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Abstract We present an efficient Legendre–Galerkin method and its error analysis for a
class of PDEs with non-local boundary conditions. We also present several numerical exper-
iments, including the scattering problem from an open cavity, to demonstrate the accuracy
and efficiency of the proposed method.
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1 Introduction

PDEs with non-local boundary conditions appear in many scientific and engineering applica-
tions, cf. for instance [2,7,9,10] and the references therein. However, most of the numerical
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methods proposed for PDEs with local boundary conditions can not be directly applied, or
the cost increases significantly when applied, to PDEs with non-local boundary conditions.
Various numerical approaches have been developed for problems with non-local boundary
conditions, e.g., finite difference methods [8,12,15,24–27,30–32] and finite element meth-
ods [4,16,28]. A summary of the progress on this topic can be found in [11]. Compared to
finite differencemethod and finite elementmethod, spectral methods are capable of providing
superior accuracy with fewer unknowns if the solutions are sufficiently smooth [6,19,34,35],
and can be especially attractive to deal with problemswith non-local features. However, there
are only a few efforts on using spectral methods for problems with non-local boundary condi-
tions, e.g., Chebyshev spectral collocation method [17] and pseudospectral Legendre method
[13], and particularly not much is available on how to efficiently solve the resulting linear
systems and its error analysis.

The main purposes of this paper are (i) to develop an efficient Spectral-Galerkin method
for PDEs with non-local boundary conditions, and (ii) to carry out a rigorous error analysis
for the proposedmethod.We shall also present numerical results to validate the algorithm and
its error estimates. The main idea for the efficient algorithm is to recognize the fact that linear
systems from problems with non-local boundary conditions can be considered as low-rank
perturbations of those from problems with local boundary conditions. Since the problems
with local boundary conditions can be solved efficiently by thematrix diagonalizationmethod
(see for instance [33,35]), we can then solve the problemswith non-local boundary conditions
by using the well-known Sherman-Morrison-Woodbury formula. As for the error analysis,
we first show that the problems with non-local boundary conditions under consideration are
well-posed with suitable conditions on the kernel functions, and then use the coercivity of
the bilinear form and polynomial approximation theory to derive optimal error estimates.

The paper is organized as follows. Section 2 is devoted to the one-dimensional elliptic
equation with non-local boundary conditions: we prove the well-posedness of the problem,
develop an efficient Spectral-Galerkin method, and carry out an error analysis. In Sect. 3, we
extend the algorithm and analysis of Sect. 2 to the two dimensional case, in particular we
develop an efficient algorithm, by using the Sherman-Morrison-Woodbury formula, which
has the same computational complexity as the spectral algorithm for the same problem but
with all local boundary conditions. Several extensions are discussed in Sect. 4, including
in particular the case where the non-local operator is defined through Fourier transform.
Numerical experiments are presented in Sect. 5 to verify the accuracy and efficiency of the
method, and as an application, we used the proposed method to solve the difficult scattering
problem from an open cavity. Some concluding remarks are given in the last section.

2 One Dimensional Case

To fix the idea, we consider the following second order elliptic equation with non-local
boundary conditions:

αu − u′′ = f, in I = (−1, 1), (2.1)

u′ +
∫
I
A±(x)u(x)dx = 0, at x = ±1, (2.2)

where α > 0. The weak formulation for problem (2.1)–(2.2) is: find u ∈ H1(I ) such that for
any v ∈ H1(I ),
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α(u, v) + (u′, v′) + v(1)
∫
I
A+(x)u(x)dx − v(−1)

∫
I
A−(x)u(x)dx = ( f, v), (2.3)

where (u, v) = ∫
I uvdx is the inner product in L2(I ), on which the norm is denoted by ‖·‖0,

and H1(I ) is the usual Sobolev space with the norm ‖ · ‖1.
2.1 Wellposedness

To study the wellposedness of the above weak formulation, we first recall the following
inequality

max
x∈[−1,1] |u(x)| ≤ c0‖u‖1. (2.4)

Define a bilinear form on H1(I ) by

a(u, v) = α(u, v) + (u′, v′) + v(1)
∫
I
A+(x)u(x)dx − v(−1)

∫
I
A−(x)u(x)dx . (2.5)

One can derive from (2.4) and Cauchy-Schwarz inequality that
∣∣a(u, v)

∣∣ ≤ α‖u‖0‖v‖0 + ‖u′‖0‖v′‖0 + c0‖v‖1‖A+‖0‖u‖0 + c0‖v‖1‖A−‖0‖u‖0
� ‖u‖1‖v‖1.

Here and after, A � B means that A ≤ CB for some generic constant C .
On the other hand,

a(v, v) ≥ α(v, v) + (v′, v′) −
∣∣∣∣v(1)

∫
I
A+(x)v(x)dx − v(−1)

∫
I
A−(x)v(x)dx

∣∣∣∣
≥ γ ‖v‖21 − c0‖A+‖0‖v‖21 − c0‖A−‖0‖v‖21
≥ (

γ − c0‖A+‖0 − c0‖A−‖0
) ‖v‖21,

where γ = min(α, 1).
Hence, an application of the Lax-Milgram lemma to (2.3) leads to the following:

Theorem 2.1 Assuming

CA := min(α, 1) − c0(‖A+‖0 + ‖A−‖0) > 0, (2.6)

then (2.3) admits a unique solution satisfying

‖u‖1 � ‖ f ‖0.
2.2 Spectral-Galerkin Approximation

Let Ln(x) be the Legendre polynomial of degree n, and PN be the space of polynomials of
degree less than or equal to N . Let us denote

ϕk(x) = 1√
4k + 6

(Lk(x) − Lk+2(x)), 0 ≤ k ≤ N − 2,

ϕN−1(x) = 1

2
(L0(x) + L1(x)), ϕN (x) = 1

2
(L0(x) − L1(x)).

(2.7)

It is easy to see that PN = span {ϕk(x) : 0 ≤ k ≤ N }.

123



J Sci Comput

The Legendre–Galerkin approximation of (2.1)–(2.2) is: Find uN ∈ PN such that

α(uN , vN ) + (u′
N , v′

N ) + vN (1)
∫
I
A+(x)uN (x)dx

− vN (−1)
∫
I
A−(x)uN (x)dx = (IN f, vN ), ∀vN ∈ PN , (2.8)

where IN f is the interpolation polynomial of f with respect to the Legendre-Gauss-Lobatto
points {xn}Nn=0. Denote uN (x) = ∑N

k=0 ukϕk(x), and take in (2.8) vN = ϕ j , 0 ≤ j ≤ N ,
(2.8) is reduced to the following linear system:

(αM + S + B̃+ − B̃−)u = f, (2.9)

where

u = (u0, u1, . . . , uN )T ,

f = ( f0, f1, . . . , fN )T , f j =
∫
I
IN f (x)ϕ j (x)dx,

M = (m jk)0≤ j,k≤N , m jk =
∫
I
ϕk(x)ϕ j (x)dx,

S = (s jk)0≤ j,k≤N , s jk =
∫
I
ϕ′
k(x)ϕ

′
j (x)dx,

B̃± = (b̃±
jk)0≤ j,k≤N , b̃±

jk = ϕ j (±1)a±
k , a±

k =
∫
I
A±(x)ϕk(x)dx .

Thanks to the orthogonal properties of Legendre polynomials, we can easily determine
the values of the matrix entries in (2.9). Namely, M is a symmetric matrix of the form:

M =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1√
6

1√
6

1
3
√
10

− 1
3
√
10

M̃ 0 0
...

...

0 0
1√
6

1
3
√
10

0 · · · 0 2
3

1
3

1√
6

− 1
3
√
10

0 · · · 0 1
3

2
3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (2.10)

where the non-zero elements of M̃ are

m̃ jk = m̃k j =
⎧⎨
⎩

1
4k+6

(
2

2k+1 + 2
2k+5

)
, j = k,

− 1√
4k+6

1√
4(k+2)+6

2
2k+5 , j = k + 2,

0 ≤ j, k ≤ N − 2.

S is a symmetric matrix of the form:

S =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0

S̃
...

...

0 0
0 · · · 0 1

2 − 1
2

0 · · · 0 − 1
2

1
2

⎤
⎥⎥⎥⎥⎥⎥⎦

, (2.11)
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in which S̃ is a diagonal matrix with s̃kk = 1, 0 ≤ k ≤ N − 2. The matrices B̃+ and B̃− are
as follows:

B̃+ =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 · · · 0 0 0
...

. . .
...

...
...

0 · · · 0 0 0

a+
0 · · · a+

N−2 a+
N−1 a+

N

0 · · · 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦

,

B̃− =

⎡
⎢⎢⎢⎢⎢⎣

0 · · · 0 0 0
...

. . .
...

...
...

0 · · · 0 0 0
0 · · · 0 0 0
a−
0 · · · a−

N−2 a−
N−1 a−

N

⎤
⎥⎥⎥⎥⎥⎦

.

Since S̃ is diagonal and M̃ is penta-diagonal (with only three non-zero diagonals), the linear
system (2.9) can be easily solved in O(N ) operations.

Remark 2.1 It is clear that the approach presented above applies to the problem with more
general boundary conditions of the kind

a±u(±1) + b±u′(±1) + c±
∫
I
K±(x)u(x)dx = d±,

with given constants a±, b±, c±, d±.

2.3 Error Estimates

For elliptic problems with local boundary conditions, the error behaviors of spectral approxi-
mations have been well studied (cf. for instance [6,35] and the references therein). However,
not much is available for error analysis of spectral approximations to elliptic problems with
non-local boundary conditions. Hence, we provide below a rigorous error analysis in the
one-dimensional case.

We first introduce the non-uniformly Jacobi-weighted Sobolev space:

Bm
α,β(I ) := {u : ∂kx u ∈ L2

ωα+k,β+k (I ), 0 ≤ k ≤ m}, m ∈ N,

(u, v)Bm
α,β

=
m∑

k=0

(∂kx u, ∂kx v)ωα+k,β+k ,

‖u‖Bm
α,β

= (u, u)
1/2
Bm

α,β
, |u|Bm

α,β
= ‖∂mx u‖ωα+m,β+m ,

where ωa,b(x) = (1 − x)a(1 + x)b, a, b > −1, is the Jacobi weight function. Note that
‖u‖2

ωa,b := ∫
I u

2ωa,bdx while we still use ‖ · ‖k to denote the usual norm in Hk .

Let π1
N : H1(I ) → PN be defined by

(
π1
Nu − u, vN

) + (
∂x (π

1
Nu − u), ∂1x vN

) = 0, vN ∈ PN .

We recall below the error estimate for π1
N [35, Theorem 3.36 and Theorem 3.37].

Lemma 2.1 ([35]) If u ∈ H1(I ) and ∂xu ∈ Bm−1
0,0 (I ) with 1 ≤ m, then we have

‖π1
Nu − u‖μ � Nμ−m‖∂mx u‖ωm−1,m−1 , μ = 0, 1.
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Now we present the main theorem in this section.

Theorem 2.2 Let u and uN be the solutions of (2.3) and (2.8), respectively. Then, under the
condition (2.6), we have for m ≥ 1 and k > 1,

‖u − uN‖1 � N 1−m‖∂mx u‖ωm−1,m−1 + N−k‖∂kx f ‖ωk,k .

Proof Using (2.3) and (2.8) leads to the error equation

a(u − uN , vN ) = ( f − IN f, vN ), vN ∈ PN , (2.12)

where

a(u − uN , vN ) =α(u − uN , vN ) + (u′ − u′
N , v′

N ) + vN (1)
∫
I
A+(x)(u − uN (x))dx

− vN (−1)
∫
I
A−(x)(u − uN (x))dx .

Denote êN = π1
Nu−uN and ẽN = π1

Nu−u. Taking vN = êN ∈ PN in the error equation
(2.12), we obtain

α‖êN‖20 + ‖ê′
N‖20 =α

(
ẽN , êN

) + (
ẽ′
N , ê′

N

) − êN (1)
∫
I
A+(x)(êN − ẽN )dx

+ êN (−1)
∫
I
A−(x)

(
êN − ẽN

)
dx + (

f − IN f, êN
)
.

For α > 0 we have

α‖êN‖20 + ‖ê′
N‖20 ≥ γ ‖êN‖21, γ := min(α, 1).

On the other hand, it follows from (2.4) that

êN (±1)
∫
I
A±(x)(êN − ẽN )dx ≤ c0‖êN‖1‖A±‖0(‖êN‖1 + ‖ẽN‖0).

We then derive from above

(γ − c0‖A+‖0 − c0‖A−‖0)‖êN‖21 ≤ α‖ẽN‖1‖êN‖1 + ‖ẽN‖1‖êN‖1
+ c0‖A+‖0‖êN‖1‖ẽN‖0
+ c0‖A−‖0‖êN‖1‖ẽN‖0 + ‖ f − IN f ‖0‖êN‖1,

which implies that, under the condition γ − c0‖A+‖0 − c0‖A−‖0 > 0, we have

‖êN‖1 � ‖ẽN‖1 + ‖ f − IN f ‖0.
Therefore, we have

‖u − uN‖1 ≤ ‖êN‖1 + ‖ẽN‖1 � ‖ẽN‖1 + ‖ f − IN f ‖0.
We recall from Theorem 3.43 in [35] that

‖IN f − f ‖0 ≤ cN−m‖∂mx f ‖ωm,m ∀ f ∈ Bm
0,0(I ). (2.13)

The desired result follows from the above and Lemma 2.1. 
�
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3 Two Dimensional Case

Consider the following second order elliptic equation with non-local boundary conditions in
both x and y directions:

αu − Δu = f, in Ω = (−1, 1)2, (3.1)

∂xu(±1, y) +
∫
I
K±
1 (ξ, y)u(±1, ξ)dξ = 0, y ∈ I = (−1, 1), (3.2)

∂yu(x,±1) +
∫
I
K±
2 (x, ξ)u(ξ,±1)dξ = 0, x ∈ I = (−1, 1). (3.3)

The variational formulation for (3.1)–(3.3) is: find u ∈ H1(Ω) such that ,

a(u, v) = ( f, v), ∀v ∈ H1(Ω), (3.4)

where (u, v) = ∫
I

∫
I uvdxdy and

a(u, v) := α(u, v) + (∇u,∇v) +
( ∫

I
K+
1 (ξ, y)u(1, ξ)dξ, v(1, y)

)
y∈I

−
( ∫

I
K−
1 (ξ, y)u(−1, ξ)dξ, v(−1, y)

)
y∈I

+
( ∫

I
K+
2 (x, ξ)u(ξ, 1)dξ, v(x, 1)

)
x∈I

−
( ∫

I
K−
2 (x, ξ)u(ξ,−1)dξ, v(x,−1)

)
x∈I

.

3.1 Wellposedness

As in the one-dimensional case, ‖ · ‖μ with μ ≥ 0 will denote the norm in Hμ(Ω). Let us
first show the following:

Lemma 3.1 For any u, v ∈ H1(Ω) and K (x, ξ) such that K (·, ξ) ∈ L2(I ) for all ξ ∈ I
and K (x, ·) ∈ L2(I ) for all x ∈ I , we have∣∣∣∣

∫
I

∫
I
K (x, ξ)u(ξ, b)v(x, b)dξdx

∣∣∣∣ ≤ c20‖K‖0‖u‖1‖v‖1, b = ±1,
∣∣∣∣
∫
I

∫
I
K (ξ, y)u(a, ξ)v(a, y)dξdy

∣∣∣∣ ≤ c20‖K‖0‖u‖1‖v‖1, a = ±1,

where c0 is the constant in (2.4).

Proof We only need to show the first inequality with b = 1, the other cases can be shown by
the same approach.

Denote g(x) := ∫
I K (x, ξ)u(ξ, 1)dξ . Then

∣∣∣∣
∫
I

∫
I
K (x, ξ)u(ξ, 1)v(x, 1)dξdx

∣∣∣∣ ≤
( ∫

I
(g(x))2dx

) 1
2
( ∫

I
(v(x, 1))2dx

) 1
2
.

Thanks to (2.4),

|v(x, 1)|2 ≤ c20

( ∫
I
(v(x, y))2dy +

∫
I
(vy(x, y))

2dy
)
.

123



J Sci Comput

Hence,

∫
I
|v(x, 1)|2dx ≤c20

∫
I

( ∫
I
(v(x, y))2dy +

∫
I
(vy(x, y))

2dy
)
dx ≤ c20‖v‖21.

On the other hand, we derive from Cauchy-Schwarz inequality and the above result that

|g(x)| ≤
( ∫

I
(K (x, ξ))2dξ

) 1
2
( ∫

I
(u(ξ, 1))2dξ

) 1
2 ≤

( ∫
I
(K (x, ξ))2dξ

) 1
2 · c0‖u‖1.

Hence

∫
I
(g(x))2dx ≤

∫
I

∫
I
(K (x, ξ))2dξdx · c20‖u‖21 = c20‖K‖20‖u‖21,

from which the conclusion follows. 
�

We can then derive from the above lemma that the bilinear form a(·, ·) is continuous. On
the other hand, we derive from the above lemma that

a(u, u) ≥ α‖u‖20 + ‖∇u‖20 − c20(‖K+
1 ‖0 + ‖K−

1 ‖0 + ‖K+
2 ‖0 + ‖K−

2 ‖0)‖u‖21
≥ (

min(α, 1) − c20(‖K+
1 ‖0 + ‖K−

1 ‖0 + ‖K+
2 ‖0 + ‖K−

2 ‖0)
)‖u‖21.

Hence, a(·, ·) is coercive in H1(Ω) × H1(Ω) if

CK := min(α, 1) − c20(‖K+
1 ‖0 + ‖K−

1 ‖0 + ‖K+
2 ‖0 + ‖K−

2 ‖0) > 0. (3.5)

Therefore, applying the Lax-Milgram lemma to (3.4) leads to

Theorem 3.1 Under the condition (3.5), the problem (3.4) has a unique solution satisfying

‖u‖1 � ‖ f ‖0.
3.2 Spectral-Galerkin Approximation

Let {ϕk} be the basis functions defined in (2.7), and denote

XN = span
{
ϕk(x)ϕ j (y) : 0 ≤ k, j ≤ N

}
.

The Legendre–Spectral-Galerkin approximation to (3.4) is: Find uN ∈ XN such that

a(uN , vN ) = (IN f, vN ) ∀vN ∈ XN , (3.6)

where IN : C(Ω) → XN is the Legendre-Gauss-Lobatto interpolation operator. It is clear
that the above problem admits a unique solution, as its continuous counter part (3.4).
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Setting

uN (x, y) =
N∑

k, j=0

ukjϕk(x)ϕ j (y), U = (ukj )0≤k, j≤N ,

F = ( f pq)0≤p,q≤N , f pq = (
IN f, ϕp(x)ϕq(y)

)
,

Mx = (
(mx )pk

)
0≤p,k≤N , (mx )pk =

∫
I
ϕk(x)ϕp(x)dx,

My = (
(my)q j

)
0≤q, j≤N , (my)q j =

∫
I
ϕ j (y)ϕq(y)dy,

Sx = (
(sx )pk

)
0≤p,k≤N , (sx )pk =

∫
I
ϕ′
k(x)ϕ

′
p(x)dx,

Sy = (
(sy)q j

)
0≤q, j≤N , (sy)q j =

∫
I
ϕ′
j (y)ϕ

′
q(y)dy,

B̃±
x = ( (

b̃±
x

)
pk

)
0≤p,k≤N ,

(
b̃±
x

)
pk

=
∫
I

∫
I
K±
2 (x, ξ)ϕk(ξ)dξϕp(x)dx,

B̃±
y = ( (

b̃±
y

)
q j

)
0≤q, j≤N ,

(
b̃±
y

)
q j

=
∫
I

∫
I
K±
1 (ξ, y)ϕ j (ξ)dξϕq(y)dy,

T+ =
(
t+q j

)
0≤q, j≤N

, t+
(N−1)(N−1) = 1, t+q j = 0 elsewhere,

T− =
(
t−q j

)
0≤q, j≤N

, t−NN = 1, t−q j = 0 elsewhere,

by taking vN = ϕp(x)ϕq(y) in (3.6) for all 0 ≤ p, q ≤ N , we find that (3.6) is reduced to
the following matrix equation:

αMxUMT
y + SxUMT

y + MxUSTy + T+U (B̃+
y )T − T−U (B̃−

y )T

+ B̃+
x UT+ − B̃−

x UT− = F. (3.7)

We note that Mx = My = M given by (2.10), and Sx = Sy = S given by (2.11).
Unlike for the problemwith local boundary condition [33], thematrix system (3.7) can not

be solved directly by the matrix diagonalization method. However, since the only difference
between the problems with local and non-local boundary conditions is at the boundary, it is
not hard to realize that the matrix in (3.7) is simply a low-rank perturbation of a correspond-
ing matrix with local boundary conditions. Since the matrix system with local boundary
conditions can be solved efficiently by using the matrix diagonalization method [33], we can
use the Sherman-Morrison-Woodbury formula (cf. for instance [18])

(A + Ũ Ṽ T )−1 = A−1 − A−1Ũ (I + Ṽ T A−1Ũ )−1Ṽ T A−1, (3.8)

where A is a n × n matrix, U and V are n × k matrix, and I is the k × k identity matrix.
We note that if k  n and A can be inverted efficiently, the Sherman-Morrison-Woodbury
formula provides an efficient algorithm to invert the perturbed matrix A + Ũ Ṽ T .

We proceed with the detailed approach below. First we denote

A = αMy ⊗ Mx + My ⊗ Sx + Sy ⊗ Mx . (3.9)

Then, (3.7) can be rewritten in the form(
A + B̃+

y ⊗ T+ − B̃−
y ⊗ T− + T+ ⊗ B̃+

x − T− ⊗ B̃−
x

)
u = f, (3.10)
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where f and u are the vectors of length M := (N + 1)2 formed by the columns of U and F ,
i.e.,

f = (
f00, f10, . . . , fN0; f01, f11, . . . , fN1; f0N , f1N , . . . , fNN

)T
.

According to the Sherman-Morrison-Woodbury formula (3.8), we need to findmatrices Ũ , Ṽ
of order M × K with K  M such that

Ũ Ṽ T = B̃+
y ⊗ T+ − B̃−

y ⊗ T− + T+ ⊗ B̃+
x − T− ⊗ B̃−

x . (3.11)

By a careful examination, we find a pair of Ũ , Ṽ of order M × K with (M, K ) =
((N + 1)2, 4(N + 1)) as follows.

Ũ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

(
B̃+
y

)
0 −(

B̃−
y

)
0 0 0

...
...

...
...(

B̃+
y

)
N−2

−(
B̃−
y

)
N−2

0 0(
B̃+
y

)
N−1

−(
B̃−
y

)
N−1

I N+1 0(
B̃+
y

)
N

−(
B̃−
y

)
N

0 I N+1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

,

where IN+1 denotes the (N+1)×(N+1) identity matrix and 0 the zeromatrix with the same
dimension, while

(
B̃+
y

)
j is the (N + 1) × (N + 1) matrix whose N -th row is the ( j + 1)-th

row of the matrix B̃+
y and 0 otherwise, i.e.,

(
B̃+
y

)
j =

⎡
⎢⎢⎢⎢⎢⎣

0 0 · · · 0 0
...

...
. . .

...
...(

b̃+
y

)
j0

(
b̃+
y

)
j1

· · ·
(
b̃+
y

)
j (N−1)

(
b̃+
y

)
j N

0 0 · · · 0 0

⎤
⎥⎥⎥⎥⎥⎦

, 0 ≤ j ≤ N ,

and
(
B̃−
y

)
j is the (N + 1) × (N + 1) matrix whose (N + 1)-th row is the ( j + 1)-th row of

the matrix B̃−
y and 0 otherwise, i.e.,

(
B̃−
y

)
j =

⎡
⎢⎢⎢⎣

0 0 · · · 0 0
...

...
. . .

...
...

0 0 · · · 0 0
(b̃−

y ) j0 (b̃−
y ) j1 · · · (b̃−

y ) j (N−1) (b̃−
y ) j N

⎤
⎥⎥⎥⎦ , 0 ≤ j ≤ N .

Ṽ T =

⎡
⎢⎢⎢⎣

E0(N−1) · · · E(N−2)(N−1) E(N−1)(N−1) EN (N−1)

E0N · · · E(N−2)N E(N−1)N ENN

0 · · · 0 B̃+
x 0

0 · · · 0 0 −B̃−
x

⎤
⎥⎥⎥⎦ ,

where Ei j is the (N+1)×(N+1)matrix whose only non-zero entry is Ei j (i+1, j+1) = 1.
Thanks to (3.8), we can express the solution u of (3.10) by

u = A−1f − A−1Ũ (I + Ṽ T A−1Ũ )−1Ṽ T A−1f . (3.12)

We recall that the linear system Av = f can be solved by using the matrix diagonalization
method in a small multiple of N 3 operations (cf. [33] and Appendix). Our algorithm for
computing (3.12) is:
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1. Precompute the capacitance matrix I + Ṽ T A−1Ũ and its LU factorization. The dom-
inating cost of this step is to compute A−1Ũ . A direct approach would require O(N 4)

operations, but the cost can be reduced to O(N 3) by using a similar procedure as in the
construction of the capacitance matrix for solving the biharmonic equation. We refer to
[5,33] for more detail in this regard.

2. Compute u by (3.12). The cost of this step is O(N 3) for each righthand side f .

3.3 Error Estimates

The error analysis for the two-dimensional case can be carries out using a similar procedure
as in the one-dimensional case.

Theorem 3.2 Let u and uN be the solutions of (3.4) and (3.6), respectively. Then, under the
condition (3.5), we have

‖u − uN‖1 � N 1−m‖u‖m + N−k‖ f ‖k .
Proof We first recall that there exists an operator Π1

N : H1(Ω) → PN × PN such that [3,
Theorem 7.3]

‖u − Π1
Nu‖1 � N 1−m‖u‖m, m ≥ 1. (3.13)

We also recall that [3, Theorem 13.4]

‖IN f − f ‖μ � Nμ−k‖ f ‖k, 0 ≤ μ ≤ 1, k > 1, (3.14)

where IN : C(Ω) → PN × PN is the interpolation operator based on the Legendre-Gauss-
Lobatto points.

Using (3.4) and (3.6) leads to the error equation

a(u − uN , vN ) = ( f − IN f, vN ), vN ∈ PN × PN , (3.15)

where

a(u − uN , vN ) = α(u − uN , vN ) + (∇(u − uN ),∇vN )

+
( ∫

I
K+
1 (ξ, y)(u(1, ξ) − uN (1, ξ))dξ, vN (1, y)

)
y∈I

−
( ∫

I
K−
1 (ξ, y)(u(−1, ξ) − uN (−1, ξ))dξ, vN (−1, y)

)
y∈I

+
( ∫

I
K+
2 (x, ξ)(u(ξ, 1) − uN (ξ, 1))dξ, vN (x, 1)

)
x∈I

−
( ∫

I
K−
2 (x, ξ)(u(ξ,−1) − uN (ξ,−1))dξ, vN (x,−1)

)
x∈I

. (3.16)

To estimate the error, we denote êN = Π1
Nu − uN and ẽN = Π1

Nu − u, and take vN =
êN ∈ PN × PN in the error equation (3.15). We need to bound the last four terms involving
integrals. Since the treatment for the four terms are essentially the same, we will only bound
the last term. Thanks to Lemma 3.1∣∣∣∣

( ∫
I
K−
2 (x, ξ)(u(ξ,−1) − uN (ξ,−1))dξ, êN (x,−1)

)
x∈I

∣∣∣∣
≤ c20‖K−

2 ‖0‖u − uN‖1‖êN‖1
≤ c20‖K−

2 ‖0(‖êN‖1 + ‖ẽN‖1)‖êN‖1.
(3.17)
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We then derive from (3.16) with vN = êN and (3.17) that

α‖êN‖20 + ‖∇ êN‖20 ≤ α(ẽN , êN ) + (∇ ẽN ,∇ êN )

+ c20(‖K+
1 ‖0 + ‖K−

1 ‖0 + ‖K+
2 ‖0 + ‖K−

2 ‖0)(‖êN‖1 + ‖ẽN‖1)‖êN‖1.
Therefore, under the condition (3.5), we have

CK ‖êN‖1 � ‖ẽN‖1 + ‖ f − IN f ‖0.
Therefore, we have

‖u − uN‖1 ≤ ‖êN‖1 + ‖ẽN‖1 � ‖ẽN‖1 + ‖ f − IN f ‖0.
The desired result follows from the above, (3.13) and (3.14). 
�

4 Some Extensions

In this section we consider some immediate extensions to related problems that can be treated
by a similar approach.

4.1 Problems with Local and Non-local Boundary Conditions

The problem we considered in the last section is with non-local boundary conditions at all
four boundaries. The same approach can be easily extended to the case where we only have
non-local boundary conditions at part of the boundaries.

Consider, as an example, the following second order elliptic equation with non-local
boundary conditions only in the y-direction:

αu − Δu = f, in Ω = (−1, 1)2, α > 0, (4.1)

u(±1, y) = 0, y ∈ I = (−1, 1), (4.2)

∂yu(x,±1) +
∫
I
K±(x, ξ)u(ξ,±1)dξ = 0, x ∈ I = (−1, 1). (4.3)

Define the approximation space

X̃ N = {
u ∈ PN × PN : u(±1, y) = 0, y ∈ (−1, 1)

}
,

we have X̃ N = span
{
ϕk(x)ϕ j (y) : 0 ≤ k ≤ N − 2; 0 ≤ j ≤ N

}
, where {ϕk} are the basis

functions defined in (2.7). Then, the Legendre–Galerkin method for (4.1)–(4.3) is to find
uN ∈ X̃ N such that

ã(uN , vN ) = (IN f, vN ) ∀vN ∈ X̃ N , (4.4)

where

ã(u, v) := α(u, v) + (∇u,∇v) +
( ∫

I
K+(x, ξ)u(ξ, 1)dξ, v(x, 1)

)
x∈I

−
( ∫

I
K−(x, ξ)u(ξ,−1)dξ, v(x,−1)

)
x∈I

.

Expanding the approximate solution as

uN (x, y) =
N−2∑
k=0

N∑
j=0

ukjϕk(x)ϕ j (y),
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and using similar notations as before, we find that (4.4) can be reduced to the matrix equation

αMxUMT
y + SxUMT

y + MxUSTy + B̃+
x UT+ − B̃−

x UT− = F. (4.5)

Hence, we can still apply the Sherman-Morrison-Woodbury formula (3.8) to solve the above
equation efficiently with a capacitance matrix of the size 2(N − 1).

4.2 Problems with Other Type of Non-local Boundary Conditions

In some applications, e.g., the scattering problem from an open cavity, the non-local boundary
conditions can take different forms. Consider, for example, the problem (4.1) with (4.2) and
the following non-local boundary conditions

∂yu(x,±1) + T ±(u(x,±1)) = 0, x ∈ I = (−1, 1), (4.6)

where the nonlocal operator T ± is defined by

T ±(u(x)) =
∫
R

iβ±(ξ)û(ξ)eiξ xdξ, (4.7)

with given functions β±(ξ) and û(ξ) being the Fourier transform of u(x), i.e.,

û(ξ) = 1√
2π

∫
R

u(x)e−iξ xdx .

Once again, expanding the approximate solution as

uN (x, y) =
N−2∑
k=0

N∑
j=0

ukjϕk(x)ϕ j (y),

we still find that the coefficient matrix U = (ukj ) satisfies the matrix equation (4.5) except
that the matrices B̃±

x now are defined by

(B̃±
x )k j = (T ±ϕ j , ϕk)L2(I ), 0 ≤ k, j ≤ N − 2. (4.8)

Note that T ±u involve an integral over unbounded domain which is not easy to deal
with. Different approaches have been proposed for computing (4.7), e.g. by Green’s function
method or the method of Fourier transform [1,20], or with Hadamard finite-part integral [14].
We describe below an elegant and accurate algorithm to compute (4.8).

The key is the following formula for the Fourier transform of Legendre polynomials (cf.
Formula 18.17.19 in [29])

L̂n(ξ) = 1√
2π

∫ 1

−1
Ln(x)e

−iξ xdx = in
√
2π

ξ
Jn+ 1

2
(ξ), (4.9)

where i = √−1 and Jν(ξ) is the Bessel function of order ν. Thus, we have ϕ̂ j (ξ) =
L̂k(ξ) − L̂k+2(ξ), and by definition,

(B̃±
x )k j = (T ±φ j , φk)L2(I ) =

∫
I

(∫
R
iβ±(ξ)φ̂ j (ξ)eiξ xdξ

)
φk(x)dx

=
∫
R
iβ±(ξ)φ̂ j (ξ)

(∫
I
φk(x)e

iξ xdx

)
dξ =

∫
R
iβ±(ξ)φ̂ j (ξ)φ̂k(−ξ)dξ.

(4.10)

We can compute the above integral accurately by using Hermite-Gauss quadrature, or by
splitting thewhole lineR = (−∞,−L)∪[−L , L]∪(L ,∞) (with a suitable L > 0) and using

123



J Sci Comput

Legendre-Gauss-Lobatto quadrature on [−L , L] and Laguerre-Gauss-Radau quadrature on
(−∞,−L) and (L ,∞).

4.3 Three-Dimensional Problems

The approach presented above can also be extended to three-dimensional problems with
non-local boundary conditions. Consider, as an example, the following problem:

αu − Δu = f, in Ω = (−1, 1)3, α > 0, (4.11)

u(±1, y, z) = 0, y, z ∈ I = (−1, 1), (4.12)

u(x,±1, z) = 0, x, z ∈ I = (−1, 1), (4.13)

∂zu(x, y,±1) +
∫
I

∫
I
K±(x, y; x̃, ỹ)u(x̃, ỹ,±1)dx̃d ỹ = 0, x, y ∈ I. (4.14)

If the non-local boundary conditions in the above is replaced by local boundary conditions,
an efficient Legendre-spectral Galerkin method based on matrix diagonalization is described
in detail in [33]. To solve (4.11)–(4.14) with a Legendre–Galerkin method, we can first diag-
onalize in z-direction to reduce the approximate problem in 3-D to a sequence of approximate
problems in 2-Dwith non-local boundary conditions that can be solved by using the approach
presented above.

4.4 Parabolic Equations

The algorithm we presented above for elliptic problems are well-suited for parabolic prob-
lems. Consider, as an example, the following 2-D parabolic problem:

ut − Δu = f, in Ω × (0, T ], (4.15)

u(±1, y, t) = 0, y ∈ (−1, 1), t ∈ (0, T ], (4.16)

uy(x,±1, t) +
∫
I
K±(x, ξ)u(ξ,±1, t)dξ = 0, x ∈ (−1, 1), t ∈ (0, T ], (4.17)

u(x, y, 0) = u0(x, y), (x, y) ∈ Ω̄, (4.18)

where Ω = (−1, 1)2. Using the same notations as in Sect. 4.1, the Legendre–Galerkin
method for (4.15)–(4.18) leads to the following system of ODEs:

MxU
′(t)MT

y + SxU (t)MT
y + MxU (t)STy + B̃+

x U (t)T+ − B̃−
x U (t)T− = F(t).

Applying the second-order backward difference method in time leads to

Mx
3Un+1 − 4Un +Un−1

2Δt
MT

y + SxU
n+1MT

y + MxU
n+1STy

+ B̃+
x U

n+1T+ − B̃−
x U

n+1T− = Fn+1,

which can be rewritten as

3MxU
n+1MT

y + 2Δt SxU
n+1MT

y + 2ΔtMxU
n+1STy

+ 2Δt B̃+
x U

n+1T+ − 2Δt B̃−
x U

n+1T−

= Mx (4U
n −Un−1)MT

y + 2Δt Fn+1. (4.19)

Note that the above system is exactly the same as the system (4.5) so it can be efficiently
solved using the Sherman-Morrison-Woodbury formula (3.8). Furthermore, the capacitance
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Fig. 1 Example 5.1: errors
versus N in semi-log scale

15 20 25 30 35
10

−15

10
−10

10
−5

10
0

Polynomial degree N

E
rr

or

H1 error
L2 error
L∞ error

matrix I + Ṽ T A−1Ũ will be the same at each time step so it only has to be precomputed
once.

5 Numerical Validations and Applications

5.1 Numerical Validations

Wepresent below several numerical experiments using the efficient Spectral-Galerkinmethod
developed in previous sections. Here the integral terms on the boundary conditions are com-
puted by using Legendre-Gauss-Lobatto quadrature. All computations are performed with
MATLAB on a personal computer.

Example 5.1 Two dimensional problem with non-local boundary conditions in the y-
direction:

u−Δu = sin(4πx)

((
1+16π2)( 1

3π
sin(3πy)+ 9

8
y
)+3π sin(3πy)

)
, in Ω = (−1, 1)2,

u(±1, y) = 0, y ∈ (−1, 1),

∂yu(x,±1) +
∫
I

(
∓ 1

9

)
sin(4πx) sin(4πξ)u(ξ,±1)dξ = 0, x ∈ (−1, 1).

The exact solution is u(x, y) = sin(4πx)( 1
3π sin(3πy) + 9

8 y).

In Fig. 1, we plot the error ‖u − uN‖ in the H1, L2, L∞ norms as a function of the
polynomial degree N in semi-log scale. One can observe that the approximate solutions
converge exponentially to the exact solution.

Example 5.2 Two dimensional problem with non-local boundary conditions in both x and y
directions:
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Fig. 2 Example 5.2: errors
versus N in semi-log scale
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u − Δu = (
1 + (aπ)2 + (bπ)2

)
sin(aπx) sin(bπy), in Ω = (−1, 1)2,

∂xu(±1, y) +
∫
I
∓c1 sin(aπξ) sin(bπy)u(±1, ξ)dξ = 0, y ∈ (−1, 1),

∂yu(x,±1) +
∫
I
∓c2 sin(aπx) sin(bπξ)u(ξ,±1)dξ = 0, x ∈ (−1, 1),

where c1 = 2a2π2 cot(aπ)
2aπ−sin(2aπ)

, c2 = 2b2π2 cot(bπ)
2bπ−sin(2bπ)

, and the exact solution is u(x, y) =
sin(aπx) sin(bπy), a = b = 4.499.

We plot in Fig. 2 the error ‖u − uN‖ in H1, L2, L∞ norms. Numerical results show that
the errors decay exponentially, and verify the error estimate established in Theorem 3.2.

Example 5.3 Two-dimensional parabolic equation with non-local boundary conditions.

ut − Δu = cos(π t) sin(4πx)

(
16π2( 1

3π
sin(3πy) + 9

8
y
) + 3π sin(3πy)

)

− π sin(π t) sin(4πx)

(
1

3π
sin(3πy) + 9

8
y

)
, in Ω × (0, T ],

u(±1, y, t) = 0, y ∈ (−1, 1), t ∈ (0, T ],
uy(x,±1, t) +

∫
I

(
∓ 1

9

)
sin(πx) sin(πξ)u(ξ,±1, t)dξ = 0, x ∈ I, t ∈ (0, T ],

u(x, y, 0) = sin(4πx)

(
1

3π
sin(3πy) + 9

8
y

)
, (x, y) ∈ Ω̄.

The exact solution is u(x, y, t) = cos(π t) sin(4πx)( 1
3π sin(3πy) + 9

8 y).

We first fix Δt = 10−4 so that the time discretization error is negligible compared to the
spatial error, and plot in Fig. 3 the errors vs N in semi-log scale. Since the solution is smooth,
we observe as usual the exponential convergence until the errors are dominated by the time
discretization. Then, we fix N = 32 so the spatial error is negligible compared with time
error, and plot in Fig. 4 the errors in log-log scale. As expected we observe second-order
accuracy in time.
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Fig. 3 Example 5.3:
Δt = 10−4, T = 1
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Fig. 4 Example 5.3:
N = 32, T = 1
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Fig. 5 Geometry of open cavity
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5.2 Application to the Scattering Problem from an Open Cavity

The scattering problem fromopen cavities has important applications and is notorious difficult
to compute, especially at high wave numbers (cf. [2,21,22] and the references therein). The
geometry of the open cavity Ω = (a, b) × (c, d), enclosed by the aperture Γ and the
wall S with perfect conductivity, is shown in Fig. 5. Above the flat surface Γ ∪ Γ c, the
medium is homogeneous with positive dielectric permittivity ε0 and magnetic permeability
μ0; while inside the cavity, the medium has dielectric permittvity ε. Let ω be the angular
frequency of the incident wave, the wave numbers above the ground and in the cavity are
κ0 = ω

√
ε0μ0, κ = ω

√
εμ0, respectively.
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The scattered wave satisfies the following Helmholtz equation

Δu + κ2u = 0, in Ω,

u = 0, on S,

∂nu = T u + g, on Γ, (5.1)

where the nonlocal (Dirichlet-to-Neumann) operator T is defined by the Fourier transform
of u:

T (u(x, d)) =
∫
R

iβ(ξ)û(ξ, d)eiξ xdξ, (5.2)

where û(ξ, d) is the Fourier transform of u(x, d), i.e.,

û(ξ, d) = 1√
2π

∫
R

u(x, d)e−iξ xdx,

and β(ξ) defined as

β(ξ) =
{

(κ2
0 − ξ2)1/2, for |ξ | < κ0,

i(ξ2 − κ2
0 )1/2, for |ξ | > κ0,

and g(x) = −2iκ0 cos θeiκ0x sin θ resulting from the incident field. Readers can refer to [2,23]
for more detail.

Note that the non-local operator is of the type considered in Sect. 4.2, so we only have to
compute the matrix

Bkj = (T φ j , φk)L2(I ) =
∫
I

(∫
R

iβ(ξ)φ̂ j (ξ)eiξ xdξ

)
φk(x)dx

=
∫
R

iβ(ξ)φ̂ j (ξ)φ̂k(−ξ)dξ.

(5.3)

It is clear from the odd-even property of the Legendre polynomials that

φ̂n(−ξ) = (−1)n φ̂n(ξ). (5.4)

Therefore, when j + k is odd, we have Bkj = 0, and when j + k is even,

Bkj = 2(−1)k i
∫
R+

β(ξ)φ̂k(ξ)φ̂ j (ξ)dξ. (5.5)

We approximate the above integral as follows: First we split R+ = [0, L] ∪ (L ,∞) (with
a suitable L > 0) and using Legendre-Gauss-Lobatto quadrature on [0, L] and Laguerre-
Gauss-Radau quadrature on (L ,∞).

We present below some numerical experiments by taking Ω as a box with coordinates:
[−0.5, 0.5] × [−0.25, 0].

In order to compare our results to those in the literature [2,14], we take κ0 = κ = 32π
and the angle of the incident wave θ = 0. The magnitude of the scattered wave on Γ is
plotted in Fig. 6. It matches well with existing results in [2,14]. To determine the order of
convergence, we took the approximate solution with N = 300 as the reference solution, and
plotted the error vs N in Fig. 7. We observe a second-order convergence. Note that we can
not expect spectral accuracy due to the singularities at the corners of the cavity. We recall that
only first-order convergence result was reported in [2] using the finite-difference method. It
is well-known that for problems with corner singularities, spectral methods will double the
convergence rate of FEM or FD methods with uniform meshes, thanks to the clustering of
Legendre-Gauss points near the corners.
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Fig. 6 Magnitude of scattered
wave, κ = 32π
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6 Concluding Remarks

We developed an efficient Spectral-Galerkin method for elliptic equations with non-local
boundary conditions. The method makes essential use of the Sherman-Morrison-Woodbury
formula, which allows us to solve problems with non-local boundary conditions with the
same computational complexity as required for problems with local boundary conditions.
We also carried out a rigorous error analysis, and derived optimal error estimates for the
proposed algorithms. Several numerical tests are provided to validate the algorithms and
our error analysis. As an application, we used the proposed method to solve the scattering
problem from an open cavity.

Appendix: Matrix Diagonalization Method

In this sectionwe briefly recall thematrix diagonalizationmethod in [33] for solving the linear
system Au = f where A is the matrix defined in (3.9). We can rewrite it as the following
matrix equation:
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αMxUMT
y + SxUMT

y + MxUSTy = F. (6.1)

We diagonalize in x-direction and reduce the problem to N + 1 one-dimension equations (in
y-direction) following the steps below:

1. Consider the generalized eigenvalue problem:

Mx x̄ = λSx x̄ . (6.2)

Mx and Sx are symmetric positive definite matrices. Let Λ be the diagonal matrix whose
diagonal entries λp are the eigenvalues of (6.2), and let E be the matrix whose columns
are the eigenvectors of (6.2). We have

Mx E = Sx EΛ, E−1 = ET . (6.3)

2. Let U = EV , thanks to (6.3), the equation (6.1) becomes

αSx EΛV MT
y + Sx EV MT

y + Sx EΛV STy = F.

Multiplying ET S−1
x to both sides of the above equation yields

αΛV MT
y + V MT

y + ΛV STy = ET S−1
x F := G. (6.4)

3. Let vp = (vp0, vp1, . . . , vpN )T and gp = (gp0, gp1, . . . , gpN )T , 0 ≤ p ≤ N . Then the
p-th row of the equation (6.4) can be written as

((αλp + 1)My + λpSy)vp = gp. (6.5)

Since My and Sy are sparse, we can solve (6.5) in O(N ) operations for each p. Hence,
the main cost of solving (6.1) is the two matrix-matrix multiplications which cost a small
multiple of N 3 operations.
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