ≤ M∗ − 1.

Applying the discrete Gronwall’s inequality again, we derive

‖en+1‖Hs ≤ τ 2Ce2CT
(
1 +

∫ T

0
‖uttt‖Hs + ‖utt‖Hs+2 + |rtt | + |rttt |ds

)
, ∀n ≤ M∗ − 1.

(3.27)

where C is independent to τ .
With the above error estimate, we now show that T ∗ in Theorem 3 can be extended to

T . Indeed, we set the initial condition to be U T ∗/τ and repeat the process in Theorem 3 and
the above arguments. The proof is complete if we can repeat enough times to reach time T .
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Otherwise, there exists Tc < T < Tmax, such that
∞∑

k=1

T ∗
k ≤ Tc.

where T ∗
k is the time range for the k-th time of applying the above process. Since the solution

u(x, t) to (1.1) is well defined on [0, Tc], so we define:

Mc = sup
t∈[0,Tc]

{‖u(·, t)‖Hs } + 1.

Then, for a sufficiently small τ , we have: for any k = 0, 1 . . .,

‖U T ∗
k /τ‖Hs ≤ Mc.

Then according to the calculations in Theorem 3, when β < 0, by (3.6),

T ∗
k =

(
4C2K‖U T ∗

k−1/τ‖p0−1
Hs

)−1 ≥
(
4C2K M p0−1

c

)−1 := T ∗
min,

and when β > 0, by (3.7),

T ∗
k =

(
8C3K

(∥∥U
(
T ∗

k−1

)∥∥
Hs + √

D0
)∥∥U

(
T ∗

k−1

)∥∥p0−1
Hs

)−1

≥
(
8C3K

(
Mc + √

D0
)
M p0−1

c

)−1 := T ∗
min,

for any k = 1, 2, . . .. But this will lead to the contradiction that

∞ =
∞∑

k=1

T ∗
min ≤

∞∑
k=1

T ∗
k ≤ Tc.

The proof is complete. �

4 A Fully-Discrete Scheme and Numerical Results

Since the problem (1.1) is set in thewhole spaceRd , we shall use the Hermite spectral method
[24] to discretize the whole space directly to avoid additional errors by domain truncation.

4.1 Fully Discretized Hermite-SAV Scheme

We first recall some basic properties of Hermite spectral method.

Let Hn(x) be the n-th degree Hermite polynomial and Ĥn(x) := 1
dn

Hn(x)e− x2
2 be the

corresponding normalized Hermite function with dn = (π1/4
√
2nn!). We define the one-

dimensional approximation space

X N = span{Ĥ0, . . . , ĤN }.
Let {x j } j=0,N be the Gauss–Hermite collocation points, i.e., zeros of HN+1(x), we define
the 1-D discrete inner product by

( f , g)N =
N∑

j=0

f (x j )ḡ(x j )ω j , ∀ f , g ∈ C(R), (4.1)
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where {ω j } j=0,N are the corresponding weights of the Gauss–Hermite quadrature [24]. The
multi-dimensional discrete inner product (·, ·)N is defined through the tensor-product of the
1-D formula. Note that we have in particular [24]

( f , g)N = ( f , g), ∀ f , g ∈ Xd
N . (4.2)

We construct the fully discrete Hermite-SAV scheme as follows:
Let U 0

N = �̂N u0 and r0N = r(0). We first compute U 1
N ∈ Xd

N and r1N ∈ R such that
∀vN ∈ Xd

N

i

(
U 1

N − �̂N u0

τ
, vN

)
+ α

2

(
�
(
U 1

N + U 0
N

)
, vN

) = −β
(
r1N + r0N

)(
H
[
�̂N u0

]
�̂N u0, vN

)
N ,

(4.3)

r1N − r0N = Re
{(

H
[
�̂N u0

]
�̂N u0, U 1

N − �̂N u0
)

N

}
. (4.4)

Then for n ≥ 1, we look for U n+1
N ∈ Xd

N and rn+1
N ∈ R, such that ∀vN ∈ Xd

N

i

(
Un+1

N − Un
N

τ
, vN

)
+ α

2

(
�(Un+1

N + Un
N
)
, vN

)=−β
(
rn+1

N +rn
N
)(

H
[
Ũ

n+ 1
2

N

]
Ũ

n+ 1
2

N , vN
)

N ,

(4.5)

rn+1
N − rn

N = Re
{(

H
[
Ũ

n+ 1
2

N

]
Ũ

n+ 1
2

N , Un+1
N − Un

N
)

N

}
, (4.6)

where Ũ
n+ 1

2
N := 3

2U n
N − 1

2U n−1
N . Note that the above spatial discretization is a Galerkin

discretization with numerical quadrature.
The above fully discrete scheme can be efficiently implemented as in the semi-discrete

case. Indeed, writing

U n+1
N = φn+1

N + rn+1
N ϕn+1

N , (4.7)

in (4.5), we find that φn+1
N and ϕn+1

N satisfy
(

i

τ
φn+1

N + α

2
�φn+1

N , vN

)
= (

Qn
N , vN

)
N , ∀vN ∈ Xd

N , (4.8)

(
i

τ
ϕn+1

N + α

2
�ϕn+1

N , vN

)
= −β

(
H
[
Ũ

n+ 1
2

N

]
Ũ

n+ 1
2

N , vN
)

N , ∀vN ∈ Xd
N , (4.9)

with

Qn
N = i

τ
U n

N − α

2
�U n

N − βrn H
[
Ũ

n+ 1
2

N

]
Ũ

n+ 1
2

N .

Once φn+1
N and ϕn+1

N are known, we can determine rn+1
N explicitly by plugging (4.7) in (4.6).

Hence, the main computational cost is to solve (4.8) and (4.9) which can be very efficiently
solved using the algorithm presented in [24]. More precisely, in the 1-D case, (4.8) and (4.9)
lead to tridiagonal systems, and in the multi-dimensional cases, they lead to sparse linear
systems that can be efficiently solved by using the matrix diagonalization technique [24].

By following exactly the same procedure as in the proof of Theorem 2, we can establish
the following result:
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(a) (b)

Fig. 1 Example 4.1: maximum errors of Hermite SAV/CN method

Theorem 5 The fully discretized SAV scheme (4.3)–(4.6) preserves a modified Hamiltonian
unconditionally in the sense that

α

2

∥∥∇U n+1
N

∥∥2 − β
(
rn+1

N

)2 = α

2

∥∥∇U n
N

∥∥2 − β
(
rn

N

)2
, n = 0, 1, . . . , M − 1.

Remark 2 In principle, the error analysis for the above fully discretized scheme can be carried
out by combining the analysis in the last section with the approximation properties of the
Hermite functions as in [16]. However, this process can be very tedious particularly due to
the pseudo-spectral treatment of the nonlinear terms. We leave it for the interested reader.

4.2 Numerical Results

Example 4.1 We consider the one-dimensional nonlinear Schrödinger equation

i
∂u

∂t
+ ∂2u

∂x2
+ 2|u|2u = 0, (4.10)

with an analytical solution given by [27]

u(x, t) = sech(x − 4t)ei(2x−3t).

We first investigate the convergence rate. Fix N = 256 so that the spatial discretization
error is negligible compared with time discretization error. Figure 1a shows clearly that
the method has a second convergence rate in time. Next, we take τ = 0.00001 so that
the time discretization error is negligible compared with the spatial discretization error up to
around 10−8. Figure 1b shows clearly that spatial error behaves like e−c

√
N . This exponential

convergence is a typical behavior of the Hermite spectral method.
Next, we make a comparison with the results computed by the time-splitting Chebyshev-

tau spectral (TSCT) method proposed in [27], where the computational domain is truncated
as [−16, 16]. To this end, we let τ = 0.00001. The maximum errors are listed in Table 1.
As we can see from the table, the proposed Hermite-spectral method in the whole space can
achieve much higher accuracy than the TSCT method based on domain truncation.
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Table 1 Maximum errors at T = 0.5 with τ = 0.00001

N 64 128 256

TSCT method [27] 6.9851e−2 1.1099e−4 1.6665e−6

Hermite-SAV scheme (4.3)–(4.6) 1.1268e−4 1.1020e−6 3.9481e-9
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Fig. 2 Example 4.1: Left: Modified energy with τ = 0.01; right: |E(un
N ) − Ẽ(un

N , rn
N )| with different τ

Next, we examine the conservation of the energy. We plot the discrete modified energy
Ẽ(un, rn) computed by the proposed method with τ = 0.01 and N = 256 in Fig. 2 (left),
and the difference between the original discrete energy E(un

N ) and the modified energy
Ẽ(un

N , rn
N ) with different τ in Fig. 2 (right). It is obvious that the proposed scheme indeed

conserves modified energy, and the difference between the modified and original discrete
energy decays with a second-order rate in time.

Example 4.2 We consider the interaction of two solitons. The initial condition in (4.10) is
taken as [15]

u0(x) = sech(x − 10) exp(−2i(x − 10)) + sech(x + 10) exp(2i(x + 10)).

This initial condition represents the interaction of two solitons of equal amplitude 1.

The discretization parameters in the computation are taken as N = 200, τ = 0.01. In Fig. 3,
we show the interactions of two solitons traveling in opposite directions with velocity 4 at
different time. In Fig. 4, we plot the interaction process in space-time. We observe that the
two solitons collide, then separate, and return to their original shapes after collision.

Example 4.3 We consider the one-dimensional nonlinear Schrödinger equation (4.10) with
the following analytical solution [19]

u(x, t) =
(
9(σ + 1)

8
sech2

(
3σ

2
(x − 4t + 5)

)) 1
2σ

exp

(
2i

(
x − 7

8
t

))
.

Figure 5a shows the convergence rate in timewith N = 512. Figure 5b shows the convergence
rate in time with τ = 0.00001. Second order convergence rate in time and exponential
convergence in space are observed forσ = 1 andσ = 2. Figure 6 (left) shows the conservation
property of the discrete modified energy Ẽ(un, rn) using N = 256 and τ = 0.01. The
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Fig. 3 Example 4.2: The interaction of two solitons of equal amplitude

Fig. 4 Example 4.2: Interaction
of two solitons

difference between the original discrete energy E(un
N ) and the modified energy Ẽ(un

N , rn
N )

with different τ and σ = 2 was also showed in Fig. 6 (right). It is obvious that the proposed
scheme indeed conserves modified energy, while the convergence rate of the modified energy
to the original energy appears to be second-order only.

Example 4.4 In this example, we consider the following Schrödinger equation with saturated
nonlinear term

i
∂u

∂t
+ 1

2

∂2u

∂x2
+ 2β

|u|2
1 + |u|2 u = 0. (4.11)
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(a) (b)

Fig. 5 Example 4.3: Maximum errors of Hermite SAV/CN method with different σ

Fig. 6 Example 4.3: Left: Modified energy with τ = 0.01; right: |E(un
N ) − Ẽ(un

N , rn
N )| with σ = 2

The initial condition of Eq. (4.11) is taken as the Gaussian-type data

u0(x) = √
0.1 exp(−x2/0.622).

We fix β = 1, and take the numerical solution with N = 256 and τ = 10−5 as reference
solution. We observe from Fig. 7 that the scheme converges with second-order in time.

We also observe from Fig. 8 that the modified energy converges to the original energy
with second-order in time.

Example 4.5 We consider the two-dimensional nonlinear Schrödinger equation

i
∂u

∂t
+ �u + 2|u|2u = 0, (4.12)

with the initial condition

u0(x) = sech(x1)sech(x2).
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Fig. 7 Example 4.4: Maximum
errors of Hermite SAV/CN
method
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Fig. 8 Example 4.4. Left: Modified energy; Right: |E(un
N ) − Ẽ(un

N , rn
N )| with different τ

We take the numerical solution obtained with N = 256 and τ = 10−4 as reference
solution. We observe from Fig. 9 that the scheme convergence rate in time.

Figure 10 (left) shows the modify energy with τ = 0.01. As expected, it is conserved
exactly. Figure 10 (right) shows the difference between the modified energy and original
energy, and it converges with second-order in time.

5 Concluding Remarks

We considered semi-discrete and fully discrete second-order SAV schemes for the nonlin-
ear Schrödinger equation in the whole space with typical and generalized nonlinearities,
and derived rigorous optimal error estimates for the semi-discrete in time scheme. To the
best of our knowledge, this is the first rigorous error analysis for a SAV scheme applied to
Hamiltonian PDEs.

As with other SAV type schemes, the scheme we consider in this paper unconditionally
conserves a modified energy, and only requires solving linear systems with constant coeffi-
cients at each time step. Hence, it is very efficient and easy to implement. We also presented
numerical experiments which validated the theoretical results and demonstrated the effec-
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Fig. 9 Example 4.5: Maximum errors of Hermite SAV/CN method
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Fig. 10 Example 4.5. Left: Modified energy with τ = 0.01; Right: |E(un
N ) − Ẽ(un

N , rn
N )| with different τ

tiveness of the scheme. We note that while the SAV scheme presented in this paper does
not conserve the original energy, our numerical examples indicate that the modified energy
converges to the original energy with second-order accuracy. Note that one can also construct
a SAV scheme using a Lagrange multiplier approach [13] to conserve the original energy
exactly at the expense of solving a nonlinear algebraic equation at each time step.
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