
MATHEMATICS OF COMPUTATION
Volume 77, Number 263, July 2008, Pages 1387–1405
S 0025-5718(08)02109-1
Article electronically published on March 7, 2008

ERROR ANALYSIS OF FULLY DISCRETE
VELOCITY-CORRECTION METHODS

FOR INCOMPRESSIBLE FLOWS

J. L. GUERMOND, JIE SHEN, AND XIAOFENG YANG

Abstract. A fully discrete version of the velocity-correction method, pro-
posed by Guermond and Shen (2003) for the time-dependent Navier-Stokes
equations, is introduced and analyzed. It is shown that, when accounting for
space discretization, additional consistency terms, which vanish when space
is not discretized, have to be added to establish stability and optimal con-
vergence. Error estimates are derived for both the standard version and the
rotational version of the method. These error estimates are consistent with
those by Guermond and Shen (2003) as far as time discretiztion is concerned
and are optimal in space for finite elements satisfying the inf-sup condition.

1. Introduction

Projection methods, whose original version was introduced by Chorin [3] and
Temam [27] in the late 1960s, are widely used to approximate the incompressible
time-dependent Navier-Stokes equations. They are designed to overcome the diffi-
culty caused by the incompressibility constraint which couples the velocity and the
pressure. We refer to a recent review on this topic [13] where projection schemes are
classified into three families: pressure-correction (cf. e.g. [4, 7, 14, 20, 23, 26, 28, 29]),
velocity-correction (cf. [12, 18, 19, 22]), and consistent splitting scheme [11, 17, 25]
(which is equivalent, in the space continuous case only, to the so-called gauge
method [5, 21]).

Velocity-correction schemes (in semi-discretized form) were first introduced in a
disguised form in [22, 18], and rigorously analyzed by Guermond and Shen in [12].
The main difference between the velocity-correction methods and the pressure-
correction or the consistent-splitting methods is that, in velocity-correction meth-
ods, the viscous term is made explicit in the first sub-step and corrected in the
second sub-step, whereas in the other methods it is the pressure gradient which
is made explicit first and corrected afterward. In addition to convergence proofs
on various semi-discretized forms of the velocity-correction scheme, numerical tests
on a second-order fully discretized version of the method are also reported in [12].
These tests, using spectral and finite element methods, show that the method is
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stable and yield quasi-optimal results in time and space for the velocity and the
pressure. However, to the best of our knowledge, there is no further work in the lit-
erature that provides a rigorous stability and error analysis for the fully discretized
method, using either finite element or spectral approximation in space.

A rather general strategy for analyzing various two-step projection methods has
been devised in [8]. The main ingredient of this theory is to consider two different
approximation spaces for the velocity, one for each sub-step. Using the notations
from [8], the velocity approximation in the viscous sub-step is chosen in a finite-
dimensional space Xh, and that in the projection sub-step is chosen in another
finite-dimensional space Yh which contains Xh. For the special choice of Yh = Xh,
there is no essential difference in the analysis between the fully discrete case and
the semi-discrete case; that is to say, all the arguments from [12] carry over to the
fully discrete situation naturally. However, the situation Xh = Yh implies that the
pressure is computed by solving a Darcy problem in mixed form. In order to com-
pute the pressure by solving a Poisson problem, thus avoiding a possibly awkward
Darcy problem, we have to look at situations where Xh �= Yh. However, if one
naively uses the semi-discrete forms of the algorithm using Xh �= Yh, one observes
a subtle inconsistency, especially for the rotational form of the scheme, which makes
it very difficult, if not impossible, to prove the stability and optimal convergence
of the fully discretized scheme. The primary goal of the present paper is to con-
struct a fully discrete velocity-correction scheme which removes the inconsistency
mentioned above. This is done by adding terms that vanish when the space is con-
tinuous and when Yh = Xh. A particular instance of the fully discretized method
that we propose consists of solving a discrete (standard) Poisson equation for the
pressure.

The paper is organized as follows. In §2 we introduce notation and the discrete
setting for the space approximation. In §3 we discuss how the velocity-correction
algorithm in standard form should be discretized in space and show in particular
that naively discretizing the semi-discrete algorithm yields inconsistencies as men-
tioned above. In §4 we prove stability and convergence for the first-order rotational
velocity-correction scheme. In §5 we study the second-order version of the rotational
velocity-correction scheme. The two major results of this paper are Theorems 4.1
and 5.1. Concluding remarks are reported in §6.

2. Preliminaries

2.1. The continuous problem. Since it is well known that non-linear terms in
the Navier-Stokes equations do not affect the formal accuracy of fractional-step
projection methods provided they are consistently treated, we henceforth restrict
ourselves to the time-dependent Stokes problem:{

∂tu −∇2u + ∇p = f in Ω × [0, T ],

div u = 0 in Ω × [0, T ],
(2.1)

supplemented with initial and, for simplicity, homogeneous Dirichlet boundary con-
ditions

(2.2) u|t=0 = v0 in Ω, u|∂Ω = 0.

In the above problem, f ∈ L2((0, T )×Ω) is a body force, and Ω is an open bounded
domain in Rd (d = 2 or 3) with a boundary sufficiently smooth so that the usual
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H2 regularity holds for the steady Stokes problem with homogeneous Dirichlet
boundary conditions and a source term in L2(Ω). The symbol ∂t denotes the
partial derivative with respect to time. We also use dt in the rest of the paper to
denote derivatives with respect to time.

We denote by W s,p(Ω) and W s,p
0 (Ω) the usual Sobolev spaces equipped with the

norm ‖ ·‖s,p for 0 ≤ s ≤ ∞, 1 ≤ p ≤ ∞. In particular, we denote the Hilbert spaces
W s,2(Ω) by Hs(Ω) (s = 0,±1, . . .) with norm ‖ · ‖s and semi norm | · |s. The norm
and inner product of L2(Ω) = H0(Ω) are denoted by ‖ · ‖0 and (·, ·) respectively.

We shall also make use of the following Hilbert spaces:

L2∫
=0(Ω) = {q ∈ L2(Ω),

∫
Ω

q = 0},(2.3)

H1∫
=0(Ω) = {q ∈ H1(Ω),

∫
Ω

q = 0},(2.4)

H = {v ∈ L2(Ω)d, ∇·v = 0, v·n|Γ = 0}.(2.5)

In particular, the following Helmholtz decomposition of L2(Ω)d plays an important
role for the analysis of projection methods:

(2.6) L2(Ω)d = H ⊕∇H1∫
=0(Ω).

2.2. The discrete setting. Let δt > 0 be a real number that we henceforth
refer to as the time step. We set tk = kδt for 0 ≤ k ≤ K = [T/δt]. For every
function which is continuous in time, φ(t), we denote φk := φ(tk) and define the
difference operator δ, acting on sequences, by δφk := φk − φk−1. Let W be a
Banach space; we set Lp(W ) = Lp(0, T ; W ). To account for time sequences we also
set �p(W ) := {w = (w0, w1, . . . , wK), wk ∈ W, 0 ≤ k ≤ K, ‖φ‖�p(W ) < +∞} with

‖φ‖�p(W ) := (δt
K∑

k=0

‖φk‖p
W )

1
p , ‖φ‖�∞(W ) := max

0≤k≤K
(‖φk‖W ).(2.7)

Let {Xh}h>0, {Mh}h>0 be two families of conforming approximations of H1
0 (Ω)d

and L2
0(Ω), respectively. The pair (Xh, Mh) is assumed to be compatible in the sense

that the following LBB conditions hold uniformly with respect to h:

(2.8) ∃c > 0, inf
qh∈Mh

sup
vh∈Xh

(∇·vh, qh)
‖∇vh‖0

≥ c ‖qh‖0.

We henceforth denote by c a generic constant that is independent of the mesh-size h
and the time step δt but possibly depends on the data and the solution. Whenever
no confusion is possible we use the expression A � B to say that there exists a
generic constant c such that A ≤ c B.

The two (families of) spaces Xh and Mh are also assumed to satisfy the following
approximation properties: There exists an integer l > 0 such that for all r ∈ [1, l],

(2.9) inf
vh∈Xh

{‖v − vh‖0 + h‖v − vh‖1} � hr+1‖v‖r+1, ∀v ∈ Hr+1(Ω)d ∩ H1
0 (Ω)d.

(2.10) inf
qh∈Qh

{‖q − qh‖0 + h‖q − qh‖1} � hr‖q‖r, ∀q ∈ Hr(Ω) ∩ L2
0(Ω).

In order to formulate the semi-discrete Stokes problem in a way which is similar
to its continuous differential counterpart, we introduce several discrete differential
operators as in [8]. We define the discrete Laplace operator, Ah : Xh → X ′

h, by

(2.11) (Ahuh, vh) = (∇uh,∇vh), ∀(uh, vh) ∈ Xh × Xh,
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the discrete divergence operator, Bh : Xh → Mh, and the discrete gradient operator,
BT

h : Mh → X ′
h, by

(2.12) (Bhvh, ph) = −(∇ · vh, ph) = (vh, BT
h ph), ∀(vh, ph) ∈ Xh × Mh.

We also define an extension of the L2-projection onto Xh, πh : H−1(Ω)d → X ′
h

such that

(2.13) (πhf, vh) = (f, vh), ∀vh ∈ Xh.

Using the discrete framework defined above, the time-dependent Stokes problem
(2.1) can be semi-discretized as follows: Setting fh = πhf and v0,h = πhu0, we look
for uh(t) ∈ C0([0, T ]; Xh) and ph(t) ∈ L2((0, T ); Mh) such that⎧⎪⎪⎨

⎪⎪⎩
duh

dt
+ Ahuh + BT

h ph = fh, 0 < t ≤ T,

Bhuh = 0,

uh|t=0 = v0,h.

(2.14)

It is well known that the above problem admits a unique solution which is stable
with respect to the data. Furthermore, since Xh and Mh are convergent and sta-
ble approximations of H1

0 (Ω)d and H1∫
=0(Ω), the solution to (2.14) converges in an

appropriate sense to that of the continuous problem (2.1). For more details on the
above formulation using finite elements we refer to [6, 15, 16].

2.3. The (Xh, Yh) pair. Following Guermond [8], we introduce an additional dis-
crete setting so as to relax the incompressibility constraint and to build a dis-
crete version of the Helmholtz decomposition (2.6). More precisely, we want to
decompose each discrete vector field ũh ∈ Xh into the sum of a discrete-divergence-
free vector field uh plus the discrete-gradient of a scalar field φh in Mh. There
are numerous ways of achieving this decomposition. For instance, we could set
ũh = uh + BT

h φh, with uh ∈ Xh and Bhuh = 0. Another possibility could be to
set ũh = uh +∇φh where uh is enforced to be orthogonal to ∇Mh, provided Mh is
constructed so that Mh ⊂ H1∫

=0(Ω). In this case it is natural to choose uh to be in
Xh +∇Mh. Even though this alternative may seem odd, it turns out to be optimal
and very easy to implement, since it implies solving a discrete Poisson problem
using the usual (∇φh,∇ψh) bilinear form.

In order to present a unified analysis for the many possible realizations of the
discrete Helmholtz decomposition, we introduce a finite dimensional subspace Yh ∈
L2(Ω)d. For the sake of simplicity we assume that Xh ⊂ Yh and we denote by ih the
continuous injection of Xh into Yh; the transpose of ih is the L2-projection of Yh onto
Xh. Furthermore, we assume that we have at hand an operator Ch : Yh −→ Mh

which is an extension of Bh, i.e.,

(2.15) Chih = Bh, iTh CT
h = BT

h .

Owing to (2.8), Bh is surjective. Ch being an extension of Bh, this immediately
implies that Ch is also surjective and CT

h is injective. As a result ‖CT
h q‖0 is a norm

and, upon setting Hh = KERCh, the following orthogonal decomposition of Yh

holds:

(2.16) Yh = Hh ⊕ CT
h (Mh).



ERROR ANALYSIS OF VELOCITY-CORRECTION METHODS 1391

This decomposition is a discrete counterpart of (2.6). Finally, we also assume that
Ah and Ch satisfy the following hypotheses:

∀vh ∈ Xh, ∀v ∈ [H1
0 (Ω)∩H2(Ω)]d, (‖vh − v‖1 � h‖v‖2) ⇒ ‖Ahvh‖0 � ‖v‖2,

(2.17)

∀qh ∈ Mh, ∀q ∈ H1∫
=0(Ω), (‖qh − q‖0 � h‖q‖1) ⇒ ‖CT

h qh‖0 � ‖q‖1.(2.18)

These hypotheses are usually satisfied when Xh, Yh, and Mh are constructed using
finite elements with shape-regular meshes.

Various realizations of Yh and Ch are described in [8, 10]. An obvious one is Yh =
Xh and Ch = Bh. Assuming Mh ⊂ H1∫

=0(Ω), another interesting choice consists of
setting Yh = Xh + ∇Mh and defining Ch such that (Chvh, qh) = (vh,∇qh) =
(vh, CT

h qh), for all vh ∈ Yh, qh ∈ Mh. This particular setting implies that CT
h is

the restriction of ∇ to Mh, i.e., CT
h qh = ∇qh, ∀qh ∈ Mh. In particular, the bilinear

form (CT
h qh, CT

h rh) reduces to the usual weak form (∇qh,∇rh) associated with the
Poisson problem supplemented with Neumann boundary conditions, which is really
easy to implement.

3. Fully discretized velocity-correction in standard form

3.1. A naive discretization. Consider for the time being the first-order backward
Euler method. The standard velocity-correction scheme proposed in [12] in semi-
discrete form is as follows: Set u0 = u(t0), then for k ≥ 0, compute uk+1 ∈ H and
pk+1 ∈ L2

0(Ω) such that⎧⎨
⎩

uk+1 − ũk

δt
−∇2ũk + ∇pk+1 = f(tk+1),

∇·uk+1 = 0, uk+1·n|Γ = 0;
(3.1)

and then find ũk+1 ∈ H1
0 (Ω)d such that

(3.2)
ũk+1 − uk+1

δt
−∇2(ũk+1 − ũk) = 0, ũk+1|Γ = 0.

A seemingly natural way to discretize the above algorithm in space is as follows:
Setting ũ0

h = πhu0 and fk+1
h = πhf(tk+1), for k ≥ 1, compute (uk+1

h , pk+1
h ) ∈

Yh × Mh such that⎧⎪⎨
⎪⎩

uk+1
h − ihũk

h

δt
+ ihAhũk

h + CT
h pk+1

h = ihfk+1
h ,

Chuk+1
h = 0;

(3.3)

and then compute ũk+1
h ∈ Xh such that

ũk+1
h − iTh uk+1

h

δt
+ Ahũk+1

h − Ahũk
h = 0.(3.4)

Let us now assume that this algorithm converges to a steady state as k → ∞.
Then (3.4) yields ũh = iTh uh, which in turn implies Bhũh = BhiTh uh. Therefore,
we usually have Bhũh �= 0 unless BhiTh uh = Chuh, which is true only if iTh is the
identity operator and Bh = Ch. Observe that the equality Bh = Ch holds only if
Xh = Yh. We then conclude that (3.3)-(3.4) is consistent only if Xh = Yh, which
greatly reduces implementation options. As a result, one must find a consistent
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way to discretize (3.1)-(3.2) in order to use more convenient implementation options
for which Xh �= Yh. This is one of the main goals of the present paper.

3.2. Consistent discretization. The above observation led us to consider the
following alternative discretization of (3.1)-(3.2):⎧⎪⎨

⎪⎩
uk+1

h − ihũk
h

δt
+ ihAhũk

h + CT
h pk+1

h + ihBT
h pk

h − CT
h pk

h = ihfk+1
h ,

Chuk+1
h = 0,

(3.5)

and

(3.6)
ũk+1

h − iTh uk+1
h

δt
+ Ahũk+1

h − Ahũk
h = 0.

Clearly, the term ihBT
h pk

h − CT
h pk

h in (3.5) vanishes when Xh = Yh, implying
that the above algorithm is the same as (3.3)-(3.4) when Xh = Yh. Let us observe
also that (3.6) can be rewritten in another equivalent form as follows: Applying iTh
to (3.5) and adding the result to (3.6). Upon noticing that iTh ihBT

h pk
h = iTh CT

h pk
h

thanks to (2.15) and the fact that iTh ih|Xh
is the identity on Xh, we obtain

(3.7)
ũk+1

h − ũk
h

δt
+ Ahũk+1

h + BT
h pk+1

h = fk+1
h ,

which is equivalent to (3.6). To understand why the new algorithm (3.5)-(3.7) (or
(3.5)-(3.6), equivalently) is better than (3.3)-(3.4) in general, let us apply ih to (3.7)
at time step tk and subtract the result from (3.5), giving

(3.8)
uk+1

h − 2ihũk
h + ihũk−1

h

δt
+ CT

h (pk+1
h − pk

h) = ih(fk+1
h − fk

h ).

Assuming that there is a steady state as k → ∞, this equation implies uh = ihũh,
which in turn yields 0 = Chuh = Chihũh = Bhũh, since Chih = Bh by definition
of Ch being an extension of Bh. In other words, at steady state we have the
desired property Bhũh = 0, which suggests that (3.5)-(3.7) is a consistent way of
implementing (3.1)-(3.2). Actually, the above manipulation yields an efficient way
to implement (3.5)-(3.7) without computing uk+1

h , which might live in an odd space
(think of Yh = Xh +∇Mh for instance). Owing to the constraint (uk+1, CT

h rh) = 0
for all rh ∈ Mh, (3.8) can be equivalently rewritten as

(3.9) (CT
h (pk+1

h − pk
h), CT

h rh) = (fk+1 − fk, BT
h rh) +

1
δt

(2ũk
h − ũk−1

h , BT
h rh).

Hence the algorithm is simply composed of the two sub-steps (3.9)-(3.7). As a
result, choosing Yh only amounts to selecting a realization of CT

h with which the
user is comfortable. For instance, choosing Yh = Xh +∇Mh implies that (3.9) is a
simple discrete Poisson problem using the standard bilinear form (∇.,∇.).

Remark 3.1. Actually, the algorithm (3.9)-(3.7) is exactly what was proposed in
[12] as an equivalent alternative to (3.1)-(3.2) in a semi-discrete setting (see (2.8)-
(2.9) in [12]). The Finite Element computations reported in [12] have been done
using (3.9)-(3.7). When [12] was written, it was not clear that (2.8)-(2.9) from [12]
and (3.1)-(3.2) could yield different fully discrete implementations. One goal of the
present paper is to clarify this observation.
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Instead of using the Euler scheme, one can use a higher-order method. For
instance, using the second-order backward difference formula (BDF2), the fully
discrete velocity-correction scheme in standard form takes the following form:

(3.10)

⎧⎪⎨
⎪⎩

3uk+1
h − 4ihũk

h + ihũk−1
h

δt
+ ihAhũk

h + CT
h pk+1

h + ihBT
h pk

h − CT
h pk

h = ihfk+1
h ,

Chuk+1
h = 0,

and

(3.11)
3ũk+1

h − 4ũk
h + ũk−1

h

δt
+ Ahũk+1

h + BT
h pk+1

h = fk+1
h .

We finish this section by stating the following convergence results.

Theorem 3.1. Let u, p solve (2.1). Assume enough regularity is at hand for u
and p. Let uh, ph solve (3.5)-(3.7), then

‖u − ũh‖�2(L2(Ω)d) + ‖u − iTh uh‖�2(L2(Ω)d) � δt + hl+1,(3.12)

‖u − ũh‖l2(H1(Ω)d) + ‖p − ph‖l2(L2(Ω)) � δt + hl.(3.13)

Let uh, ph solve (3.10)-(3.11) and assume the scheme be appropriately initialized.
Then

‖u − ũh‖�2(L2(Ω)d) + ‖u − iTh uh‖�2(L2(Ω)d) � δt2 + hl+1,(3.14)

‖u − ũh‖�2(H1(Ω)d) + ‖p − ph‖�2(L2(Ω)) � δt + hl.(3.15)

Proof. We omit the details since they are similar to those in the proof of the rota-
tional version of the algorithm which is detailed in the next section. �

Remark 3.2. The estimate (3.15) is one-order suboptimal with respect to δt. The
suboptimality is sharp in the sense that it cannot be improved. The origin of this
defect is an inconsistent/artificial boundary condition which is enforced by (3.2).
This equation implies that at the boundary of the flow domain

(3.16) ∇2ũk+1·n|Γ = ∇2ũk·n|Γ = . . . = ∇2ũ0·n|Γ,

which together with (3.1) in turns gives

(3.17)
∂p

∂n

∣∣∣∣
Γ

= (f(tk+1) + ∇2ũ0)·n|Γ.

It is obviously an artificial Neumann boundary condition on the pressure. This
phenomenon is identical to what is observed for the standard form of the pressure-
correction scheme; see e.g. [10, 13, 26]. The accuracy of the scheme is limited
to O(δt) by the numerical boundary layer induced by this inconsistent/artificial
boundary condition. The O(δt) barrier can be (partially) overcome by considering
the rotational form of the method which is discussed in the next section.

4. Fully discretized velocity-correction in rotational form

In this section we focus our attention on the velocity-correction method in rota-
tional form using the first-order Euler scheme. This allows us to concentrate on the
main issues by bypassing the technical issues associated with higher-order schemes.
This strategy is based on the observation made in [9] that the splitting error (i.e.,
the difference between the discrete solution and that from the equivalent one-step
algorithm where the pressure is implicit and the discrete impressibility constraint
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is enforced) does not depend on the time stepping. The stability analysis of the
BDF2 time stepping is done in the next section for completeness, but all the key
ingredients of the method are detailed in the present section using the first-order
Euler time stepping.

4.1. Consistent fully discretization. Consider the rotational velocity-correction
scheme in differential form as introduced in [12]: Set ũ0 = u(t0) and for k ≥ 0, find
uk+1 ∈ H, pk+1 ∈ L2

0(Ω), and ũk+1 ∈ H1
0 (Ω)d such that⎧⎨

⎩
uk+1 − ũk

δt
+ ∇×∇×ũk + ∇pk+1 = f(tk+1),

∇ · uk+1 = 0, uk+1 · n|Γ = 0,

(4.1)

and

(4.2)
ũk+1 − uk+1

δt
−∇2ũk+1 −∇×∇× ũk = 0, ũk+1|Γ = 0.

Since ∇×∇×ũk = −∇2ũk + ∇∇·ũk, a natural approximation of ∇×∇×ũk is
ihAhũk

h−CT
h Bhũk

h, leading to the following fully discretized scheme: Set ũ0
h = πhu0,

then compute ũk+1
h ∈ Xh, pk+1

h ∈ Mh, and uk+1
h ∈ Yh such that

(4.3)

⎧⎪⎨
⎪⎩

uk+1
h − ihũk

h

δt
+ ihAhũk

h − CT
h Bhũk

h + CT
h pk+1

h = ihfk+1
h ,

Chuk+1
h = 0,

and

(4.4)
ũk+1

h − iTh uk+1
h

δt
+ Ahũk+1

h − Ahũk
h + BT

h Bhũk
h = 0.

By proceeding as in §3.1, one can show that this naive algorithm is not consistent
at steady state.

Inspired by the discussion in §3.2, we now consider the following modified algo-
rithm: Compute ũk+1

h ∈ Xh, pk+1
h ∈ Mh, and uk+1

h ∈ Yh such that

(4.5)

⎧⎪⎨
⎪⎩

uk+1
h − ihũk

h

δt
+ ihAhũk

h − CT
h Bhũk

h + CT
h pk+1

h + ihBT
h pk

h − CT
h pk

h = ihfk+1
h ,

Chuk+1
h = 0,

and

(4.6)
ũk+1

h − iTh uk+1
h

δt
+ Ahũk+1

h − Ahũk
h + BT

h Bhũk
h = 0.

Again, by proceeding as in §3.2 this algorithm can be rewritten in an entirely
equivalent way so as to completely avoid computing the velocity uk+1

h ∈ Yh. To see
this, let us apply iTh to (4.5) and add the result to (4.6) to obtain

(4.7)
ũk+1

h − ũk
h

δt
+ Ahũk+1

h + BT
h pk+1

h = fk+1
h .

Note that we used the following properties: iTh ih|Xh
is the identity and Chih = Bh.

Now applying −ih to (4.7) at time step tk and adding the result to (4.5) yields

(4.8)
uk+1

h − 2ihũk
h + ihũk−1

h

δt
+ CT

h (pk+1
h − pk

h − Bhũk
h) = ih(fk+1

h − fk−1
h ).
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Then, owing to the constraint Chuk+1
h = 0, this problem can be recast into the

following form: Solve for φk+1
h ∈ Mh such that

(4.9) (CT
h φk+1

h , CT
h rh) = (fk+1 − fk, BT

h rh)+
1
δt

(2ũk
h − ũk−1

h , BT
h rh), ∀rh ∈ Mh.

Then set

(4.10) pk+1
h = φk+1

h + pk
h + Bhũk

h.

In conclusion, an efficient way of implementing this algorithm consists of solving
(4.9)-(4.10)-(4.7).

Remark 4.1. The algorithm (4.9)-(4.10)-(4.7) is the discrete counterpart of the
algorithm (3.6)-(3.7)-(3.8) which was proposed in [12].

4.2. Error estimates for the first-order rotational scheme. Let us start by
rewriting the algorithm in a way which is better suited for the error analysis. In-
spired by the analysis in [12] where it is shown that one has to work with time
increments to prove stability, we now construct the algorithm for the time incre-
ments of the discrete unknowns.

First, we define

(4.11) φk+1
h := δpk+1

h − Bhũk
h, Dt

hũk+1
h := Ahδũk+1

h + BT
h Bhũk

h.

Then we apply the increment operator δ to (4.5), (4.6), and (4.7) to obtain

(4.12)

⎧⎪⎨
⎪⎩

δuk+1
h + δtCT

h φk+1
h − δtihδfk+1

h = ihδũk
h − δtihDt

hũk
h

+ δt(CT
h − ihBT

h )φk
h,

Chδuk+1
h = 0,

(4.13) δũk+1
h + δt(Dt

hũk+1
h − Dt

hũk
h) = iTh δuk+1

h ,

(4.14) δũk+1
h − δũk

h + δtDt
hũk+1

h = −δtBT
h φk+1

h + δtδfk+1
h .

As usual we are going to compare (uk
h, pk

h) with (wh(tk), qh(tk)) ∈ Xh×Mh, which
is the mixed approximation of (u(t), p(t)) defined as follows:
(4.15){

(∇wh(t),∇vh) + (BT
h qh(t), vh) = (∇u(t),∇vh) − (p(t),∇·vh), ∀vh ∈ Xh,

(Bhwh(t), rh) = −(∇·u(t), rh), ∀rh ∈ Mh.

From the regularity properties of the Stokes problem, the following error esti-
mates hold [9, 15].

Lemma 4.1. If u(j) ∈ Lβ(H l+1(Ω)d) ∩ H1
0 (Ω)d, p(j) ∈ Lβ(H l(Ω)) for 1 ≤ β ≤ ∞

and j = 0, 1, . . ., then

‖u(j) − w
(j)
h ‖Lβ(L2(Ω)d) + h

(
‖u(j) − w

(j)
h ‖Lβ(H1(Ω)d) + ‖p(j) − q

(j)
h ‖Lβ(L2(Ω))

)
� hl+1

(
‖u(j)‖Lβ(Hl+1(Ω)d) + ‖p(j)‖Lβ(Hl(Ω))

)
.(4.16)

We now rewrite (4.12)-(4.13)-(4.14) using wh and qh. Owing to the definition of
(wh(t), qh(t)), the following identity holds at time t = tk+1:

(4.17)

{
wk+1

h + δtBT
h qk+1

h − δtfk+1
h − δtRk+1

h = wk
h − δtAhwk+1

h ,

Bhwk+1
h = 0,



1396 J. L. GUERMOND, JIE SHEN, AND XIAOFENG YANG

where we have set Rk+1
h = 1

δt (w
k+1
h − wk

h) − πh∂tu
k+1 ∈ Xh. After applying ihδ to

(4.17), we obtain

(4.18)

{
ihδwk+1

h + δtihBT
h δqk+1

h − δtihδfk+1
h − ihδRk+1

h = ihδwk
h − δtihDt

hwk+1
h ,

ihBhδwk+1
h = 0.

Let us now introduce the following notation to denote various errors:

(4.19)

{
ek+1
h = ihwk+1

h − uk+1
h , ẽk+1

h = wk+1
h − ũk+1

h , ψ̃k+1
h = δwk+1

h + ẽk
h,

εk+1
h = qk+1

h − pk+1
h , εk+1

h = δqk+1
h − φk+1

h , φ̃k+1
h = δqk+1

h − φk
h.

Subtracting (4.12) from (4.18), we obtain

(4.20)

⎧⎨
⎩

δek+1
h + δtCT

h εk+1
h − δtihδRk+1

h = ihδẽk
h − δtihDt

hψ̃k+1
h

− δtihBT
h φ̃k+1

h + δtCT
h φ̃k+1

h ,
Chδek+1

h = 0.

After applying δ to (4.17) and subtracting (4.14) from it, we obtain

δẽk+1
h − δẽk

h + δtDt
hẽk+1

h = −δtBT
h εk+1

h + δtδRk+1
h .(4.21)

Now adding some zero terms to (4.13), we can rewrite it as

δẽk+1
h + δtDt

h(ẽk+1
h − ψ̃k+1

h ) = iTh δek+1
h .(4.22)

The error analysis will be based entirely on the three equations (4.20)-(4.21)-(4.22).
Let us assume that the algorithm is initialized so that the following holds:

(H1)

⎧⎪⎪⎨
⎪⎪⎩

‖ẽ0
h‖0 � min(hl+1, δt2hl−1), ‖ẽ0

h‖1 � min(hl, δthl−1),

‖Ahẽ0
h‖0 � min(hl−1, δthl−2), ‖Bt

hBhẽ0
h‖0 � min(hl−1, δthl−2),

‖ε0h‖1 � min(hl−1, δthl−2),

and the solution to (2.1) satisfies the following regularity hypothesis

(H2)
u, ut, utt ∈ L2(H l+1(Ω)d ∩ H1

0 (Ω)d), uttt ∈ L2(L2(Ω)d)

p ∈ L2(H l(Ω)), pt, ptt ∈ L2(H1(Ω)).

Remark 4.2. If we set ũ0
h = w0

h and p0
h = q0

h, then the hypothesis (H1) is naturally
satisfied.

We are now in position to establish the first error estimate.

Lemma 4.2. If the hypotheses (H1)-(H2) hold, we have

‖δẽh‖l∞(L2(Ω)d) + ‖ẽh − iTh eh‖l∞(L2(Ω)d) � δt(δt + hl+1),(4.23)

‖iTh δeh − δẽh‖l2(L2(Ω)d) + ‖δ2ẽh‖l2(L2(Ω)d) � δt5/2 + δt3/2hl+1,(4.24)

‖Bhũh‖l∞(L2(Ω)) � δt1/2(δt + hl+1).(4.25)

Proof. Let us first recall a series of standard identities that will be used throughout
the paper:⎧⎪⎨

⎪⎩
2(a, b) = |a|2 + |b|2 − |a − b|2,
2(a − b, a) = |a|2 + |b|2 − |a − b|2,
2(a − 2b + c, b) = (|a|2 − |b|2) − (|b|2 − |c|2) − |a − b|2 − |b − c|2.

(4.26)
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First, we square (4.20) and, noticing that iTh CT
h q = BT

h q, ∀q ∈ Mh and ‖ihv‖0 =
‖v‖0, ∀v ∈ Xh, we obtain

‖δek+1
h ‖2

0 + δt2‖CT
h εk+1

h ‖2
0 + δt2‖δRk+1

h ‖2
0

− 2δt(δek+1
h + δtCT

h εk+1
h , ihδRk+1

h ) = ‖δẽk
h‖2

0 + δt2‖Dt
hψ̃k+1

h ‖2
0

− 2δt(ihδẽk
h, ihDt

hψ̃k+1
h ) + δt2‖CT

h φ̃k+1
h ‖2

0 − δt2‖BT
h φ̃k+1

h ‖2
0.

(4.27)

By the identities (4.26), we have

2δt(ihδẽk
h, ihDt

hψ̃k+1
h ) = 2δt(δẽk

h, Ahδψ̃k+1
h + BT

h Bhψ̃k
h)

= 2δt(δẽk
h, Ahδ2wk+1

h + Ahδẽk
h + BT

h Bhẽk−1
h )

= δt(2‖∇δẽk
h‖2

0 − ‖Bhδẽk
h‖2

0) + δt(‖Bhẽk
h‖2

0 − ‖Bhẽk−1
h ‖2

0)

+ 2δt(δẽk
h, Ahδ2wk+1

h ).

By substituting the above equality into (4.27), we infer

‖δek+1
h ‖2

0 + δt2‖CT
h εk+1

h ‖2
0 + δt(2‖∇δẽk

h‖2
0 − ‖Bhδẽk

h‖2
0)

+ δt(‖Bhẽk
h‖2

0 − ‖Bhẽk−1
h ‖2

0) = ‖δẽk
h‖2

0 + δt2‖Dt
hψ̃k+1

h ‖2
0

+ δt2‖CT
h φ̃k+1

h ‖2
0 − δt2‖BT

h φ̃k+1
h ‖2

0 + 2δt(iTh δek+1
h , δRk+1

h )

+ 2δt2(BT
h εk+1

h , δRk+1
h ) − δt2‖δRk+1

h ‖2
0 − 2δt(δẽk

h, Ahδ2wk+1
h ).

(4.28)

Next, we square (4.21) and use (4.26) to obtain

(4.29)

‖δ2ẽk+1
h ‖2

0 + δt2‖Dt
hẽk+1

h ‖2
0 + δt(‖∇δẽk+1

h ‖2
0 − ‖∇δẽk

h‖2
0)

+ δt‖∇δ2ẽk+1
h ‖2

0 + δt(‖Bhẽk+1
h ‖2

0 − ‖Bhẽk
h‖2

0)

− δt(‖Bhẽk
h‖2

0 − ‖Bhẽk−1
h ‖2

0) − δt(‖Bhδẽk+1
h ‖2

0 + ‖Bhδẽk
h‖2

0)

= δt2‖BT
h εk+1

h ‖2
0 + δt2‖δRk+1

h ‖2
0 − 2δt2(BT

h εk+1
h , δRk+1

h ).

Then, we square (4.22) to obtain

(4.30)
‖δẽk+1

h ‖2
0 + δt2‖Dt

hẽk+1
h − Dt

hψ̃k+1
h ‖2

0

+ 2δt(δẽk+1
h , Dt

hẽk+1
h − Dt

hψ̃k+1
h ) = ‖iTh δẽk+1

h ‖2
0.

Notice that

2δt(δẽk+1
h , Dt

hẽk+1
h − Dt

hψ̃k+1
h ) = 2δt(δẽk+1

h , Dt
hδẽk+1

h − Dt
hδwk+1

h )

= 2δt(∇δẽk+1
h ,∇δ2ẽk+1

h ) + 2δt(Bhδẽk+1
h , Bhδẽk

h)

− 2δt(δẽk+1
h , Dt

hδwk+1
h )

= δt(‖∇δẽk+1
h ‖2

0 − ‖∇δẽk
h‖2

0 + ‖∇δ2ẽk+1
h ‖2

0)

+ δt(‖Bhδẽk+1
h ‖2

0 + ‖Bhδẽk
h‖2

0 − ‖Bhδ2ẽk+1
h ‖2

0)

− 2δt(δẽk+1
h , Ahδ2wk+1

h ),

and

δt2‖Dt
hẽk+1

h − Dt
hψ̃k+1

h ‖2
0 = ‖iTh δek+1

h − δẽk+1
h ‖2

0,
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so we can rewrite (4.30) as

‖δẽk+1
h ‖2

0 + ‖iTh δek+1
h − δẽk+1

h ‖2
0 + δt(‖∇δẽk+1

h ‖2
0 − ‖∇δẽk

h‖2
0)

+ δt(‖Bhδẽk+1
h ‖2

0 + ‖Bhδẽk
h‖2

0) + δt(‖∇δ2ẽk+1
h ‖2

0 − ‖Bhδ2ẽk+1
h ‖2

0)

= ‖iTh δek+1
h ‖2

0 + 2δt(δẽk+1
h , Ahδ2wk+1

h ).

(4.31)

Now we add (4.28), (4.29), and (4.31). Note that the definition of Bh together
with the homogeneous Dirichlet boundary conditions on vh imply

‖Bhvh‖2
0 ≤ ‖∇·vh‖2

0 ≤ ‖∇·vh‖2
0 + ‖∇×vh‖2

0 = ‖∇vh‖2
0, ∀vh ∈ Xh.

Observe, moreover, that ‖iTh u‖0 ≤ ‖u‖0, ∀u ∈ Yh. These two facts then yield

(4.32)

‖δẽk+1
h ‖2

0 + δt2(‖CT
h εk+1

h ‖2
0 − ‖BT

h εk+1
h ‖2

0) + δt(‖Bhẽk+1
h ‖2

0 − ‖Bhẽk
h‖2

0)

+ δt2‖Dt
hẽk+1

h ‖2
0 + 2δt(‖∇δẽk+1

h ‖2
0 − ‖∇δẽk

h‖2
0) + ‖δ2ẽk+1

h ‖2
0

+ ‖iTh δek+1
h − δẽk+1

h ‖2
0 + δt‖∇δẽk

h‖2
0 + δt‖∇δ2ẽk+1

h ‖2
0

≤ ‖δẽk
h‖2

0 + δt2(‖CT
h φ̃k+1

h ‖2
0 − ‖BT

h φ̃k+1
h ‖2

0) + δt2‖Dt
hψ̃k+1

h ‖2
0

+ 2δt(δ2ẽk+1
h , Ahδ2wk+1

h ) + 2δt(δRk+1
h , iTh δek+1

h ).

We now derive bounds for the last four terms in the right-hand side.
The definition of iTh implies

‖ihiTh vh‖2
0 + ‖vh − ihiTh vh‖2

0 = ‖vh‖2
0, ∀vh ∈ Yh.

Hence, from (2.15), we infer

‖CT
h qh‖2

0 − ‖BT
h qh‖2

0 = ‖CT
h qh‖2

0 − ‖ihiTh CT
h qh‖2

0 = ‖CT
h qh − ihiTh CT

h qh‖2
0

= ‖(CT
h − ihBT

h )qh‖2
0, ∀qh ∈ Mh.

Owing to this result together with the definition of φ̃h, we deduce that

‖CT
h φ̃k+1

h ‖2
0 − ‖BT

h φ̃k+1
h ‖2

0 = ‖(CT
h − ihBT

h )(δ2qk+1
h + εk

h)‖2
0

= ‖(Ch − ihBT
h )δ2qk+1

h ‖2
0 + ‖(Ch − ihBT

h )εk
h‖2

0

+ 2((CT
h − ihBT

h )δ2qk+1
h , (CT

h − ihBT
h )εk

h).

Then, using (2.18) together with Lemma 4.1, we obtain

‖CT
h φ̃k+1

h ‖2
0 − ‖BT

h φ̃k+1
h ‖2

0 � δt3 + (1 + δt)‖(Ch − ihBT
h )εk

h‖2
0.

A bound on ‖Dt
hψ̃k+1

h ‖2
0 can be obtained as follows:

‖Dt
hψ̃k+1

h ‖2
0 ≤ (‖Dt

hδwk+1
h ‖0 + ‖Dt

hẽk
h‖0)

2 = (‖Ahδ2wk+1
h ‖0 + ‖Dt

hẽk
h‖0)

2.

Then using (2.17) together with Lemma 4.1, we obtain

‖Dt
hψ̃k+1

h ‖2
0 � δt3 + (1 + δt)‖Dt

hẽk
h‖2

0.

For the two other terms from the right-hand side, upper bounds can be derived as
follows:

2δt(δRk+1
h , iTh δek+1

h ) = 2δt(δRk+1
h , iTh δek+1

h − δẽk+1
h ) + 2δt(δRk+1

h , δẽk+1
h )

≤ 2δt‖δRk+1
h ‖2

0 + δt‖iTh δek+1
h − δẽk+1

h ‖2
0 + δt‖δẽk+1

h ‖2
0

� δt(δt2 + δthl+1)2 + δt‖iTh δek+1
h − δẽk+1

h ‖2
0 + δt‖δẽk+1

h ‖2
0,
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2δt(δ2ẽk+1
h , Dt

hδwk+1
h ) ≤ δt‖∇δ2ẽk+1

h ‖2
0 + δt‖∇δ2wk+1

h ‖2
0

� δt‖∇δ2ẽk+1
h ‖2

0 + δt5.

Substituting all the inequalities above into (4.32), we obtain

(1 − δt)‖δẽk+1
h ‖2

0 + δt2‖(Ch − ihBT
h )εk+1

h ‖2
0 + δt‖Bhẽk+1

h ‖2
0

+ δt2‖Dt
hẽk+1

h ‖2
0 + 2δt‖∇δẽk+1

h ‖2
0

+ ‖δ2ẽk+1
h ‖2

0 + (1 − δt)‖iTh δek+1
h − δẽk+1

h ‖2
0

� ‖δẽk
h‖2

0 + δt2(1 + δt)‖(CT
h − ihBT

h )εk
h‖2

0 + δt‖Bhẽk
h‖2

0

+ (1 + δt)δt2‖Dt
hẽk

h‖2
0 + δt‖∇δẽk

h‖2
0 + δt3(δt + hl+1)2.

The discrete Gronwall lemma yields, for all n ≤ [T/δt] − 1,

‖δẽn+1
h ‖2

0 + δt2‖(CT
h − ihBT

h )εn+1
h ‖2

0 + δt‖Bhẽn+1
h ‖2

0 + δt2‖Dt
hẽn+1

h ‖2
0

+ δt‖∇δẽk+1
h ‖2

0 +
n∑

k=1

(
‖iTh δek+1

h − δẽk+1
h ‖2

0 + ‖δ2ẽk+1
h ‖2

0

)
� ‖δẽ1

h‖2
0 + δt2‖(CT

h − ihBT
h )ε1

h‖2
0 + δt‖Bhẽ1

h‖2
0

+ δt2‖Dt
hẽ1

h‖2
0 + δt‖∇δẽ1

h‖2
0 + δt2(δt + hl+1)2.

In order to estimate the initial error terms in the right-hand side of the above
inequality we make use of (4.17)-(4.6) at the first time step (i.e., k = 0). More
precisely, the equations that control e1

h, ẽ1
h, and ε1

h are obtained by subtracting
(4.5) from the equation obtained by applying ih to (4.17), and adding some zero
terms to (4.6) as follows:

e1
h + δtCT

h ε1
h = ihẽ0

h + δtihR1
h − δtihAhδw1

h − δtihAhẽ0
h(4.33)

+ δtCT
h δq1

h − δtihBT
h δq1

h − δtihBT
h ε0h,

ẽ1
h + δtAhẽ1

h = iTh e1
h + δtAhẽ0

h − δtBT
h Bhẽ0

h + δtAhδw1
h.(4.34)

Taking the square for (4.33) and (4.34), we have

‖e1
h‖2

0 + δt2‖CT
h ε1

h‖2
0 � ‖ẽ0

h‖2
0 + δt2‖R1

h‖2
0 + δt2‖Ahδw1

h‖2
0 + δt2‖Ahẽ0

h‖2
0

+ δt2‖CT
h δq1

h‖2
0 + δt2‖BT

h δq1
h‖2

0 + δt2‖BT
h ε0h‖2

0,

and

‖ẽ1
h‖2

0 + δt2‖Ahẽ1
h‖2

0 + δt‖ẽ1
h‖2

1 � ‖e1
h‖2

0 + δt2‖Ahδw1
h‖2

0

+ δt2‖Ahẽ0
h‖2

0 + δt2‖BT
h Bhẽ0

h‖2
0.

From the initialization hypothesis (H1), we obtain

‖ẽ1
h‖2

0 + ‖ẽ0
h‖2

0 + δt‖ẽ1
h‖2

1 + δt2‖CT
h ε1

h‖2
0 + δt2‖Ahẽ1

h‖2
0 � δt2(δt + hl+1)2.

Collecting the above results yields the desired bound

‖δẽn+1
h ‖2

0 + δt2‖Dt
hẽn+1

h ‖2
0 + δt‖Bhẽn+1

h ‖2
0

+
n∑

k=1

(‖iTh δek+1
h − δẽk+1

h ‖2
0 + ‖δ2ẽk+1

h ‖2
0) ≤ δt2(δt + hl+1)2.
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Finally, the bound on ẽh − iTh eh can be obtained from (4.6) as follows:

‖ẽn+1
h − iTh en+1

h ‖0 = δt‖Dt
hẽn+1

h − Ahδwn+1
h ‖0

� δt‖Dt
hẽn+1

h ‖0 + δt2 � δt(δt + hl+1).

This completes the proof. �

Remark 4.3. The estimate (4.25) is remarkable in the sense that, even though
the time stepping scheme is only first-order, the discrete divergence of ũh is 3

2 -
order with respect to time. Actually, the 3

2 -order holds also if we replace the
first-order backward Euler time stepping with the second-order BDF2 (i.e., Rk+1

h ∼
O(δt2 + hl+1)). That the splitting error can be smaller than the consistency error
induced by the time stepping has also been observed in [9]. This 3

2 -order on the
discrete divergence of ũh is the key reason why the second-order rotational scheme
yields better error estimate for velocity in the H1-norm and the pressure in the
L2-norm than the standard version of the algorithm (compare Theorem 3.1 and
Theorem 5.1).

We are now in position to prove the major result of this section:

Theorem 4.1. Let uh, ũh, ph solve (4.5)-(4.6) (or the equivalent algorithm (4.9)-
(4.10)-(4.7)) and assume (H1)-(H2), then the following error estimates hold:

‖u − ũh‖�2(L2(Ω)d) + ‖u − iTh uh‖�2(L2(Ω)d) � δt + hl+1,(4.35)

‖u − ũh‖�2(H1(Ω)d) + ‖u − iTh uh‖�2(H1(Ω)d) + ‖p − ph‖�2(L2(Ω)) � δt + hl.(4.36)

Proof. We reconstruct a non-homogeneous Stokes equation for the errors ẽ, ε, by
subtracting (4.7) from (4.17),⎧⎪⎨

⎪⎩
Ahẽk+1

h + BT
h εk+1

h = Rk+1
h − ẽk+1

h − ẽk
h

δt
,

Bhẽk+1
h = −Bhũk+1

h .

Standard stability results on non-homogeneous Stokes problems yield

‖ẽk+1
h ‖1 + ‖εk+1

h ‖0 ≤ ‖Rk+1
h ‖−1 +

1
δt
‖ẽk+1

h − ẽk
h‖−1 + ‖Bhũk+1

h ‖0.

Owing to Lemma 4.2, we have
1

δt2
‖ẽk+1

h − ẽk
h‖2

�2(H−1(Ω)d) � 1
δt2

‖ẽk+1
h − ẽk

h‖2
�2(L2(Ω)d) � δt2 + h2l+2,

‖Bhũk+1
h ‖�2(L2(Ω)d) ≤ ‖Bhẽk+1

h ‖�∞(L2(Ω)d) � δt3/2 + δt1/2hl+1.

This immediately implies

‖ẽh‖�2(H1(Ω)d) + ‖εh‖�2(L2(Ω)) � δt + hl+1.

Moreover, using the Poincaré inequality we infer ‖ẽ‖l2(l2(Ω)d) � δt + hl+1, which in
turn together with (4.23) yield ‖iTh e‖l2(l2(Ω)d) � δt + hl+1. The desired results are
then consequences of Lemma 4.1. �

Remark 4.4. The �2 discrete norm in time in the estimates (4.35)-(4.36) can be
replaced by the �∞-norm with a little more regularity asumption on the solution.
We refer, e.g., to [10, Theorem 4.1] where such estimates are proven for the fully
discrete standard form of the pressure-correction method.
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5. Second-order rotational velocity-correction scheme

We now focus our attention on the fully discrete rotational velocity-correction
algorithm with BDF2 in time. To shorten the presentation we only give the proof
of the stability of the algorithm and we just mention the final convergence result.
The technical details are similar to those in the proof of Theorem 4.1 plus a duality
argument involving the right inverse of the Stokes operator (details can be found
in [9, 24]).

Replacing the Euler time stepping in (4.5) and (4.7) by BDF2 yields the following
algorithm: Find (ũk+1

h , pk+1
h , uk+1

h ) ∈ (Xh, Mh, Yh) such that

(5.1)

⎧⎪⎪⎨
⎪⎪⎩

3uk+1
h − 4ihũk

h + ihũk−1
h

2δt
+ ihAhũk

h − CT
h Bhũk

h + CT
h pk+1

h

+ (ihBT
h − CT

h )pk
h = ihfk+1

h ,
Chuk+1

h = 0,

and

(5.2)
3ũk+1

h − 4ũk
h + ũk−1

h

2δt
+ Ahũk+1

h + BT
h pk+1

h = fk+1
h .

Lemma 5.1. The solution of the scheme (5.1)-(5.2) is bounded in the following
sense:

(5.3) ‖δũh‖l∞(L2(Ω)d) + δt
1
2 ‖Bhũh‖l∞(L2(Ω)) ≤ ‖δfh‖l2(L2(Ω)d).

Proof. For simplicity we omit the source term f since it does not affect the stability
of the algorithm. We proceed as in the proof of Lemma 4.1.

Applying iTh to (5.1) and subtracting the result from (5.2), we obtain

3(ũk+1
h − iTh uk+1

h )
2δt

+ Ahũk+1
h − Ahũk

h + BT
h Bhũk

h = 0.(5.4)

After applying the time increment operator δ to (5.1), (5.2) and (5.4), we have⎧⎪⎪⎨
⎪⎪⎩

3δuk+1
h + 2δtCT

h φk+1
h = ih(4δũk

h − δũk−1
h )

− 2δtihDt
hũk

h + 2δt(CT
h − ihBT

h )φk
h,

Chδuk+1
h = 0,

(5.5)

3δũk+1
h − 4δũk

h + δũk−1
h + 2δtDt

hũk+1
h = −2δtBT

h φk+1
h ,(5.6)

3δũk+1
h + 2δtDt

hδũk+1
h = 3iTh δuk+1

h .(5.7)

The entire stability analysis is based on the equations (5.5)–(5.6)–(5.7) above.
In the following, we will square each of them, sum up the results, use the two
inequalities

(5.8) ‖Bhvh‖0 ≤ ‖∇vh‖0, ∀vh ∈ Xh; ‖iTh yh‖0 ≤ ‖yh‖0, ∀yh ∈ Yh,

and apply the discrete Gronwall lemma to the resulted inequality.
First, we square (5.5) to obtain

9‖δuk+1
h ‖2

0 + 4δt2‖CT
h φk+1

h ‖2
0 = ‖4δũk

h − δũk−1
h ‖2

0 + 4δt2‖Dt
hũk

h‖2
0

− 4δt(4δũk
h − δũk−1

h , Dt
hũk

h) + 4δt2‖(CT
h − ihBT

h )δφk
h‖2

0.
(5.9)
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Note that we used the fact that (ihvh, (CT
h − ihBT

h )qh) = 0 for all vh ∈ Xh and all
qh ∈ Mh, since iTh ih is the identity and iTh CT

h = BT
h . Then, we square (5.6) to get

‖3δũk+1
h − 4δũk

h + δũk−1
h ‖2

0 + 4δt2‖Dt
hũk+1

h ‖2
0

+ 4δt(3δũk+1
h − 4δũk

h + δũk−1
h , Dt

hũk+1
h ) = 4δt2‖BT

h φk+1
h ‖2

0.
(5.10)

Finally, squaring (5.7) leads to

(5.11) 9‖δũk+1
h ‖2

0 + 4δt2‖Dt
hδũk+1

h ‖2
0 + 4δt(3δũk+1

h , Dt
hδũk+1

h ) = 9‖iTh δuk+1
h ‖2

0.

Now we sum up (5.9)–(5.10)–(5.11) to obtain

9‖δuk+1
h ‖2

0 + 4δt2(‖CT
h φk+1

h ‖2
0 − ‖BT

h φk+1
h ‖2

0)

+ 4δt2‖Dt
hũk+1

h ‖2
0 + 9‖δũk+1

h ‖2
0 + I1 + I2

+ 4δt2‖Dt
hδũk+1

h ‖2
0 = 4δt2‖Dt

hũk
h‖2

0

+ 4δt2‖(CT
h − ihBT

h )δφk
h‖2

0 + 9‖iTh δuk+1
h ‖2

0,

(5.12)

where, to simplify notation, we have set

I1 := ‖3δũk+1
h − 4δũk

h + δũk−1
h ‖2

0 − ‖4δũk
h − δũk−1

h ‖2
0,

and

I2 := 4δt[(3δũk+1
h , Dt

hδũk+1
h ) + (3δũk+1

h − 4δũk
h + δũk−1

h , Dt
hũk+1

h )

+ (4δũk
h − δũk−1

h , Dt
hũk

h)].

Observing that ‖CT
h φk+1

h ‖2
0−‖BT

h φk+1
h ‖2

0 = ‖(CT
h −ihBT

h )φk+1
h ‖2

0 and ‖iTh δuk+1
h ‖0 ≤

‖δuk+1
h ‖0, (5.12) can be rewritten as

9‖δũk+1
h ‖2

0 + I1 + I2 + 4δt2‖(CT
h − ihBT

h )φk+1
h ‖2

0 + 4δt2‖Dt
hũk+1

h ‖2
0

+ 4δt2‖Dt
hδũk+1

h ‖2
0 ≤ 4δt2‖Dt

hũk
h‖2

0 + 4δt2‖(CT
h − ihBT

h )δφk
h‖2

0.
(5.13)

Now we compute the terms I1 and I2. For I1, we have

9‖δũk+1
h ‖2

0 + I1 = 3‖δũk+1
h ‖2

0 + 3‖2δũk+1
h − δũk

h‖2
0 + 3‖δ3ũk+1

h ‖2
0

− 3‖δũk
h‖2

0 − 3‖2δũk
h − δũk−1

h ‖2
0.

(5.14)

The term I2 can be simplified as follows:

I2 = 4δt
[
(3δũk+1

h , Dt
hũk+1

h ) + (3δũk+1
h − 4δũk

h + δũk−1
h , Dt

hδũk+1
h )

]
.

Then, using the identity 2(3a − 4b + c, a− b) = 5(a− b)2 + (a − 2b + c)2 − (b − c)2

together with the definition of Dt
h, we infer

1
δt

I2 = 12‖∇δũk+1
h ‖2

0 + 12(δũk+1
h , BT

h Bhũk
h)

+ 4(3δũk+1
h − 4δũk

h + δũk−1
h , Ahδ2ũk+1

h + BT
h Bhδũk

h)

= 12‖∇δũk+1
h ‖2

0 + 10‖∇δ2ũk+1
h ‖2

0 + 2‖∇δ3ũk+1
h ‖2

0 − 2‖∇δ2ũk
h‖2

0

+ 6‖Bhũk+1
h ‖2

0 − 6‖Bhũk
h‖2

0 − 6‖Bhδ2ũk+1
h ‖2

0

− 8‖Bhδũk
h‖2

0 − 2‖Bhδ2ũk
h‖2

0 + 2‖Bhδũk−1
h ‖2

0.
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Thanks to the fact that ‖Bhvh‖0 ≤ ‖∇vh‖0 for all vh ∈ Xh, we deduce

(5.15)
1
δt

I2 ≥ 4‖∇δũk+1
h ‖2

0 + 8(‖∇δũk+1
h ‖2

0 − ‖∇δũk
h‖2

0)

+ 4(‖∇δ2ũk+1
h ‖2

0 − ‖∇δ2ũk
h‖2

0) + 6(‖Bhũk+1
h ‖2

0 − ‖Bhũk
h‖2

0).

Combining (5.13) with (5.14) and (5.15), we finally obtain

3‖δũk+1
h ‖2

0 + 6‖Bhũk+1
h ‖2

0 + 3‖2δũk+1
h − δũk

h‖2
0 + 8‖∇δũk+1

h ‖2
0 + 4‖∇δ2ũk+1

h ‖2
0

+ 4δt2‖(CT
h − ihBT

h )φk+1
h ‖2

0 + 4δt2‖Dt
hũk+1

h ‖2
0

+ 3‖δ2ũk+1
h ‖2

0 + 4‖∇δũk+1
h ‖2

0 + 4δt2‖Dt
hδũk+1

h ‖2
0

≤ 3‖δũk
h‖2

0 + 6‖Bhũk
h‖2

0) + 3‖2δũk
h − δũk−1

h ‖2
0 + 8‖∇δũk

h‖2
0 + 4‖∇δ2ũk

h‖2
0

+ 4δt2‖(CT
h − ihBT

h )δφk
h‖2

0 + 4δt2‖Dt
hũk

h‖2
0.

The conclusion then follows readily by using the discrete Gronwall lemma. �

Theorem 5.1. Under appropriate regularity assumptions and initialization hy-
potheses, the solution to (5.1)-(5.2) satisfies

‖u − ũh‖�2(L2(Ω)d) + ‖u − iTh uh‖�2(L2(Ω)d) � δt2 + hl+1,(5.16)

‖u − ũh‖�2(H1(Ω)d) + ‖p − ph‖�2(L2(Ω)) � δt3/2 + hl.(5.17)

Proof. Proceed as in the proof of Lemma 5.1 and use the right inverse of the discrete
stokes operator as in [9, 12, 24]. �

Remark 5.1. Note that the estimate (5.17) is 1
2 -order suboptimal with respect to δt.

This phenomenon is also observed for the rotational form of the pressure-correction
method. It has been analyzed for the pressure-correction method in [12]. The lack
of optimality is related to the smoothness of the boundary. Actually, if the domain
is a two-dimensional channel with one periodic direction, it has been shown in [2],
using the normal mode analysis, that the rotational pressure-correction method is
fully second-order. In the general case, if the boundary of the domain is smooth,
say of class C1, numerical evidences reported in [12] show that the method is also
fully second-order. But, if the boundary of the domain is only piecewise C1, say Ω
is a convex rectangle, then the δt

1
2 suboptimality manifests itself in the convergence

tests. This tends to confirm that our analysis is sharp under the assumption the
domain is such that H2 regularity holds for the steady Stokes problem supplemented
with homogeneous Dirichlet boundary conditions and L2 right-hand sides. Whether
rotational pressure-correction and rotational velocity-correction methods can be
modified to yield provable full second-order in any circumstance is still, to our best
knowledge, an open problem; see [13] for additional details.

Remark 5.2. Here again we only derived the �2-in-time estimates. It is possible to
obtain �∞-in-time estimates by asssuming more regularity. We refer for instance to
[9, Theorem 4.2] where this type of argument is developed for the standard version
the pressure-correction method.

6. Concluding remarks

The results in Theorems 4.1 and 5.1 show that the first-order and second-order
rotational velocity-correction yield optimal error estimates in space for both the
velocity and the pressure, provided that the inf-sup condition is satisfied. The time
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estimates are optimal for the velocity in the L2-norm for both schemes. These
estimates are also optimal in the H1-norm for the first-order time stepping but
are suboptimal by a δt

1
2 factor for the BDF2 time stepping. All these results are

consistent with the numerical results presented in [12].
The present analysis holds for all types of approximations provided the assump-

tions (2.8) and (2.17)-(2.18) are satisfied. In particular, these conditions are satis-
fied by most finite element settings for spectral approximations though the story is
slightly different. Although there are at least two pairs of spectral approximation
spaces that satisfy the inf-sup condition (2.8) uniformly with respect to the poly-
nomial degree N (cf. [1]), the most popular pair PN ×PN−2 only satisfies a weaker
inf-sup condition,

(6.1) inf
qh∈Mh

sup
vh∈Xh

(∇ · vh, qh)
‖∇vh‖0

≥ ch‖qh‖0,

where ch := βN = N
1−d
2 → 0 as N → ∞ (d = 2 or 3 is the dimension; see, for

instance, [1]). Although this does not affect the derivation of δt-estimates, it does
introduce difficulties for proving δt2-estimates on the velocity for the second-order
schemes, since the constant ch comes into play when we apply the right-inverse of
the discrete Stokes operator, leading to an estimate of the form

(6.2) ‖u − ũh‖�2(L2(Ω)d) � c−1
h (δt2 + hl+1).

Numerical tests reported in [11, 12] indicate that the term c−1
h does not affects the

accuracy on the velocity and should not be present in (6.2). How to remove the
term c−1

h in the above error estimate for spectral approximations is still an open
problem.
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