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A FAST PETROV--GALERKIN SPECTRAL METHOD FOR THE
MULTIDIMENSIONAL BOLTZMANN EQUATION USING MAPPED

CHEBYSHEV FUNCTIONS\ast 

JINGWEI HU\dagger , XIAODONG HUANG\ddagger , JIE SHEN\ddagger , AND HAIZHAO YANG\ddagger 

\bfA \bfb \bfs \bft \bfr \bfa \bfc \bft . Numerical approximation of the Boltzmann equation presents a challenging problem
due to its high-dimensional, nonlinear, and nonlocal collision operator. Among the deterministic
methods, the Fourier--Galerkin spectral method stands out for its relative high accuracy and possibility
of being accelerated by the fast Fourier transform. However, this method requires a domain truncation
which is unphysical since the collision operator is defined in \BbbR d. In this paper, we introduce a
Petrov--Galerkin spectral method for the Boltzmann equation in the unbounded domain. The basis
functions (both test and trial functions) are carefully chosen mapped Chebyshev functions to obtain
desired convergence and conservation properties. Furthermore, thanks to the close relationship of the
Chebyshev functions and the Fourier cosine series, we are able to construct a fast algorithm with
the help of the nonuniform fast Fourier transform. We demonstrate the superior accuracy of the
proposed method in comparison to the Fourier spectral method through a series of two-dimensional
and three-dimensional examples.

\bfK \bfe \bfy \bfw \bfo \bfr \bfd \bfs . Boltzmann equation, Petrov--Galerkin spectral method, mapped Chebyshev function,
unbounded domain, NUFFT

\bfA \bfM \bfS \bfs \bfu \bfb \bfj \bfe \bfc \bft \bfc \bfl \bfa \bfs \bfs \bfi fi\bfc \bfa \bft \bfi \bfo \bfn \bfs . 35Q20, 65M70

\bfD \bfO \bfI . 10.1137/21M1420721

1. Introduction. In multiscale modeling, kinetic theory serves as a basic building
block that bridges microscopic particle models and macroscopic continuum models. By
tracking the probability density function, kinetic equations describe the nonequilibrium
dynamics of the complex particle systems and have been widely used in disparate
fields such as rarefied gas dynamics [10], plasma physics [6], nuclear reactor modeling
[11], chemistry [20], biology, and socioeconomics [33].

In this paper, we consider the numerical approximation of the Boltzmann equation,
one of the fundamental equations in kinetic theory [9, 42]. The complete equation
includes both particle transport and collisions, which are often treated separately by
operator splitting. Since the collision part is the main difficulty when numerically
solving the equation, we focus on the following spatially homogeneous Boltzmann
equation:

(1.1) \partial tf = Q(f, f), t > 0, \bfitv \in \BbbR d, d = 2, 3,
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A1498 J. HU, X. HUANG, J. SHEN, AND H. YANG

where f = f(t,\bfitv ) is the probability density function at time t and velocity \bfitv , and
Q(f, f) is the collision operator whose bilinear form is given by

(1.2) Q(g, f)(\bfitv ) =

\int 
\BbbR d

\int 
Sd - 1

\scrB (\bfitv ,\bfitv \ast ,\bfitsigma ) [g(\bfitv 
\prime 
\ast )f(\bfitv 

\prime ) - g(\bfitv \ast )f(\bfitv )] d\bfitsigma d\bfitv \ast ,

where the postcollisional velocities (\bfitv \prime ,\bfitv \prime 
\ast ) are defined in terms of the precollisional

velocities (\bfitv ,\bfitv \ast ) as

(1.3)

\Biggl\{ 
\bfitv \prime = 1

2 (\bfitv + \bfitv \ast ) +
1
2 | \bfitv  - \bfitv \ast | \bfitsigma ,

\bfitv \prime 
\ast = 1

2 (\bfitv + \bfitv \ast ) - 1
2 | \bfitv  - \bfitv \ast | \bfitsigma 

with \bfitsigma being a vector over the unit sphere Sd - 1. The collision kernel \scrB takes the form

(1.4) \scrB (\bfitv ,\bfitv \ast ,\bfitsigma ) = B(| \bfitv  - \bfitv \ast | , cos \theta ), cos \theta =

\biggl\langle 
\bfitv  - \bfitv \ast 

| \bfitv  - \bfitv \ast | 
,\bfitsigma 

\biggr\rangle 
,

i.e., it is a function depending only on the relative velocity | \bfitv  - \bfitv \ast | and cosine of
the scattering angle. The collision operator Q(f, f) satisfies many important physical
properties, including conservation of mass, momentum, and energy,

(1.5)

\int 
\BbbR d

Q(f, f) d\bfitv =

\int 
\BbbR d

Q(f, f)\bfitv d\bfitv =

\int 
\BbbR d

Q(f, f)| \bfitv | 2 d\bfitv = 0,

and the Boltzmann's H-theorem,

(1.6)

\int 
\BbbR d

Q(f, f) log f d\bfitv \leq 0.

In the physically relevant case (d = 3), the collision operator is a fivefold quadratic
integral whose numerical approximation can be extremely challenging. The stochastic
methods, such as the direct simulation Monte Carlo (DSMC) methods proposed by
Nanbu [34] and Bird [4], have been historically popular due to their simplicity and
efficiency. However, like any Monte Carlo method, they suffer from slow convergence
and high statistical noise, especially for low-speed and unsteady flows. In the past two
decades, the deterministic methods have undergone extensive development largely due
to the advance in computing powers; see [12] for a recent review.

Among the deterministic methods for the Boltzmann equation, the Fourier--
Galerkin spectral method stands out for its relatively high accuracy and the possibility
of being accelerated by the fast Fourier transform. Some relevant works in this direction
explore the structure of the collision operator in the Fourier domain [8, 7]. The method
was formally formulated in [35, 36]; see [31, 17, 16] for major algorithmic development,
[37, 13, 1, 23] for stability and convergence analysis, and [14, 19, 27] for extension to
the spatially inhomogeneous case. Although being a method with reasonable efficiency
and accuracy tradeoff, the Fourier spectral method requires a domain truncation which
is unphysical since the original collision operator is defined in \BbbR d. This truncation
changes the structure of the equation and often comes with an accuracy loss.

Inspired by the recent work [24] of the two authors here, where a spectral method
was introduced for the one-dimensional (1D) inelastic Boltzmann equation, we develop
in this paper a Petrov--Galerkin spectral method for the Boltzmann equation (1.1)1

1Unlike the inelastic Boltzmann equation, which has a nontrivial solution in one dimension, the
classical Boltzmann equation (1.1) must be considered at least for d \geq 2.
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using mapped Chebyshev functions in \BbbR d. Both the test functions and trial functions
are carefully chosen to obtain desired approximation properties. Furthermore, thanks
to the close relationship between the Chebyshev functions and the Fourier cosine
series, we are able to construct a fast algorithm with the help of the nonuniform fast
Fourier transform (NUFFT). This speedup is critical as the direct implementation
of the proposed method would require excessive storage for precomputation and a
significant online computational cost that soon becomes a bottleneck for larger N (the
number of spectral modes). Extensive numerical tests in two and three dimensions
are performed to demonstrate the accuracy and efficiency of the proposed method. In
particular, since the new method does not require a truncation in the velocity space,
it offers much better accuracy and conservation properties compared to the Fourier
spectral method in [16].

Finally, we mention some recent spectral methods for the Boltzmann equation
that use other orthogonal polynomial bases in \BbbR d (e.g., Hermite polynomials, Burnett
polynomials, Laguerre polynomials, spherical harmonics, or a combination of them)
[41, 18, 15, 22, 28, 25, 26]. However, the numerical realization of the high-dimensional
problems is quite challenging for these methods and some numerical strategies are
proposed to balance the workload and accuracy. In comparison to these methods,
our method is the first to use the mapped Chebyshev functions and take advantage
of their connection to the fast Fourier transform to come up with a fast algorithm.
Furthermore, to our knowledge, we are also the first to provide a consistency analysis
of the method on the unbounded domain.

The rest of this paper is organized as follows. In section 2, we introduce the mapped
Chebyshev functions in \BbbR d along with their approximation properties. In section 3,
we construct the Petrov--Galerkin spectral method for the Boltzmann equation using
the mapped Chebyshev functions as trial and test functions. The approximation
properties for the collision operator and moments are proved as well. The numerical
realization including the fast algorithm is described in detail in section 4. In section 5,
several numerical tests in two and three dimensions are performed to demonstrate the
accuracy and efficiency of the proposed method. The paper is concluded in section 6.

2. Multidimensional mapped Chebyshev functions. In this section, we
introduce the mapped Chebyshev functions in \BbbR d and discuss their approximation
properties. These functions are an extension of the 1D mapped Chebyshev functions
introduced in [24] based on tensor product formulation [38, 40]. Later in section 3,
they will serve as the trial functions and test functions in the Petrov--Galerkin spectral
method for the Boltzmann equation.

2.1. Mapped Chebyshev functions in \BbbR \bfitd . To define the mapped Chebyshev
functions in \BbbR d, we start with the 1D Chebyshev polynomials on the interval I =
( - 1, 1):

(2.1) T0(\xi ) = 1, T1(\xi ) = \xi , Tk+1(\xi ) = 2\xi Tk(\xi ) - Tk - 1(\xi ), k \geq 1.

It is well-known that these polynomials are related to trigonometric functions:

(2.2) Tk(\xi ) = cos(k arccos(\xi )) \forall \xi \in I.

Define the inner product (\cdot , \cdot )\omega as

(2.3) (F,G)\omega :=

\int 
I

F (\xi )G(\xi )\omega (\xi ) d\xi , \omega (\xi ) = (1 - \xi 2) - 
1
2 ,
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and then \{ Tk(\xi )\} k\geq 0 satisfy the orthogonality condition

(2.4) (Tk, Tl)\omega = ck\delta k,l \forall k, l \geq 0,

where c0 = \pi and ck = \pi /2 for k \geq 1.
Notice that Chebyshev functions are defined on a bounded domain. To deal with

the unbounded domain problem, we introduce a one-to-one mapping \xi \rightarrow v(\xi ) (its
inverse is denoted as v \rightarrow \xi (v)) from I to \BbbR such that

(2.5)
dv

d\xi 
=

S

(1 - \xi 2)1+
r
2
:=

\omega (\xi )

[\mu (\xi )]2
, v(\pm 1) = \pm \infty ,

where S > 0 is a scaling parameter, r \geq 0 is the tail parameter, and the function \mu is
given by

(2.6) \mu (\xi ) =
(1 - \xi 2)

1+r
4

\surd 
S

.

Using this mapping, the unbounded integral in the collision operator (1.2) can be
transformed into a bounded domain. Here the scaling parameter S will play a key role
in our method since it determines the distribution of mapped quadrature points. Its
influence on the numerical accuracy will be investigated in section 5.

With this mapping we define two sets of mapped Chebyshev functions in \BbbR as

(2.7) \widetilde Tk(v) :=
[\mu (\xi (v))]4

\surd 
ck

Tk(\xi (v)), \widehat Tk(v) :=
[\mu (\xi (v))] - 2

\surd 
ck

Tk(\xi (v)).

Define the inner product (\cdot , \cdot )\BbbR as

(2.8) (f, g)\BbbR :=

\int 
\BbbR 
f(v)g(v) dv,

and then it is easy to check that \{ \widetilde Tk(v)\} k\geq 0 and \{ \widehat Tk(v)\} k\geq 0 satisfy the orthonormal
condition:

(2.9) (\widetilde Tk, \widehat Tl)\BbbR = \delta k,l \forall k, l \geq 0.

Remark 2.1. Here we present two one-to-one mappings between I and \BbbR that are
of the above type:

\bullet logarithmic mapping (r = 0):

(2.10) v =
S

2
ln

\biggl( 
1 + \xi 

1 - \xi 

\biggr) 
, \xi = tanh

\Bigl( v
S

\Bigr) 
, \mu (\xi ) =

1\surd 
S
(1 - \xi 2)

1
4 ,

\bullet algebraic mapping (r = 1):

(2.11) v =
S\xi \sqrt{} 
1 - \xi 2

, \xi =
v\surd 

S2 + v2
, \mu (\xi ) =

1\surd 
S
(1 - \xi 2)

1
2 .

These two mappings are commonly used ones to transform between I and \BbbR . Several
other mappings are discussed in Chapter 7.5 of [38].
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In the multidimensional case, we denote the multivector as \bfitv = (v1, . . . , vd) and
multi-index as \bfitk = (k1, . . . , kd), where kj is a nonnegative integer for each j = 1, . . . , d;
0 \leq \bfitk \leq N means 0 \leq kj \leq N for each j = 1, . . . , d. We define the mapped Chebyshev
functions in \BbbR d using (2.7) via the tensor product as

(2.12) \widetilde \bfitT \bfitk (\bfitv ) :=

d\prod 
j=1

\widetilde Tkj
(vj), \widehat \bfitT \bfitk (\bfitv ) :=

d\prod 
j=1

\widehat Tkj
(vj).

The inner products (\cdot , \cdot )\bfitomega in Id = ( - 1, 1)d and (\cdot , \cdot )\BbbR d in \BbbR d are defined, respectively,
by

(2.13) (F,G)\bfitomega :=

\int 
Id

F (\bfitxi )G(\bfitxi )\bfitomega (\bfitxi ) d\bfitxi , (f, g)\BbbR d :=

\int 
\BbbR d

f(\bfitv )g(\bfitv ) d\bfitv 

with the weight function \bfitomega (\bfitxi ) :=
\prod d

j=1 \omega (\xi j). Then we still have the orthogonality

(2.14)
\Bigl( \widetilde \bfitT \bfitk , \widehat \bfitT \bfitl 

\Bigr) 
\BbbR d

=

d\prod 
j=1

\Bigl( \widetilde Tkj ,
\widehat Tlj

\Bigr) 
\BbbR 
=

d\prod 
j=1

\delta kj ,lj =: \bfitdelta \bfitk ,\bfitl .

Suppose that a d-variate function f(\bfitv ) can be expanded by \{ \widetilde \bfitT \bfitk (\bfitv )\} \bfitk \geq 0 as

(2.15) f(\bfitv ) =
\sum 
\bfitk \geq 0

\widetilde f\bfitk \widetilde \bfitT \bfitk (\bfitv ) =
\sum 
\bfitk \geq 0

\widetilde f\bfitk [\bfitmu (\bfitxi )]4\surd 
\bfitc \bfitk 

\bfitT \bfitk (\bfitxi ),

and the expansion coefficients \{ \widetilde f\bfitk \} \bfitk \geq 0 are determined by

\widetilde f\bfitk =
\Bigl( 
f, \widehat \bfitT \bfitk 

\Bigr) 
\BbbR d

=
1

\surd 
\bfitc \bfitk 

\bigl( 
[\bfitmu (\bfitxi )] - 4f(\bfitv (\bfitxi )),\bfitT \bfitk (\bfitxi )

\bigr) 
\bfitomega 
,(2.16)

where

(2.17) \bfitmu (\bfitxi ) :=

d\prod 
j=1

\mu (\xi j), \bfitc \bfitk :=

d\prod 
j=1

ckj
, \bfitT \bfitk (\bfitxi ) :=

d\prod 
j=1

Tkj
(\xi j),

and \bfitv (\bfitxi ) is the mapping from Id to \BbbR d such that each component \xi j is mapped to vj
via the 1D mapping (2.5). The inverse mapping \bfitxi (\bfitv ) is understood similarly.

In section 3, we will introduce the Petrov--Galerkin spectral method for the
Boltzmann equation in \BbbR d, where the trial function space and test function space are
chosen, respectively, as

(2.18) \widetilde \BbbT d
N := \{ \widetilde \bfitT \bfitk (\bfitv )\} 0\leq \bfitk \leq N , \widehat \BbbT d

N := \{ \widehat \bfitT \bfitk (\bfitv )\} 0\leq \bfitk \leq N .

The choice of these functions is motivated by their decay/growth properties at large
| \bfitv | . The following result is a straightforward extension of the 1D result in [24]; a
detailed proof is provided in the appendix.

Lemma 2.2. For any \bfitk \geq 0 and | \bfitv | \gg 1, we have

(2.19)
\bigm| \bigm| \bigm| \widetilde \bfitT \bfitk (\bfitv )

\bigm| \bigm| \bigm| \sim \Biggl\{ e - 2
S (

\sum d
j=1 | vj | ), r = 0,\prod d

j=1 | vj |  - 4, r = 1;

\bigm| \bigm| \bigm| \widehat \bfitT \bfitk (\bfitv )
\bigm| \bigm| \bigm| \sim \Biggl\{ e 1

S (
\sum d

j=1 | vj | ), r = 0,\prod d
j=1 | vj | 2, r = 1,

where r = 0 corresponds to the logarithmic mapping (2.10) and r = 1 to the algebraic
mapping (2.11).
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2.2. Approximation properties. We describe below some approximation prop-
erties of the mapped Chebyshev functions in \BbbR d.

For a function f(\bfitv ) defined in \BbbR d, the transform \bfitv (\bfitxi ) maps it to a function in Id.
Hence, we introduce the linked function pair (f, F ) such that f(\bfitv ) = f(\bfitv (\bfitxi )) \equiv F (\bfitxi ).

In addition, we introduce another function pair ( \widehat f\alpha , \widehat F\alpha ) as

(2.20) \widehat f\alpha (\bfitv ) := f(\bfitv )[\bfitmu (\bfitxi (\bfitv ))] - \alpha = F (\bfitxi )[\bfitmu (\bfitxi )] - \alpha =: \widehat F\alpha (\bfitxi ).

We define the approximation space in \BbbR d with a parameter \alpha as

(2.21) \BbbV \alpha ,d
N (\BbbR d) := span \{ \bfitT \alpha 

\bfitk (\bfitv ) := [\bfitmu (\bfitxi (\bfitv ))]\alpha \bfitT \bfitk (\bfitxi (\bfitv )), 0 \leq \bfitk \leq N\} .

Therefore, the trial function space \widetilde \BbbT d
N and test function space \widehat \BbbT d

N introduced in the

previous section correspond to \BbbV 4,d
N and \BbbV  - 2,d

N , respectively.
In the following, the L2 space with a given weight \bfitw is equipped with norm

(2.22)

\| f\| L2
\bfitw (Id) =

\biggl( \int 
Id

| f(\bfitxi )| 2\bfitw (\bfitxi ) d\bfitxi 

\biggr) 1/2

or \| f\| L2
\bfitw (\BbbR d) =

\biggl( \int 
\BbbR d

| f(\bfitv )| 2\bfitw (\bfitv ) d\bfitv 

\biggr) 1/2

,

depending on the domain of interest.
Let \BbbP d

N (Id) denote the set of d-variate polynomials in Id with degree \leq N in
each direction, and \Pi d

N : L2
\bfitomega (I

d) \rightarrow \BbbP d
N (Id) be the Chebyshev orthogonal projection

operator such that

(2.23)
\bigl( 
\Pi d

NF  - F, \phi 
\bigr) 
\bfitomega 
= 0 \forall \phi \in \BbbP d

N (Id).

Then we define another projection operator \pi \alpha ,d
N : L2

\bfitmu 2 - 2\alpha (\BbbR d) \rightarrow \BbbV \alpha ,d
N (\BbbR d) by

(2.24) \pi \alpha ,d
N f := \bfitmu \alpha \Pi d

N (F\bfitmu  - \alpha ) = \bfitmu \alpha \Pi d
N
\widehat F\alpha .

One can verify using the definition that\Bigl( 
\pi \alpha ,d
N f  - f,\bfitmu 2 - 2\alpha \bfitT \alpha 

\bfitk 

\Bigr) 
\BbbR d

=

\int 
\BbbR d

(\pi \alpha ,d
N f  - f)\bfitmu 2 - \alpha \bfitT \bfitk (\bfitxi (\bfitv )) d\bfitv 

=

\int 
Id

\Bigl[ 
\bfitmu \alpha \Pi d

N
\widehat F\alpha  - \bfitmu \alpha \widehat F\alpha 

\Bigr] 
\bfitT \bfitk (\bfitxi )\bfitmu 

2 - \alpha \bfitomega (\bfitxi )

\bfitmu 2
d\bfitxi 

=
\Bigl( 
\Pi d

N
\widehat F\alpha  - \widehat F\alpha ,\bfitT \bfitk 

\Bigr) 
\bfitomega 
= 0 \forall 0 \leq \bfitk \leq N.(2.25)

Next, we introduce the function space \bfitB m
\alpha (\BbbR d) equipped with the norm

(2.26) \| f\| \bfitB m
\alpha (\BbbR d) =

\left(  \sum 
0\leq \bfitk \leq m

\bigm\| \bigm\| \bfitD \bfitk 
\alpha ,\bfitv f

\bigm\| \bigm\| 2
L2

\bfitvarpi 
\bfitk +1+r

2
\bfone 
(\BbbR d)

\right)  1/2

and seminorm

(2.27) | f | \bfitB m
\alpha (\BbbR d) =

\left(  d\sum 
j=1

\bigm\| \bigm\| \bigm\| Dm
\alpha ,vjf

\bigm\| \bigm\| \bigm\| 2
L2

\bfitvarpi 
m\bfite j+

1+r
2

\bfone 
(\BbbR d)

\right)  1/2

,
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where 1 is an all-one vector, \bfite j = (0, . . . , 1, . . . , 0) with 1 in the jth position and 0
elsewhere, and

(2.28) \bfitD \bfitk 
\alpha ,\bfitv f := Dk1

\alpha ,v1 \cdot \cdot \cdot D
kd
\alpha ,vd

f, \bfitvarpi \bfitk :=

d\prod 
j=1

(1 - \xi (vj)
2)kj

with

(2.29) Dkj
\alpha ,vj

f := a(vj)
\partial 

\partial vj

\Biggl( 
a(vj)

\partial 

\partial vj

\Biggl( 
. . .

\Biggl( 
a(vj)

\partial \widehat f\alpha 

\partial vj

\Biggr) 
. . .

\Biggr) \Biggr) 
\underbrace{}  \underbrace{}  

kj times derivatives

=
\partial kj \widehat F\alpha 

\partial \xi j
,

where a(vj) :=
dvj
d\xi j

is determined by the mapping.

We have the following approximation result.

Theorem 2.3. Let \alpha \in \BbbR , r \geq 0. If f \in \bfitB m
\alpha (\BbbR d), we have

(2.30)
\bigm\| \bigm\| \bigm\| \pi \alpha ,d

N f  - f
\bigm\| \bigm\| \bigm\| 
L2

\bfitmu 2 - 2\alpha (\BbbR d)
\leq CN - m | f | \bfitB m

\alpha (\BbbR d) .

Proof. Note that\bigm\| \bigm\| \bigm\| \pi \alpha ,d
N f  - f

\bigm\| \bigm\| \bigm\| 2
L2

\bfitmu 2 - 2\alpha (\BbbR d)
=

\int 
\BbbR d

(\pi \alpha ,d
N f  - f)2\bfitmu 2 - 2\alpha d\bfitv 

=

\int 
Id

\Bigl[ 
\bfitmu \alpha \Pi d

N
\widehat F\alpha  - \bfitmu \alpha \widehat F\alpha 

\Bigr] 2
\bfitmu 2 - 2\alpha \bfitomega (\bfitxi )

\bfitmu 2
d\bfitxi 

=
\bigm\| \bigm\| \bigm\| \Pi d

N
\widehat F\alpha  - \widehat F\alpha 

\bigm\| \bigm\| \bigm\| 2
L2

\bfitomega (Id)
.

By the multivariate (full tensor product) Chebyshev approximation result (Theo-
rem 2.1 in [39]), we know

\bigm\| \bigm\| \bigm\| \Pi d
N
\widehat F\alpha  - \widehat F\alpha 

\bigm\| \bigm\| \bigm\| 
L2

\bfitomega (Id)
\leq CN - m

\left(  d\sum 
j=1

\bigm\| \bigm\| \bigm\| \partial m
\xi j
\widehat F\alpha 
\bigm\| \bigm\| \bigm\| 2
L2

\bfitvarpi 
m\bfite j - 

1
2
\bfone 
(Id)

\right)  1/2

.

Hence, \bigm\| \bigm\| \bigm\| \pi \alpha ,d
N f  - f

\bigm\| \bigm\| \bigm\| 
L2

\bfitmu 2 - 2\alpha (\BbbR d)
=
\bigm\| \bigm\| \bigm\| \Pi d

N
\widehat F\alpha  - \widehat F\alpha 

\bigm\| \bigm\| \bigm\| 
L2

\bfitomega (Id)

\leq CN - m

\left(  d\sum 
j=1

\bigm\| \bigm\| \bigm\| \partial m
\xi j
\widehat F\alpha 
\bigm\| \bigm\| \bigm\| 2
L2

\bfitvarpi 
m\bfite j - 

1
2
\bfone 
(Id)

\right)  1/2

\leq CN - m

\left(  d\sum 
j=1

\bigm\| \bigm\| \bigm\| Dm
\alpha ,vj

f
\bigm\| \bigm\| \bigm\| 2
L2

\bfitvarpi 
m\bfite j+

1+r
2

\bfone 
(\BbbR d)

\right)  1/2

= CN - m | f | \bfitB m
\alpha (\BbbR d) .
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3. A Petrov--Galerkin spectral method for the Boltzmann equation. We
consider the initial value problem

(3.1)

\Biggl\{ 
\partial tf(t,\bfitv ) = Q(f, f), t > 0, \bfitv \in \BbbR d,

f(0,\bfitv ) = f0(\bfitv ),

where Q(f, f), in a strong form, is given by (1.2). To construct the Petrov--Galerkin
spectral method, the following weak form of the collision operator is more convenient:

(Q(f, f), \phi )\BbbR d =

\int 
\BbbR d

Q(f, f)(\bfitv )\phi (\bfitv ) d\bfitv 

=

\int 
\BbbR d

\int 
\BbbR d

\int 
Sd - 1

\scrB (\bfitv ,\bfitv \ast ,\bfitsigma )f(\bfitv )f(\bfitv \ast )[\phi (\bfitv 
\prime ) - \phi (\bfitv )] d\bfitsigma d\bfitv d\bfitv \ast ,(3.2)

where \phi (\bfitv ) is a test function.

We look for an approximation of f in the trial function space \widetilde \BbbT d
N as

(3.3) f(t,\bfitv ) \approx fN (t,\bfitv ) =
\sum 

0\leq \bfitk \leq N

\widetilde f\bfitk (t) \widetilde \bfitT \bfitk (\bfitv ) \in \widetilde \BbbT d
N .

Substituting fN into (3.1) and requiring the residue of the equation to be orthogonal

to the test function space \widehat \BbbT d
N , we obtain

(3.4)
\Bigl( 
\partial tfN  - Q(fN , fN ), \widehat \bfitT \bfitk 

\Bigr) 
\BbbR d

= 0 \forall \widehat \bfitT \bfitk \in \widehat \BbbT d
N .

By the orthogonality condition (2.14), we find that the coefficients \{ \widetilde f\bfitk (t)\} satisfy the
following ODE system:

(3.5)

\Biggl\{ 
d
dt
\widetilde f\bfitk (t) = \scrQ N

\bfitk ,\widetilde f\bfitk (0) = \widetilde f0
\bfitk ,

0 \leq \bfitk \leq N,

where

\scrQ N
\bfitk :=

\Bigl( 
Q(fN , fN ), \widehat \bfitT \bfitk 

\Bigr) 
\BbbR d

=

\int 
\BbbR d

\int 
\BbbR d

\int 
Sd - 1

\scrB (\bfitv ,\bfitv \ast ,\bfitsigma )fN (\bfitv )fN (\bfitv \ast )
\Bigl[ \widehat \bfitT \bfitk (\bfitv 

\prime ) - \widehat \bfitT \bfitk (\bfitv )
\Bigr] 
d\bfitsigma d\bfitv d\bfitv \ast (3.6)

and

(3.7) \widetilde f0
\bfitk :=

\Bigl( 
f0, \widehat \bfitT \bfitk 

\Bigr) 
\BbbR d

=
1

\surd 
\bfitc \bfitk 

\bigl( 
[\bfitmu (\bfitxi )] - 4f0(\bfitv (\bfitxi )),\bfitT \bfitk (\bfitxi )

\bigr) 
\bfitomega 
.

Note that we used the weak form (3.2) in (3.6).

Remark 3.1. An equivalent way of writing the ODE system (3.5) is

(3.8)

\Biggl\{ 
\partial tfN (t,\bfitv ) = \pi 4,d

N Q(fN , fN ),

fN (0,\bfitv ) = \pi 4,d
N f0(\bfitv ),

where \pi 4,d
N is the projection operator defined in (2.24) (with \alpha = 4). Indeed, for any

f \in L2
\bfitmu  - 6(\BbbR d),

(3.9) \pi 4,d
N f =

\sum 
0\leq \bfitk \leq N

\Bigl( 
f, \widehat \bfitT \bfitk 

\Bigr) 
\BbbR d

\widetilde \bfitT \bfitk (\bfitv ) \in \BbbV 4,d
N (\BbbR d) = \widetilde \BbbT d

N .

D
ow

nl
oa

de
d 

06
/1

8/
22

 to
 1

28
.2

10
.1

07
.2

5 
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

A FAST SPECTRAL METHOD FOR THE BOLTZMANN EQUATION A1505

3.1. Approximation property for the collision operator. In this subsection,
we establish a consistency result of the spectral approximation for the collision operator.
We will show that if f and Q(f, f) have certain regularity, the proposed approximation

of the collision operator \pi 4,d
N Q(\pi 4,d

N f, \pi 4,d
N f) enjoys spectral accuracy.

We will only prove this result under the algebraic mapping (2.11) with S = 1, that
is, in one dimension,

(3.10) v =
\xi \sqrt{} 

1 - \xi 2
, \xi =

v\surd 
1 + v2

, \mu =
\sqrt{} 
1 - \xi 2 =

1\surd 
1 + v2

.

The reason for this choice is strongly motivated by the existing regularity result of the
Boltzmann collision operator under a polynomially weighted Lebesgue norm:

(3.11) \| f\| \scrL p
k(\BbbR d) =

\biggl( \int 
\BbbR d

| f(\bfitv )| p(1 + | \bfitv | 2)kp/2 d\bfitv 
\biggr) 1/p

, k \in \BbbR , 1 \leq p < \infty .

Specifically, we write the collision operator (1.2) as Q(g, f) = Q+(g, f) - Q - (g, f),
where the gain part and loss part are given by

Q+(g, f)(\bfitv ) =

\int 
\BbbR d

\int 
Sd - 1

\scrB (\bfitv ,\bfitv \ast ,\bfitsigma )g(\bfitv 
\prime 
\ast )f(\bfitv 

\prime ) d\bfitsigma d\bfitv \ast ,

Q - (g, f)(\bfitv ) =

\int 
\BbbR d

\int 
Sd - 1

\scrB (\bfitv ,\bfitv \ast ,\bfitsigma )g(\bfitv \ast )f(\bfitv ) d\bfitsigma d\bfitv \ast .

(3.12)

Then we have the following regularity result for the gain operator Q+(g, f) estab-
lished in [32], with the additional cut-off assumption: no frontal collision should occur,
i.e., b(cos \theta ) should vanish for \theta close to \pi :

(3.13) \exists \theta b > 0; supp b(cos \theta ) \subset \{ \theta | 0 \leq \theta \leq \pi  - \theta b\} .

Theorem 3.2 (Theorem 2.1 in [32]). Let k, \eta \in \BbbR , 1 \leq p < \infty , and let the
collision kernel \scrB satisfy the cut-off assumption (3.13). Then the following estimate
holds:

(3.14) \| Q+(g, f)\| \scrL p
\eta (\BbbR d) \leq Ck,\eta ,p(\scrB )\| g\| \scrL 1

| k+\eta | +| \eta | (\BbbR d)\| f\| \scrL p
k+\eta (\BbbR d),

where Ck,\eta ,p(\scrB ) is a constant that depends only on the kernel \scrB and k, \eta , and p.

To obtain a similar estimate for the loss operator Q - (g, f), we restrict ourselves
to the variable hard sphere collision model [5], with a little modification to satisfy the
cut-off assumption (3.13):

(3.15) \scrB = b(cos \theta )| \bfitv  - \bfitv \ast | \lambda , b(cos \theta ) =

\Biggl\{ 
C\lambda , 0 \leq \theta \leq \pi  - \theta b,

0, otherwise,

where 0 \leq \lambda \leq 1 and C\lambda is a positive constant.
Then we have the following result.

Proposition 3.2. Let \eta \in \BbbR , 1 \leq p < \infty , and let the collision kernel take the
form (3.15). Then the following estimate holds:

(3.16) \| Q - (g, f)\| \scrL p
\eta (\BbbR d) \leq C\lambda \| g\| \scrL 1

\lambda (\BbbR d)\| f\| Lp
\lambda +\eta (\BbbR d).
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Proof. Note that

| \bfitv  - \bfitv \ast | \leq | \bfitv | + | \bfitv \ast | = (| \bfitv | 2 + | \bfitv \ast | 2 + 2| \bfitv | | \bfitv \ast | )1/2 \leq 
\bigl( 
1 + | \bfitv | 2

\bigr) 1/2 \bigl( 
1 + | \bfitv \ast | 2

\bigr) 1/2
.

Then

Q - (g, f)(\bfitv ) \leq C\lambda f(\bfitv )

\int 
\BbbR d

g(\bfitv \ast )| \bfitv  - \bfitv \ast | \lambda d\bfitv \ast 

\leq C\lambda f(\bfitv )
\bigl( 
1 + | \bfitv | 2

\bigr) \lambda /2 \biggl[ \int 
\BbbR d

g(\bfitv \ast )
\bigl( 
1 + | \bfitv \ast | 2

\bigr) \lambda /2
d\bfitv \ast 

\biggr] 
= C\lambda f(\bfitv )

\bigl( 
1 + | \bfitv | 2

\bigr) \lambda /2 \| g\| L1
\lambda (\BbbR d).

Therefore, for any \eta \in \BbbR , 1 \leq p < \infty ,

\| Q - (g, f)\| \scrL p
\eta (\BbbR d) \leq C\lambda \| g\| \scrL 1

\lambda (\BbbR d)\| f\| Lp
\lambda +\eta (\BbbR d).

Combining the previous two results, we can obtain the following theorem.

Theorem 3.3. Let the collision kernel take the form (3.15), and then the collision
operator Q(g, f) satisfies

(3.17) \| Q(g, f)\| \scrL 2
3d(\BbbR d) \leq Cd(\scrB )\| g\| \scrL 1

\lambda +6d(\BbbR d)\| f\| \scrL 2
\lambda +3d(\BbbR d),

where Cd(\scrB ) is a constant that depends only on the kernel \scrB and the dimension d.

Proof. Choosing k = \lambda , \eta = 3d, p = 2 in (3.14), we have

\| Q+(g, f)\| \scrL 2
3d(\BbbR d) \leq C\lambda ,3d,2(\scrB )\| g\| \scrL 1

\lambda +6d(\BbbR d)\| f\| \scrL 2
\lambda +3d(\BbbR d).

Choosing \eta = 3d, p = 2 in (3.16), we have

\| Q - (g, f)\| \scrL 2
3d(\BbbR d) \leq C\lambda \| g\| \scrL 1

\lambda (\BbbR d)\| f\| \scrL 2
\lambda +3d(\BbbR d).

Combining both, we obtain

\| Q(g, f)\| \scrL 2
3d(\BbbR d) \leq Cd(\scrB )\| g\| \scrL 1

\lambda +6d(\BbbR d)\| f\| \scrL 2
\lambda +3d(\BbbR d).

Before we proceed to the consistency proof, we need the following lemmas.

Lemma 3.4. Under the algebraic mapping (2.11) with S = 1, we have

(3.18) \| f\| \scrL 2
\eta (\BbbR d) \leq \| f\| L2

\bfitmu  - 2\eta (\BbbR d) \leq \| f\| \scrL 2
d\eta (\BbbR d) for any \eta \geq 0.

Proof. Note that

1 +

d\sum 
j=1

| vj | 2 \leq 
d\prod 

j=1

(1 + | vj | 2) \leq (1 +

d\sum 
j=1

| vj | 2)d.

Then we have

\| f\| L2
\bfitmu  - 2\eta (\BbbR d) =

\biggl( \int 
\BbbR d

| f(\bfitv )| 2\bfitmu  - 2\eta d\bfitv 

\biggr) 1/2

=

\left(  \int 
\BbbR d

| f(\bfitv )| 2
d\prod 

j=1

(1 + | vj | 2)\eta d\bfitv 

\right)  1/2

\geq 

\left(  \int 
\BbbR d

| f(\bfitv )| 2
\left(  1 +

d\sum 
j=1

| vj | 2
\right)  \eta 

d\bfitv 

\right)  1/2

= \| f\| \scrL 2
\eta (\BbbR d).
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Also,

\| f\| L2
\bfitmu  - 2\eta (\BbbR d) =

\left(  \int 
\BbbR d

| f(\bfitv )| 2
d\prod 

j=1

(1 + | vj | 2)\eta d\bfitv 

\right)  1/2

\leq 

\left(   \int 
\BbbR d

| f(\bfitv )| 2
\left(  1 +

d\sum 
j=1

| vj | 2
\right)  d\eta 

d\bfitv 

\right)   
1/2

= \| f\| \scrL 2
d\eta (\BbbR d).

Lemma 3.5. For any \eta \geq 0, there exist some \epsilon > d - 1 and C\epsilon > 0 such that

(3.19) \| f\| \scrL 1
\eta (\BbbR d) \leq C\epsilon \| f\| \scrL 2

\eta +1+\epsilon 
2

(\BbbR d).

Proof. Note that

\| f\| 2\scrL 1
\eta (\BbbR d) =

\biggl( \int 
\BbbR d

| f(\bfitv )| (1 + | \bfitv | 2)
\eta 
2 d\bfitv 

\biggr) 2

\leq 
\int 
\BbbR d

| f(\bfitv )| 2(1 + | \bfitv | 2)\eta +
1+\epsilon 
2 d\bfitv 

\int 
\BbbR d

(1 + | \bfitv | 2) - 
1+\epsilon 
2 d\bfitv 

\leq C\epsilon 

\int 
\BbbR d

| f(\bfitv )| 2(1 + | \bfitv | 2)\eta +
1+\epsilon 
2 d\bfitv 

= C\epsilon \| f\| 2\scrL 2

\eta +1+\epsilon 
2

(\BbbR d),

where we used the Cauchy--Schwarz inequality.

We are ready to present a consistency result.

Theorem 3.6. Let the collision kernel take the form (3.15), and then under the
algebraic mapping (2.11) with S = 1, we have\bigm\| \bigm\| \bigm\| Q(f, f) - \pi 4,d

N Q(\pi 4,d
N f, \pi 4,d

N f)
\bigm\| \bigm\| \bigm\| 
\scrL 2

3(\BbbR d)

\leq Cd,\epsilon (\scrB )N - m

\Biggl( \bigm| \bigm| f \bigm| \bigm| 
\bfB m

\lambda +6d+3+\epsilon 
2

(\BbbR d)
\| f\| \scrL 2

\lambda +3d(\BbbR d)

+
\bigm| \bigm| f \bigm| \bigm| 

\bfB m
\lambda +3d+1(\BbbR d)

\| f\| \scrL 1
\lambda +6d(\BbbR d) +

\bigm| \bigm| Q(f, f)
\bigm| \bigm| 
\bfitB m

4 (\BbbR d)

\Biggr) 
,

(3.20)

where m is a positive integer, d is the dimension, \epsilon > d - 1 is a constant, and Cd,\epsilon (\scrB )
is a constant depending only on the kernel \scrB , d, and \epsilon .

Proof. By the triangle inequality

\| Q(f, f) - \pi 4,d
N Q(\pi 4,d

N f, \pi 4,d
N f)\| \scrL 2

3(\BbbR d)

\leq \| Q(f, f) - \pi 4,d
N Q(f, f)\| \scrL 2

3(\BbbR d) + \| \pi 4,d
N Q(f, f) - \pi 4,d

N Q(\pi 4,d
N f, \pi 4,d

N f)\| \scrL 2
3(\BbbR d).

For the first term, by Lemma 3.4 and Theorem 2.3, we have

\| Q(f, f) - \pi 4,d
N Q(f, f)\| \scrL 2

3(\BbbR d) \leq 
\bigm\| \bigm\| Q(f, f) - \pi 4,d

N Q(f, f)
\bigm\| \bigm\| 
L2

\bfitmu  - 6 (\BbbR d)

\leq CN - m
\bigm| \bigm| Q(f, f)

\bigm| \bigm| 
\bfitB m

4 (\BbbR d)
.
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For the second term, using again Lemma 3.4, Theorem 2.3 and Lemma 3.5,
Theorem 3.3, we have

\| \pi 4,d
N Q(f, f) - \pi 4,d

N Q(\pi 4,d
N f, \pi 4,d

N f)\| \scrL 2
3(\BbbR d)\leq \| \pi 4,d

N Q(f, f) - \pi 4,d
N Q(\pi 4,d

N f, \pi 4,d
N f)\| L2

\bfitmu  - 6 (\BbbR d)

\leq \| Q(f, f) - Q(\pi 4,d
N f, \pi 4,d

N f)\| L2
\bfitmu  - 6 (\BbbR d) \leq \| Q(f, f) - Q(\pi 4,d

N f, \pi 4,d
N f)\| \scrL 2

3d(\BbbR d)

\leq \| Q(f  - \pi 4,d
N f, f)\| \scrL 2

3d(\BbbR d) + \| Q(\pi 4,d
N f, f  - \pi 4,d

N f)\| \scrL 2
3d(\BbbR d)

\leq Cd(\scrB )
\Bigl( 
\| f  - \pi 4,d

N f\| \scrL 1
\lambda +6d(\BbbR d)\| f\| \scrL 2

\lambda +3d(\BbbR d) + \| \pi 4,d
N f\| \scrL 1

\lambda +6d(\BbbR d)\| f  - \pi 4,d
N f\| \scrL 2

\lambda +3d(\BbbR d)

\Bigr) 
\leq Cd(\scrB )

\Bigl( 
\| f  - \pi 4,d

N f\| \scrL 1
\lambda +6d(\BbbR d)(\| f\| \scrL 2

\lambda +3d(\BbbR d) + \| f  - \pi 4,d
N f\| \scrL 2

\lambda +3d(\BbbR d))

+ \| f\| \scrL 1
\lambda +6d(\BbbR d)\| f  - \pi 4,d

N f\| \scrL 2
\lambda +3d(\BbbR d)

\Bigr) 
\leq Cd,\epsilon (\scrB )\| f  - \pi 4,d

N f\| \scrL 2

\lambda +6d+1+\epsilon 
2

(\BbbR d)

\Bigl( 
\| f\| \scrL 2

\lambda +3d(\BbbR d) + \| f  - \pi 4,d
N f\| \scrL 2

\lambda +3d(\BbbR d)

\Bigr) 
+ Cd(\scrB )\| f\| \scrL 1

\lambda +6d(\BbbR d)\| f  - \pi 4,d
N f\| \scrL 2

\lambda +3d(\BbbR d)

\leq Cd,\epsilon (\scrB )\| f  - \pi 4,d
N f\| L2

\bfitmu 
 - 2(\lambda +6d+1+\epsilon 

2
)
(\BbbR d)(\| f\| \scrL 2

\lambda +3d(\BbbR d) + \| f  - \pi 4,d
N f\| L2

\bfitmu  - 2(\lambda +3d)
(\BbbR d))

+ Cd(\scrB )\| f\| \scrL 1
\lambda +6d(\BbbR d)\| f  - \pi 4,d

N f\| L2

\bfitmu  - 2(\lambda +3d)
(\BbbR d)

\leq Cd,\epsilon (\scrB )N - m
\bigm| \bigm| f \bigm| \bigm| 

\bfB m

\lambda +6d+3+\epsilon 
2

(\BbbR d)

\Bigl( 
\| f\| \scrL 2

\lambda +3d(\BbbR d) + CN - m
\bigm| \bigm| f \bigm| \bigm| 

\bfB m
\lambda +3d+1(\BbbR d)

\Bigr) 
+ Cd(\scrB )N - m\| f\| \scrL 1

\lambda +6d(\BbbR d)

\bigm| \bigm| f \bigm| \bigm| 
\bfB m

\lambda +3d+1(\BbbR d)

\leq Cd,\epsilon (\scrB )N - m

\Biggl( \bigm| \bigm| f \bigm| \bigm| 
\bfB m

\lambda +6d+3+\epsilon 
2

(\BbbR d)
\| f\| \scrL 2

\lambda +3d(\BbbR d) +
\bigm| \bigm| f \bigm| \bigm| 

\bfB m
\lambda +3d+1(\BbbR d)

\| f\| \scrL 1
\lambda +6d(\BbbR d)

\Biggr) 
.

Combining the above inequalities, we arrive at the desired result.

3.2. Approximation property for the moments. For the Boltzmann equation,
the moments or macroscopic observables are important physical quantities. Still, under
the algebraic mapping (2.11), we can show that the spectral method (3.5) preserves
mass and energy.

Theorem 3.7. If using the algebraic mapping (2.11) with N \geq 2, the spectral
method (3.5) preserves mass and energy, i.e., \rho (t) and E(t) defined by

\rho (t) :=

\int 
\BbbR d

fN (t,\bfitv ) d\bfitv , E(t) =

\int 
\BbbR d

fN (t,\bfitv )| \bfitv | 2 d\bfitv (3.21)

remain constant in time. Furthermore,

(3.22) \rho (t) \equiv 
\int 
\BbbR d

f0(\bfitv ) d\bfitv , E(t) \equiv 
\int 
\BbbR d

f0(\bfitv )| \bfitv | 2 d\bfitv .

Proof. In one dimension, the first few Chebyshev polynomials read

T0(\xi ) = 1, T1(\xi ) = \xi , T2(\xi ) = 2\xi 2  - 1.

With the algebraic mapping (2.11), we have

T0(\xi (v)) = 1, T1(\xi (v)) =
v\surd 

v2 + S2
, T2(\xi (v)) =

v2  - S2

v2 + S2
, \mu (\xi (v)) =

\surd 
S\surd 

v2 + S2
.
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A FAST SPECTRAL METHOD FOR THE BOLTZMANN EQUATION A1509

Then \widehat Tk(v) =
[\mu (\xi (v))] - 2

\surd 
ck

Tk(\xi (v)) =
v2 + S2

\surd 
ckS

Tk(\xi (v)).

Specifically,

\widehat T0(v) =
v2 + S2

\surd 
c0S

, \widehat T1(v) =
v
\surd 
v2 + S2

\surd 
c1S

, \widehat T2(v) =
v2  - S2

\surd 
c2S

.

Therefore,

1 =

\surd 
c0

2S
\widehat T0(v) - 

\surd 
c2

2S
\widehat T2(v), v2 =

\surd 
c0S

2
\widehat T0(v) +

\surd 
c2S

2
\widehat T2(v).

Hence we can replace ( \widehat T0(v), \widehat T2(v)) by (1, v2) as basis functions, namely,\widehat \BbbT 1
N = span\{ 1, \widehat T1, v

2, \widehat T3, \widehat T4, \cdot \cdot \cdot , \widehat TN\} .

In d dimensions, it is easy to see

1, v21 , v22 , . . . , v2d \in \widehat \BbbT d
N for N \geq 2.

In other words, we have shown that 1, | \bfitv | 2 \in \widehat \BbbT d
N for N \geq 2.

On the other hand, by (3.21) and (3.4), we have

d

dt
\rho (t) =(\partial tfN (t,\bfitv ), 1)\BbbR d = (Q(fN , fN ), 1)\BbbR d = 0;

d

dt
E(t) =(\partial tfN (t,\bfitv ), | \bfitv | 2)\BbbR d =

\bigl( 
Q(fN , fN ), | \bfitv | 2

\bigr) 
\BbbR d = 0,

where in the last equality we used the conservation property (1.5) of the collision
operator.

It remains to show\int 
\BbbR d

fN (0,\bfitv ) d\bfitv =

\int 
\BbbR d

f0(\bfitv ) d\bfitv ,

\int 
\BbbR d

fN (0,\bfitv )| \bfitv | 2 d\bfitv =

\int 
\BbbR d

f0(\bfitv )| \bfitv | 2 d\bfitv .

Noting that fN (0,\bfitv ) = \pi 4,df0, it suffices to show

(\pi 4,df0  - f0, 1)\BbbR d = (\pi 4,df0  - f0, | \bfitv | 2)\BbbR d = 0,

which is true by (2.25) (with \alpha = 4).

4. Numerical realization. To implement the proposed spectral method, one
needs to solve the ODE system (3.5). For time discretization, one can just use the
explicit Runge--Kutta methods. Hence, the key is the efficient evaluation of \scrQ N

\bfitk as
defined in (3.6).

In this section, we introduce two algorithms to compute \scrQ N
\bfitk . The first one is

a direct algorithm that treats \scrQ N
\bfitk as a matrix/tensor-vector multiplication. Since

the weight matrix/tensor does not depend on the numerical solution fN , it can be
precomputed and stored for repeated use. This approach is simple but will soon
meet a bottleneck when N increases since the memory requirement as well as the
online computational cost can get extremely high. To alleviate this, we propose a fast
algorithm, where the key idea is to recognize the gain term of the collision operator as
a nonuniform discrete Fourier cosine transform to be accelerated by the NUFFT. Note
that this is possible because we are using the mapped Chebyshev functions as a basis,
which is related to the Fourier cosine series.
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4.1. A direct algorithm. To derive the direct algorithm, we substitute (3.3)
into (3.6) to obtain

\scrQ N
\bfitk =

\sum 
0\leq \bfiti ,\bfitj \leq N

\widetilde f\bfiti \widetilde f\bfitj \int 
\BbbR d

\int 
\BbbR d

\int 
Sd - 1

\scrB (\bfitv ,\bfitv \ast ,\bfitsigma ) \widetilde \bfitT \bfiti (\bfitv ) \widetilde \bfitT \bfitj (\bfitv \ast )[ \widehat \bfitT \bfitk (\bfitv 
\prime ) - \widehat \bfitT \bfitk (\bfitv )] d\bfitsigma d\bfitv d\bfitv \ast 

=
\sum 

0\leq \bfiti ,\bfitj \leq N

\widetilde f\bfiti \widetilde f\bfitj \Bigl[ \widetilde I1(\bfiti , \bfitj , \bfitk ) - \widetilde I2(\bfiti , \bfitj , \bfitk )\Bigr] , 0 \leq \bfitk \leq N,

(4.1)

where

(4.2) \widetilde I1(\bfiti , \bfitj , \bfitk ) := \int 
\BbbR d

\int 
\BbbR d

\int 
Sd - 1

\scrB (\bfitv ,\bfitv \ast ,\bfitsigma ) \widetilde \bfitT \bfiti (\bfitv ) \widetilde \bfitT \bfitj (\bfitv \ast ) \widehat \bfitT \bfitk (\bfitv 
\prime ) d\bfitsigma d\bfitv d\bfitv \ast ,

(4.3) \widetilde I2(\bfiti , \bfitj , \bfitk ) := \int 
\BbbR d

\int 
\BbbR d

\int 
Sd - 1

\scrB (\bfitv ,\bfitv \ast ,\bfitsigma ) \widetilde \bfitT \bfiti (\bfitv ) \widetilde \bfitT \bfitj (\bfitv \ast ) \widehat \bfitT \bfitk (\bfitv ) d\bfitsigma d\bfitv d\bfitv \ast .

Since the tensors \widetilde I1(\bfiti , \bfitj , \bfitk ) and \widetilde I2(\bfiti , \bfitj , \bfitk ) do not depend on coefficients \{ \widetilde f\bfitk \} 0\leq \bfitk \leq N ,

a straightforward way to evaluate \scrQ N
\bfitk is to precompute \widetilde I1(\bfiti , \bfitj , \bfitk ) and \widetilde I2(\bfiti , \bfitj , \bfitk ), and

then evaluate the sum in (4.1) directly in the online computation. This is what we refer
to as the direct algorithm. We observe that this algorithm requires \scrO (N3d) memory

to store the tensors \widetilde I1 and \widetilde I2; and to evaluate (4.1), it requires \scrO (N3d) operations.
Both the memory requirement and online computational cost can be quite demanding,
especially for d = 3 and large N .

We give some details on how to approximate \widetilde I1(\bfiti , \bfitj , \bfitk ) and \widetilde I2(\bfiti , \bfitj , \bfitk ), though
this step can be completed in advance and does not take the actual computational
time. We first perform a change of variables (\bfitv ,\bfitv \ast ) \rightarrow (\bfitv (\bfitxi ),\bfitv \ast (\bfiteta )) to transform the
integrals of (\bfitv , \bfitv \ast ) \in \BbbR d \times \BbbR d into integrals of (\bfitxi ,\bfiteta ) \in Id \times Id, using the mapping
introduced in section 2.1:

\widetilde I1(\bfiti , \bfitj , \bfitk ) = \int 
Id

\int 
Id

G\bfitk (\bfitxi ,\bfiteta )
\bfitT \bfiti (\bfitxi )\bfitT \bfitj (\bfiteta )\surd 

\bfitc \bfiti \bfitc \bfitj 
\bfitomega (\bfitxi )\bfitomega (\bfiteta ) d\bfitxi d\bfiteta ,(4.4)

\widetilde I2(\bfiti , \bfitj , \bfitk ) = \int 
Id

\int 
Id

L\bfitk (\bfitxi ,\bfiteta )
\bfitT \bfiti (\bfitxi )\bfitT \bfitj (\bfiteta )\surd 

\bfitc \bfiti \bfitc \bfitj 
\bfitomega (\bfitxi )\bfitomega (\bfiteta ) d\bfitxi d\bfiteta ,(4.5)

where

G\bfitk (\bfitxi ,\bfiteta ) := [\bfitmu (\bfitxi )\bfitmu (\bfiteta )]
2
\int 
Sd - 1

\scrB (\bfitv (\bfitxi ),\bfitv \ast (\bfiteta ),\bfitsigma )
\bfitT \bfitk 

\bigl( 
\bfitzeta (\bfitxi ,\bfiteta ,\bfitsigma )

\bigr) 
\surd 
\bfitc k[\bfitmu 

\bigl( 
\bfitzeta (\bfitxi ,\bfiteta ,\bfitsigma )

\bigr) 
]2

d\bfitsigma ,(4.6)

L\bfitk (\bfitxi ,\bfiteta ) :=
\bfitT \bfitk (\bfitxi ) [\bfitmu (\bfiteta )]

2

\surd 
\bfitc \bfitk 

\int 
Sd - 1

\scrB (\bfitv (\bfitxi ),\bfitv \ast (\bfiteta ),\bfitsigma ) d\bfitsigma .(4.7)

Notice that in (4.6), \bfitzeta (\bfitxi ,\bfiteta ,\bfitsigma ) \in Id is the value transformed from

\bfitv \prime =
1

2
(\bfitv (\bfitxi ) + \bfitv \ast (\bfiteta )) +

1

2
| \bfitv (\bfitxi ) - \bfitv \ast (\bfiteta )| \bfitsigma \in \BbbR d

under the same mapping. To approximate the above integrals in \bfitxi , \bfiteta , and \bfitsigma , we choose
M\bfitv Chebyshev--Gauss--Lobatto quadrature points in each dimension of Id for both
\bfitxi and \bfiteta , and M\bfitsigma quadrature points on the unit sphere Sd - 1 (for d = 2, this can be
the uniform points in polar angle; for d = 3, this can be the Lebedev quadrature [29]).
Therefore, for each fixed index \bfitk , (4.4) and (4.5) are forward Chebyshev transforms
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A FAST SPECTRAL METHOD FOR THE BOLTZMANN EQUATION A1511

of the functions G\bfitk (\bfitxi ,\bfiteta ) and L\bfitk (\bfitxi ,\bfiteta ), respectively. Thus, they can be evaluated
efficiently using the fast Chebyshev transform.

4.2. A fast algorithm. To introduce the fast algorithm, we take the original
form (3.6) and split \scrQ N

\bfitk into a gain term and a loss term as \scrQ N
\bfitk = \scrQ N,+

\bfitk  - \scrQ N, - 
\bfitk 

(under the cut-off assumption of the collision kernel, i.e., \scrB is integrable in the angular
direction), where

\scrQ N,+
\bfitk =

\int 
\BbbR d

\biggl( \int 
\BbbR d

\int 
Sd - 1

\scrB (\bfitv ,\bfitv \ast ,\bfitsigma )fN (\bfitv \ast ) \widehat \bfitT \bfitk (\bfitv 
\prime ) d\bfitsigma d\bfitv \ast 

\biggr) 
fN (\bfitv ) d\bfitv ,(4.8)

\scrQ N, - 
\bfitk =

\int 
\BbbR d

\biggl( \int 
\BbbR d

\int 
Sd - 1

\scrB (\bfitv ,\bfitv \ast ,\bfitsigma )fN (\bfitv \ast ) d\bfitsigma d\bfitv \ast 

\biggr) 
fN (\bfitv ) \widehat \bfitT \bfitk (\bfitv ) d\bfitv .(4.9)

We propose to evaluate \scrQ N,+
\bfitk and \scrQ N, - 

\bfitk following the above expressions. To this

end, given the coefficients \{ \widetilde f\bfitk \} 0\leq \bfitk \leq N at each time step, we first reconstruct fN as in
(3.3) at M\bfitv Chebyshev--Gauss--Lobatto quadrature points in each dimension of \bfitv (for
an accurate approximation we choose M\bfitv = N + 2). This can be achieved by the fast
Chebyshev transform in \scrO (Md

\bfitv logM\bfitv ) operations.

To evaluate the gain term \scrQ N,+
k , we change the integrals of (\bfitv , \bfitv \ast ) \in \BbbR d \times \BbbR d

into integrals of (\bfitxi ,\bfiteta ) \in Id \times Id in (4.8) (similarly as in the previous subsection for\widetilde I1(\bfiti , \bfitj , \bfitk )):

\scrQ N,+
\bfitk =

\int 
Id

\Biggl( \int 
Id

\int 
Sd - 1

\scrB (\bfitv (\bfitxi ),\bfitv \ast (\bfiteta ),\bfitsigma )fN (\bfitv \ast (\bfiteta ))
\bfitT \bfitk 

\bigl( 
\bfitzeta (\bfitxi ,\bfiteta ,\bfitsigma )

\bigr) 
\surd 
\bfitc \bfitk 
\bigl[ 
\bfitmu 
\bigl( 
\bfitzeta (\bfitxi ,\bfiteta ,\bfitsigma )

\bigr) \bigr] 2 \bfitomega (\bfiteta )

[\bfitmu (\bfiteta )]
2 d\bfitsigma d\bfiteta 

\Biggr) 

\times fN (\bfitv (\bfitxi ))
\bfitomega (\bfitxi )

[\bfitmu (\bfitxi )]2
d\bfitxi 

=

\int 
Id

\biggl( \int 
Sd - 1

F\bfitk (\bfitsigma , \bfitxi ) d\bfitsigma 

\biggr) 
fN (\bfitv (\bfitxi ))

\bfitomega (\bfitxi )

[\bfitmu (\bfitxi )]2
d\bfitxi ,

(4.10)

where

(4.11) F\bfitk (\bfitsigma , \bfitxi ) :=

\int 
Id

\scrB (\bfitv (\bfitxi ),\bfitv \ast (\bfiteta ),\bfitsigma )fN (\bfitv \ast (\bfiteta ))
\bfitT \bfitk 

\bigl( 
\bfitzeta (\bfitxi ,\bfiteta ,\bfitsigma )

\bigr) 
\surd 
\bfitc \bfitk 
\bigl[ 
\bfitmu 
\bigl( 
\bfitzeta (\bfitxi ,\bfiteta ,\bfitsigma )

\bigr) \bigr] 2 \bfitomega (\bfiteta )

[\bfitmu (\bfiteta )]
2 d\bfiteta .

Supposing M\bfitv quadrature points are used in each dimension of \bfitv and \bfitv \ast and M\bfitsigma 

points are used on the sphere Sd - 1, a direct evaluation of (4.11) would require
\scrO (M\bfitsigma M

2d
\bfitv Nd) operations. Given F\bfitk (\bfitsigma , \bfitxi ), a direct evaluation of (4.10) would take

\scrO (M\bfitsigma M
d
\bfitv N

d) operations. Therefore, the major bottleneck is to compute F\bfitk (\bfitsigma , \bfitxi ),
which is prohibitively expensive without a fast algorithm. Our main idea is to recognize
(4.11) as a nonuniform discrete Fourier cosine transform so it can be evaluated by the
NUFFT. We will see that the total complexity to evaluate F\bfitk (\bfitsigma , \bfitxi ) can be brought
down to \scrO (M\bfitsigma M

2d
\bfitv | log \epsilon | +M\bfitsigma M

d
\bfitv N

d logN), where \epsilon is the requested precision in
the NUFFT algorithm.

Applying the Chebyshev--Gauss--Lobatto quadrature (\bfiteta \bfitj , w\bfitj )1\leq \bfitj \leq M\bfitv , (4.11)
becomes
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F\bfitk (\bfitsigma , \bfitxi ) \approx 
\sum 

1\leq \bfitj \leq M\bfitv 

w\bfitj 
\scrB (\bfitv (\bfitxi ),\bfitv \ast (\bfiteta \bfitj ),\bfitsigma )fN (\bfitv \ast (\bfiteta \bfitj ))\surd 

c\bfitk [\bfitmu (\bfitzeta (\bfitxi ,\bfiteta \bfitj ,\bfitsigma ))]2[\bfitmu (\bfiteta \bfitj )]2
\bfitT \bfitk (\bfitzeta (\bfitxi ,\bfiteta \bfitj ,\bfitsigma ))

=
\sum 

1\leq \bfitj \leq M\bfitv 

w\bfitj 
\scrB (\bfitv (\bfitxi ),\bfitv \ast (\bfiteta \bfitj ),\bfitsigma )fN (\bfitv \ast (\bfiteta \bfitj ))\surd 

c\bfitk [\bfitmu (\bfitzeta (\bfitxi ,\bfiteta \bfitj ,\bfitsigma ))]2[\bfitmu (\bfiteta \bfitj )]2

d\prod 
l=1

cos
\bigl( 
kl arccos

\bigl( 
\bfitzeta (\bfitxi ,\bfiteta \bfitj ,\bfitsigma ),l

\bigr) \bigr) 
=

1
\surd 
c\bfitk 

\sum 
1\leq \bfitj \leq M\bfitv 

q\bfitj 

d\prod 
l=1

cos (kl\bfitz \bfitj ,l) ,(4.12)

where \bfitzeta (\bfitxi ,\bfiteta \bfitj ,\bfitsigma ),l is the lth component of \bfitzeta (\bfitxi ,\bfiteta \bfitj ,\bfitsigma ), and

(4.13) q\bfitj := w\bfitj 
\scrB (\bfitv (\bfitxi ),\bfitv \ast (\bfiteta \bfitj ),\bfitsigma )fN (\bfitv \ast (\bfiteta \bfitj ))

[\bfitmu (\bfitzeta (\bfitxi ,\bfiteta \bfitj ,\bfitsigma ))]2[\bfitmu (\bfiteta \bfitj )]2
, \bfitz \bfitj ,l := arccos

\bigl( 
\bfitzeta (\bfitxi ,\bfiteta \bfitj ,\bfitsigma ),l

\bigr) 
.

(4.12) is almost a nonuniform discrete Fourier cosine transform. Indeed, we propose
to evaluate F\bfitk (\bfitsigma , \bfitxi ) in two steps. First, for each fixed \bfitsigma and \bfitxi , we compute

(4.14) \widetilde F\bfitK :=
\sum 

1\leq \bfitj \leq M\bfitv 

q\bfitj exp(i\bfitK \cdot \bfitz \bfitj ),  - N \leq \bfitK \leq N,

which is a nonuniform discrete Fourier transform mapping samples \bfitz \bfitj \in [0, \pi ]d into
frequencies \bfitK \in [ - N,N ]d. This can be done efficiently using the NUFFT algorithm.

In recent years, various NUFFT algorithms and applications have been well
developed. Greengard and Lee [21, 30] describe an extremely simple and efficient
implementation of NUFFT, which uses a Gaussian kernel in the algorithm. The general
idea is to apply an interpolation between nonuniform samples and an equispaced grid,
and then perform the uniform FFT on the new grid. In our numerical realization, we
employ the recent FINUFFT library [3, 2], which uses a new ``exponential of semicircle""
kernel

\phi (z) = e\beta 
\surd 
1 - z2

.

This algorithm only costs \scrO (Md
\bfitv | log \epsilon | +Nd logN) operations to compute (4.14) with

the requested precision \epsilon .
Once we obtain \widetilde F\bfitK , F\bfitk (\bfitsigma , \bfitxi ) can be retrieved as
\bullet in two dimensions

(4.15) F\bfitk (\bfitsigma , \bfitxi ) =
1

\surd 
c\bfitk 

1

2
Re
\Bigl( \widetilde F(k1,k2) +

\widetilde F( - k1,k2)

\Bigr) 
;

\bullet in three dimensions
(4.16)

F\bfitk (\bfitsigma , \bfitxi ) =
1

\surd 
c\bfitk 

1

4
Re
\Bigl( \widetilde F(k1,k2,k3) +

\widetilde F( - k1,k2,k3) +
\widetilde F(k1, - k2,k3) +

\widetilde F(k1,k2, - k3)

\Bigr) 
.

This procedure needs to be repeated for every \bfitsigma and \bfitxi ; hence the overall computational
cost for getting F\bfitk (\bfitsigma , \bfitxi ) is \scrO (M\bfitsigma M

2d
\bfitv | log \epsilon | +M\bfitsigma M

d
\bfitv N

d logN).

To evaluate the loss term \scrQ N, - 
k , we change the integrals of (\bfitv , \bfitv \ast ) \in \BbbR d \times \BbbR d

into integrals of (\bfitxi ,\bfiteta ) \in Id \times Id in (4.9) (similarly as in the previous subsection for\widetilde I2(\bfiti , \bfitj , \bfitk )):
\scrQ N, - 

\bfitk =

\int 
Id

\Biggl( \int 
Id

\int 
Sd - 1

\scrB (\bfitv (\bfitxi ),\bfitv \ast (\bfiteta ),\bfitsigma )fN (\bfitv \ast (\bfiteta ))
\bfitomega (\bfiteta )

[\bfitmu (\bfiteta )]
2 d\bfitsigma d\bfiteta 

\Biggr) 
(4.17)

\times fN (\bfitv (\bfitxi ))
\bfitT \bfitk (\bfitxi )\bfitomega (\bfitxi )
\surd 
\bfitc \bfitk [\bfitmu (\bfitxi )]

4 d\bfitxi .
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A FAST SPECTRAL METHOD FOR THE BOLTZMANN EQUATION A1513

Table 1
Storage requirement and (online) computational cost of the direct and fast algorithms. N is the

number of spectral modes in each dimension of \bfitv ; M\bfitv = \scrO (N) is the number of quadrature points
in each dimension; M\bfitsigma \ll Nd is the number of quadrature points on the sphere Sd - 1; and \epsilon is the
requested precision in the NUFFT algorithm. The proposed fast algorithm does not require extra
storage other than that storing the computational target, e.g., the gain and loss terms.

Direct algorithm Fast algorithm
Storage (Online) operation (Online) operation

Gain term \scrO (N3d) \scrO (N3d) \scrO (M\bfitsigma M2d
\bfitv | log \epsilon | +M\bfitsigma Md

\bfitv N
d logN)

Loss term \scrO (N3d) \scrO (N3d) \scrO (M\bfitsigma M2d
\bfitv )

Then one can just evaluate the terms in the parentheses directly with complexity
\scrO (M2d

\bfitv M\bfitsigma ). The outer integral in \bfitxi can be viewed as the Chebyshev transform of
some function and thus can be evaluated efficiently by the fast Chebyshev transform
in \scrO (Md

\bfitv logM\bfitv ). In particular, if we consider the Maxwell kernel, i.e., \scrB (\bfitv ,\bfitv \ast ,\bfitsigma ) \equiv 
constant, terms in the parentheses only require \scrO (Md

\bfitv ) complexity.

4.3. Comparison of direct and fast algorithms. To summarize, we list the
storage requirement and (online) computational complexity for both the direct and fast
algorithms in Table 1. Note that we only list the dominant complexity for each term.
It is clear that the main cost of the fast algorithm comes from evaluating the gain term.
Compared with the direct algorithm, the fast algorithm is generally faster as M\bfitsigma can
be chosen much smaller than Nd in practice (see section 5). Most importantly, the fast
algorithm does not require any precomputation with excessive storage requirement
and everything can be computed on the fly.

5. Numerical examples. In this section, we perform extensive numerical tests
to demonstrate the accuracy and efficiency of the proposed Petrov--Galerkin spectral
method in both two and three dimensions.

Recall that the main motivation of the current work is to obtain better accuracy
by considering approximations in an unbounded domain. To illustrate this point, we
will compare three methods to solve the Boltzmann equation:
(1) Fast Fourier--Galerkin spectral method proposed in [16]: This method can achieve

a good accuracy-efficiency tradeoff among the current deterministic methods
for the Boltzmann equation. However, it requires the truncation of the domain
to [ - L,L]d, where L is often chosen empirically such that the solution is close
to zero at the boundary.

(2) Fast Chebyshev-0 method: The method proposed in the current paper using the
logarithmic mapping (2.10), where r = 0 and the scaling parameter S needs
to be properly chosen.

(3) Fast Chebyshev-1 method: The method proposed in the current paper using the
algebraic mapping (2.11), where r = 1 and the scaling parameter S needs to
be properly chosen.

In all three methods, the choice of truncation or mapping/scaling parameters has
a great impact on numerical accuracy. In the following tests, we first determine L in
the Fourier spectral method. Then for the two Chebyshev methods, we propose an
adaptive strategy to determine the scaling parameter S: for example, in one dimension,
the Chebyshev--Gauss--Lobatto quadrature points on the interval [ - 1, 1] are given by

\xi j =  - cos
(j  - 1)\pi 

M  - 1
, 1 \leq j \leq M,
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A1514 J. HU, X. HUANG, J. SHEN, AND H. YANG

such that  - 1 = \xi 1 < \xi 2 < \cdot \cdot \cdot < \xi M = 1. We choose S such that the two quadrature
points \xi 2 and \xi M - 1 are mapped to the boundary of [ - L,L], i.e.,

v(\xi 1) =  - \infty , v(\xi 2) =  - L, v(\xi M - 1) = L, v(\xi M ) = \infty .

More specifically, for given CGL quadrature, we let
\bullet logarithmic mapping (r = 0):

(5.1) S =
2L

ln
\Bigl( 

1+\xi M - 1

1 - \xi M - 1

\Bigr) ;
\bullet algebraic mapping (r = 1):

(5.2) S =
L
\sqrt{} 
1 - \xi 2M - 1

\xi M - 1
.

This S is adaptive in the sense that different M will correspond to different S.

5.1. 2D examples.

5.1.1. 2D BKW solution. We consider first the 2D (BKW) solution. This is
one of the few known analytical solutions to the Boltzmann equation and a perfect
example to verify the accuracy of a numerical method.

When d = 2 and the collision kernel \scrB \equiv 1/(2\pi ), the following is a solution to the
initial value problem (3.1):

(5.3) fBKW(t,\bfitv ) =
1

2\pi K2
exp

\biggl( 
 - \bfitv 2

2K

\biggr) \biggl( 
2K  - 1 +

1 - K

2K
\bfitv 2

\biggr) 
,

where K = 1  - exp( - t/8)/2. By taking the time derivative of fBKW(t,\bfitv ), we can
obtain the exact collision operator as
(5.4)

QBKW(f) =

\biggl\{ \biggl( 
 - 2

K
+

\bfitv 2

2K2

\biggr) 
fBKW +

1

2\pi K2
exp

\biggl( 
 - \bfitv 2

2K

\biggr) \biggl( 
2 - 1

2K2
\bfitv 2

\biggr) \biggr\} 
K \prime ,

where K \prime = exp( - t/8)/16. This way we can apply the numerical method to compute
QBKW(f) directly and check its error without worrying about the time discretization.

In the fast Fourier spectral method, we take N\rho = N quadrature points in the
radial direction and M\sigma = 8 quadrature points on the unit circle (see [16] for more
details). In the fast Chebyshev methods, we take M\bfitv = N + 2 quadrature points for
each dimension of (\bfitv ,\bfitv \ast ) and M\bfitsigma = N quadrature points on the unit circle. The
precision in NUFFT is selected as \epsilon = 1e - 14. The numerical error of QBKW(f) is
estimated on a 200\times 200 uniform grid in the rectangular domain [ - 6.3, 6.3]2 at time
t = 2.

Test 01. In this test, we examine thoroughly the numerical errors concerning
different truncation parameters L in the Fourier method and scaling parameters S
in the Chebyshev methods. Here we test different truncation domain [ - L,L] in the
Fourier method, where 2.20 \leq L \leq 15.45. We also test the fast Chebyshev methods
with scaling parameter 1 \leq S \leq 9. The L2 errors of QBKW(f) for three methods are
presented in Figure 1. Here the x-axes correspond to the parameters L and S. Each
curve in these figures represents the approximation error of the corresponding method
using N basis functions in the spectral method.
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2 4 6 8 10 12 14 16
L

10−16

10−14

10−12

10−10

10−8

10−6

10−4

10−2

fast Fourier

N=8
N=16
N=24
N=32
N=40
N=48
N=56

1 2 3 4 5 6 7 8 9
S

10−16

10−14

10−12

10−10

10−8

10−6

10−4

10−2

fast Chebyshev-0

N=8
N=16
N=24
N=32
N=40
N=48
N=56

1 2 3 4 5 6 7 8 9
S

10−16

10−14

10−12

10−10

10−8

10−6

10−4

10−2

fast Chebyshev-1

N=8
N=16
N=24
N=32
N=40
N=48
N=56

Fig. 1. ( 2D BKW: Test 01) The L2 error of QBKW(f) at time t = 2. Top: fast Fourier method.
Bottom: fast Chebyshev methods.

Table 2
( 2D BKW: Test 01) The best accuracy (L2 error) of QBKW(f) at time t = 2.

Fast Fourier Fast Chebyshev-0 Fast Chebyshev-1
N = 8 8.9223e-03 2.2289e-03 4.1388e-03
N = 16 1.0989e-04 2.2033e-05 2.9713e-04
N = 24 3.2104e-06 1.9843e-07 1.5004e-05
N = 32 9.4720e-08 3.0082e-09 5.3946e-07
N = 40 1.9836e-09 2.5434e-11 1.6120e-08
N = 48 6.1797e-11 1.6255e-13 6.0320e-10
N = 56 1.4315e-12 2.1482e-14 2.5213e-11

Clearly, the accuracy is not good when L and S are too small or too large. When
L and S are chosen appropriately, the accuracy can be close to the machine precision.
In Table 2, we record the best accuracy for a given N of each method, which is the
smallest error of each curve in Figure 1. One can see that the fast Chebyshev-0 method
can always achieve the best accuracy.

In practice, it would be difficult to choose the optimal L or S since the exact
solution is not available. In most cases, the truncation domain L in the Fourier method
is selected roughly so that it covers twice of the compact support of f . S in the
Chebyshev method is then chosen adaptively as described before.
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10 20 30 40 50 60 70 80
N

10−16

10−14

10−12

10−10

10−8

10−6

10−4

10−2

100 2D BKW, t uncation on [-6.62, 6.62]

fast Fourier
fast Chebyshev-0
fast Chebyshev-1

10 20 30 40 50 60 70 80
N

10−16

10−14

10−12

10−10

10−8

10−6

10−4

10−2

100 2D BKW, t uncation on [-8.83, 8.83]

fast Fourier
fast Chebyshev-0
fast Chebyshev-1

10 20 30 40 50 60 70 80
N

10−16

10−14

10−12

10−10

10−8

10−6

10−4

10−2

100 2D BKW, t uncation on [-11.04, 11.04]

fast Fourier
fast Chebyshev-0
fast Chebyshev-1

10 20 30 40 50 60 70 80
N

10−16

10−14

10−12

10−10

10−8

10−6

10−4

10−2

100 2D BKW, t uncation on [-13.24, 13.24]

fast Fourier
fast Chebyshev-0
fast Chebyshev-1

Fig. 2. ( 2D BKW: Test 02) The L\infty error of QBKW(f) at time t = 2 with different truncation
domain.

Test 02. In this test, we fix the computational domain and examine the numerical
errors concerning different N . In the Fourier method, we test four different truncation
parameters: L = 6.62, 8.83, 11.04, and 13.24. In the Chebyshev methods, we use the
same L to select the scaling parameter S accordingly. The L\infty errors of QBKW(f)
for three methods are presented in Figure 2. Among these three methods, the fast
Chebyshev-0 method can achieve the best accuracy when N is small. The fast
Chebyshev-1 method doesn't provide a good approximation. The selected quadrature
points and function spaces might explain the poor performance of the fast Chebyshev-1
method:

1. The quadrature points in the Chebyshev-1 method are much more clustered
near the origin compared to the Chebyshev-0 method. The quadrature points
located far away from the origin also play an important role in the unbounded
domain problem.

2. As described in Lemma 2.2, the trial functions in the Chebyshev-0 method
decay exponentially as | \bfitv | \rightarrow \infty , which mimics better the decay property of
the BKW solution at infinity.

Test 03. In this test, we examine the numerical errors of the Chebyshev methods
with a fixed scaling parameter: S = 4 in the fast Chebyshev-0 method; S = 5 in
the fast Chebyshev-1 method. These two values are selected based on observation of
the results in Figure 1. The L\infty errors of QBKW(f) for both methods are presented
in Figure 3. As a comparison, results of the fast Fourier method are also plotted
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10 20 30 40 50 60 70
N

10−16

10−14

10−12

10−10

10−8

10−6

10−4

10−2

2D BKW

fa t Fourier, L=6.62
fa t Fourier, L=8.83
fa t Fourier, L=11.04
fa t Fourier, L=13.24
fa t Cheby hev-0, S=4.0
fast Chebyshev-1, S=5.0

Fig. 3. ( 2D BKW: Test 03) The L\infty error of QBKW(f) at time t = 2.

Table 3
( 2D BKW: Test 04) Running time in seconds for a single evaluation of the gain term.

Direct Chebyshev algorithm Fast Chebyshev algorithm
Online (sec) Precomputation (sec) Online (sec)

N = 8 0.0047 1.5956 0.194955
N = 16 0.1207 62.7991 2.036821
N = 32 - - 24.779492
N = 64 - - 4.937722e+02
N = 128 - - 1.331576e+04

with different L. In comparison to Test 02, it is easy to see the improvement of the
Chebyshev-1 method by using different S. But for small N , the Chebyshev-0 method
still has the best accuracy among all three methods.

Test 04. In this test, we report the computational time of the direct (Chebyshev)
algorithm and the fast (Chebyshev) algorithm. The computations were done on an
Intel Core i7-6700 CPU in a single thread. Table 3 shows the running time of the
direct and fast algorithms concerning different N . Note that the direct algorithm is
left out when N \geq 32 due to the memory constraint.

Test 05. We also compare the accuracy and computational time between the fast
Fourier method and the fast Chebyshev-0 method. In the fast Fourier method, we
choose L = 13.24 as the domain truncation, and N\rho = N quadrature points in the
radial direction. In the fast Chebyshev-0 method, we take M\bfitv = N + 2 quadrature
points for each dimension of (\bfitv ,\bfitv \ast ). The scaling parameter S is adaptively chosen as
in (5.1). In the fast Fourier method, M\bfitsigma = 8 is enough (we have tested that a larger
value of M\bfitsigma would not further increase the accuracy) for the integral on the unit circle
S1. In the fast Chebyshev-0 method, more quadrature points are needed, but it is
always less than N (again we have tested that a larger value of M\bfitsigma would not further
increase the accuracy). One will also see a similar phenomenon in a 3D test. As shown
in Table 4, for the same N , although the Fourier method can be much faster than the
Chebyshev method (because it takes advantage of the convolutional structure of the
collision operator in the Fourier domain, which is absent in any other spectral method)
the accuracy it can achieve is much lower than the Chebyshev method mainly due to
the domain truncation error.
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Table 4
(2D BKW: Test 05) The L\infty error of QBKW(f) at time t = 2 and running time for a single

evaluation of the gain term.

Fast Fourier Fast Chebyshev-0
Error Online (sec) Error Online (sec)

N = 8 3.36e-02 (M\bfitsigma = 8) 0.00288 2.45e-02 (M\bfitsigma = 6) 0.316
N = 16 1.88e-02 (M\bfitsigma = 8) 0.00824 1.51e-02 (M\bfitsigma = 6) 1.1
N = 24 6.05e-03 (M\bfitsigma = 8) 0.0352 4.27e-05 (M\bfitsigma = 12) 5.35
N = 32 1.48e-03 (M\bfitsigma = 8) 0.0946 1.07e-08 (M\bfitsigma = 24) 23.9
N = 40 1.70e-04 (M\bfitsigma = 8) 0.165 4.44e-11 (M\bfitsigma = 30) 61.4
N = 48 1.14e-05 (M\bfitsigma = 8) 0.263 3.47e-13 (M\bfitsigma = 36) 108
N = 56 5.19e-07 (M\bfitsigma = 8) 0.418 1.71e-14 (M\bfitsigma = 40) 232

5.1.2. Computing the moments. We next consider the time evolution problem
and check the accuracy for moments approximation. Since the fast Chebyshev-0 method
performs generally better than the fast Chebyshev-1 method, we will restrict it to the
former in the following tests. The comparison with the fast Fourier method will still
be considered.

In (3.1), we choose the collision kernel \scrB \equiv 1/(2\pi ) and the initial condition as

(5.5) f0(\bfitv ) =
\rho 1

2\pi T1
exp

\biggl( 
 - (\bfitv  - V1)

2

2T1

\biggr) 
+

\rho 2
2\pi T2

exp

\biggl( 
 - (\bfitv  - V2)

2

2T2

\biggr) 
,

where \rho 1 = \rho 2 = 1/2, T1 = T2 = 1 and V1 = (x1, y1) = ( - 1, 2), V2 = (x2, y2) = (3, - 3).
Then for the momentum flow and energy flow defined as

(5.6) Pij =

\int 
\BbbR 2

fvivj d\bfitv , (i, j = 1, 2), qi =

\int 
\BbbR 2

fvi| \bfitv | 2 d\bfitv , (i = 1, 2),

we have their exact formulas

(5.7) P11 =  - 9

8
e - t/2 +

57

8
, P12 = P21 =  - 5e - t/2  - 1

2
, P22 =

9

8
e - t/2 +

51

8

and

(5.8) q1 =
1

4

\Bigl( 
11e - t/2 + 103

\Bigr) 
, q2 =  - 1

8

\Bigl( 
89e - t/2 + 103

\Bigr) 
.

For interested readers, the computation of these formulas is provided in the appendix.
In the fast Fourier method, we take N\rho = N quadrature points in the radial

direction and N\theta = N quadrature points on the unit circle. The truncation domain
[ - L,L]2 is selected as L = 14.35. In the fast Chebyshev-0 method, we take M\bfitv = N+2
quadrature points for each dimension of (\bfitv ,\bfitv \ast ) and M\bfitsigma = N quadrature points on the
unit circle. The precision in NUFFT is selected as \epsilon = 1e - 14. The scaling parameter
S is adaptively chosen based on L. For both methods, we use the fourth-order
Runge--Kutta method with \Delta t = 0.02 for time integration.

The absolute errors of the moments are presented in Figures 4--8. The fast
Chebyshev-0 method provides a better approximation in comparison to the Fourier
method for fixed N .

5.2. 3D BKW solution. We finally consider the 3D BKW solution. When
d = 3 and the collision kernel \scrB \equiv 1/(4\pi ), the following is a solution to the initial
value problem (3.1):

(5.9) fBKW(t,\bfitv ) =
1

2(2\pi K)3/2
exp

\biggl( 
 - \bfitv 2

2K

\biggr) \biggl( 
5K  - 3

K
+

1 - K

K2
\bfitv 2

\biggr) 
,

D
ow

nl
oa

de
d 

06
/1

8/
22

 to
 1

28
.2

10
.1

07
.2

5 
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

A FAST SPECTRAL METHOD FOR THE BOLTZMANN EQUATION A1519

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
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10−3

10−1

101
fast Fourier, L = 14.35

N=8
N=16
N=24
N=32

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
10−9

10−7

10−5

10−3

10−1

101
fast Chebyshev-0, L = 14.35

N=8, S=8.27
N=16, S=6.03
N=24, S=5.19
N=32, S=4.71

Fig. 4. (2D moments) The time evolution for the absolute error of the momentum P11. Left:
the fast Fourier method. Right: the fast Chebyshev-0 method.
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N=32
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fast Chebyshev-0, L = 14.35

N=8, S=8.27
N=16, S=6.03
N=24, S=5.19
N=32, S=4.71

Fig. 5. (2D moments) The time evolution for the absolute error of the momentum P12. Left:
the fast Fourier method. Right: the fast Chebyshev-0 method.
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fast Fourier, L = 14.35

N=8
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N=24
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0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
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100

fast Chebyshev-0, L = 14.35

N=8, S=8.27
N=16, S=6.03
N=24, S=5.19
N=32, S=4.71

Fig. 6. (2D moments) The time evolution for the absolute error of the momentum P22. Left:
the fast Fourier method. Right: the fast Chebyshev-0 method.

where K = 1  - exp( - t/6). As in two dimensions, we can obtain the exact collision
operator as
(5.10)

QBKW(f) =

\biggl\{ \biggl( 
 - 3

2K
+

\bfitv 2

2K2

\biggr) 
fBKW +

1

2(2\pi K)3/2
exp

\biggl( 
 - \bfitv 2

2K

\biggr) \biggl( 
3

K2
+

K  - 2

K3
\bfitv 2

\biggr) \biggr\} 
K \prime 

with K \prime = exp( - t/6)/6.
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Fig. 7. (2D moments) The time evolution for the absolute error of the momentum q1. Left:
the fast Fourier method. Right: the fast Chebyshev-0 method.
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Fig. 8. (2D moments) The time evolution for the absolute error of the momentum q2. Left:
the fast Fourier method. Right: the fast Chebyshev-0 method.

Table 5
( 3D BKW) The L\infty error of QBKW(f) at time t = 6.5.

Fast Fourier (M\bfitsigma = 38) Fast Chebyshev-0
N = 12 2.36e-03 1.61e-02 (M\bfitsigma = 14)
N = 16 4.37e-04 2.72e-03 (M\bfitsigma = 38)
N = 20 3.62e-05 3.08e-06 (M\bfitsigma = 86)
N = 24 3.61e-06 3.10e-08 (M\bfitsigma = 146)
N = 28 1.64e-07 1.58e-08 (M\bfitsigma = 170)
N = 32 3.82e-08 7.16e-10 (M\bfitsigma = 230)

Here we compare the fast Fourier spectral method with the fast Chebyshev-0
method. In the former, we take domain L = 6.62, N\rho = N quadrature points in
the radial direction and M\bfitsigma = 38 Lebedev quadrature points on the unit sphere. In
the latter, we choose S adaptively based on L, M\bfitv = N + 2 quadrature points for
each dimension of (\bfitv ,\bfitv \ast ) and M\bfitsigma Lebedev quadrature points on the unit sphere.
The precision in NUFFT is selected as \epsilon = 1e  - 14. The L\infty error of QBKW(f) is
estimated on a 30 \times 30 \times 30 uniform grid in the rectangular domain [ - 6.3, 6.3]3 at
time t = 6.5.

The results are reported in Table 5. Unlike the Fourier method for which M\bfitsigma = 38
is enough (a larger value of M\bfitsigma would not further increase the accuracy), we observe
that more quadrature points on the sphere are needed to get the best accuracy in the
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Chebyshev method. As soon as N \geq 20, the Chebyshev method can always obtain
better accuracy than the Fourier method.

6. Conclusion and future work. We introduced a Petrov--Galerkin spectral
method for the spatially homogeneous Boltzmann equation in multidimensions. The
mapped Chebyshev functions in \BbbR d were carefully chosen to serve as the trial functions
and test functions in the approximation. In the case of the algebraic mapping, we
established a consistency result for approximation of the collision operator as well as
the conservation property for the moments. Thanks to the close relationship between
the Chebyshev functions and the Fourier cosine series, we proposed a fast algorithm
to alleviate the memory constraint in the precomputation and accelerate the online
computation in the direct implementation. Through a series of numerical examples in
two and three dimensions, we demonstrated that the proposed method can provide
better accuracy (at least one or two digits for small N) in comparison to the popular
Fourier spectral method.

Finally, we mention that although our main focus in this paper is on the spatially
homogeneous equation (1.1), the proposed method can be easily extended to the spa-
tially inhomogeneous problem following a pseudospectral approach. Simply speaking,
one just needs to transfer between spectral coefficients \widetilde f\bfitk (or \scrQ N

\bfitk ) and function point

values fN (or \pi 4,d
N Q(fN , fN )) at every spatial point, similarly as done in the Fourier

spectral method (e.g., [27]). In other words, the proposed method is only used as a
black box solver to evaluate the collision operator (take fN at quadrature points as

input and produce \pi 4,d
N Q(fN , fN ) at the same points as output) and can be coupled

with other spatial discretizations to solve the full Boltzmann equation. Of course the
computational cost would be a major concern even equipped with the fast algorithm.
We leave it for future work.

Appendix A. Proof of Lemma 2.2.

Proof. By Lemma 3.1 in [24], we know that in a 1D case,

lim
| v| \rightarrow \infty 

| \widetilde Tk(v)| \sim lim
| v| \rightarrow \infty 

[\mu (\xi (v))]4,(A.1)

lim
| v| \rightarrow \infty 

| \widehat Tk(v)| \sim lim
| v| \rightarrow \infty 

[\mu (\xi (v))] - 2(A.2)

and

r = 0, \mu =
1\surd 
S
(1 - \xi (v)2)1/4 =

\sqrt{} 
sech(v/S)

S
\sim e - 

| v| 
2S ,(A.3)

r = 1, \mu =
1\surd 
S
(1 - \xi (v)2)1/2 =

\sqrt{} 
S

S2 + v2
\sim | v|  - 1.(A.4)

Consider the multidimensional case with logarithmic mapping (r = 0), and we get

(A.5)
\bigm| \bigm| \bigm| \widetilde \bfitT \bfitk (\bfitv )

\bigm| \bigm| \bigm| \sim d\prod 
j=1

e - 
2| vj | 

S = e - 
2
S

\sum d
j=1 | vj | ,

\bigm| \bigm| \bigm| \widehat \bfitT \bfitk (\bfitv )
\bigm| \bigm| \bigm| \sim d\prod 

j=1

e
| vj | 
S = e

1
S

\sum d
j=1 | vj | .

Similarly, for algebraic mapping (r = 1), we have

\bigm| \bigm| \bigm| \widetilde \bfitT \bfitk (\bfitv )
\bigm| \bigm| \bigm| \sim d\prod 

j=1

| vj |  - 4,
\bigm| \bigm| \bigm| \widehat \bfitT \bfitk (\bfitv )

\bigm| \bigm| \bigm| \sim d\prod 
j=1

| vj | 2.(A.6)
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Appendix B. The exact computation of momentum flow \bfitP \bfiti \bfitj . The
macroscopic quantities of initial condition (5.5) can be computed directly:

\rho = 1, m = (1, - 1

2
), u = (1, - 1

2
).(B.1)

The initial values of the momentum flow are

P11(0) = \rho 1(x
2
1 + T1) + \rho 2(x

2
2 + T2) = 6,(B.2)

P12(0) = \rho 1x1y1 + \rho 2x2y2 =  - 11

2
,(B.3)

P22(0) = \rho 1(y
2
1 + T1) + \rho 2(y

2
2 + T2) =

15

2
.(B.4)

Consider the time derivative of P11:

\partial P11

\partial t
=

\int 
\BbbR 2

ftv
2
1d\bfitv 

=

\int 
\BbbR 2

\int 
\BbbR 2

\int 
S1

1

2\pi 
f(\bfitv )f(\bfitv \ast )[(v

\prime 
1)

2  - (v1)
2] d\bfitsigma d\bfitv d\bfitv \ast 

=

\int 
\BbbR 2

\int 
\BbbR 2

f(\bfitv )f(\bfitv \ast )
[3v1 + (v\ast )1][(v\ast )1  - v1]

4
d\bfitv d\bfitv \ast 

+

\int 
\BbbR 2

\int 
\BbbR 2

\int 
S1

1

2\pi 
f(\bfitv )f(\bfitv \ast )

| \bfitv  - \bfitv \ast | 2

4
cos2 \bfitsigma d\bfitsigma d\bfitv d\bfitv \ast 

=
1

2
(m1  - \rho P11) +

\rho (P11 + P22) - (m2
1 +m2

2)

4

=
m2

1  - m2
2 + \rho (P22  - P11)

4
=

3

16
+

P22  - P11

4
.(B.5)

Similarly, one can get

\partial P12

\partial t
=

m1m2  - \rho P12

2
=  - 1

4
 - P12

2
,(B.6)

\partial P22

\partial t
=

m2
2  - m2

1 + \rho (P11  - P22)

4
=  - 3

16
+

P11  - P22

4
.(B.7)

Combining with the initial conditions, we get the exact formulas as (5.7).
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