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Abstract. When one approximates elliptic equations by the spectral collocation method on the
Chebyshev-Gauss-Lobatto (CGL) grid, the resulting coefficient matrix is dense and ill-conditioned.
It is known that a good preconditioner, in the sense that the preconditioned system becomes well
conditioned, can be constructed with finite difference on the CGL grid. However, there is a lack
of an efficient solver for this preconditioner in multi-dimension. A modified preconditioner based
on the approximate inverse technique is constructed in this paper. The computational cost of
each iteration in solving the preconditioned system is O(ℓNxNy logNx), where Nx, Ny are the
grid sizes in each direction and ℓ is a small integer. Numerical examples are given to demonstrate
the efficiency of the proposed preconditioner.
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approximate inverse.

1. Introduction

We consider a two-dimensional separable elliptic equation

(1) −
∂

∂x

(

a(x)
∂u

∂x

)

−
∂

∂y

(

b(y)
∂u

∂y

)

+ c(x)d(y)u(x, y) = f(x, y) in Ω = (−1, 1)2

with homogeneous Dirichlet boundary conditions

u = 0 on ∂Ω,

where the coefficient functions a(x), b(y), c(x), d(y) and f(x, y) are continuous, and
0 < α ≤ a(x), b(y) ≤ β in Ω for some positive constants α and β, and c(x)d(y) ≥ 0.

A very efficient accurate method for obtaining approximate solution of the above
boundary-value problem is the Chebyshev collocation method [3, 4, 7, 9, 11, 12],
which uses the Lagrange nodal basis functions based on the Chebyshev collocation
points. However, due to the global nature of the Lagrange basis polynomials, the
associated linear systems are dense and ill-conditioned. Thus it becomes prohibitive
to use a direct inversion method or an iterative method without preconditioning in
the multi-dimensional case, so it is imperative to use an iterative method with a
good preconditioner.

Finite element/finite difference preconditioners have been widely used since the
original work by Orszag [9]. Haldenwang et al. [5] proved that the finite differ-
ence method based on the Chebyshev collocation points in the one-dimensional
case leads to a good preconditioner. The properties of the finite element/finite
difference preconditioners in the two-dimensional case were rigorously established
by Kim and Parter [6, 7]. Thus, the application of the Krylov subspace methods
[1], such as generalized minimal residual method (GMRES), leads to an iterative
solver converging to the algebraic solution within a constant number of steps that
depends on the required accuracy, but not on the number of unknowns.
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However, such a preconditioned method requires solving the preconditioner sys-
tem, i.e., solving the finite element/finite difference system on the spectral colloca-
tion points. How to efficiently apply the preconditioners is a challenging problem
since the grid formed by spectral collocation points, containing long-thin elements,
is not shape-regular. We note that Shen et al. [13] developed a finite element multi-
grid preconditioner for the second-order elliptic equations. In this paper, we seek
to develop an approximate preconditioner by exploring the algebraic properties of
the finite difference preconditioner.

It is obvious that the two-dimensional finite difference preconditioner is a non-
symmetric block tridiagonal matrix. Approximating this matrix to construct a new
efficient preconditioner is a natural idea. In [8], Ng and Pan proposed an approxi-
mate inverse method to modify circulant-plus-diagonal preconditioners for solving
Toeplitz-plus-diagonal systems. Their idea is to use circulant matrices to approxi-
mate the inversion of Toeplitz matrices and then combine the rows of these matri-
ces together. As the resulting preconditioner is already of the inverted form, only
matrix-vector multiplications are required in the preconditioning step. Recently,
Pan et al. [10] also proposed approximate inverse preconditioners for diagonal-
times-Toeplitz matrices.

The main purpose of this paper is to propose and develop approximate inverse
preconditioners for two-dimensional elliptic operators, based on the modification
of the finite-difference operator discretized on the CGL grid. First, we use a scal-
ing strategy to approximate the finite-difference operator. Then we construct an
approximate inverse preconditioner to approximate the inverse of scaled Laplacian-
plus-diagonal matrices and combine them together row-by-row. In order to reduce
the influence of the various coefficients, an interpolation method with the eigen-
values of Laplacian is utilized. Special interpolation nodes are chosen to improve
the accuracy of approximation. By use of the discrete sine transform (DST), the
resulting preconditioner can be efficiently implemented with O(ℓNxNy logNx) oper-
ations, where the small integer ℓ is independent of Nx and Ny. Numerical examples
are given to demonstrate the effectiveness of the proposed preconditioner.

The paper is organized as follows. In Section 2, we introduce the Chebyshev collo-
cation method for the elliptic operator and the associated finite-difference operator.
In Section 3, we construct the proposed preconditioners. Numerical examples are
given to demonstrate the performance of the proposed preconditioner in Section 4.
In the final section, concluding remarks are given.

2. The Chebyshev-collocation and the finite-difference operator

In this section we recall the Chebyshev-collocation method for the elliptic opera-
tor and the associated finite-difference operator. Let PN be the space of polynomials
of degree less than or equal to N . Let

xj = − cos

(

jπ

N

)

, j = 0, 1, . . . , N,

which are the CGL points.

2.1. The one-dimensional case. Consider the one-dimensional elliptic problems

(2) −(a(x)u′(x))′ + c(x)u(x) = f(x), x ∈ (−1, 1); u(±1) = 0.

The Chebyshev-collocation method for (2) is to find uN ∈ XN := {v ∈ PN :
v(±1) = 0} such that

(3) −(au′
N)′|x=xk

+ c(xk)uN(xk) = f(xk), k = 1, 2, . . . , N − 1.
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Let {pj(x)}
N
j=0 be the Lagrange basis polynomials associated with {xj}

N
j=0. Then,

we can express uN(x) =
N
∑

j=0

uN(xj)pj(x). Denoting the Chebyshev differentiation

matrix by GN = (p′j(xk))k,j=0,1,...,N , we have

u′
N(xk) =

N
∑

j=0

uN(xj)p
′
j(xk) =

N
∑

j=0

(GN )kjuN(xj),

and

u′′
N(xk) =

N
∑

j=0

uN(xj)p
′′
j (xk) =

N
∑

j=0

(G2
N )kjuN (xj).

We list below the formulas for the entries of GN for arbitrary N (cf. [2, 14]):

Lemma 1. For each N ≥ 1, let the rows and columns of the (N + 1) × (N + 1)
Chebyshev spectral differentiation matrix GN be indexed from 0 to N . The entries

of this matrix are

(GN )00 = −
2N2 + 1

6
, (GN )NN =

2N2 + 1

6
,

(GN )jj =
−xj

2(1− x2
j)
, j = 1, . . . , N − 1,

(GN )kj =
γk
γj

(−1)k+j

(xk − xj)
, k 6= j, k, j = 0, . . . , N,

where γ0 = γN = 2 and γk = 1 for k = 1, . . . , N − 1.

Explicit formulae for the entries of G2
N is also available in [3, 11]. By using the

differentiation matrix GN , it costs O(N2) to compute the derivative of uN at all
CGL points. However, this process can be accelerated to O(N logN) by expressing
uN in Chebyshev polynomials and using the fast cosine transform [4, 12].

Set Da
N = diag(a(x0), a(x1), . . . , a(xN )), D̄c

N = diag(c(x1), c(x2), . . . , c(xN−1)),

A = {(−GNDa
NGN )k,j}1≤k,j≤N−1, and A1 = A+ D̄c

N .

The Chebyshev-collocation scheme (3) reduces to the following linear system

A1ū = f̄ ,

where ū = (uN (x1), . . . , uN(xN−1))
⊺ and f̄ = (f(x1), . . . , f(xN−1))

⊺.
The matrix A is full and ill-conditioned. As proposed in [9], a good precon-

ditioner for A1 is to use a finite-difference operator on the CGL grid. Denote
hj = xj − xj−1 (j = 1, . . . , N), h̃j = (xj+1 − xj−1)/2 (j = 1, . . . , N − 1), and
ak+1/2 = a((xk + xk+1)/2) (k = 0, 1, . . . , N − 1). We consider the following finite
difference approximation:

(au′)′|x=xi ≈
ai−1/2

h̃ihi

u(xi−1)−

(

ai−1/2

h̃ihi

+
ai+1/2

h̃ihi+1

)

u(xi)

+
ai+1/2

h̃ihi+1

u(xi+1), i = 1, 2, . . . , N − 1.

Then, the preconditioner for A1 based on the above approximation can be written
as follows:

B1 := FN + D̄c
N ,
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where

(4) (FN )ij :=











−
ai−1/2

h̃ihi
, j = i − 1,

ai−1/2

h̃ihi
+

ai+1/2

h̃ihi+1

, j = i,

−
ai+1/2

h̃ihi+1

, j = i + 1.

Note that B1 is a nonsymmetric tridiagonal matrix. Inverting B1 or solving a
linear system with B1 as the coefficient matrix requires about O(N) operations.

2.2. The two-dimensional case. For the two-dimensional elliptic equations (1),
the collocation points are the tensor product of univariate CGL nodes. Assume that
Nx and Ny are the number of the CGL points in each direction respectively. Then,
the Chebyshev-collocation method will lead to a linear system with the matrix

A2 := INx ⊗Ab
Ny

+Aa
Nx

⊗ INy + D̄c
Nx

⊗ D̄d
Ny

,

where ⊗ denotes the Kronecker product, Aa
Nx

is the matrix A defined in the last

sub-section, Ab
Ny

is similar to Aa
Nx

with b(y) replacing a(x), D̄c
Nx

is the diagonal

matrix D̄c
N defined in the last sub-section, D̄d

Ny
is similar to D̄c

N where d(y) is used

instead of c(x), and both INx and INy are identity matrices. The finite-difference
operator associated with the two-dimensional elliptic operator is defined as follows:

(5) B2 := INx ⊗ F b
Ny

+ F a
Nx

⊗ INy + D̄c
Nx

⊗ D̄d
Ny

,

where F a
Nx

is defined by the formula (4), F b
Ny

is defined analogously with a(x)

replaced by b(y).
We remark that B2 is a non-symmetric block tridiagonal with tridiagonal blocks

matrix. Therefore, unlike B1 in the one-dimensional case, it is not an easy task to
invert B2. In the following section, we shall construct a preconditioner based on
the approximate inverse strategy for B2.

3. Construction of the preconditioner

For the interest of simplicity, we first discuss the basic techniques in the one-
dimensional case, and then these techniques are utilized to approximate B2.

3.1. Construction in the one-dimensional case. We shall construct an effec-
tive preconditioner in the one-dimensional case through a sequence of approxima-
tions. Taking the structure of the matrix FN into consideration, we firstly propose
a scaled matrix as an approximation. Define

ti =

√

1

2

(

ai−1/2

hi
+

ai+1/2

hi+1

)

, i = 1, 2, . . . , N − 1,

and

(6) TN = diag(t1, t2, . . . , tN−1).

The first approximation is as follows:

(7) FN ≈ HNTNLNTN ,

where

(8) HN = diag

(

1

h̃1

,
1

h̃2

, . . . ,
1

h̃N−1

)

,
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and

(9) LN =













2 −1 0

−1 2
. . .

. . .
. . . −1

0 −1 2













∈ R
(N−1)×(N−1).

Then, we construct the first preconditioner

P1 = HNTNLNTN + D̄c
N = HNTN (LN + D̄c

NH−1
N T−2

N )TN .

Denote

(10) M = LN + D̄c
NH−1

N T−2
N .

Then P1 = HNTNMTN . We note that the matrices HN , TN are diagonal and can
be easily to handle. Therefore, we only consider how to invert the matrix M in
(10).

Define

(11) Ki = LN +
h̃ici
t2i

IN , i = 1, 2, . . . , N − 1,

where ci = c(xi). Let ei be the i-th column of the identity matrix. According to
the fact that

e⊺iM = e⊺iKi,

we construct our preconditioner based on the following approximation [8, 10]

e⊺iM
−1 ≈ e⊺i K

−1
i .

This means that the i-th row of the inverse of M is approximated by the i-th row
of the inverse of Ki. Therefore, we propose our second preconditioner P2 whose
inverse is defined by

(12) P−1
2 = T−1

N

(

N−1
∑

i=1

eie
⊺

i K
−1
i

)

H−1
N T−1

N .

We see from above that, to construct P−1
2 , we need to compute the inverse of

Ki (i = 1, 2, . . . , N − 1). Since the matrix LN can be diagonalized in O(N logN)
operations by the DST, the product K−1

i v for any vector v can be computed in
O(N logN) operations. Let SN be the (N − 1)× (N − 1) DST matrix. Note that
SN is symmetric, orthogonal and its (i, j)-th entry is given by

√

2

N
sin

(

πij

N

)

, 1 ≤ i, j ≤ N − 1.

Thus, the inverse of Ki can be computed by

K−1
i = SN

(

ΛN +
h̃ici
t2i

IN

)−1

SN ,

where ΛN is a diagonal matrix whose entries are 2− 2 cos( jπN ), j = 1, 2, . . . , N − 1,
the eigenvalues of LN . Hence, implementing a preconditioner based on P2 requires
O(N) DST per iteration, which is still too expensive.

In order to reduce the computational cost, we propose to use the interpolation
method to construct a more efficient preconditioner. We choose a small number
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ℓ(ℓ ≪ N) of values {θj}
ℓ
j=1 ⊂ {ξi =

iπ
N }N−1

i=1 , which covers (most of) the range of

values of {ξi}
N−1
i=1 . Define

qi(θ) =
1

λΛ(θ) + wi
, θ ∈ (0, π),

where λΛ(θ) = 2− 2 cos θ and wi =
h̃ici
t2i

. Let

(13) pi(θ) = φ1(θ)qi(θ1) + φ2(θ)qi(θ2) + · · ·+ φℓ(θ)qi(θℓ)

be the piecewise linear interpolation for qi(θ) based on the ℓ points {θj , qi(θj)}
ℓ
j=1.

We apply interpolation formula (13) to approximate K−1
i :

(14) K−1
i ≈ SN





ℓ
∑

j=1

Φjqi(θj)



SN , i = 1, 2, . . . , N − 1,

where Φj = diag (φj(ξ1), φj(ξ2), . . . , φj(ξN−1)) are the interpolation coefficient ma-
trices.

Finally,combining the above consideration, we define our final preconditioner P3

by

P−1
3 =T−1

N

N−1
∑

i=1

eie
⊺

i SN





ℓ
∑

j=1

Φjqi(θj)



SNH−1
N T−1

N

=T−1
N

N−1
∑

i=1

ℓ
∑

j=1

eie
⊺

i qi(θj)SNΦjSNH−1
N T−1

N

=T−1
N

ℓ
∑

j=1

(

N−1
∑

i=1

eie
⊺

i qi(θj)

)

SNΦjSNH−1
N T−1

N

=T−1
N





ℓ
∑

j=1

WjSNΦj



SNH−1
N T−1

N ,

whereWj = diag (q1(θj), q2(θj), . . . , qN−1(θj)) are diagonal matrices. Now applying

P−1
3 to any vector requires about O(ℓN logN) operations which is acceptable for a

small number ℓ. Since the original function qi(θ) has weak singularities near θ = 0,
the interpolation nodes should be slightly dense near ξ1.

3.2. Construction in the two-dimensional case. In the following, we apply
similar techniques to construct a sequence of approximate preconditioner for B2

defined in (5).
First, using the approximation (7) in x-direction, we define our first precondi-

tioner by

P̂1 =INx ⊗ F b
Ny

+HNxTNxLNxTNx ⊗ INy + D̄c
Nx

⊗ D̄d
Ny

=(HNxTNx ⊗ INy )
(

H−1
Nx

T−2
Nx

⊗ F b
Ny

+ LNx ⊗ INy

+H−1
Nx

T−2
Nx

D̄c
Nx

⊗ D̄d
Ny

)

(TNx ⊗ INy )

,(HNxTNx ⊗ INy )M̂(TNx ⊗ INy ),

(15)

where HNx , TNx and LNx are defined as formulas (8), (6) and (9) respectively, and

M̂ denotes the middle term in the above decomposition. Note that the first and
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the last terms in the decomposition of P̂1 in (15) are diagonal. Therefore, we only

need to construct a preconditioner for the middle term M̂ . Define

K̂i =
h̃i

t2i
INx ⊗ F b

Ny
+ LNx ⊗ INy +

h̃ici
t2i

INx ⊗ D̄d
Ny

, i = 1, 2, . . . , Nx − 1,

where ti, h̃i and ci are as in (11). Let ei be the i-th column of the identity matrix
INx . Note the fact that

(e⊺i ⊗ INy )M̂ = (e⊺i ⊗ INy )K̂i.

As in one-dimensional case, we use the following approximation

(e⊺i ⊗ INy )M̂
−1 ≈ (e⊺i ⊗ INy )K̂

−1
i ,

which means that the ((i − 1)(Ny − 1) + 1)-th to i(Ny − 1)-th rows of the inverse

of M̂ are approximated by the ((i− 1)(Ny − 1) + 1)-th to i(Ny − 1)-th rows of the

inverse of K̂i. Therefore, similarly to P2 in (12) for the one-dimensional case, we

propose the preconditioner P̂2 whose inverse is defined by

P̂−1
2 = (T−1

Nx
⊗ INy )

(

Nx−1
∑

i=1

(eie
⊺

i ⊗ INy )K̂
−1
i

)

(T−1
Nx

H−1
Nx

⊗ INy ).

We note that K̂i can be factored as

K̂i =(SNx ⊗ INy )

(

h̃i

t2i
INx ⊗ F b

Ny
+ ΛNx ⊗ INy +

h̃ici
t2i

INx ⊗ D̄d
Ny

)

(SNx ⊗ INy )

,(SNx ⊗ INy )Ci(SNx ⊗ INy ),

(16)

where ΛNx = diag(λ1, λ2, . . . , λNx−1) is a diagonal matrix whose diagonals are the
eigenvalues of LNx , and Ci, which is a block diagonal with tridiagonal blocks matrix,

denotes the middle factor in the factorization of K̂i. We remark that the inverse of
the first and the last term in (16), multiplying any vector, can be implemented by
the DST in O(NxNy logNx) operations, while the middle term Ci can be inverted
in O(NxNy) operations; i.e.,

K̂−1
i = (SNx ⊗ INy )C

−1
i (SNx ⊗ INy ).

Nevertheless, it is too expensive to calculate P̂−1
2 since we need to compute about

Nx inverses of K̂i (i = 1, 2, . . . , Nx − 1). In order to reduce the computational
workload, as in the one-dimensional case, we propose to exploit the interpolation
method to construct the practical preconditioner.

Denote Ci = diag(Ci1, Ci2, . . . , Ci(Nx−1)) where Cik is an (Ny − 1) × (Ny − 1)
tridiagonal matrix as follows,

Cik =
h̃i

t2i
F b
Ny

+
h̃ici
t2i

D̄d
Ny

+ λΛ(ξ̃k)INy ,

in which λΛ(θ) = 2 − 2 cos θ and ξ̃k = kπ
Nx

. We investigate its inverse using the
interpolation method.

Let

Q̃i(θ) ,

(

h̃i

t2i
F b
Ny

+
h̃ici
t2i

D̄d
Ny

+ λΛ(θ)INy

)−1

, θ ∈ (0, π),

be an (Ny − 1)× (Ny − 1) matrix function. Then we have C−1
ik = Q̃i(ξ̃k).
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We choose a small number ℓ(ℓ ≪ Nx) of values {θj}
ℓ
j=1 ⊂ {ξ̃k = kπ

Nx
}Nx−1
k=1 . Let

(17) P̃i(θ) = φ1(θ)Q̃i(θ1) + φ2(θ)Q̃i(θ2) + · · ·+ φℓ(θ)Q̃i(θℓ)

be the piecewise linear interpolation for Q̃i(θ) based on the ℓmatrices {θj, Q̃i(θj)}
ℓ
j=1.

Thus, by interpolation formula (17) to approximate C−1
i , we have

C−1
ik ≈ P̃i(ξ̃k) =

ℓ
∑

j=1

φj(ξ̃k)Q̃i(θj), i = 1, 2, . . . , Nx − 1,

and

C−1
i ≈

ℓ
∑

j=1

diag
(

φj(ξ̃1), φj(ξ̃2), . . . , φj(ξ̃Nx−1)
)

⊗ Q̃i(θj) =

ℓ
∑

j=1

Φj ⊗ Q̃i(θj),

where the diagonal matrix Φj is as in (14). Finally, we define the practical precon-

ditioner P̂3 whose inverse is defined as follows,

P̂−1
3 =(T−1

Nx
⊗ INy )

[

Nx−1
∑

i=1

(eie
⊺

i SNx ⊗ INy )

(

ℓ
∑

j=1

Φj ⊗ Q̃i(θj)

)

(SNx ⊗ INy )

]

× (T−1
Nx

H−1
Nx

⊗ INy )

=(T−1
Nx

⊗ INy )

[

Nx−1
∑

i=1

ℓ
∑

j=1

(

eie
⊺

i ⊗ Q̃i(θj)
)

(

SNxΦjSNx ⊗ INy

)

]

× (T−1
Nx

H−1
Nx

⊗ INy )

=(T−1
Nx

⊗ INy )





ℓ
∑

j=1

(

Nx−1
∑

i=1

eie
⊺

i ⊗ Q̃i(θj)

)

(

SNxΦjSNx ⊗ INy

)





× (T−1
Nx

H−1
Nx

⊗ INy )

=(T−1
Nx

⊗ INy )





ℓ
∑

j=1

W̃j(SNxΦjSNx ⊗ INy )





(

T−1
Nx

H−1
Nx

⊗ INy

)

,

(18)

where W̃j = diag(Q̃1(θj), Q̃2(θj), . . . , Q̃Nx−1(θj)), j = 1, 2, . . . , ℓ, are block diagonal

matrices in which each block is the inverse of a tridiagonal matrix. Therefore, W̃j

can be inverted with only O(NxNy) operations. Applying P̂−1
3 to multiply any

vector requires O(ℓNxNy logNx) operations which is acceptable for a small number
ℓ. It is expected that as ℓ, the number of interpolation nodes, increases, the number
of iterations required for convergence decreases. However, the cost of forming and
applying the preconditioner grows proportionally to ℓ. Hence there is a trade-off to
determine a suitable number of interpolation points.

4. Numerical experiments

In this section, we carry out numerical experiments to study the performance
of the proposed preconditioner P̂3 in (18). We employ the preconditioned GMRES
method to solve the collocation system. In all numerical experiments, the stopping

criterion is ||rk||2
||r0||2

< 10−10, where rk is the residual vector after k iterations and

r0 is the initial residual vector. All numerical experiments are implemented using
Matlab on a Dell Optiplex 3020 with the configuration: Intel(R) Core(TM) CPU
i5-4590 3.30 GHz and 8.00 GB of memory.
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Table 1. Numerical results for a(x) = b(y) = 1.

Nx = Ny
P̂3(ℓ = 8) P̂3(ℓ = 10) P̂3(ℓ = 12) P̂3(ℓ = 14) Ave-GMRES
Iter CPU Iter CPU Iter CPU Iter CPU Iter CPU

64 16 0.34 15 0.26 15 0.29 15 0.33 300 2.66
128 17 0.90 16 0.96 16 1.09 15 1.15 685 15.89
256 18 3.66 17 4.02 16 4.38 16 4.96 1532 123.65
512 19 16.20 18 18.33 17 20.20 17 22.95 3494 1621.91
1024 20 63.95 19 73.39 18 81.29 17 88.26 - -

Table 2. Numerical results for a(x) = ex, b(y) = 1.

Nx = Ny
P̂3(ℓ = 8) P̂3(ℓ = 10) P̂3(ℓ = 12) P̂3(ℓ = 14) Ave-GMRES
Iter CPU Iter CPU Iter CPU Iter CPU Iter CPU

64 16 0.33 16 0.29 16 0.32 16 0.35 549 4.98
128 18 0.94 17 1.04 17 1.17 16 1.23 1362 33.40
256 20 4.06 18 4.31 17 4.70 17 5.28 3627 304.40
512 21 18.15 19 19.60 18 21.57 18 24.50 - -
1024 22 70.91 20 78.06 19 86.49 18 93.99 - -

We consider the two-dimensional elliptic equation (1) with the source term
f(x, y) = 1. Note that no approximation is used in the y-direction in deriving

the preconditioner P̂3 which indicates that the coefficient function b(y) will not
affect the convergence rate of the preconditioner. Therefore we set b(y) = 1 in all
the experiments. On the other hand, the coefficient function c(x)d(y) is to add
information to the main diagonal of the system matrix. c(x)d(y) = 0 is chosen to
demonstrate the bad conditional cases. In consequence of the weak singularities of
the original function, the interpolation nodes are selected as

θj =
π

Nx

⌈

(Nx − 1)
j−1

ℓ−1

⌉

, j = 1, 2, . . . , ℓ,

where ⌈x⌉ denotes the ceiling of x. We remark the every θj should be different, and
we set θr = θr−1 + π/Nx once θr ≡ θr−1.

For the purpose of comparisons, we take the average of each diagonal of the
finite difference preconditioner, resulting in a block tridiagonal Toeplitz with tridi-
agonal Toeplitz blocks structured preconditioner for the collocation system which
is denoted by “Ave-GMRES”.

The numerical results are listed in Table 1-4, where “P̂3(ℓ = 8, 10, 12, 14)” de-

notes the GMRES method with the preconditioner P̂3 with ℓ being the number of
interpolation nodes, “Iter” denotes the number of iterations required to solve (1),
“CPU” denotes the CPU time in seconds for solving the discretized system, and
“-” means that the methods do not converge within 6000 iterations.

In Table 1, the numerical results are reported with constant coefficient a(x) = 1.
We see that the preconditioned GMRES methods exhibit excellent performance
both in terms of iteration steps and CPU time, and the iteration number only
increases slightly as the number of grid points increases. The number of iterations
decreases as expected while the number of interpolation nodes increases.

Table 2 and 3 list the numerical results for non-constant coefficients. The results
with coefficient a(x) = ex is tested in Table 2. We observe that ℓ = 8 provides better
results in terms of the iteration number and CPU time. In Table 3, we list the results
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Table 3. Numerical results for a(x) in large variation case and
b(y) = 1 with ℓ = 8.

a(x) e6x 103 cos(x) cos(8πx) + 10
Nx = Ny Iter CPU Iter CPU Iter CPU

64 21 0.36 16 0.29 18 0.33
128 22 1.15 16 0.85 19 0.99
256 23 4.63 17 3.44 20 4.03
512 24 20.58 19 16.36 20 17.23
1024 25 80.18 19 61.19 22 70.57

Table 4. Numerical results for a(x, y) = b(x, y) = e(x+y) + 1.

Nx = Ny
P̂3(ℓ = 5) P̂3(ℓ = 6) P̂3(ℓ = 7)
Iter CPU Iter CPU Iter CPU

64 39 0.44 40 0.47 40 0.49
128 42 1.37 42 1.44 42 1.52
256 44 5.42 41 5.43 42 6.01
512 45 26.39 43 27.24 43 29.47

with a(x) being functions with large variations. We observe that the preconditioners
is not sensitive for problems with coefficients having large variations.

In the last example, we examine the effectiveness of the preconditioner to non-
separable elliptic equations:

−
∂

∂x

(

a(x, y)
∂u

∂x

)

−
∂

∂y

(

b(x, y)
∂u

∂y

)

= f(x, y) in Ω = (−1, 1)2.

For problems with non-separable coefficients, we build the preconditioner by using
averages of the coefficients as

ā(x) =
1

2

∫ 1

−1

a(x, y)dy,

and b̄(y) in the similar way. Then our preconditioners could be applied to the
relative separable coefficient systems. Numerical results are given for a(x, y) =
b(x, y) = e(x+y) + 1 in Table 4. We observe that the iteration numbers are larger
than the separable case, but are still acceptable.

We remark that the current algorithm is based on the approximation in x di-
rection. However, problem (1) is symmetric with respect to x and y. The roles
of x and y can be switched to get an alternative algorithm. When Ny < Nx, the
alternative one would be less computational expensive.

5. Concluding remarks

The main contribution of this paper is to develop a preconditioner based on
the approximate inverses in Chebyshev collocation method for two-dimensional

elliptic equations. The complexity of the matrix-vector multiplication of P̂−1
3 is of

O(ℓNxNy logNx). It is shown numerically that the preconditioned GMRES method
for solving these preconditioned collocation systems converges very quickly.

We only considered two-dimensional case in this paper. But since one direc-
tion is approximated in the two-dimensional case, our strategy for constructing
preconditioners can be easily extended to three-dimensional cases. Indeed, in the
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three-dimensional case, we can first apply the approximation (7) to x and y direc-
tions of the finite difference operator, resulting in a scaled tensor product. Using
the row-by-row approximation, we can obtain the second preconditioner, which is
of inverted form. Finally, by defining a two-dimensional tensor function, the in-
terpolation method can be utilized to construct a practical preconditioner which
requires only O(ℓNxNyNz logNxNy)) operations.

Nevertheless, even the numerical results show the efficiency and fast convergence
of the proposed method, the convergence of our algorithm has not been studied
theoretically, but will be tackled in our future work.
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