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Two-phase systems of microstructured complex fluids are an important class of
engineering materials. Their flow behaviour is interesting because of the coupling
among three disparate length scales: molecular or supra-molecular conformation
inside each component, mesoscopic interfacial morphology and macroscopic
hydrodynamics. In this paper, we propose a diffuse-interface approach to simulating
the flow of such materials. The diffuse-interface model circumvents certain numerical
difficulties in tracking the interface in the classical sharp-interface description. More
importantly, our energy-based variational formalism makes it possible to incorporate
complex rheology easily, as long as it is due to the evolution of a microstructure
describable by a free energy. Thus, complex rheology and interfacial dynamics are
treated in a unified framework. An additional advantage of our model is that the
energy law of the system guarantees the existence of a solution. We will outline the
general approach for any two-phase complex fluids, and then present, as an example,
a detailed formulation for an emulsion of nematic drops in a Newtonian matrix. Using
spectral discretizations, we compute shear-induced deformation, head-on collision and
coalescence of drops where the matrix and drop phases are Newtonian or viscoelastic
Oldroyd-B fluids. Numerical results are compared with previous studies as a validation
of the theoretical model and numerical code. Finally, we simulate the retraction of an
extended nematic drop in a Newtonian matrix as a method for measuring interfacial
tension.

1. Introduction
Complex fluids are those with internal microstructures whose evolution affects

the macroscopic dynamics of the material, especially the rheology. Examples include
polymer solutions and melts, liquid crystals, gels, suspensions, emulsions and micellar
solutions (Larson 1999). Such materials often have great practical utility since the mi-
crostructure can be manipulated via processing the flow to produce useful mechanical,
optical or thermal properties. An important way of utilizing complex fluids is through
composites. By blending two immiscible components together, one may derive novel
or enhanced properties from the composite, and this is often a more economical
route to new materials than synthesis. Moreover, the properties of composites may
be tuned to suit a particular application by varying the composition, concentration
and, most importantly, the phase morphology. Perhaps the most important of such
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composites are polymer blends (Utracki 1990). Under optimal processing conditions,
the dispersed phase is stretched into a fibrillar morphology. Upon solidification, the
long fibres act as in situ reinforcement and impart great strength to the composite.
The effect is particularly strong if the fibrillar phase is a liquid-crystalline polymer
(LCP) (National Research Council 1991). Another example is polymer-dispersed
liquid crystals (PDLCs), with liquid crystal droplets embedded in a polymer matrix,
which have shown great potential in electro-optical applications (West 1990).

From a fundamental viewpoint, such composites are extremely interesting. They
feature dynamic coupling of three disparate length scales: molecular or supra-
molecular conformation inside each component, mesoscopic interfacial morphology
and macroscopic hydrodynamics. The complexity of such materials has for the most
part prohibited theoretical and numerical analysis. The main difficulty is the moving
and deforming interface between the two components. The material thus has myriad
internal boundaries. Traditional fluid dynamics treats these as sharp interfaces on
which matching conditions must be imposed. This leads to an almost intractable
theoretical problem. A secondary difficulty is that the rheology of each component
alone is highly complex, with the internal microstructure coupled with the flow field.

A conceptually straightforward way of handling the moving interfaces is to employ
a mesh that has grid points on the interfaces, and deforms according to the flow
on both sides of the boundary. This has been implemented in boundary integral
and boundary element methods (Cristini, Blawzdziewicz & Loewenberg 1998; Toose,
Geurts & Kuerten 1995; Khayat 2000), finite-element methods (Hu, Patankar & Zhu
2001; Ambravaneswaran, Wilkes & Basaran 2002; Hooper et al. 2001a , b; Kim &
Han 2001) and a finite-difference method (Ramaswamy & Leal 1999a , b). Keeping
track of the moving mesh entails a large computational overhead. Furthermore, large
displacement of internal domains causes mesh entanglement as happens, say, when
one drop overtakes another. Typically, a remeshing scheme is activated, introducing
interpolation error as well as additional computational cost. Most importantly,
the moving-mesh methods cannot handle singular morphological changes such as
breakup, coalescence and reconnection; the sharp interface formulation breaks down
in such events. Thus, these methods have been limited mostly to single drops
undergoing relatively mild deformations.

As an alternative, fixed-grid methods that regularize the interface have been highly
successful in treating deforming interfaces. These include the volume-of-fluid (VOF)
method (Li & Renardy 2000a), the front-tracking method (Unverdi & Tryggvason
1992) and the level-set method (Chang et al. 1996). Instead of formulating the flow of
two domains separated by an interface, these methods represent the interfacial tension
as a body force or bulk stress spread over a narrow region covering the interface. Then
a single set of governing equations can be written over the entire domain, and solved
on a fixed grid in a purely Eulerian framework. So far, the application of these methods
has been mostly limited to Newtonian fluids. The only departure from Newtonian
rheology appears to be an effort to introduce a yield stress to the continuous phase
(Li & Renardy 2000b). See Sethian & Smereka (2003) for an insightful comparison
of these methods.

The diffuse-interface model can be viewed as a physically motivated level-set
method. Instead of choosing an artificial smoothing function for the interface, which
affects the results in non-trivial ways if the radius of interfacial curvature approaches
that of the interfacial thickness (Lowengrub & Truskinovsky 1998), the diffuse-
interface model describes the interface by a mixing energy. This idea can be traced
to van der Waals (1892), and is the foundation for the phase-field theory for phase
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transition and critical phenomena (Hohenberg & Halperin 1977). Thus, the structure
of the interface is determined by molecular forces; the tendencies for mixing and
demixing are balanced through the non-local mixing energy. When the capillary
width approaches zero, the diffuse-interface model becomes identical to a sharp-
interface level-set formulation. It also reduces properly to the classical sharp-interface
model.

Notwithstanding its physical root, we use the diffuse-interface method mainly as
a numerical technique for handling morphological changes of the interfaces. The
main attraction for us is its capability to easily incorporate the complex rheology
of microstructured fluids. This is by virtue of its energy-based variational formalism.
The conformation of the microstructure is often governed by a free energy, e.g. the
Frank distortion energy for a liquid crystal or the free energy of a polymer chain. This
can be added to the mixing energy to form the total free energy of the multi-phase
system. Then the formal variational procedure applied on the total free energy will
give rise to the proper constitutive equation for the microstructured fluids in addition
to the evolution equation of the phase field variable. Thus, interfacial dynamics and
complex rheology are included in a unified theoretical framework. Dissipative effects
such as viscous stresses, of course, have to be accounted for separately, e.g. via the
standard irreversible thermodynamic procedure (Lowengrub & Truskinovsky 1998) or
by including Brownian motion in Hamilton’s principle (Peskin 1985; Gliklikh 1997).

An additional advantage of the diffuse-interface method over other interface-
regularizing methods is its energy conservation. Lin & Liu (1995, 2000) have rigorously
proved that this ensures the existence of classical and finite-dimensional weak solutions
for the system, the latter including numerical approximations by, e.g., finite-element
and spectral methods. In VOF simulations, density is the labelling function subjected
to smoothing. The level-set method renormalizes the distance function. In either case,
the conservation of energy cannot be maintained. When the geometry is simple and
the solution is smooth, non-conservation of energy usually does not compromise the
quality of the solution. But difficulties may arise in the presence of rapid spatial
variations, which are characteristic of microstructured fluids with internal boundaries
and/or defects (Larson 1999).

As alluded to before, the key idea behind the diffuse-interface method is rather
an old one. It has found extensive use in studies of critical phenomena such as
phase separation (Hohenberg & Halperin 1977). Among those the most relevant
to our work is perhaps Lapeña et al. (1999), who calculated different scenarios of
phase separation when a mixture of flexible and rigid molecules is quenched below
the critical point. Typically fluid flow is excluded from such studies. On the other
hand, the diffuse-interface model has been developed as a tool for two-phase flows
of Newtonian fluids (Anderson, McFadden & Wheeler 1998). For instance, Jacqmin
(1999, 2000) simulated Rayleigh–Taylor instability, capillary waves and contact-line
dynamics; Verschueren, van de Vosse & Meijer (2001) investigated thermocapillary
flow instability in a Hele-Shaw cell; Badalassi, Ceniceros & Banerjee (2003) simulated
phase separation under shear; and Liu & Shen (2003) studied bubble relaxation, rise
and coalescence. Against this backdrop, the contribution of this paper is to put forth a
formalism that systematically incorporates complex fluid rheology as well as interfacial
dynamics. We view this work as the first step in developing the diffuse-interface idea
into a unique CFD tool for multi-phase and multi-component complex fluids. The
main objective here is to demonstrate the methodology and validate the numerical
schemes by comparing with known results. Detailed exploration of new physics is
deferred to a later study.
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2. Theoretical and numerical models
The conservative dynamics of the diffuse-interface model can be formulated in the

classical procedure of Lagrangian mechanics (Lowengrub & Truskinovsky 1998; Liu &
Shen 2003). The starting point is the Lagrangian L = T − F , where T and F are the
kinetic and potential energies of the system. The least-action principle requires that the
action integral I =

∫
L dt be stationary under variations of ‘paths’. This will lead to

a momentum equation, with elastic stresses arising from the microstructural changes
described by F , and evolution equations for the field variables whose momenta
are included in T . The dissipative part of the dynamics is commonly derived via
irreversible thermodynamics (de Groot & Mazur 1962). The entropy production is
expressed as a sum of products of pairs of forces and fluxes, which are then made to
be proportional to each other to yield the usual linear constitutive laws for viscous
dissipation (Newtonian viscous stress), heat conduction (Fourier’s law), mass diffusion
(Fick’s law), etc. Dissipations can also be accounted for through stochastic effects in
the variational procedure (Peskin 1985; Gliklikh 1997).

It is the generality of this procedure, especially in accommodating microstructured
fluids via the free energy F , that has made the diffuse-interface method our choice
for tackling interfacial problems of complex fluids. Conceivably, any complex fluid
with a properly defined free energy can be included in this formulation. In this paper,
we will be dealing with two kinds: a viscoelastic fluid characterized by the Oldroyd-B
model (Bird, Armstrong & Hassager 1987a), and a nematic liquid crystal described
by a regularized Leslie–Ericksen model (Liu & Walkington 2000). The latter also
introduces the issue of surface anchoring. In the following, we will derive the model
equations for an immiscible blend of a nematic and a Newtonian fluid. Both are
assumed to be incompressible and have the same density. The formulation for a blend
of Oldroyd-B and Newtonian fluids is much simpler, and the key elements will be given
before model validation in § 3.1. The issue of non-equal densities and non-solenoidal
velocity will be briefly discussed at the end of § 2.4. Since the variational procedure for
the least-action principle has been given before (Lowengrub & Truskinovsky 1998;
Liu & Shen 2003), our focus will be on the non-Newtonian rheology.

2.1. Free energies

In an immiscible blend of a nematic liquid crystal and a Newtonian fluid, there are
three types of free energy: mixing energy of the interface, bulk distortion energy of
the nematic, and the anchoring energy of the liquid crystal molecules on the interface.

Mixing energy. In the diffuse-interface picture, the interface has a small but finite
thickness, inside which the two components are mixed and store a mixing energy. We
introduce a phase-field variable φ such that the concentration of the two components
is (1+φ)/2 and (1 − φ)/2, respectively. Following Cahn & Hilliard (1958), we express
the mixing-energy density as a function of φ and its gradient:

fmix(φ, ∇φ) = 1
2
λ|∇φ|2 + f0(φ). (1)

If we use a double-well potential for f0

f0 =
λ

4ε2
(φ2 − 1)2, (2)

then the physical meaning of equation (1) becomes apparent. The bulk energy f0

prefers total separation of the phases into domains of the pure components (φ = ±1).
This ‘phobic’ effect produces the classical sharp-interface picture. The gradient
term represents weakly non-local interactions between the components that prefers
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complete mixing (a ‘philic’ effect). The profile of φ across the interface is determined by
the competition between the two effects. λ is the magnitude of the mixing energy, while
ε is a capillary width representative of the thickness of interface. Note the connection
of equations (1), (2) to the Flory–Huggins–de Gennes mixing energy (de Gennes 1980).

Bulk distortion energy. The nematic has rod-like molecules whose orientation can
be represented by a unit vector n(x) known as the director. When the director field is
not uniform, the nematic has a Frank distortion energy (de Gennes & Prost 1993):

fbulk = 1
2
K1(∇ · n)2 + 1

2
K2(n · ∇ × n)2 + 1

2
K3(n × ∇ × n)2, (3)

where K1, K2, K3 are elastic constants for the three canonical types of
orientational distortion: splay, twist and bend. We will adopt the customary one-
constant approximation: K = K1 = K2 = K3, so that the Frank energy simplifies to
fbulk = 1

2
K∇n : (∇n)T. A serious flaw of the Frank theory is its inability to describe

defects, i.e. singular points in the n(x) field. Liu & Walkington (2000) circumvented
this difficulty by allowing a non-unity director whose length indicates the order
parameter. Thus, the regularized Frank elastic energy becomes

fbulk = K

[
1
2
∇n : (∇n)T +

(|n|2 − 1)2

4δ2

]
, (4)

which will be used in our work. The second term on the right-hand side serves as
a penalty whose minimization is simply the Ginzburg–Landau approximation of the
constraint |n| =1 for small δ. The advantage of this regularized formulation is that the
energy is now bounded for orientational defects, which are non-singular points where
|n| =0. This makes the numerical treatment much easier. Note that the regularization
is based on the same idea as in Cahn–Hilliard’s mixing energy. It is also related to
Ericksen’s (1991) theory of uniaxial nematics with a variable order parameter.

Anchoring energy. Depending on the chemistry of the two components, the rod-like
molecules of the nematic phase prefer to be oriented on the interface in a certain
direction known as the easy direction. The anchoring energy is a measure of the
penalty for deviating from the easy direction, which may occur as a result, for
example, of flow, bulk distortion or an external field. The two most common types of
anchoring are planar anchoring, where all directions in the plane of the interface are
easy directions, and homeotropic anchoring, where the easy direction is the normal
to the interface.

In the classical sharp-interface picture, the anchoring energy is a surface energy
(Rapini & Popoular 1969). In our diffuse-interface model, however, we write it as a
volumetric energy density in the same vein as the mixing energy:

fanch = 1
2
A(n · ∇φ)2 (5)

for planar anchoring, and

fanch = 1
2
A[|n|2|∇φ|2 − (n · ∇φ)2] (6)

for homeotropic anchoring. In these two equations, the positive parameter A indicates
the strength of the anchoring.

Finally, the total free energy density for the two-phase material is written as

f (φ, n, ∇φ, ∇n) = fmix + 1
2
(1 + φ)fbulk + fanch (7)

where 1
2
(1 + φ) is the volume fraction of the nematic component, and φ =1 in the

purely nematic phase. This energy is equivalent to that of Rey (2000), and contains
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all the physics discussed there, including a Marangoni force along isotropic–nematic
interfaces.

2.2. Interfacial tension and capillary width

Since the mixing energy fmix represents molecular interaction between the two phases,
the classical concept of interfacial tension should be contained in it. We will derive
a relationship between the parameters in equation (1) and an interfacial tension σ .
This not only indicates the connection to the sharp-interface limit, but also gives us
a rule for translating our parameters into the sharp-interface ones for comparison.

Consider a one-dimensional interface. We require that the diffuse mixing energy in
the region be equal to the traditional surface energy:

σ = λ

∫ +∞

−∞

{
1

2

(
dφ

dx

)2

+ f0(φ)

}
dx. (8)

Let us further assume that the diffuse interface is at equilibrium, and thus has zero
chemical potential,

δFmix

δφ
= λ

{
−d2φ

dx2
+ f ′

0(φ)

}
= 0. (9)

Since f0(±∞) = 0 and dφ/dx|x=±∞ = 0, this equation can be integrated once to give

1

2

(
dφ

dx

)2

= f0(φ), (10)

which implies equal partition of the free energy between the two terms at equilibrium.
Equation (10) can be solved together with the boundary condition φ(0) = 0, and we

obtain the equilibrium profile for φ(x):

φ(x) = tanh

(
x√
2ε

)
. (11)

Thus, the capillary width ε is a measure of the thickness of the diffuse interface.
More specifically, 90% of variation in φ occurs over a thickness of 4.1641ε, while
99% of the variation corresponds to a thickness of 7.4859ε. Note that the φ-profile
in equation (11) gives the absolute minimum of the free energy, which also has
many local minima corresponding to a family of periodic profiles (Mauri, Shinnar &
Triantafyllou 1996).

Substituting equation (11) into equation (8), we arrive at the following matching
condition for the interfacial tension σ :

σ =
2
√

2

3

λ

ε
. (12)

Our derivation is similar to that of Jacqmin (1999), except that he starts from the
stress rather than the energy. As the interfacial thickness ε shrinks toward zero, so
should the energy density parameter λ; their ratio gives the interfacial tension in the
sharp-interface limit. A formal proof of the diffuse-interface model converging to the
conventional Navier–Stokes system with sharp interfaces can be found in, e.g., Liu &
Shen (2003).

If the diffuse interface is not at equilibrium but is relaxing according to an evolution
equation (cf. equation (23) below), one obviously cannot speak of a constant interfacial
tension. Although this may seem to be a deficiency of the diffuse-interface model, it
in fact reflects the reality that the interface has its own dynamics which cannot be
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embodied by a constant σ except under limiting conditions. To anticipate the results
in § 3.3, we note that fanch may also contribute to the surface energy, thus giving
rise to an anisotropic ‘interfacial tension’ that is not encompassed by the traditional
version of the concept.

2.3. Stress tensor

Given the free energy of a system, an elastic stress tensor can be derived from the
least-action principle. We will use a somewhat different version of the variational
procedure, sometimes called the virtual work principle (Doi & Edwards 1986; Feng,
Sgalari & Leal 2000), which operates on the potential energy only and is therefore
more concise. For a volume Ω of our two-phase material, the total free energy is

F =

∫
Ω

f (φ, n, ∇φ, ∇n) dΩ. (13)

Now we impose a virtual displacement δx = vδt on the material in Ω , and consider
the variation of F . In this process, φ and n are convected with the material point
with no diffusion effect, i.e. δφ = 0, δn = 0. Noting that δ(·) = (∂(·)/∂t)δt + δx · ∇(·) is
associated with the material derivative, we can derive the following identities:

δ(∇φ) = −∇(δx) · ∇φ, (14)

δ(∇n) = −∇(δx) · ∇n. (15)

Now the variation of F can be calculated:

δF =

∫
Ω

δf dΩ

=

∫
Ω

[
∂f

∂φ
δφ +

∂f

∂n
· δn +

∂f

∂∇φ
· δ(∇φ) +

∂f

∂∇n
: δ(∇n)T

]
dΩ

=

∫
Ω

[
− ∂f

∂∇φ
⊗ ∇φ − ∂f

∂∇n
· (∇n)T

]
: ∇δxT dΩ, (16)

which, according to the virtual work principle, implies the following elastic stress
tensor:

σ e = − ∂f

∂∇φ
⊗ ∇φ − ∂f

∂∇n
· (∇n)T. (17)

The above procedure uses ∇ · δx =0 but does not explicitly subject the variation to
the constraint of incompressibility: J = |∂x/∂ X | = 1, x and X being the current and
a previous configuration of the material. To be rigorous, therefore, we need to do the
variation on a new functional F ′ =F +

∫
Ω
λ′(J − 1) dX, with a Lagrange multiplier

λ′(X). The extra term leads to an isotropic stress which can be absorbed into the
pressure in the momentum equation. Thus, the elastic stress in equation (17) remains
valid. Inserting equation (7) into equation (17), we arrive at the following elastic stress
tensor:

σ e = −λ(∇φ ⊗ ∇φ) − K 1
2
(1 + φ) (∇n) · (∇n)T − G, (18)

where G = A(n · ∇φ)n⊗∇φ for planar anchoring and G = A[(n · n)∇φ−(n · ∇φ)n]⊗∇φ

for homeotropic anchoring. Note that the asymmetry of G reflects the fact that
surface anchoring exerts a net torque on the fluid. Bulk distortion will give rise to
an asymmetric stress as well if the elastic constants are unequal (de Gennes & Prost
1993).
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Aside from the elastic stress, there is also a viscous stress tensor. For a nematic
liquid, the viscous stress is anisotropic in general and depends on the orientation of
n. For simplicity, we have used a Newtonian viscous stress in both components:

σ v = µ[∇v + (∇vT )]. (19)

The viscosity µ may be different in the two phases. For numerical convenience, we
have only computed equal-viscosity cases in this paper. As the main objective of this
work is to demonstrate the methodology, the physical consequences of an anisotropic
viscous stress will be explored in a later study. Finally, the total stress tensor σ is
simply the sum of the elastic stress σ e and the viscous stress σ v .

2.4. Governing equations

The general procedure for deriving the governing equations from the least-action
principle has been outlined in Lowengrub & Truskinovsky (1998) and Liu & Shen
(2003). In the following, therefore, we will simply list the equations for our particular
case, with some remarks on the dissipative effects. For our model system of a blend
of a nematic and a Newtonian fluid, the field variables are velocity v, pressure p,
phase function φ and director n. We write the continuity and momentum equations
in the usual form:

∇ · v = 0, (20)

ρ

(
∂v

∂t
+ v · ∇v

)
= −∇p + ∇ · σ , (21)

where σ is the deviatoric stress tensor. For complex fluids, fluid inertia is often
negligible. Among the three problems to be simulated in § 3, we retain inertia only
for the drop coalescence problem in § 3.2.

Cahn–Hilliard equation. Based on the free energy in equation (7), a generalized
chemical potential can be defined as δF/δφ. If one assumes a generalized Fick’s law
that the mass flux be proportional to the gradient of the chemical potential, the
Cahn–Hilliard equation is obtained as an evolution equation for φ (Cahn & Hilliard
1959):

∂φ

∂t
+ v · ∇φ = ∇ ·

[
γ1 ∇

(
δF

δφ

)]
(22)

where γ1 is the mobility, taken to be a constant in this paper.
The diffusion term on the right-hand side has contributions from all three forms of

free energy. In our calculations, we intend to approximate the sharp-interface limit,
where the interface is driven entirely by advection. For simplicity, we neglect fbulk and
fanch and retain only the mixing energy fmix to produce the interface structure:

∂φ

∂t
+ v · ∇φ = γ1λ∇2

[
−∇2φ +

φ(φ2 − 1)

ε2

]
. (23)

The parameter γ1λ determines the relaxation time of the interface, and has to be
chosen judiciously. Jacqmin (1999) has summarized the physical considerations that
should go into choosing an interfacial relaxation time: “the straining flows can thin
or thicken the interface and this must be resisted by a high enough diffusion. On the
other hand, too large a diffusion will overly damp the flow.”

In some of the problems discussed in § 3, periodic boundary conditions are used on
the outer boundary. If the problem is aperiodic along a certain coordinate, as is the
case for the shear flow simulations, we adopt the follow boundary conditions for the
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relevant boundary segments (Jacqmin 1999):

∇
(

δFmix

δφ

)
· m = 0, (24)

∂fmix

∂(∇φ)
· m = 0, (25)

where m is the normal of the boundary. The first is a no-flux condition as δFmix/δφ

is the generalized chemical potential. The second is a natural boundary condition
required by the variational procedure. Using equations (1) and (2), the boundary
conditions become simply

∂φ

∂m
= 0, (26)

∂

∂m
(∇2φ) = 0. (27)

Director equation. The rotation of n is determined by the balance between a
viscous torque and an elastic torque. The latter, also known as the molecular field
(de Gennes & Prost 1993), arises from the free energies of the system:

h = −δF

δn
= K

[
−∇ ·

(
1
2
(1 + φ)∇n

)
+ 1

2
(1 + φ)

(n2 − 1)n
δ2

]
+ g, (28)

where g = A(n · ∇φ)∇φ for planar anchoring, and g = A[(∇φ · ∇φ)n − (n · ∇φ)∇φ] for
homeotropic anchoring. Now the evolution equation of n is written as

∂n
∂t

+ v · ∇n = γ2h, (29)

where the constant γ2 determines the relaxation time of the director field.
Equations (18), (19) and (29) represent a simplified version of the Leslie–Ericksen

theory (de Gennes & Prost 1993). Part of the viscous torque due to straining flow is
omitted from equation (29), as are anisotropic viscous terms from the viscous stress
tensor (equation (19)). The rationale for leaving out these dissipative terms is two-fold.
First, the conservative dynamics dictates the trend in the system’s evolution, while
dissipation plays the secondary role of slowing down the process. Second, neglecting
these terms brings about considerable savings in computation. If retained, they would
couple the momentum equation closely with the director evolution, and entail iteration
among the equations at every time step. If we omit these terms, the system can be
solved semi-implicitly without iterations. Obviously, quantitatively accurate results
require the full theory, which presents numerical complications but no conceptual
difficulty (Lin & Liu 2000).

Equations (20), (21), (23) and (29) form the complete set of equations governing
the evolution of the nematic–Newtonian two-phase system.

In this paper, we assume that the two phases have the same constant density, with
negligible volume change upon mixing. Thus, the mixture is incompressible with a
solenoidal velocity. In general, however, the diffuse-interface method is not restricted
to equal-density components. When the two phases have differing densities, one
approach is to view the mixture as a compressible fluid with ∇ · v �= 0 in the mixing
layer, where v is a mass-averaged velocity (Lowengrub & Truskinovsky 1998). As
an alternative, Liu & Shen (2003) have proposed a picture in which the components
mix by advection only without diffusion. Thus, the velocity at a spatial point is
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defined as that of the component occupying that point; it is spatially continuous
and remains solenoidal. An inhomogeneous average density is established from the
initial condition, which is later transported by the velocity field. Finally, if the density
difference is small, the Boussinesq approximation can be employed (Liu & Shen 2003).

2.5. Energy conservation

A solution to the above governing equations obeys an energy law. For example,
multiplying equation (21) by the velocity v, equation (22) by the chemical potential
δF/δφ and equation (29) by the molecular field δF/δn, integrating over the entire
domain and summing the results, we obtain

d

dt

∫
Ω

(
1
2
ρ|v|2 + f

)
dΩ = −

∫
Ω

(
µ∇v : ∇vT + γ1

∣∣∣∣∇δF

δφ

∣∣∣∣
2

+ γ2

∣∣∣∣δFδn

∣∣∣∣
2
)

dΩ, (30)

where f is the system’s potential energy density (cf. equation (7)), and surface work
has been omitted. Physically, the law states that the total energy of the system
(excluding thermal energy) will decrease from internal dissipation. Based on such
energy laws, Lin & Liu (1995, 2000) have established the existence of classical and
weak solutions for Leslie–Ericksen fluids. In general, energy laws play an important
role in the convergence of finite-dimensional approximations to partial differential
equations, especially when the solution is not smooth (Liu & Walkington 2000). This
constitutes one of the advantages of our method over previous methods that do not
maintain the system’s total energy budget.

For complex fluids, the energy estimate usually involves second-order derivatives
of the microstructural conformation. This causes some difficulties for Galerkin finite
elements, which Liu & Walkington (2000, 2002) have resolved by employing Hermite
elements and later a more efficient mixed method. In this paper, we use the spectral
method whose differentiable test functions avoid this complication. The trade-off is
the limitation to relatively simple geometries and some special care in handling the
boundary conditions.

2.6. Numerical scheme

In this paper, spectral methods are used to discretize the governing equations in
two-dimensional rectangular domains. To enhance stability, we advance time semi-
implicitly, with the nonlinear transport terms treated explicitly and the linear terms
implicitly. Filters are sometimes employed to suppress spurious oscillations in the
solution. To reduce the computational cost, the nonlinear terms are evaluated by
Orszag’s pseudospectral transform method (Canuto et al. 1987).

If periodic boundary conditions apply in both directions, we use the Fourier
spectral method. A second-order backward difference formula (BDF) is used for the
time derivatives and a second-order Adams–Bashforth (AB) scheme is used for the
explicit treatment of nonlinear transport terms. Details of this second-order BDF/AB
formulation can be found in Chen & Shen (1998). If we have periodic boundary
conditions in one direction but aperiodic boundary conditions in the other, we use
a Fourier spectral method along the former coordinate and a Chebyshev–Galerkin
method along the latter, with a first-order BDF for the time derivatives. The base
functions and direct solvers of the Chebyshev–Galerkin method have been described
by Shen (1995) for Dirichlet and Neumann boundary conditions.

In the second case, aperiodicity calls for the boundary conditions in equations (26)
and (27), the latter being neither Dirichlet nor Neumann. To impose them, we split the
Cahn–Hilliard equation into two Helmholtz equations to which Neumann boundary
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conditions apply as in Shen (1995). The time-discretized form of equation (23) is

φn+1 − φn

	t
+ (v · ∇φ)n = γ1λ∇2

[(
−∇2φ +

sφ

ε2

)n+1

+

(
(φ2 − 1 − s)φ

ε2

)n
]
, (31)

where the positive number s biases the scheme toward implicitness and enhances its
stability. This equation can then be decomposed into two Helmholtz equations:(

α +
s

ε2

)
ψ − ∇2ψ =

1

γ1λ

[
− φ

	t
+ v · ∇φ − γ1λ∇

(
(φ2 − 1 − s)φ

ε2

)]n

, (32)

(−αφ − ∇2φ)n+1 = −ψ, (33)

with boundary conditions ∂φ/∂m = 0 and ∂ψ/∂m = 0, m being the normal to the
boundary. The parameter

α = − s

2ε2

(
1 −

√
1 − 4ε2

γ1λs2	t

)
,

such that φn+1 cancels from equation (32) and ψ can be computed explicitly from
φn. A real α requires s � 2ε2/

√
γ1λ	t , and we have used s = min(2ε2/

√
γ1λ	t, 2) in

the calculations. If the fluid inertia is negligible, as is the case in § 3.1 and § 3.3, we
advance all the dynamic equations in time, update the elastic stress and then calculate
the velocity from the momentum (Stokes) equation.

Both the Fourier and Chebyshev methods utilize fast Fourier transform (FFT),
which makes the computation very efficient. The computational complexity is quasi-
optimal in the sense that the number of operations per time step is of O(N log N),
N being the number of unknowns. On 750 MHz Sparc-v9 processors, the two-
dimensional problems to be discussed in the next section typically take about 1 minute
of CPU time every time step on a grid with adequate spatial resolution (1024 × 1024
or 2048 × 1024). Our meshing scheme is straightforward, with uniform mesh in a
periodic direction and the Chebyshev–Gauss–Lobatto mesh in an aperiodic direction.
The latter is convenient for implementing the Chebyshev discretization. As will be
seen later, this simple meshing strategy is not optimal for resolving the interfaces, and
a more sophisticated adaptive scheme is being developed.

For all the simulations reported in § 3, we have carried out grid and time-step
refinements to ensure convergence. If we take 4.1641ε to be a nominal interfacial
thickness (cf. equation (11)), this layer typically requires 7–10 grids to resolve. Coarser
grids will generate spurious oscillations in the solution, especially in the vicinity of
the interface. For the time step, we find the Courant–Friedricks–Lewy condition a
useful guideline. In all cases tested, the temporal resolution is adequate as long as the
simulation is stable.

An interesting numerical effect that is worth mentioning is the initial ‘shift’ of the
φ-field. As an initial condition, we impose the hypertangential φ profile at the interface
(equation (11)), with φ = ±1 in the two bulk phases. On commencing the simulation,
however, we notice a very small shift in φ such that the interface φ =0 shrinks slightly,
and φ deviates from ±1 slightly in the bulk. Physically, the interface tends to shrink to
reduce the mixing energy. Since

∫
Ω

φ dΩ is conserved by the Cahn–Hilliard equation
with the zero-flux boundary condition (equation (26)), the shrinking interface causes
the bulk φ value to change, incurring a bulk energy penalty through the energy f0

(equation (2)). The competition between the two effects results in a slightly relaxed
φ-field that has a lower energy than our initial condition. For a circular drop of
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Figure 1. Schematic of the computational domain for a drop deforming in shear flow.

radius r , the shift in the bulk value of φ can be calculated: dφ =
√

2ε/6r . We choose
our ε so that dφ is around 0.5%. Although this effect is insignificant in terms of the
accuracy of the results, it nicely illustrates the relationship between interfacial and
bulk properties that is at the heart of the diffuse-interface formulation.

3. Numerical results
This section has two objectives. First, by solving problems with previously published

solutions, we seek to validate our theoretical and numerical schemes by comparison.
Second, we will apply the diffuse-interface model to previously unsolved problems,
and give some indications on the capability of our toolkit for interfacial flows of
complex fluids. Comprehensive exploration of new physics will be carried out in
future work.

We will report simulations on three problems: drop deformation in shear flows,
head-on collision between two drops, and retraction of a nematic drop in a quiescent
matrix. The first two problems are mainly intended to serve the first purpose, while the
last problem addresses interesting questions raised by recent experiments on measuring
interfacial tension between a liquid-crystalline polymer and a flexible polymer.

3.1. Drop deformation in shear flows

Flow-induced drop deformation is a well-researched problem. Earlier studies dealt
with the situation where both the drop and the matrix phases are Newtonian viscous
fluids. Rallison (1984) reviewed asymptotic solutions, boundary integral calculations
and experiments. Stone (1994) surveyed newer results on drop breakup and the effects
of surfactants. More recently, two- and three-dimensional numerical solutions have
been obtained using boundary-integral (Zhou & Pozrikidis 1993; Cristini et al. 1998),
boundary-element (Toose et al. 1995; Hooper et al. 2001a), finite-element (Kim &
Han 2001; Ambravaneswaran et al. 2002), finite-difference (Ramaswamy & Leal
1999a), VOF (Li & Renardy 2000a) and level-set methods (Pillapakkam & Singh
2001), for Newtonian and viscoelastic liquids. Since our code is limited to two
dimensions at present, we have chosen as benchmarks Zhou & Pozrikidis’ (1993)
boundary-integral calculation of a Newtonian–Newtonian system and Pillapakkam &
Singh’s (2001) level-set simulation of a Newtonian drop in an Oldroyd-B matrix.

Newtonian drop deforming in a Newtonian matrix. A schematic of the computational
domain is shown in figure 1. The geometric setup is the same as in Zhou & Pozrikidis
(1993), with a [2πH × 2H ] computational domain. The drop sits at the centre; it
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Figure 2. Comparison of the steady-state deformation of a Newtonian drop in a Newtonian
matrix between our results and those in Zhou & Pozrikidis (1993).

is initially circular with a radius a = H/4. The shear rate is κ , and the drop and
matrix phases have the same viscosity µ. Fluid inertia is neglected. We use H as
the characteristic length and the inverse shear rate 1/κ as the characteristic time.
In dimensionless terms, we have chosen a capillary width ε = 0.01 and a mobility
γ1 = 10−4. The interfacial tension σ is determined from equation (12); λ is varied to
achieve different values of the capillary number defined by

Ca =
µaκ

σ
. (34)

Note that Zhou & Pozrikidis’ definition of Ca differs from ours by a factor of 4,
and we have converted theirs in making the comparison. We have done numerical
experiments to ensure that a time step 	t = 1 × 10−3 and grid numbers 2048 × 1024
offer adequate temporal and spatial resolution. In terms of the drop deformation,
doubling or halving 	t brings about less than 0.2% of relative change. Halving the
grid number in each direction causes less than 0.09% of change.

Figure 2 illustrates the steady-state deformation of the drop for several capillary
numbers, in terms of a deformation parameter D defined as D = (L − B)/(L + B),
L and B being the drop’s half-length and half-width, respectively. The agreement
between the sharp-interface and diffuse-interface results is excellent; the maximum
difference in the steady-state value of D is within 4%. The history of deformation
D(t) is also in good agreement between the two studies.

Viscoelastic drop deforming in a Newtonian matrix. Pillapakkam & Singh (2001) used
the level-set method to calculate the deformation of a two-dimensional Newtonian
drop in a simple shear of an Oldroyd-B fluid. To incorporate the Oldroyd-B rheology
into our scheme, we consider the viscoelastic fluid as a dilute suspension of polymer
molecules, each represented by a Hookean dumbbell (Bird et al. 1987b). Given the
configuration distribution function Ψ ( Q, x, t), where Q is the connector vector of the
dumbbell, the free energy of a single molecule can be written as

fp(Ψ ) = kT Ψ ln(Ψ ) + 1
2
KH ( Q · Q), (35)

where k is the Boltzmann constant, T is the temperature and KH is the spring constant
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Figure 3. Transient deformation of a Newtonian drop in an Oldroyd-B fluid undergoing shear
flow. Ca =0.24, De= 0.4, ε = 0.01. (a) Comparison with the result of Pillapakkam & Singh
(2001): the significance of instantaneous matching of the interfacial tension. (b) Effects of the
interfacial mobility γ1 for a fixed λ.

of the Hookean dumbbell. Then the extra free energy due to the dumbbells in the
Oldroyd-B/Newtonian two-phase system is

F =

∫
Ω

[
1
2
(1 + φ)n

∫
R3

fp d Q
]

dΩ, (36)

where n is the number density of dumbbells in the Oldroyd-B fluid, and φ = 1 for the
Oldroyd-B matrix phase.

Incorporating this extra free energy into the variation procedure outlined in the
last section, we readily derive an extra stress tensor for the Oldroyd-B/Newtonian
two-phase system:

σ p = 1
2
(1 + φ)n(−kT I + KH 〈 Q Q〉) = 1

2
(1 + φ)τp, (37)

where 〈 · 〉 =
∫

R3 · Ψ d Q, and I is the identity tensor. The polymer stress τp is identical
to that derived in kinetic theory (Bird et al. 1987b), and it obeys the upper-convected
Maxwell equation

τp + λHτp(1) = µp [∇v + (∇v)T], (38)

in which the subscript (1) denotes the upper convected derivative

A(1) =
∂ A
∂t

+ v · ∇A − (∇v)T · A − A · ∇v,

λH is the time constant for Hookean dumbbells, and µp is a polymer viscosity.
With the stress tensor properly formulated, the other governing equations – the

Cahn–Hilliard equation, the continuity and momentum equations – are the same
as the Newtonian–Newtonian case. The parameters in Pillapakkam & Singh (2001)
are: Ca = 0.24, De= 0.4, Re = 0.0003, a/H = 0.2, µp = µs = µd , where De = λHκ is the
Deborah number, and µp , µs and µd are the polymer and solvent viscosity in the
matrix and the Newtonian drop viscosity. We use the same parameters except that
Re= 0. In the following, time is scaled by 1/κ .

Figure 3(a) compares our results with that of Pillapakkam & Singh (2001). The solid
curve uses a fixed λ value determined by equation (12) to match the surface tension.



A diffuse-interface method for two-phase complex fluids 307

The drop deformation is about 13% below that of Pillapakkam & Singh (2001). This
turns out to be a consequence of interfacial relaxation. Recall that equation (12) is
derived for the equilibrium φ profile across a one-dimensional interface, which may
not be the equilibrium φ for a circular drop. Furthermore, as the drop deforms,
the interfacial φ profile is disturbed as well. In this case, the deviation from the
hyperbolic tangent φ in equation (11) amounts to an overall increase in the mixing
energy per unit interfacial length. Thus, with a fixed λ, the ‘effective interfacial tension’
of our diffuse interface increases with drop deformation, thereby inhibiting the latter.
To minimize this effect, one should reduce the interfacial thickness and therefore
suppress the role of interfacial relaxation. With our simple meshing scheme (cf. § 2.6),
however, this would entail a great increase of grid numbers and computational cost.
As an alternative, we have experimented with a correction scheme that adjusts the λ
value at each time step so the total mixing energy at that moment matches the target
surface tension:

σS =

∫
Ω

λ

{
|∇φ|2

2
+

1

4ε2
(φ2 − 1)2

}
dΩ, (39)

where S is the circumference of the interface, and can be evaluated by integration along
the contour of φ = 0. The correction brings the maximum difference from the result of
Pillapakkam & Singh (2001) from 13% down to 3% in figure 3(a). This confirms our
conjecture that interfacial relaxation causes an elevated ‘effective interfacial tension’
and suppresses drop deformation. Another manifestation of interfacial relaxation is
that after attaining maximum deformation, D decreases slightly, causing the curve to
sag toward the end. This is due to a relaxation of the drop shape toward a circle that
accompanies the relaxation of the interfacial φ-profile. We have also examined the
role of interfacial relaxation in the Newtonian case (figure 2). Adjusting λ according
to equation (39) leads to a mere 4% change in the steady-state D. The reason for the
weaker effect is that the capillary width ε is smaller relative to the drop size in that
case.

A related issue is the effect of the interfacial mobility parameter γ1 (cf. equation (22)).
With decreasing γ1, interfacial relaxation becomes slower. The flow will thin or thicken
the interface at different locations, driving it far from equilibrium. This exacerbates
the uncertainty in matching the surface tension. But slower interfacial relaxation also
delays the sagging of the D-curves. The overall effect of decreasing γ1 is a slight
increase in drop deformation (figure 3b). For large values of γ1, on the other hand,
interfacial diffusion is fast and the interface is almost always near its equilibrium state.
The trade-off is that the dissipation will damp the flow near the interface (Jacqmin
1999). This may affect the quality of the solution, especially near critical events such
as interface rupture and reconnection. Note also that there are situations where the
interfacial relaxation itself is of interest (Warren & Boettinger 1995). Then γ1 should
be chosen by the corresponding physical criterion.

When simulating large-scale problems with complex interfaces, the correction
scheme of equation (39) will be impractical, and one has to resolve the interface
well with a large number of grid points inside a narrow region. This is a fundamental
challenge with the phase-field representation (Sethian & Smereka 2003). Recently,
Biben et al. (2003) presented an interesting alternative for suppressing the effects of
interfacial relaxation. By removing the curvature-driven diffusion from the phase-
field equation and adding the interfacial tension to the momentum equation as
a smoothed δ-function, this advected-field approach integrates the level-set and
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Figure 4. Computational domain for head-on collision between Newtonian drops. The
initial separation is d = 1.5D.

phase-field ideas. In our context, however, this would undo the advantages of the
energy-based formalism.

3.2. Head-on collision between two drops

We use the head-on collision and coalescence of two identical Newtonian drops in
a Newtonian medium to demonstrate the ability of our method to handle singular
topological changes. Nobari, Jan & Tryggvason (1996) solved a similar problem
using the front-tracking method, where coalescence is effected by artificially rupturing
the film at a prescribed time. We use a two-dimensional rectangular computational
domain shown in figure 4, with periodic boundary conditions in both directions.
Initially, two stationary drops of diameter D are separated by a centre-to-centre
distance d . Then a body force f is applied to move the drops toward each other.
When the drop velocity attains a prescribed value U/2, f is turned off. Carried on
by inertia, the two drops collide and coalesce. The setup of the problem mimics
that of Nobari et al. (1996), except that their geometry is axisymmetric while ours
is two-dimensional. We further assume that the drop and matrix phase have the
same viscosity and density so as to simplify the solution procedure. These differences
preclude quantitative comparison with Nobari et al. (1996), but the simulation still
affords us an opportunity to test the capability of the diffuse-interface method for
simulating film drainage and rupture.

The dimensionless momentum equation is written as

∂v

∂t
+ v · ∇v = −∇p +

1

Re
∇2v − 3ε

2
√

2

1

We
∇ · (∇φ ⊗ ∇φ) + f , (40)

where the characteristic length is D, the characteristic velocity U is the relative velocity
between the drops when the body force f is turned off, and the characteristic time is
D/U . Re and We are the Reynolds and Weber numbers, respectively. The coefficient
before the interface stress term comes from matching our parameters λ and ε to the
classic interfacial tension σ by equation (12).

Figure 5 shows the collision and coalescence of two drops for the following para-
meters: Re= 33.6, We =12, ε = 0.01 and the Cahn–Hilliard mobility γ1 = 3.365 × 10−5.
The body force f = (−4.44sign(x) 1

2
(1 + φ), 0) is turned on at t = 0 and off at t =0.336.

The simulation was carried out on a 2048 × 1024 grid with time step 	t = 3.365 ×
10−4; we have tested different time steps and mesh sizes to ensure adequate resolution.
As in Yang et al. (2001), we can divide the process into three stages: drop transport
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Figure 5. Collision and coalescence of two drops. Re= 33.6, We= 12. The magnified and
rotated view at t = 2.416 shows the dimpled interface prior to film rupture.

(0 < t < 1.342), film drainage (1.342 < t < 2.416) and coalescence (t > 2.416). A notable
feature is the well-known dimpled shape of the interface before film rupture at
t = 2.416. After film rupture, a filament of the matrix fluid is trapped inside the
coalescing drops. These features qualitatively agree with prior experimental and
theoretical results (Chuang & Flumerfelt 1997; Yang et al. 2001). The subsequent
breakup of the filament (2.517 < t < 2.769) resembles the ‘end-pinching’ scenario
described by Stone & Leal (1989), but cannot be a capillary effect since this is in two
dimensions. Numerical experiments show that it is caused by the stretching flow due
to the expansion of the waist of the compound drop. The general shape of the drops
during collision is similar to the result of Nobari et al. (1996). Since their drops are
much denser than the matrix and carry more momentum, the drop deformation is
more severe than in our case. But the main difference between the two studies is the
treatment of coalescence. By removing the film separating the drops artificially, Nobari
et al. (1996) do not trap the matrix fluid. The subsequent dynamics of the new drop
depends to some extent on the timing of the artificial rupture. Our method eliminates
the need for such a device. The breakage and reconnection of the interfaces occur
naturally from the Cahn–Hilliard dynamics (cf. equation (23)). In reality, the rupture
of the interface is a result of the attractive van der Waals forces between the molecules
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Figure 6. Computational domain for drop retraction. W = 2πb, a = 2.5b.

of the two drops. This type of molecular interaction is what the Cahn–Hilliard mixing
energy represents. Thus, the coalescence simulated using the diffuse-interface model
has captured, to some extent, the true physics of the process.

3.3. Retraction of a nematic drop in a quiescent medium

Drop retraction is a popular method for measuring the interfacial tension between the
drop and matrix fluids (Mo, Zhou & Yu 2000; Son & Yoon 2001). The basis of this
measurement is the relationship between the evolution of the drop shape and the in-
terfacial tension. Various formulae have been developed by assuming Newtonian rhe-
ology in both the drop and the matrix phases. For instance, a phenomenological model
due to Maffettone & Minale (1998) describes the retraction of an ellipsoidal drop by

L2 − B2 = (L2 − B2)t=0 exp

[
− σ

µmR0

40(β + 1)

(2β + 3)(19β + 16)
t

]
, (41)

where R0 is the equilibrium drop radius, µm is the matrix viscosity and β is the viscosity
ratio between the drop and the matrix. By measuring L(t) and B(t), the half-length
and half-width of the drop, σ can be calculated from curve fitting. For some two-phase
systems, equation (41) has been shown to give fairly good results (Mo et al. 2000).
For a thermotropic liquid crystalline polymer (TLCP) drop retracting in a flexible
polymer matrix, however, Yu et al. (2004) found that the drop size deviates from the
exponential law. If equation (41) is applied to fit the slope of ln(L2 −B2) versus time at
each data point, an apparent interfacial tension is obtained which declines with time.
This seems to contradict the idea that the interfacial tension is a material constant.

Our aim in this sub-section is to investigate this phenomenon by numerical simul-
ations, and present some preliminary insights revealed by the numerical results.
Although the calculations are in two dimensions, we expect these physical insights
to be relevant to the three-dimensional experiments. As in previous theoretical and
numerical calculations, we assume the retraction is slow and the fluids are highly
viscous so as to render inertia negligible.

The computational domain is shown in figure 6. We use periodic boundary condition
for both directions and discretize the equations using a Fourier spectral method. Three
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Figure 7. Retraction of a Newtonian drop and nematic drops with planar and homeotropic
anchoring: variation of the semi-axes during retraction.

cases have been simulated, with the drop being Newtonian (baseline case), nematic
with planar anchoring and nematic with homeotropic anchoring. The matrix fluid is
always Newtonian, and the viscosity ratio is taken to be unity for simplicity. Initially,
the drop is elliptic with semi-axes a = 2.5b and b = W/(2π). We will use the final drop
radius R0 as the characteristic length. Then in dimensionless terms, W = 3.974 and
initially a = 1.581, b = 0.6325. If we use the capillary time scale µmR0/σ , the other
dimensionless parameters have the following values: λ= 1.342 × 10−2, γ1 = 4 × 10−5,
ε = 1.265 × 10−2, δ =6.325 × 10−2, K = 6.708 × 10−2, A= 6.708 × 10−3 and γ2 = 10.
Compared with the material constants of common liquid crystals and liquid crystal
polymers (Larson 1999), the anchoring energy A is in the realistic range, while the
bulk elastic constant K and director relaxation parameter γ2 are about an order of
magnitude too large. These are used to amplify the novel effects induced by the liquid
crystallinity inside the drop. For planar anchoring, n is initially horizontal everywhere.
For homeotropic anchoring, we impose a radial n emanating from the centre of the
drop. Since the drop is elliptic, the initial n-field deviates from the easy direction over
much of the interface in both cases.

Figure 7 shows that the retraction occurs at different speeds for the three cases.
The nematic drop with homeotropic anchoring retracts fastest while that with planar
anchoring retracts slowest. This can be easily understood in terms of the anchoring
energy. Given the initial n-fields, the retraction reduces the anchoring energy for
homeotropic anchoring but increases it for planar anchoring. In addition, the final
equilibrium shape is circular for the Newtonian drop and the nematic drop with
homeotropic anchoring, but is prolate for the nematic drop with planar anchoring.
To understand this difference, we plot the equilibrium director fields inside the drops
in figure 8. With homeotropic anchoring, a purely radial n-field coupled with a
circular shape minimizes the mixing energy fmix and anchoring energy fanch, at the
expense of the bulk distortion energy fbulk. A defect of strength +1 resides at the
centre of the drop. With planar anchoring, on the other hand, there is a direct
competition between fmix and fanch + fbulk. The former favours a circular shape while
the latter tends to elongate the drop so as to respect the tangential easy direction
on the interface. The equilibrium shape results from a compromise between them.
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(a) (b)

Figure 8. Director field inside the nematic drop at equilibrium. (a) A bipolar configuration
with planar anchoring; (b) a radial configuration with homeotropic anchoring. For clarity, the
director is plotted every 8 grid points in each direction.
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Figure 9. Retraction of a Newtonian drop and nematic drops with planar and homeotropic
anchoring: ln(L2 − B2) ∼ t curves used for fitting the Maffettone–Minale formula.

The bipolar configuration in figure 8(a), with two surface defects at the poles, is
well-known in the liquid crystal literature (West 1990). The prolate equilibrium shape
has been observed in the simulations of Lapeña et al. (1999) and the calculations
of Huang & Tuthill (1994) and Calderer & Shen (2002). We have tested weaker K

values representative of real materials; the prolateness of the bipolar drop is much
reduced.

Figure 9 plots the ln(L2 − B2) ∼ t curves for the three drops. According to the
Maffettone–Minale model, the Newtonian drop should follow a straight line, which
is indeed the case in our simulation except for the initial moments of the retraction.
This is interesting since equation (41) is derived for a three-dimensional drop while
ours is two-dimensional. The homeotropic drop follows a straight line as well, but
with a steeper slope than the Newtonian drop. The drop with planar anchoring starts
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Figure 10. Temporal evolution of the apparent interfacial tension calculated from the slope
of the curves in figure 9 using the Maffettone–Minale formula.

with a milder slope, and levels off toward the end of the retraction as it fails to attain
a circular shape. If we still use the Maffettone–Minale model to calculate an apparent
interfacial tension σa from the slope of the curves, it will vary in time as shown in
figure 10.

In all three cases, σa rises at the beginning as the initially imposed hypertangential
φ-profile relaxes. After the initial transient, σa remains essentially constant for the
Newtonian drop. Our scaling is such that if the Maffettone–Minale model applies
perfectly, σa should be unity. The lower value in figure 10 for the Newtonian drop
reflects the fact that a drop retracts more slowly in two than in three dimensions. The
nematic drop with homeotropic anchoring exhibits a large σa thanks to fanch, which
in this case favours a circular drop and assists the retraction. For the nematic drop
with planar anchoring, however, σa experiences a rapid decline that is reminiscent
of the experiment of Yu et al. (2004). To explore its origin, we use the stress field
to calculate the surface force along the interface, which allows us to define a ‘true
interfacial tension’ using the local curvature of the interface. This true interfacial
tension exhibits a remarkable anisotropy, i.e. disparity between the poles and the
equator of the drop. It is mainly the mounting penalty in the anchoring energy fanch

at the poles that resists retraction of the drop and gives rise to the sharp decline
in σa . This is visually intuitive; it is at the poles that the retraction causes the
most conflict between surface anchoring and bulk orientation, producing the surface
defects. Compared with the Newtonian curve, fanch is responsible for the generally
lower value of σa and its asymptote toward zero as the drop approaches a non-circular
final shape. The role of fanch in the dynamic interfacial tension as revealed here is
consistent with Rey’s (2000) theory on sharp nematic interfaces.

The declining σa in figure 10 bears a clear similarity to the experimental results of
Yu et al. (2004), and one is tempted to attribute this to an energy fanch for planar
anchoring. Polarized microscopy does indicate planar anchoring on the surface of
a TLCP drop in a flexible polymer matrix (Wu & Mather 2002). One caveat has
to be mentioned, however. The experimental drops are tens of microns in size, and
contain a multitude of domains (Wu & Mather 2002). Inside each domain, n may
be more or less uniform. But among the domains, the preferred orientation may
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be rather random. This explains why experimentally the TLCP drops always retract
to spheres instead of prolate spheroids. Nevertheless, the fundamental mechanism
uncovered by the simulations, namely the planar anchoring producing a declining
apparent interfacial tension, should have played a major role in the experiments.

4. Concluding remarks
In this paper, we derive a diffuse-interface formulation for computing interfacial

flows of complex fluids such as the Oldroyd-B fluid and nematic liquid crystals.
The formulation is applied to several problems to demonstrate its accuracy and
efficiency, its potential in exploring complex physics, as well as its limitations. Besides
its capability in handling large interfacial morphological changes, the method enjoys
two unique advantages: the ease with which a wide range of complex rheology
can be accommodated, and the conservation of energy which guarantees numerical
convergence. Both stem from the underlying variational framework.

The rationale of using a diffuse-interface model instead of the classical sharp-
interface model can be viewed from two different angles. The former can be seen as a
numerical regularization of the latter, with the purpose of approximating the sharp-
interface limit. Conversely, we may think of the diffuse interface as representing
physical reality, and regard the sharp interface as a mathematical abstraction
analogous to the concept of a shock wave. Such arguments are more than mere phi-
losophical exercises; they bear directly on the choice of parameters and the
interpretation of results. For instance, figure 3(a) reveals the subtlety in matching
the diffuse-interface parameters to the conventional surface tension. On the one hand,
we recognize that making the interface thinner reduces the degree of uncertainty. On
the other hand, we may also view the surface tension as a convenient replacement
for the more complex interfacial dynamics that occur in reality. The same dichotomy
applies when comparing sharp-interface and diffuse-interface results.

We have also highlighted the special challenges in diffuse-interface models, the
foremost being the need to resolve the interface adequately. The interfacial thickness
in the simulations presented here is typically much larger than realistic values. This
results from our need to resolve the interface while keeping the computational cost
manageable. As a tradeoff, we have to deal with numerical issues such as the ‘shift of
φ’ and the choice of the interfacial relaxation parameters (Jacqmin 1999). In ongoing
work, we are developing an adaptive meshing strategy that aims to enhance the
resolution of the interface and essentially eliminates the artificial numerical effects.
Thus, on the whole, we conclude that the diffuse-interface model can be a powerful
tool for simulating multiphase flows of complex fluids.
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REFERENCES

Ambravaneswaran, B., Wilkes, E. D. & Basaran, O. A. 2002 Drop formation from a capillary tube:
Comparison of one-dimensional and two-dimensional analyses and occurrence of satellite
drops. Phys. Fluids 14, 2606–2621.



A diffuse-interface method for two-phase complex fluids 315

Anderson, D. M., McFadden, G. B. & Wheeler, A. A. 1998 Diffuse-interface methods in fluid
mechanics. Annu. Rev. Fluid Mech. 30, 139–165.

Badalassi, V. E., Ceniceros, H. D. & Banerjee, S. 2003 Computation of multiphase systems with
phase field model. J. Comput. Phys. 190, 371–397.

Biben, T., Misbah, C., Leyrat, A. & Verdier, C. 2003 An advected-field approach to the dynamics
of fluid interfaces. Europhys. Lett. 63, 623–629.

Bird, R. B., Armstrong, R. C. & Hassager, O. 1987a Dynamics of Polymeric Liquids, Vol. 1. Fluid
Mechanics. Wiley.

Bird, R. B., Curtiss, D. F., Armstrong, R. C. & Hassager, O. 1987b Dynamics of Polymeric
Liquids, Vol. 2. Kinetic Theory. Wiley.

Cahn, J. W. & Hilliard, J. E. 1958 Free energy of a nonuniform system. I. Interfacial free energy.
J. Chem. Phys. 28, 258–267.

Cahn, J. W. & Hilliard, J. E. 1959 Free energy of a nonuniform system. III. Nucleation in a
two-component incompressible fluid. J. Chem. Phys. 31, 688–699.

Calderer, M. C. & Shen, Q. 2002 Axisymmetric configurations of bipolar liquid crystal droplets.
Continuum Mech. Thermodyn. 14, 363–375.

Canuto, C., Hussaini, M. Y., Quarteroni, A. & Zang, T. A. 1987 Spectral Methods in Fluid
Dynamics. Springer.

Chang, Y. C., Hou, T. Y., Merriman, B. & Osher, S. 1996 A level set formulation of Eulerian
interface capturing methods for incompressible fluid flows. J. Comput. Phys. 124, 449–464.

Chen, L. Q. & Shen, J. 1998 Applications of semi-implicit Fourier-spectral method to phase field
equations. Comput. Phys. Commun. 108, 147–158.

Chuang, T.-K. & Flumerfelt, R. W. 1997 Dual optical monitoring of axisymmetric thin aqueous
film drainage. Rev. Sci. Instrum. 68, 3839–3842.

Cristini, V., Blawzdziewicz, J. & Loewenberg, M. 1998 Drop breakup in three-dimensional
viscous flows. Phys. Fluids 10, 1781–1783.

Doi, M. & Edwards, S. F. 1986 The Theory of Polymer Dynamics. Oxford University Press.

Ericksen, J. L. 1991 Liquid crystals with variable degree of orientation. Arch. Rat. Mech. Anal. 113
97–120.

Feng, J., Sgalari, G. & Leal, L. G. 2000 A theory for flowing nematic polymers with orientational
distortion. J. Rheol. 44, 1085–1101.

de Gennes, P. G. 1980 Dynamics of fluctuations and spinodal decomposition in polymer blends.
J. Chem. Phys. 72, 4756–4763.

de Gennes, P. G. & Prost, J. 1993 The Physics of Liquid Crystals, 2nd Edn, Oxford University Press.

Gliklikh, Y. 1997 Global Analysis in Mathematical Physics: Geometric and Stochastic Methods.
Springer.

de Groot, S. R. & Mazur, P. 1962 Nonequilibrium Thermodynamics. North-Holland.

Hohenberg, P. C. & Halperin, B. I. 1977 Theory of dynamic critical phenomena. Rev. Mod. Phys.
49, 435–479.

Hooper R., Toose, M., Macosko, C. W. & Derby, J. J. 2001a A comparison of boundary
element and finite element methods for modeling axisymmetric polymeric drop deformation.
Intl. J. Numer. Meth. Fluids 37, 837–864.

Hooper R. W., de Almeida V. F., Macosko C. W. & Derby J. J. 2001b Transient polymeric
drop extension and retraction in uniaxial extensional flows. J. Non-Newtonian Fluid Mech. 98,
141–168.

Hu, H. H., Patankar, N. A. & Zhu, M. Y. 2001 Direct numerical simulations of fluid-solid systems
using the arbitrary Lagrangian-Eulerian technique. J. Comput. Phys. 169, 427–462.

Huang, W. & Tuthill, G. F. 1994 Structure and shape of nematic liquid-crystal microdroplets.
Phys. Rev. E 49, 570–574.

Jacqmin, D. 1999 Calculation of two-phase Navier-Stokes flows using phase-field modelling.
J. Comput. Phys. 155, 96–127.

Jacqmin, D. 2000 Contact-line dynamics of a diffuse fluid interface. J. Fluid. Mech. 402, 57–88.

Khayat, R. E. 2000 Three-dimensional boundary-element analysis of drop deformation for
Newtonian and viscoelastic systems. Intl J. Numer. Meth. Fluids 34, 241–275.

Kim, S. J. & Han, C. D. 2001 Finite element analysis of axisymmetric creeping motion of a
deformable non-Newtonian drop in the entrance region of a cylindrical tube. J. Rheol. 45,
1279–1303.



316 P. Yue, J. J. Feng, C. Liu and J. Shen

Lapeña, A. M., Glotzer, S. C., Langer, S. A. & Liu, A. J. 1999 Effect of ordering on spinodal
decomposition of liquid-crystal/polymer mixtures. Phys. Rev. E 60, R29–R32.

Larson, R. G. 1999 The Structure and Rheology of Complex Fluids. Oxford University Press.

Li, J. & Renardy, Y. 2000a Numerical study of flows of two immiscible liquids at low Reynolds
number. SIAM Rev. 42, 417–439.

Li, J. & Renardy, Y. 2000b Shear-induced rupturing of a viscous drop in a Bingham liquid.
J. Non-Newtonian Fluid Mech. 95, 235–251.

Lin, F. H. & Liu, C. 1995 Nonparabolic dissipative systems, modeling the flow of liquid crystals.
Commun. Pure Appl. Maths 48, 501–537.

Lin, F. H. & Liu, C. 2000 Existence of solutions for the Ericksen-Leslie system. Arch. Rat. Mech.
Anal. 154, 135–156.

Liu, C. & Shen, J. 2003 A phase field model for the mixture of two incompressible fluids and its
approximation by a Fourier-spectral method. Physica D 179, 211–228.

Liu, C. & Walkington, N. J. 2000 Approximation of liquid crystal flows. SIAM J. Numer. Anal.
37, 725–741.

Liu, C. & Walkington, N. J. 2002 Mixed methods for the approximation of liquid crystal flows.
Math. Modeling Numer. Anal. 36, 205–222.

Lowengrub, J. & Truskinovsky, L. 1998 Quasi-incompressible Cahn-Hilliard fluids and topological
transitions. Proc. R. Soc. Lond. A 454, 2617–2654.

Maffettone, P. L. & Minale, M. 1998 Equation of change for ellipsoidal drops in viscous flow.
J. Non-Newtonian Fluid Mech. 78, 227–241.

Mauri, R., Shinnar, R. & Triantafyllou, G. 1996 Spinodal decomposition in binary mixtures.
Phys. Rev. E 53, 2613–2623.

Mo, H., Zhou, C. & Yu, W. 2000 A new method to determine interfacial tension from the retraction
of ellipsoidal drops. J. Non-Newtonian Fluid Mech. 91, 221–232.

National Research Council 1991 Liquid Crystalline Polymers. Washington, DC.

Nobari, M. R., Jan, Y.-J. & Tryggvason, G. 1996 Head-on collision of drops—a numerical
investigation. Phys. Fluids 8, 29–42.

Peskin, C. S. 1985 A random-walk interpretation of the incompressible Navier-Stokes equations.
Commun. Pure Appl. Maths 38, 845–852.

Pillapakkam, S. B. & Singh, P. 2001 A level-set method for computing solutions to viscoelastic
two-phase flow. J. Comput. Phys. 174, 552–578.

Rallison, J. M. 1984 The deformation of small viscous drops and bubbles in shear flows. Annu.
Rev. Fluid Mech. 16, 45–66.

Ramaswamy, S. & Leal, L. G. 1999a The deformation of a viscoelastic drop subjected to steady
uniaxial extensional flow of a Newtonian fluid. J. Non-Newtonian Fluid Mech. 85, 127–163.

Ramaswamy, S. & Leal, L. G. 1999b The deformation of a Newtonian drop in the uniaxial
extensional flow of a viscoelastic liquid J. Non-Newtonian Fluid Mech. 88, 149–172.

Rapini, A. & Popoular, M. 1969 Distortion d’une lamelle nematique sous champ magnetique
conditions d’ancrage aux parois. J. Phys. Paris C 30, 54–56.

Rey, A. D. 2000 Viscoelastic theory for nematic interfaces. Phys. Rev. E 61, 1540–1549.

Sethian, J. A. & Smereka, P. 2003 Level set methods for fluid interfaces. Annu. Rev. Fluid Mech.
35, 341–372.

Shen, J. 1995 Efficient spectral-Galerkin method. II. Direct solvers of second and fourth order
equations by using Chebyshev polynomials. SIAM J. Sci. Comput. 16, 74–87.

Son, Y. & Yoon, J. T. 2001 Measurement of interfacial tension by a deformed drop retraction
method. Polymer 42, 7209–7213.

Stone, H. A. 1994 Dynamics of drop deformation and breakup in viscous fluids. Annu. Rev. Fluid
Mech. 26, 65–102.

Stone, H. A. & Leal, L. G. 1989 Relaxation and breakup of an initially extended drop in an
otherwise quiescent fluid. J. Fluid Mech. 198, 399–427.

Toose, E. M., Geurts, B. J. & Kuerten, J. G. M. 1995 A boundary integral method for two-
dimensional (non)-Newtonian drops in slow viscous flow. J. Non-Newtonian Fluid Mech. 60,
129–154.

Unverdi, S. O. & Tryggvason, G. 1992 A front-tracking method for viscous, incompressible,
multi-fluid flows. J. Comput. Phys. 100, 25–37.

Utracki, L. A. 1990 Polymer Alloys and Blends. Hanser.



A diffuse-interface method for two-phase complex fluids 317

Verschueren, M., van de Vosse, F. N. & Meijer, H. E. H. 2001 Diffuse-interface modelling of
thermocapillary flow instabilities in a Hele-Shaw cell. J. Fluid Mech. 434, 153–166.

van der Waals, J. D. 1892 The thermodynamic theory of capillarity under the hypothesis of a
continuous variation of density. Verhandel Konink. Akad. Weten. Amsterdam, (Sect. 1) 1 (no. 8),
1–56 (in Dutch). Translation by J. S. Rowlingson, J. Statist. Phys. 20 (1979), 197–244.

Warren, J. A. & Boettinger, W. J. 1995 Prediction of dendritic growth and microsegregation
patterns in a binary alloy using the phase-field method. Acta Metall. Mater. 43, 689–703.

West, J. L. 1990 Polymer-dispersed liquid crystals. In Liquid-Crystalline Polymers, ACS Symp. Ser.
435 (ed. R. A. Weiss & C. K. Ober), Chap. 32.

Wu, J. & Mather, P. T. 2002 Interfacial tension in an immiscible blend containing a thermotropic
liquid-crystalline polymer. Paper HS12, Society of Rheology 74th Annual Meeting, Minneapolis,
MN, USA.

Yang, H., Park, C. C., Hu, Y. T. & Leal, L. G. 2001 The coalescence of two equal-sized drops in
a two-dimensional linear flow. Phys. Fluids 13, 1087–1106.

Yu, R., Yu, W., Zhou, C. & Feng, J. J. 2004 Dynamic interfacial properties between a flexible
isotropic polymer and a TLCP investigated by an ellipsoidal drop retraction method. J. Appl.
Polymer Sci. (accepted).

Zhou, H. & Pozrikidis, C. 1993 The flow of suspensions in channels: Single files of drops. Phys.
Fluids A 5, 311–324.


