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Abstract

Nematic-isotropic interfaces exhibit novel dynamics due to anchoring of the liquid crystal molecules on the interface. The objecti
study is to demonstrate the consequences of such dynamics in the flow field created by an elongated nematic drop retracting in a
matrix. This is accomplished by two-dimensional flow simulations using a diffuse-interface model. By exploring the coupling amo
liquid crystal orientation, surface anchoring and the flow field, we show that the anchoring energy plays a fundamental role in the i
dynamics of nematic liquids. In particular, it gives rise to a dynamic interfacial tension that depends on the bulk orientation. Ta
gradient of the interfacial tension drives a Marangoni flow near the nematic-isotropic interface. Besides, the anchoring energy pr
additional normal force on the interface that, together with the interfacial tension, determines the movement of the interface. Conse
nematic drop with planar anchoring retracts more slowly than a Newtonian drop, while one with homeotropic anchoring retracts fa
a Newtonian drop. The numerical results are consistent with prior theories for interfacial rheology and experimental observations.
 2005 Elsevier Inc. All rights reserved.
Keywords:Dynamic interfacial tension; Liquid crystals; Anchoring energy; Two-phase flow
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1. Introduction

Nematic-isotropic interfaces occur in a variety of co
posite materials, of which liquid-crystalline polymer (LC
blends and polymer-dispersed liquid crystals (PDLC)
well-known examples[1,2]. An LCP blend consists of LCP
droplets dispersed in an immiscible thermoplastic mat
Under certain flow conditions, the LCP droplets may
stretched into thin, continuous threads which, owing to
nematic liquid-crystalline nature of the LCP, possess a h
degree of molecular alignment in the axial direction. Up
solidification, these threads become fibers with exceptio
strength and modulus and will act as in situ reinforcem
for the composite material. Thus, polymer blends with
* Corresponding author.
E-mail address:jfeng@chml.ubc.ca(J.J. Feng).

0021-9797/$ – see front matter 2005 Elsevier Inc. All rights reserved.
doi:10.1016/j.jcis.2005.04.018
LCP minor phase are “self-reinforcing,” and are also kno
as in situ composites[3,4]. PDLC materials are made o
micrometer-size droplets of a small-molecule liquid cr
tal embedded in a polymer binder. The optical respons
the droplets combined with the mechanical properties of
polymer make PDLC films a unique component in ma
electro-optical applications[2,5].

These technological advances require an understan
of the physics of nematic-isotropic interfaces. Perhaps
most fundamental issue is the interfacial tension. Continu
models and mean-field and atomistic calculations have
dicted the easy axis on the interface and the magnitud
the interfacial energy[6–10]. A somewhat more advance
issue is the interfacial rheology, i.e., thedynamic coupling
between the interfacial configuration and a flow field. In

series of papers, Rey[11–14] has presented a theoretical
framework for the rheology and fluid dynamics of nematic-
isotropic interfaces. Three notable features are: (a) The inter-
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mailto:jfeng@chml.ubc.ca


nd In

ntial
oni
ns
ten-
es a
easy

sed
ince
by
liar
mic

dif-
lifi-
ce.
xed
s in
by

ropic
in-

red
the
ut it
eral
y, in

ula-
vi-

ase

t re-
ale
ly
ou-
tion
eld
ory
y’s

ice
-
ot
ove

re in

ion
of

ibed

del

m
ble
n-
is
m-
uc-
use-
hat
-
yer,
con-
ter-
ned
er-

a
for
rit-
o-

the
ree
y to
n a
rgy
i-
of

cous
, e.g.,

Nita
-
uid
u-

e
pec-
ion.

id
s a
m-
fine
of

r-
f
ce,
en-
or
282 P. Yue et al. / Journal of Colloid a

facial tension may be orientation-dependent; (b) tange
gradients of the interfacial tension give rise to Marang
flows from regions of low anchoring energy toward regio
of high anchoring energy; and (c) the surface stress
sor has an anisotropic elastic contribution that produc
bending stress when the orientation deviates from the
axis.

Intriguing as Rey’s theory is, so far it has not been u
in any flow calculation. This is perhaps understandable s
tracking a moving interface is a difficult numerical task
itself, and this difficulty is compounded here by the pecu
rheology of the nematic fluid. The only attempt at a dyna
calculation appears to be that of Popa-Nita and Sluckin[15],
who used a diffuse-interface model to circumvent the
ficulty of tracking the interface, and made drastic simp
cation about the flow-orientation coupling at the interfa
Specifically, the director orientation is assumed to be fi
in space and time, uncoupled from the flow; the change
the liquid-crystalline conformation are represented solely
a scalar order parameter. Furthermore, the nematic-isot
interface remains at the transition temperature with zero
terfacial energy. This simplified picture may have captu
the essential physics for their particular problem, namely
propagation and dispersion of a small-amplitude wave. B
is obviously inadequate for stronger deformation of a gen
nematic-isotropic two-phase system as encountered, sa
the processing of LCP blends or PDLC films.

This paper represents our effort toward dynamic sim
tion of nematic-isotropic two-phase flows. We have pre
ously developed a diffuse-interface formalism for two-ph
flows of general complex fluids[16], and will apply the
methodology to simulate an elongated nematic drop tha
tracts in a quiescent isotropic Newtonian fluid. Our ration
in choosing this problem is two-fold. First, it is a relative
simple flow situation that clearly illustrates the dynamic c
pling among the three major factors: the nematic orienta
inside the drop, the surface anchoring, and the flow fi
in both components. The simulation is based on a the
that is essentially the diffuse-interface analogue of Re
theory[13]. The diffuse interface being a numerical dev
(cf. Section2), ours will be the first fluid mechanical sim
ulations incorporating the proper interfacial rheology. N
surprisingly, they reproduce the three effects listed ab
that are anticipated by Rey[12,13]. Second, this problem
is relevant to using drop retraction as a means to measu
terfacial tension between the two components[17,18]. Thus,
there are experimental observations[19,20] with which our
results can be compared. We will confine our discuss
to nematic drops in a Newtonian matrix. The retraction
Newtonian drops in a nematic matrix has been descr
elsewhere[21].

In the next section, we will describe the theoretical mo
and the numerical method. Section3 will analyze the nu-

merical results in detail and compare them to prior work.
Section4 will summarize the whole paper and point out the
limitations of our work.
terface Science 290 (2005) 281–288
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2. Theoretical model and numerical method

The difficulty of moving interface problems stems fro
the fact that the interfacial movement is naturally amena
to a Lagrangian description while the fluid flow is conve
tionally solved in an Eulerian framework. Aside from th
mathematical dilemma, the flow of multi-component co
plex fluids also involves the physical problem of microstr
ture-dependent rheology. Recently, we proposed a diff
interface model for two-phase flows of complex fluids t
resolves both issues at once[16]. In this model, the two com
ponents are assumed to mix in a narrow interfacial la
across which physical properties change steeply but
tinuously. The interfacial position and thickness are de
mined by a phase-field variable whose evolution is gover
by a mixing energy. This way, the structure of the int
face is rooted in molecular forces and calculated from
convection–diffusion equation; there is no longer a need
tracking the interface. Another advantage of our model, c
ical to the task at hand, is its capability of easily incorp
rating the rheology of microstructured fluids. As long as
conformation of the microstructure is describable by a f
energy, this energy can be added to the mixing energ
form the total free energy of the multi-phase system. The
formal variational procedure applied to the total free ene
will give rise to the proper constitutive equation for the m
crostructured fluids in addition to the evolution equation
the phase-field variable. Dissipative effects such as vis
stresses, of course, have to be accounted for separately
via the standard irreversible thermodynamic procedure[22].
Our treatment of the interface resembles that of Popa-
and Sluckin[15]. But we allow fully dynamic coupling be
tween the interface, the nematic orientation and the fl
flow, and thus are able to carry out fluid dynamical sim
lations based on continuum-level governing equations.

Yue et al. [16] have given a detailed derivation of th
model, described its numerical implementation using a s
tral method and presented preliminary results for validat
We will only summarize the salient features here.

Consider an “immiscible” blend of a Newtonian liqu
and a nematic liquid crystal. The diffuse-interface ha
small but nonzero thickness, inside which the two co
ponents are mixed and store a mixing energy. We de
a phase-field variableφ such that the concentrations
the nematic and Newtonian components are(1 + φ)/2 and
(1− φ)/2, respectively. Thenφ = 1 in the bulk nematic
phase, andφ = −1 in the bulk Newtonian phase. The inte
face is taken to be the level setφ = 0. There are three types o
free energies in this system: mixing energy of the interfa
bulk distortion energy of the nematic, and the anchoring
ergy of the liquid crystal molecules on the interface. F
these we adopt the following forms:

(1)fmix = λ |∇φ|2 + λ

2
(φ2 − 1)2,
2 4ε

(2)fbulk = K

[
1

2
∇n : (∇n)T + (|n|2 − 1)2

4δ2

]
,
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(3)fanch=



A
2 (n · ∇φ)2 for planar anchoring,
A
2 [|n|2|∇φ|2 − (n · ∇φ)2]

for homeotropic anchoring.

In fmix, λ is the mixing energy density,ε is the capillary
width and the ratioλ/ε produces the interfacial tensionσ
[23,24]. fbulk is the Frank energy with a single elastic co
stantK , n being the director, regularized to permit defe
where|n| deviates from unity over a small region of sizeδ

[25,26]. Forfanch, we adapt the Rapini–Popoular form[6] to
our diffuse-interface formalism, withA being the anchoring
energy density. Now we have the total free energy den
for the two-phase material:

(4)f (φ,n,∇φ,∇n) = fmix + 1+ φ

2
fbulk + fanch.

Following a variational procedure detailed in Ref.[16],
one may derive the evolution equations for the configura
variablesv, φ andn. Supplemented by the appropriate d
sipative terms, these are essentially the governing equa
familiar in the classical context,

(5)∇ · v = 0,

(6)ρ

(
∂v

∂t
+ v · ∇v

)
= −∇p + ∇ · σ ,

(7)
∂φ

∂t
+ v · ∇φ = γ1λ∇2

[
−∇2φ + φ(φ2 − 1)

ε2

]
,

(8)
∂n

∂t
+ v · ∇n = γ2h,

where the deviatoric stress tensorσ is

σ = −λ(∇φ ⊗ ∇φ) − K
1+ φ

2
(∇n) · (∇n)T

(9)− G + µ
[∇v + (∇vT)

]
,

with G = A(n · ∇φ)n ⊗ ∇φ for planar anchoring andG =
A[(n ·n)∇φ − (n · ∇φ)n]⊗∇φ for homeotropic anchoring
The molecular fieldh arises from the free energies of t
system[25],

(10)h = K

[
−∇ ·

(
1+ φ

2
∇n

)
+ 1+ φ

2

(n2 − 1)n

δ2

]
+ g,

with g = A(n · ∇φ)∇φ for planar anchoring, andg =
A[(∇φ · ∇φ)n − (n · ∇φ)∇φ] for homeotropic anchoring
The parametersγ1 andγ2 determine the relaxation time ofφ

andn, andµ is the Newtonian viscosity of both componen
We have assumed equal densities and viscosities betwee
two components although the theoretical model allows m
matched material properties[24].

To arrive at the Cahn–Hilliard equation(7) and the mole-
cular field in(10), we have omitted from the right-hand sid
“coupling terms” betweenfmix and the nematic energie
These are insignificant as long as the interface stays na
In fact, the Cahn–Hilliard diffusive dynamics has a visib

effect only during singular events such as film rupture[27].
In the current context, the diffuse interface may be seen as
merely a numerical devicefor treating a moving internal
terface Science 290 (2005) 281–288 283

s

e

.

boundary. In Eqs.(8) and (9), we have omitted respective
the viscous torque due to straining flow and anisotro
viscosities. Thus, we are using a simplified version of
Leslie–Ericksen theory[25]. These simplifications reflect
trade-off between capturing the complete physics and
merical convenience[16].

We use a two-dimensional (2D) Fourier spectral met
for solving these equations, and an interested reader can
details of the numerical algorithm in Refs.[16,24,28]. All
simulations are done on a regular mesh in a rectangula
main with periodic boundary conditions in both direction
To enhance stability, we advance time semi-implicitly, w
the nonlinear transport terms treated explicitly while the
ear terms implicitly. The algorithm is highly efficient; th
number of operations per time step scales asO(N logN),
N being the number of unknowns. We have carried out m
and time-step refinements to determine the adequacy o
spatial and temporal resolutions. The interface consists
layer of thickness on the order of 5ε across whichφ varies
steeply. This layer typically requires 7–10 grid points to
solve; fewer points would produce spurious oscillations
the solution[16]. The total number of grid points is typicall
1024× 1024. For the time step, we find that the tempo
resolution is adequate as long as the simulation is sta
and that the Courant–Friedricks–Lewy condition is a go
guideline for the stability of our semi-implicit scheme.

3. Results and discussion

The geometry of the problem is shown inFig. 1. An el-
liptic nematic drop is suspended in a Newtonian fluid,
semi-axes beingL0 andB0 initially. There is zero velocity
and zero stress throughout the domain. Then the drop
gins to retract under the action of interfacial tension. T
roughly represents the drop retraction experiments that
by melting a short LCP fiber sandwiched between layer
a flexible polymer (e.g.,[20]). We assume that the fluids a
highly viscous and the retraction is slow so that inertia
negligible. This is justified for the typical materials used
experiments.
Fig. 1. Computational domain for drop retraction.
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We have simulated three cases with the drop being N
tonian (baseline case), nematic withplanar anchoring and
nematic with homeotropicanchoring. We will use the fi
nal drop radiusR0 = √

L0B0 as the characteristic lengt
The dimensionless geometric parameters areW = 3.9738,
L0 = 1.5811 andB0 = 0.6325. Using the capillary time
scaleµR0/σ , we make the model parameters dimensi
less:λ = 1.342× 10−2, γ1 = 4 × 10−5, ε = 1.265× 10−2,
δ = 6.325×10−2, K = 6.708×10−2, A = 6.708×10−3 and
γ2 = 10. Compared with the material constants of comm
liquid crystals and liquid crystal polymers[29], the anchor-
ing energyA is in the realistic range, while the bulk elas
constantK and director relaxation parameterγ2 are about
an order of magnitude too large. These are used to am
the novel effects brought on by the liquid crystallinity i
side the drop. For planar anchoring,n is initially horizontal
everywhere. For homeotropic anchoring, we impose a ra
n emanating from the center of the drop. Since the dro
elliptic, the initial n field deviates from the easy directio
over much of the interface in both cases. The calculat
are in 2D, but we expect the physical insights gained her
be relevant both to the sharp-interface theory[13] and to 3D
experiments[19,20].

3.1. Drop retraction and apparent interfacial tension

Fig. 2shows that the nematic drop with homeotropic
choring retracts faster than the Newtonian drop while the
with planar anchoring is slower than the Newtonian dr
Heuristically, these results can be explained in terms of
anchoring energyfanch [16]. Given the initialn fields, the
retraction reducesfanch for homeotropic anchoring but in
creases it for planar anchoring. The final equilibrium sh
is circular for homeotropic anchoring, with a hedgehog
fect at the center. For planar anchoring, the final shap
prolate. The director field exhibits the well-knownbipolar
configuration with two surface defects at the poles[2,30]. If
we use smaller and more realisticK values, the bipolar drop
will be nearly circular. Yue et al.[16] have showed a plo
Fig. 2. Drop retraction: variation of the major and minor semi-axes for a
Newtonian drop and nematic drops with planar and homeotropic anchoring
(after Ref.[16]; © Cambridge Univ. Press).
terface Science 290 (2005) 281–288

similar to Fig. 2 to illustrate the capability of the metho
Here we review the solutions as an introduction to the m
results in the next two subsections.

As mentioned in Section1, drop retraction is a convenien
method for measuring the interfacial tension between
drop and matrix fluids[17,18]. By assuming an ellipsoida
drop shape and Newtonian rheology in both compone
Maffettone and Minale[31] developed a phenomenologic
relationship between the shape relaxation of the drop an
interfacial tension,

L2 − B2 = (L2 − B2)t=0

(11)× exp

[
− σ t

µmR0

40(β + 1)

(2β + 3)(19β + 16)

]
,

where R0 is the equilibrium drop radius,µm is the ma-
trix viscosity andβ is the viscosity ratio between the dro
and the matrix. By measuringL(t) andB(t), the half-length
and half-width of the drop, the interfacial tensionσ can be
calculated from curve fitting. The retraction curves for
matic drops inFig. 2do not obey the exponential scaling
Eq. (11). However, if we use the local slope of the curv
to fit the formula, we may determine an apparent interfa
tensionσapp at different times. This is plotted inFig. 3 for
the three cases. The initial increase inσapp is a numerical
artifact due to the relaxation of the imposed initialφ pro-
file [16]. Afterward,σapp stays constant for the Newtonia
drop, as expected. For the drop with homeotropic anc
ing, σapp is larger on account of the faster retraction; it
also roughly constant until the end of the retraction. In c
trast, the drop with planar anchoring has a lowerσapp and it
declinesin time.

Experimentally, Yu et al.[20] found that the retraction
of a thermotropic LCP drop deviates from the exponen
law in Eq. (11). They have determinedσapp using the lo-
cal slope of the retraction curves, and found that it ind
declines in time. Therefore, one may use the heuristic en
argument to explain the experiment if the anchoring is p
nar in the experimental drops. Unfortunately, this could
be determined for the thermotropic LCP drops in Ref.[20].
Visualizations on a drop of a different LCP indicate th
this is indeed the case[32]. In addition, the interior of the
drop exhibits the well-known polydomain texture, with litt
orientational order as a whole[29]. This explains why the
experimental drops retract completely to a spherical sh
while our drop with planar anchoring does not. In the
periment of Yu et al.[20], the decliningσapp is probably
a combined effect offanch and the relaxation of the m
crodomains. Using still a different pair of polymers, Lee a
Denn[19] reported faster retraction for smaller LCP drops
terms of a dimensionless retraction time scaled by the
illary time. The authors argued that this reflects the ef
of distortional elasticity, which is prominent for drops wi
sizes comparable to the domain size. This would be con

tent with our results if the anchoring in the experimental drop
is homeotropic. But no information is given on the anchoring
in Ref. [19].
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(a)

(b)

Fig. 3. The apparent interfacial tensionσappcompared with the true interfa
cial tensionσ calculated from the interfacial energy (Eq.(12)). (a) Bipolar
configuration; (b) homeotropic configuration. The apparent interfacial
sion for the Newtonian drop is also shown for comparison.

To sum up this subsection, our simulations show that
retraction of nematic drops differs from that of Newtoni
drops. In terms of an apparent interfacial tensionσapp, our
results seem to explain the experimental observations. H
ever,σapp obviously does not represent the true interfac
forces during retraction.

3.2. True dynamic interfacial tension and Marangoni flo

The true dynamic interfacial tensionσtrue, defined as the
interfacial energy density, varies with time as well as lo
tion along the interface. Because our theoretical mode
based on the free energy, it is very convenient to calcu
σtrue from the equivalent of the interfacial energy per u
area in the diffuse-interface representation,

(12)σtrue=
∫

(fmix + fanch)dh,

where the integration is performed across the interface
fanch may vary along the interface because of different
choring angles, so may the true dynamic interfacial tens

σtrue. We plot the true interfacial tension at the tip (Point 1)
and waist (Point 2) of the drop inFig. 3. If the director
n is oriented along the easy direction everywhere on the
terface Science 290 (2005) 281–288 285

interface,fanchvanishes. Thenσtrue reduces to the usual in
terfacial tension due tofmix, which is roughly a constan
and taken to be unity here because of our scaling. For
nar anchoring, the directorn is almost perpendicular to th
interface at Point 1, thusfanch> 0 there and the true inte
facial tensionσtrue 1 is greater than unity. At Point 2 the tru
interfacial tensionσtrue2 stays at unity becausen is always
parallel to the interface at that point, which produces z
anchoring energy (cf. Eq.(3)). This clearly illustrates how
the bulk orientation field influences the interfacial tensi
By the same token, the homeotropic anchoring is satis
at both points inFig. 3b, andσtrue1 andσtrue2 both remain
roughly constant at unity. The lack of temporal variation
σ in Fig. 3 is coincidental because our initial conditions a
such thatfanch barely changes at the two points during t
retraction. For points between 1 and 2,σ should vary in time.
Note that the apparent interfacial tension is always be
unity:σapp< 1, even for the Newtonian drop. This is becau
the Maffettone–Minale formula is intended for three dime
sions, and our two-dimensional drop retracts more slowl

When the anchoring energy varies along the interfa
the gradient of the dynamic interfacial tension drives
Marangoni flow.Fig. 4a shows the velocity field near th
nematic drop with planar anchoring toward the end of
retraction. The flow goes from Point 2 to Point 1, along
gradient of the interfacial tension. For the radial configu
tion in Fig. 4b, the Marangoni flow is negligible for lack o
a tangential gradient inσtrue. As far as we know, there ha
been no report of experimental observation of such nem
Marangoni flows. In reality, we expect the Marangoni eff
to be less prominent because our elastic constantK is in-
tentionally too large. For a smallerK , the interior of then
field will be adapted more readily to satisfy the anchor
condition andfanchwill be reduced. With strong anchorin
a bipolar drop tends to develop cusp-like protrusions at
poles in response to the surface defects[33]. The director
thus deviates from the easy axis only in a very small reg
at the tip. In addition, the large curvature in the region w
generate a high pressure; the pressure gradient along th
terface may act to reduce the Marangoni flow.

As mentioned in Section1, our theoretical model is
diffuse-interface implementation of the ideas that Rey
forth [13], and our numerical results bear out the m
predictions of Rey’s sharp-interface theory. The first a
rather obvious observation is that the interfacial tension
nematic-isotropic interface depends on the director orie
tion in the bulk. This has been shown by the discrepa
betweenσtrue1 and σtrue 2 in Fig. 3a and the lack thereo
in Fig. 3b. This picture is also consistent with the Mon
Carlo simulations of Li and Denn[10] showing the effec
of far-field orientation on the interface tension, although
form of the anchoring energy is postulated here (Eq.(3))
but is the result of chain interactions in Ref.[10]. Secondly,

the tangential gradient of the interfacial tension generates
a Marangoni flow from regions of lower anchoring energy
to regions of higher energy, as anticipated by Rey’s sharp-
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(a)

(b)

Fig. 4. Velocity field att = 29.82 near the nematic drop. (a) Bipolar confi
uration, where a Marangoni flow prevails. (b) Homeotropic configurat
where the velocity is negligible compared with that in (a).

interface theory[11,12]. The idea of the anchoring energ
producing a bending stress will be discussed next.

3.3. Normal force and effective interfacial tension

According to the true interfacial tension inFig. 3, the ne-
matic drop with planar anchoring should retract faster t
the Newtonian drop owing to the larger dynamic interfac
tensionσ , while that with homeotropic anchoring should r
tract with roughly the same speed as the Newtonian d
This expectation is at odds withFig. 2. The reason is tha
besides the interfacial tension, the anchoring energy ge
ates anormalsurface force that influences the retraction
well. To illustrate this mechanism, we will use the planar
choring case as an example to analyze the interfacial fo

Fig. 5shows a pillbox control-volume that covers the
terface. Yue et al.[16] have derived the stress tensors due
the mixing energyfmix and the anchoring energyfanch (see
also Eq.(9)):
(13)T mix = fmixI − λ(∇φ ⊗ ∇φ),

(14)T anch= fanchI − A(n · ∇φ)n ⊗ ∇φ.
terface Science 290 (2005) 281–288
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.

Fig. 5. A pillbox control-volume, of thicknessh and widthl, for calculating
interfacial forces.R is the radius of curvature of the interface andm and
t are unit normal and tangential vectors. See text for the definition o
surface forcesg, ft andfm.

From the total stress tensorT = T mix + T anch, we can cal-
culate the tangential tractionft and the normal tractionfm

on the sides of the pillbox. Noting that∇φ is parallel to the
surface normalm and perpendicular tot , we obtain

(15)ft =
∫

(t · T · t)dh =
∫

(fmix + fanch)dh,

fm =
∫

(t · T · m)dh

(16)= −
∫

A(n · ∇φ)(t · n)(∇φ · m)dh,

where the integration is performed across the interface. N
ft is the dynamic interfacial tension in Eq.(12). But fm is
an additional normal force that stems from the anchoring
ergy. Although this force does not stretch the interface
nevertheless affects the retraction of the drop in a way
lyzed below.

The total force per unit area due to the interfacial ene
is g = ∫

(∇ · T )dh, andg = g · (−m) is the normal trac-
tion pushing the drop inward. In view of the Young–Lapla
equation, we may considergR a local “effective interfacia
tension” that determines the retraction of the drop,R being
the local radius of curvature.Fig. 6a plotsgR at the tip and
waist of the drop with planar anchoring. Our scaling is s
that for a Newtonian drop, the effective interfacial tens
gR = 1. The initial transient (t � 1) is a numerical artifac
due to the relaxation of the initially imposedφ profile andn
field that do not happen to minimize the system’s free ene
for the initial drop shape[16].

For the bipolar configuration,(gR)1 < 1 < (gR)2. This
implies that compared with a Newtonian drop, the norm
force pushing inward is stronger at the waist and wea
at the pointed ends. As a result, the nematic drop retr
more slowly than the Newtonian drop as seen inFig. 2. Thus,
the apparent interfacial tensionσapp estimated from the re
traction curves is smaller than that of the Newtonian d
(Fig. 3a). The further divergence of(gR)1 and(gR)2 in time
causes the rate of retraction, and henceσapp, to decrease with
time. The later fall ofσapp toward zero is because the bipo
drop fails to attain a circular shape.

A similar analysis of the surface forces can be carried

for the homeotropically anchored drop (Fig. 6b), although
the expression for the normal force will differ from Eq.(16).
For t � 12,(gR)1 > 1> (gR)2, implying that the anchoring
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(a)

(b)

Fig. 6. The effective interfacial tensiongR at the waist (Point 1) and pol
(Point 2) of the drop, whereg is the total normal traction pushing inwar
and R is the local radius of curvature calculated by assuming an elli
drop. (a) Planar anchoring; (b) homeotropic anchoring.

energy will make the retraction go faster than for the Ne
tonian drop. This explainsFig. 2 as well as the higherσapp
in Fig. 3b. For t > 13, (gR)2 exceeds(gR)1 slightly. The
retraction of the homeotropic drop is thus hampered tow
the end, consistent with the fall ofσapp in Fig. 3b.

We conclude this section by noting that the normal fo
fm corresponds to the bending stress in the sharp-inter
theory of Rey[13]. In fact, our expression in Eq.(16) is pre-
cisely the diffuse-interface version of the bending stres
Ref. [13] (Eqs. (21)–(23) therein). Our simulation of dro
retraction has confirmed the role of this normal stress
moderating the motion of nematic-isotropic interfaces.

4. Concluding remarks

In this paper, we have used a diffuse-interface formu
tion to simulate the retraction of a liquid-crystalline drop
an isotropic fluid. The anchoring energyfanch plays a fun-
damental role in the interfacial dynamics of nematic liqui
In particular, it gives rise to a dynamic interfacial tensi

that may vary along the interface. The spatial gradient of the
interfacial tension drives a Marangoni flow near the nematic-
isotropic interface. Finally, the anchoring energy produces
terface Science 290 (2005) 281–288 287

an additional normal force on the interface that, toget
with the interfacial tension, determines the retraction of
drop.

A major objective of this work is to demonstrate the no
interfacial dynamics on a nematic-isotropic interface in
nontrivial flow. This has been accomplished; the three
fects offanchlisted above clearly substantiate the theoret
expectations given in Section1. Unfortunately, we know o
no experimental study that probes these effects, and can
seek indirect corroboration in drop retraction experime
The numerical results seem to be consistent with the
experimental observations, subject to the restriction tha
have not accounted for the polydomain texture. Becaus
fanch, one cannot define an interfacial tension as a mate
constant between a nematic and an isotropic liquid, m
less measure it from the shape evolution during drop ret
tion.

We have to point out several limitations in our work. R
call that our nematic is represented by a simplified Les
Ericksen theory. We have adopted a single elastic cons
and a single viscosity (cf. Eq.(9)). Real nematics, smal
molecule and polymeric ones alike, exhibit anisotropic e
ticity and viscosities that would introduce additional co
plications in the retraction of the nematic drop. Even the
Leslie–Ericksen theory fails to represent polymeric nem
ics and defect-laden textures[29]. In addition, the paramete
values are chosen not to represent certain real liquid c
tals but to highlight the novel physical effects. Furthermo
the simulation is in two dimensions, where the retraction
curs more slowly than in three dimensions as noted in
discussions. As a consequence of these simplifications
numerical results cannot quantitatively predict experime
Rather, we expect the physical principles uncovered he
carry over qualitatively to reality. Work is under way to i
corporate the full Leslie–Ericksen theory and simulate d
retraction in an axisymmetric geometry.

Acknowledgments

Acknowledgment is made to the Donors of the Petrole
Research Fund, administered by the American Chemica
ciety, for partial support of this research. J.J.F. was a
supported by the NSF (CTS-0229298, CTS-9984402),
NSERC’s Canada Research Chair and Discovery progr
and the NNSF of China (Nos. 20174024 and 20490220).
was supported by the NSF (DMS-0074283, DMS-03119
C.L. was supported by the NSF (DMS-0405850).

References

[1] F.P. La Mantia, Thermotropic Liquid Crystal Polymer Blends, Te
nomic, Lancaster, PA, 1993.
[2] J.L. West, in: R.A. Weiss, C.K. Ober (Eds.), Liquid-Crystalline Poly-
mers, in: ACS Symp. Ser., vol. 435, ACS, Washington, DC, 1990,
chap. 32, pp. 475–495.



nd In

d
rk,

s-
mp.

.

317.
0)

04–

ical
05.
98)

niv.

.
ch.

ford

02)

8)

ng,
288 P. Yue et al. / Journal of Colloid a

[3] A.A. Collyer, in: D. Acierno, A.A. Collyer (Eds.), Rheology an
Processing of Liquid Crystal Polymers, Chapman & Hall, New Yo
1996, chap. 6, pp. 185–217.

[4] A.I. Isayev, in: A.I. Isayev, T. Kyu, S.Z.D. Cheng (Eds.), Liquid-Cry
talline Polymer Systems: Technological Advances, in: ACS Sy
Ser., vol. 632, ACS, Washington, DC, 1996, chap. 1, pp. 1–20.

[5] M. Mucha, Prog. Polym. Sci. 28 (2003) 837–873.
[6] A. Rapini, M. Popoular, J. Phys. (Paris) C 30 (1969) 54–56.
[7] B. Jerome, Rep. Prog. Phys. 54 (1991) 391–451.
[8] Z.Y. Chen, J. Noolandi, Phys. Rev. A 45 (1992) 2389–2392.
[9] T.P. Doerr, P.L. Taylor, Mol. Cryst. Liq. Cryst. 330 (1999) 491–501

[10] X. Li, M.M. Denn, Macromolecules 35 (2002) 6446–6454.
[11] A.D. Rey, J. Chem. Phys. 110 (1999) 9769–9770.
[12] A.D. Rey, Liq. Cryst. 26 (1999) 913–917.
[13] A.D. Rey, Phys. Rev. E 61 (2000) 1540–1549.
[14] A.D. Rey, J. Non-Newtonian Fluid Mech. 96 (2001) 45–62.
[15] V. Popa-Nita, T.J. Sluckin, Phys. Rev. E 66 (2002) 041703.
[16] P. Yue, J.J. Feng, C. Liu, J. Shen, J. Fluid Mech. 515 (2004) 293–
[17] H. Mo, C. Zhou, W. Yu, J. Non-Newtonian Fluid Mech. 91 (200

221–232.
[18] Y. Son, K.B. Migler, Polymer 43 (2002) 3001–3006.

[19] H.S. Lee, M.M. Denn, J. Non-Newtonian Fluid Mech. 93 (2000) 315–

323.
terface Science 290 (2005) 281–288

[20] R. Yu, W. Yu, C. Zhou, J.J. Feng, J. Appl. Polym. Sci. 94 (2004) 14
1410.

[21] C. Liu, J. Shen, J.J. Feng, P. Yue, in: A. Miranville (Ed.), Mathemat
Models and Methods in Phase Transitions, Nova Publications, 20

[22] J. Lowengrub, L. Truskinovsky, Proc. R. Soc. London A 454 (19
2617–2654.

[23] D. Jacqmin, J. Comput. Phys. 155 (1999) 96–127.
[24] C. Liu, J. Shen, Physica D 179 (2003) 211–228.
[25] P.G. de Gennes, J. Prost, The Physics of Liquid Crystals, Oxford U

Press, New York, 1993.
[26] C. Liu, N.J. Walkington, SIAM J. Numer. Anal. 37 (2000) 725–741
[27] P. Yue, J.J. Feng, C. Liu, J. Shen, J. Non-Newtonian Fluid Me

(2005), in press.
[28] J. Shen, SIAM J. Sci. Comput. 16 (1995) 74–87.
[29] R.G. Larson, The Structure and Rheology of Complex Fluids, Ox

Univ. Press, New York, 1999.
[30] Q. Shen, C. Liu, M.C. Calderer, Contin. Mech. Thermodyn. 14 (20

363–375.
[31] P.L. Maffettone, M. Minale, J. Non-Newtonian Fluid Mech. 78 (199

227–241.
[32] J. Wu, P.T. Mather, in: Society of Rheology 74th Annual Meeti
Minneapolis, MN, 2002, Paper HS12.
[33] P. Yue, J.J. Feng, C. Liu, J. Shen, in preparation.


	Interfacial forces and Marangoni flow on a nematic drop retracting  in an isotropic fluid
	Introduction
	Theoretical model and numerical method
	Results and discussion
	Drop retraction and apparent interfacial tension
	True dynamic interfacial tension and Marangoni flow
	Normal force and effective interfacial tension

	Concluding remarks
	Acknowledgments
	References


