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Abstract

Nematic-isotropic interfaces exhibit novel dynamics due to anchoring of the liquid crystal molecules on the interface. The objective of this
study is to demonstrate the consequences of such dynamics in the flow field created by an elongated nematic drop retracting in an isotropic
matrix. This is accomplished by two-dimensional flow simulations using a diffuse-interface model. By exploring the coupling among bulk
liquid crystal orientation, surface anchoring and the flow field, we show that the anchoring energy plays a fundamental role in the interfacial
dynamics of nematic liquids. In particular, it gives rise to a dynamic interfacial tension that depends on the bulk orientation. Tangential
gradient of the interfacial tension drives a Marangoni flow near the nematic-isotropic interface. Besides, the anchoring energy produces an
additional normal force on the interface that, together with the interfacial tension, determines the movement of the interface. Consequently, a
nematic drop with planar anchoring retracts more slowly than a Newtonian drop, while one with homeotropic anchoring retracts faster than
a Newtonian drop. The numerical results are consistent with prior theories for interfacial rheology and experimental observations.
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1. Introduction LCP minor phase are “self-reinforcing,” and are also known
as in situ composite§3,4]. PDLC materials are made of

Nematic-isotropic interfaces occur in a variety of com- Micrometer-size droplets of a small-molecule liquid crys-
posite materials, of which liquid-crystalline polymer (LCP) ta@l embedded in a polymer binder. The optical response of
blends and polymer-dispersed liquid crystals (PDLC) are the droplets combined with the mechanical properties of the
well-known examplegl,2]. An LCP blend consists of LCP ~ Polymer make PDLC films a unique component in many

droplets dispersed in an immiscible thermoplastic matrix. €/€ctro-optical application@,5]. _ _

Under certain flow conditions, the LCP droplets may be  1hese technological advances require an understanding
stretched into thin, continuous threads which, owing to the ©f te Physics of nematic-isotropic interfaces. Perhaps the
nematic liquid-crystalline nature of the LCP, possess a high most fundamental issue is the interfacial tension. Continuum

degree of molecular alignment in the axial direction. Upon models and mean-field and atomistic calculations have pre-

solidification, these threads become fibers with exceptional ?k:ct('edt thfe galsy axis on fge'z\nterface : ntd the m?jgnltudz of
strength and modulus and will act as in situ reinforcement . e interfacial energy6—10] A somewhat more advance

for the composite material. Thus, polymer blends with an issue Is the |r_1terfa0|§1l rheolpgy, €., thgnamic co_uplmg
between the interfacial configuration and a flow field. In a

series of papers, Rejl1-14] has presented a theoretical
* Corresponding author. framework for the rheology and fluid dynamics of nematic-
E-mail addressjfeng@chml.ubc.c&J.J. Feng). isotropic interfaces. Three notable features are: (a) The inter-
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facial tension may be orientation-dependent; (b) tangential 2. Theoretical model and numerical method
gradients of the interfacial tension give rise to Marangoni
flows from regions of low anchoring energy toward regions  The difficulty of moving interface problems stems from
of high anchoring energy; and (c) the surface stress ten-the fact that the interfacial movement is naturally amenable
sor has an anisotropic elastic contribution that produces ato a Lagrangian description while the fluid flow is conven-
bending stress when the orientation deviates from the easytionally solved in an Eulerian framework. Aside from this
axis. mathematical dilemma, the flow of multi-component com-
Intriguing as Rey'’s theory is, so far it has not been used plex fluids also involves the physical problem of microstruc-
in any flow calculation. This is perhaps understandable sinceture-dependent rheology. Recently, we proposed a diffuse-
tracking a moving interface is a difficult numerical task by interface model for two-phase flows of complex fluids that
itself, and this difficulty is compounded here by the peculiar resolves both issues at or{d#]. In this model, the two com-
rheology of the nematic fluid. The only attempt at a dynamic ponents are assumed to mix in a narrow interfacial layer,
calculation appears to be that of Popa-Nita and Slufiéi across which physical properties change steeply but con-
who used a diffuse-interface model to circumvent the dif- tinuously. The interfacial position and thickness are deter-
ficulty of tracking the interface, and made drastic simplifi- mined by a phase-field variable whose evolution is governed
cation about the flow-orientation coupling at the interface. by @ mixing energy. This way, the structure of the inter-
Specifically, the director orientation is assumed to be fixed face is rooted in molecular forces and calculated from a
in space and time, uncoupled from the flow; the changes in convection—diffusion equation; there is no longer a need for
the liquid-crystalline conformation are represented solely by tracking the interface. Another advantage of our model, crit-
a scalar order parameter. Furthermore, the nematic-isotropidcal to the task at hand, is its capability of easily incorpo-
interface remains at the transition temperature with zero in- rating the rheology of microstructured fluids. As long as the
terfacial energy. This simplified picture may have captured conformation of the microstructure is describable by a free
the essential physics for their particular problem, namely the €nergy, this energy can be added to the mixing energy to
propagation and dispersion of a small-amplitude wave. But it form the total free energy of the multi-phase system. Then a
is obviously inadequate for stronger deformation of a general formal variational procedure applied to the total free energy
nematic-isotropic two-phase system as encountered, say, ifVill give rise to the proper constitutive equation for the mi-
the processing of LCP blends or PDLC films. crostructured fluids in addition to the evolution equation of

This paper represents our effort toward dynamic simula- the phase-field variable. Dissipative effects such as viscous

tion of nematic-isotropic two-phase flows. We have previ- Stresses, of course, have to be accounted for separately, e.g.

ously developed a diffuse-interface formalism for two-phase Via the standard irreversible thermodynamic procef@@g
flows of general complex fluid§L6], and will apply the Our treatment of the interface resembles'that of .Popa—N|ta
methodology to simulate an elongated nematic drop that re-and Sluckin[15]. But we allow fully dynamic coupling be-
tracts in a quiescent isotropic Newtonian fluid. Our rationale tWeen the interface, the nematic orientation and the fluid
in choosing this problem is two-fold. First, it is a relatively flow, and thus are able to carry out fluid dynamical simu-
simple flow situation that clearly illustrates the dynamic cou- ations based on continuum-level governing equations.

pling among the three major factors: the nematic orientation ~ YU€ €t al.[16] have given a detailed derivation of the
inside the drop, the surface anchoring, and the flow field Model, described its numerical implementation using a spec-
in both components. The simulation is based on a theory tral m_ethod and presgnted prel!mlnary results for validation.
that is essentially the diffuse-interface analogue of Rey's e Will only summarize the salient features here.
theory[13]. The diffuse interface being a numerical device ~ Consider an “immiscible” blend of a Newtonian liquid
(cf. Section2), ours will be the first fluid mechanical sim- @nd & nematic liquid crystal. The diffuse-interface has a
ulations incorporating the proper interfacial rheology. Not Small but nonzero thickness, inside which the two com-
surprisingly, they reproduce the three effects listed above POnents are mixed and store a mixing energy. We define
that are anticipated by Rej2,13] Second, this problem & phase-fl_eld variablep §uch that the concentrations of
is relevant to using drop retraction as a means to measure ini€ nématic and Newtonian components @re- ¢)/2 and
terfacial tension between the two compondig18) Thus, (1 —¢)/2, respectively. Them =1 in the bulk nematic

there are experimental observatida§,20] with which our ~ Phase, and = —1 in the bulk Newtonian phase. The inter-
results can be compared. We will confine our discussion face is takentobe the level set= 0. There are three types of

to nematic drops in a Newtonian matrix. The retraction of [T6€ €nergies in this system: mixing energy of the interface,

Newtonian drops in a nematic matrix has been described bulk distortion energy of the nematic, and the anchoring en-
elsewherd21] ergy of the liquid crystal molecules on the interface. For

In the next section, we will describe the theoretical model h€S€ we adopt the following forms:

and the numerical method. Secti@nwill analyze the nu- A 2, A 2 2

merical results in detail and compare them to prior work. Jmix = 5IVOI"+ 2507 = D% @)
Section4 will summarize the whole paper and point out the - (|n|%2 = 1)2
limitations of our work. Joulk = K[EV" H(Vm)' + T}

(2)
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%(n -V¢)? for planar anchoring

ZUnP|Ve? — (n- V)]
for homeotropic anchoring

©)

f anch=

In fmix, A is the mixing energy density, is the capillary
width and the ratio. /e produces the interfacial tensian
[23,24] fouk is the Frank energy with a single elastic con-
stantK, n being the director, regularized to permit defects
where|n| deviates from unity over a small region of size
[25,26] For fanch We adapt the Rapini—Popoular foff] to

our diffuse-interface formalism, witdh being the anchoring
energy density. Now we have the total free energy density
for the two-phase material:

1
£ @159, Vn) = finx + 52 fouk+ fanch @)

Following a variational procedure detailed in REf6],
one may derive the evolution equations for the configuration
variablesv, ¢ andn. Supplemented by the appropriate dis-
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boundary. In Egqs(8) and (9) we have omitted respectively
the viscous torque due to straining flow and anisotropic
viscosities. Thus, we are using a simplified version of the
Leslie-Ericksen theor{25]. These simplifications reflect a
trade-off between capturing the complete physics and nu-
merical conveniencfgl6].

We use a two-dimensional (2D) Fourier spectral method
for solving these equations, and an interested reader can find
details of the numerical algorithm in Refd.6,24,28] All
simulations are done on a regular mesh in a rectangular do-
main with periodic boundary conditions in both directions.
To enhance stability, we advance time semi-implicitly, with
the nonlinear transport terms treated explicitly while the lin-
ear terms implicitly. The algorithm is highly efficient; the
number of operations per time step scalexa®V logN),

N being the number of unknowns. We have carried out mesh
and time-step refinements to determine the adequacy of our
spatial and temporal resolutions. The interface consists in a

sipative terms, these are essentially the governing equationdayer of thickness on the order ot @cross whichp varies

familiar in the classical context,

V.v=0, 5)
v
p<§+v-Vv>=—Vp+V-a, (6)
9 2_1
% +v-V¢=y1W2[—V2¢+ &2)} )
ot €
O v Vn=yoh, (®)
ot
where the deviatoric stress tensors
1

0 =—A(VopQVep)— K%“S(Vn) -(Vn)T

— G+ u[Vv+ (Vo). 9

with G = A(n - V¢)n ® V¢ for planar anchoring an@ =

Al(n-n)V¢ — (n-V¢)n] ® V¢ for homeotropic anchoring.

The molecular fieldr arises from the free energies of the
1+¢ m2—Dn

system[25],
_ 1+¢
h_K[ V-( 5 Vn>+ > 52

with g = A(n - V¢)V¢ for planar anchoring, ang =
A[(V¢ - Vo)n — (n - Vo)V¢] for homeotropic anchoring.
The parameterg; andy» determine the relaxation time ¢f
andrn, andu is the Newtonian viscosity of both components.
We have assumed equal densities and viscosities between th
two components although the theoretical model allows mis-
matched material properti¢24].

To arrive at the Cahn—Hilliard equati@#) and the mole-
cular field in(10), we have omitted from the right-hand side
“coupling terms” betweenfmix and the nematic energies.

} +g, (10)

These are insignificant as long as the interface stays narrow.

In fact, the Cahn—Hilliard diffusive dynamics has a visible
effect only during singular events such as film rupti&é].

In the current context, the diffuse interface may be seen as
merely a numerical devicdor treating a moving internal

steeply. This layer typically requires 7-10 grid points to re-
solve; fewer points would produce spurious oscillations in
the solutior[16]. The total number of grid points is typically
1024 x 1024. For the time step, we find that the temporal
resolution is adequate as long as the simulation is stable,
and that the Courant—Friedricks—Lewy condition is a good
guideline for the stability of our semi-implicit scheme.

3. Resultsand discussion

The geometry of the problem is shownkig. 1 An el-
liptic nematic drop is suspended in a Newtonian fluid, its
semi-axes beind.g and By initially. There is zero velocity
and zero stress throughout the domain. Then the drop be-
gins to retract under the action of interfacial tension. This
roughly represents the drop retraction experiments that start
by melting a short LCP fiber sandwiched between layers of
a flexible polymer (e.g[20]). We assume that the fluids are
highly viscous and the retraction is slow so that inertia is
negligible. This is justified for the typical materials used in
experiments.

e

w

Fig. 1. Computational domain for drop retraction.
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We have simulated three cases with the drop being New- similar to Fig. 2 to illustrate the capability of the method.
tonian (baseline case), nematic wiilanar anchoring and Here we review the solutions as an introduction to the main
nematic with homeotropicanchoring. We will use the fi-  results in the next two subsections.

nal drop radiusRg = +/LoBo as the characteristic length. As mentioned in Sectioh, drop retraction is a convenient
The dimensionless geometric parameters Véire- 3.9738, method for measuring the interfacial tension between the

Lo = 1.5811 andBg = 0.6325. Using the capillary time  drop and matrix fluid§17,18] By assuming an ellipsoidal
scaleuRg/o, we make the model parameters dimension- drop shape and Newtonian rheology in both components,
lessia =1.342x 1072, 1 =4 x 107>, ¢ = 1.265x 1072, Maffettone and Minalg¢31] developed a phenomenological

8§ =6.325x 1072, K =6.708x 1072, A = 6.708x 103 and relationship between the shape relaxation of the drop and the
y2 = 10. Compared with the material constants of common interfacial tension,

liquid crystals and liquid crystal polyme[29], the anchor- 12 B2— (12 _ B?)
ing energyA is in the realistic range, while the bulk elastic - 1=0

constantk and director relaxation parametgs are about x exp[— ot 406 + 1) } (11)

an order of magnitude too large. These are used to amplify umRo (28 + 3)(198 + 16)

the novel effects brought on by the liquid crystallinity in- where R is the equilibrium drop radiusy,, is the ma-
side the drop. For planar anchoringjs initially horizontal  trix viscosity andg is the viscosity ratio between the drop
everywhere. For homeotropic anchoring, we impose a radial and the matrix. By measuring(r) and B(z), the half-length

n emanating from the center of the drop. Since the drop is and half-width of the drop, the interfacial tensiencan be
elliptic, the initial n field deviates from the easy direction calculated from curve fitting. The retraction curves for ne-
over much of the interface in both cases. The calculations matic drops inFig. 2do not obey the exponential scaling of
are in 2D, but we expect the physical insights gained here to Eq. (11). However, if we use the local slope of the curves
be relevant both to the sharp-interface thgdBj and to 3D to fit the formula, we may determine an apparent interfacial

experiment$19,20]. tensionoapp at different times. This is plotted iRig. 3 for
the three cases. The initial increaseoifpp is a numerical
3.1. Drop retraction and apparent interfacial tension artifact due to the relaxation of the imposed initialpro-

file [16]. Afterward, oapp Stays constant for the Newtonian
Fig. 2shows that the nematic drop with homeotropic an- drop, as expected. For the drop with homeotropic anchor-

choring retracts faster than the Newtonian drop while the oneing, oapp is larger on account of the faster retraction; it is
with planar anchoring is slower than the Newtonian drop. also roughly constant until the end of the retraction. In con-
Heuristically, these results can be explained in terms of the trast, the drop with planar anchoring has a lowgyp and it
anchoring energyfanch [16]. Given the initialr fields, the declinesin time.
retraction reducegancnh for homeotropic anchoring but in- Experimentally, Yu et al[20] found that the retraction
creases it for planar anchoring. The final equilibrium shape of a thermotropic LCP drop deviates from the exponential
is circular for homeotropic anchoring, with a hedgehog de- law in Eq. (11). They have determinedapp using the lo-
fect at the center. For planar anchoring, the final shape iscal slope of the retraction curves, and found that it indeed
prolate. The director field exhibits the well-knoviaipolar declines in time. Therefore, one may use the heuristic energy
configuration with two surface defects at the pd&80]. If argument to explain the experiment if the anchoring is pla-
we use smaller and more realiskcvalues, the bipolar drop  nar in the experimental drops. Unfortunately, this could not
will be nearly circular. Yue et al[16] have showed a plot  be determined for the thermotropic LCP drops in R2@)].

Visualizations on a drop of a different LCP indicate that

e this is indeed the cag82]. In addition, the interior of the
15E Newtonian drop exhibits the well-known polydomain texture, with little
14y L e osie orientational order as a who[g9]. This explains why the

experimental drops retract completely to a spherical shape
while our drop with planar anchoring does not. In the ex-
periment of Yu et al[20], the decliningoapp is probably

a combined effect offanech and the relaxation of the mi-
crodomains. Using still a different pair of polymers, Lee and
Denn[19] reported faster retraction for smaller LCP drops in
terms of a dimensionless retraction time scaled by the cap-
illary time. The authors argued that this reflects the effect
of distortional elasticity, which is prominent for drops with
sizes comparable to the domain size. This would be consis-
Fig. 2. Drop retraction: variation of the major and minor semi-axes for a t€Ntwith our results if the anchoring in the experimental drop

Newtonian drop and nematic drops with planar and homeotropic anchoring iS homeotropic. But no information is given on the anchoring
(after Ref.[16]; © Cambridge Univ. Press). in Ref.[19].
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L interface, fanch vanishes. Thenyy,e reduces to the usual in-
B terfacial tension due tgmix, which is roughly a constant
i and taken to be unity here because of our scaling. For pla-

os; nar anchoring, the directar is almost perpendicular to the
] interface at Point 1, thuganch > O there and the true inter-
o facial tensioroyye 1 iS greater than unity. At Point 2 the true

& p(Newtonian)

N - interfacial tensioroyye 2 Stays at unity becauseis always
parallel to the interface at that point, which produces zero
anchoring energy (cf. Eq3)). This clearly illustrates how
the bulk orientation field influences the interfacial tension.
By the same token, the homeotropic anchoring is satisfied
at both points inFig. 3b, andotrye 1 and oyrye 2 both remain
roughly constant at unity. The lack of temporal variation of
o in Fig. 3is coincidental because our initial conditions are
such thatfanch barely changes at the two points during the
retraction. For points between 1 anad2should vary in time.
Note that the apparent interfacial tension is always below
unity: oapp < 1, even for the Newtonian drop. This is because
the Maffettone—Minale formula is intended for three dimen-
sions, and our two-dimensional drop retracts more slowly.

When the anchoring energy varies along the interface,
the gradient of the dynamic interfacial tension drives a
Marangoni flow.Fig. 4a shows the velocity field near the
nematic drop with planar anchoring toward the end of the
retraction. The flow goes from Point 2 to Point 1, along the
gradient of the interfacial tension. For the radial configura-
tion in Fig. 4b, the Marangoni flow is negligible for lack of
a tangential gradient iayye. As far as we know, there has
cial tensiono calculated from the interfacial energy (Ed2)). (a) Bipolar been no report of eXpe”.mental observation of such nematlc
configuration; (b) homeotropic configuration. The apparent interfacial ten- Marangoni flows. In reality, we expect the Marangoni effect
sion for the Newtonian drop is also shown for comparison. to be less prominent because our elastic conskai in-

tentionally too large. For a smallds, the interior of then

To sum up this subsection, our simulations show that the field will be adapted more readily to satisfy the anchoring
retraction of nematic drops differs from that of Newtonian Ccondition andfanchwill be reduced. With strong anchoring,
drops. In terms of an apparent interfacial tensiapy, our a bipolar drop tends to develop cusp-like protrusions at the
results seem to explain the experimental observations. How-Poles in response to the surface defd8&]. The director

ever, oapp Obviously does not represent the true interfacial thus deviates from the easy axis only in a very small region
forces during retraction. at the tip. In addition, the large curvature in the region will

generate a high pressure; the pressure gradient along the in-

3.2. True dynamic interfacial tension and Marangoni flow ~térface may act to reduce the Marangoni flow. _
As mentioned in Sectiod, our theoretical model is a

interfacial energy density, varies with time as well as loca- forth [13], and our numerical results bear out the main

tion along the interface. Because our theoretical model is Predictions of Rey's sharp-interface theory. The first and
based on the free energy, itis very convenient to calculate rather obvious observation is that the interfacial tension on a

owue from the equivalent of the interfacial energy per unit Nematic-isotropic interface depends on the director orienta-

Fig. 3. The apparent interfacial tensiegyp compared with the true interfa-

area in the diffuse-interface representation, tion in the bulk. This has been shown by the discrepancy
betweenaoyye1 and oyye2 in Fig. 3a and the lack thereof

Otrue = /(fmix + fanch dh, (12) in Fig. 3b. This picture is also consistent with the Monte
Carlo simulations of Li and Denfi0] showing the effect

where the integration is performed across the interface. As of far-field orientation on the interface tension, although the
fanch may vary along the interface because of different an- form of the anchoring energy is postulated here ()
choring angles, so may the true dynamic interfacial tension but is the result of chain interactions in REf0]. Secondly,
otrue- We plot the true interfacial tension at the tip (Point 1) the tangential gradient of the interfacial tension generates
and waist (Point 2) of the drop ifig. 3 If the director a Marangoni flow from regions of lower anchoring energy
n is oriented along the easy direction everywhere on the to regions of higher energy, as anticipated by Rey’s sharp-
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interface

Fig. 5. A pillbox control-volume, of thicknegsand width/, for calculating
interfacial forcesR is the radius of curvature of the interface amdand

t are unit normal and tangential vectors. See text for the definition of the
surface forceg, f; and f,.

From the total stress tens@r= T nix + T anch W€ can cal-
culate the tangential tractiofy and the normal tractiorf,,
on the sides of the pillbox. Noting th&t¢ is parallel to the
surface normain and perpendicular to, we obtain

fi= / (t-T-t)dh= / (frmix + fanch) dh. (15)
fm=/(t-T'm)dh

:—fA(n~V¢)(t-n)(V¢-m)dh, (16)

where the integration is performed across the interface. Now
f; is the dynamic interfacial tension in E@L2). But f,, is

an additional normal force that stems from the anchoring en-
ergy. Although this force does not stretch the interface, it

nevertheless affects the retraction of the drop in a way ana-

lyzed below.
Fig. 4. Velocity field at = 29.82 near the nematic drop. (a) Bipolar config- The total force per unit area due to the interfacial energy
uration, where a Marangoni flow prevails. (b) Homeotropic configuration, is g = f(V -T)dh, andg = g - (—m) is the normal trac-
where the velocity is negligible compared with that in (a). tion pushing the drop inward. In view of the Young—Laplace

equation, we may considgrR a local “effective interfacial

interface theory11,12] The idea of the anchoring energy tension” that determines the retraction of the drheing

producing a bending stress will be discussed next. the local radius of curvaturéig. 6a plotsg R at the tip and
waist of the drop with planar anchoring. Our scaling is such

that for a Newtonian drop, the effective interfacial tension
gR = 1. The initial transient(< 1) is a numerical artifact
due to the relaxation of the initially imposegdprofile andr
field that do not happen to minimize the system’s free energy
for the initial drop shap§l6].

For the bipolar configurationgR)1 < 1 < (gR)2. This
tract with roughly the same speed as the Newtonian drop.implies tha_t co_mpared_ with a Newtonian dr(_)p, the normal

force pushing inward is stronger at the waist and weaker

This expectation is at odds witkig. 2 The reason is that : ;
besides the interfacial tension, the anchoring energy gener-at the pointed ends. As a rgsult, the nemauf: drop retracts
X more slowly than the Newtonian drop as seeRim 2 Thus,

ates anormal surface force that influences the retraction as . . : .
the apparent interfacial tensienpp estimated from the re-

\évﬁglr'ilo ggjsérzge;?]'Zgﬁ:hlzntggr;;\llez\':Itlhfﬁ]g;ff;é?g?;?cts traction curves is smaller than that of the Newtonian drop
9 P y (Fig. 3a). The further divergence 6§ R)1 and(gR)2 in time

o e e I, cases heat o tacton, anc g, b decresse wi
' ' time. The later fall ob»pptoward zero is because the bipolar

the mixing energyfmix and the anchoring energgnch (see drop fails to attain a circular shape.

also Eq9)): A similar analysis of the surface forces can be carried out
_ _ for the homeotropically anchored dropig. 6b), although
T mix = I— AV \Y% 13

mix = fmix (VP @ V). (13) the expression for the normal force will differ from HG56).
Tanch= fanchl — A(n - Vé)n @ V. (14) Forr < 12,(gR)1 > 1> (gR)2, implying that the anchoring

3.3. Normal force and effective interfacial tension

According to the true interfacial tension kig. 3, the ne-
matic drop with planar anchoring should retract faster than
the Newtonian drop owing to the larger dynamic interfacial
tensiono, while that with homeotropic anchoring should re-
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Point 1
- — — - Point2

Point 1
Point 2

an additional normal force on the interface that, together
with the interfacial tension, determines the retraction of the
drop.

A major objective of this work is to demonstrate the novel
interfacial dynamics on a nematic-isotropic interface in a
nontrivial flow. This has been accomplished; the three ef-
fects of fancnlisted above clearly substantiate the theoretical
expectations given in Sectidn Unfortunately, we know of
no experimental study that probes these effects, and can only
seek indirect corroboration in drop retraction experiments.
The numerical results seem to be consistent with the few
experimental observations, subject to the restriction that we
have not accounted for the polydomain texture. Because of
fanch One cannot define an interfacial tension as a material
constant between a nematic and an isotropic liquid, much
less measure it from the shape evolution during drop retrac-
tion.

We have to point out several limitations in our work. Re-
call that our nematic is represented by a simplified Leslie—
Ericksen theory. We have adopted a single elastic constant
and a single viscosity (cf. Eq9)). Real nematics, small-
molecule and polymeric ones alike, exhibit anisotropic elas-

ticity and viscosities that would introduce additional com-
plications in the retraction of the nematic drop. Even the full
O R S R S Leslie-Ericksen theory fails to represent polymeric hemat-
0 t ics and defect-laden texturf9]. In addition, the parameter

(b) values are chosen not to represent certain real liquid crys-
tals but to highlight the novel physical effects. Furthermore,
the simulation is in two dimensions, where the retraction oc-
curs more slowly than in three dimensions as noted in the
discussions. As a consequence of these simplifications, the
numerical results cannot quantitatively predict experiments.
Rather, we expect the physical principles uncovered here to

Fig. 6. The effective interfacial tensignR at the waist (Point 1) and pole
(Paint 2) of the drop, wherg is the total normal traction pushing inward,
and R is the local radius of curvature calculated by assuming an elliptic
drop. (a) Planar anchoring; (b) homeotropic anchoring.

energy will make the retraction go faster than for the New- e ’ - 4
tonian drop. This explainkig. 2as well as the higherapp carry over qualitatively to reality. Work is under way to in-

in Fig. 3. Fors > 13, (¢R), exceeds(gR); slightly. The corporate the full Leslie-Ericksen theory and simulate drop

retraction of the homeotropic drop is thus hampered toward rtraction in an axisymmetric geometry.
the end, consistent with the fall efppin Fig. 3b.

We conclude this section by noting that the normal force
f,x corresponds to the bending stress in the sharp-interface” cknowledgments
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