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Abstract
The scalar auxiliary variable (SAV) approach was recently proposed in Shen et al.

(2018) to construct efficient and accurate unconditionally energy stable schemes for

gradient flows. We present the SAV approach in a more general setting, and consider

a few interesting extensions that enable us to use the SAV approach to deal with a large

class of complex dissipative/conservative systems.
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preserving, Energy stability, Phase-field model
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1 Introduction

The ability of accurate simulation of complex phenomena governed by highly

complex dissipative/conservative systems is central to our understanding of
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many important issues, such as advanced materials, quantum mechanics,

semiconductors, imaging, optimal transport, nonconvex optimization, etc.

Examples of these dissipative systems include Allen–Cahn and Cahn–Hilliard
equations, phase-field models (Anderson et al., 1998; Gurtin et al., 1996; Liu

and Shen, 2003; Lowengrub and Truskinovsky, 1998; Yue et al., 2004a), thin

film models (Giacomelli and Otto, 2001; Otto, 1998), liquid crystal models

(Doi and Edwards, 1988; Forest et al., 2004a, b; Larson, 1990; Leslie, 1979;

Yu et al., 2010), and examples of conservative systems include nonlinear

Schr€odinger equations, Sine-Gordon equations, etc.

However, it is a tremendous challenge to numerically solving highly com-

plex nonlinear systems which preserve energy dissipation/conservation, and/

or physical constraints such as positivity, mass conservation, etc. Simple

explicit or semi-implicit approaches may induce severe stability conditions

on the time step so they are not efficient in practice. On the other hand,

unconditionally energy stable schemes may be constructed with a fully

implicit approach (Du and Nicolaides, 1991) but it leads to nonlinear systems

which may not be easy to solve and whose unique solvability may still dictate

a time step constraint.

It is in general very challenging to develop efficient and accurate uncon-

ditionally structure preserving schemes which preserve essential physical

quantities for these stiff systems with highly complex nonlinearities. Many

efforts have been made in the last three decades, we refer to Shen et al.

(2019) for a brief review on the existing approaches for gradient flows which

is a particular class of such problems, and to Du and Feng (2019) for an

extensive review. In particular, the recently proposed scalar auxiliary vari-

able (SAV) approach (Shen et al., 2018) enjoys several remarkable advan-

tages (cf. Shen et al., 2019). Thanks to its simplicity, efficiency and

generality, the SAV approach can be applied to a large class of problems

with energy dissipation/conservation. In addition to the various applications

presented in Shen et al. (2019), it has been applied to, among others, the epi-

taxial thin film growth models in Cheng et al. (2019), the multicomponent

two-phase compressible flow in Kou et al. (2018), a phase-field surfactant

model in Zhu et al. (2018), a phase-field vesicle membrane model in

Cheng and Shen (2018), a phase-field model for solid-state dewetting pro-

blems (He et al., 2018), the incompressible Navier–Stokes equations in

Yang and Dong (2018), to strongly anisotropic Cahn–Hilliard equations in

Yang (2018a), Sine-Gordon equations in Cai et al. (2018), and to compute

the stationary solutions of one- and multicomponent Bose–Einstein conden-

sates in Zhuang and Shen (2019).

The aim of this paper is to introduce the recently proposed scalar auxiliary

variable (SAV) approach (Shen et al., 2018) in a more general context, discuss

how it can be made more effective for a large class of problems, and present a

few interesting extensions.
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The rest of the paper is organized as follows. In Section 2, we describe the

SAV approach in a general context, present its properties. In Section 3, we

present several interesting extensions of the SAV approach.

2 The SAV approach

We describe below the scalar auxiliary variable (SAV) approach introduced in

Shen et al. (2018). Given a free energy in the form

EðϕÞ¼
Z
Ω

1

2
ϕLϕ+FðϕÞ

� �
dx, (1)

where L is a linear positive definite operator and F(ϕ) is a nonlinear free

energy, we consider a general gradient flow given by:

ϕt ¼�Gμ,
μ :¼ δE

δϕ
¼Lϕ+F0ðϕÞ, (2)

where G is a positive definite operator describing the relaxation process of the

gradient flow, e.g., G¼ I is the usual L2-gradient flow while G¼�Δ is the

so-called H�1-gradient flow, μ is the so-called chemical potential. The above

system satisfies the energy law:

∂

∂t
EðϕÞ¼ ∂

∂t

Z
Ω

1

2
ϕLϕ+FðϕÞ

� �
dx¼�ðGμ,μÞ� 0: (3)

Assume that

E1ðϕÞ :¼
Z
Ω
FðϕÞdx is bounded from below; i:e:; E1ðϕÞ>�C0 for someC0 > 0:

(4)

We introduce one scalar auxiliary variable (SAV), rðtÞ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E1ðϕÞ+C0

p
, and

rewrite the original gradient flow (2) as:

∂ϕ

∂t
¼�Gμ

μ¼Lϕ+
rðtÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E1ðϕÞ +C0

p F0ðϕÞ

rt ¼ 1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E1ðϕÞ+C0

p Z
Ω
F0ðϕÞϕtdx:

(5)
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The above system is equivalent to (2) under the initial condition rð0Þ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E1ðϕjt¼0Þ+C0

p
. However, it allows more flexibility in time discretization.

For example, with the principle of treating linear terms implicitly and all

nonlinear terms explicitly, a second-order scheme for the above reformulated

system can be constructed as follows:

ϕn+ 1�ϕn

Δt
¼�Gμn+ 1=2,

μn+ 1=2 ¼Lϕn+ 1=2 +
rn+ 1=2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E1 ϕ
�
n+ 1=2

� �
+C0

r F0 ϕ
�
n + 1=2

� �
,

rn+ 1� rn

Δt
¼
Z
Ω

F0 ϕ
�
n+ 1=2

� �
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E1 ϕ

�
n+ 1=2

� �
+C0

r ϕn+ 1�ϕn

Δt
dx,

(6)

where hn+ 1=2 :¼ 1
2
ðhn+ 1 + hnÞ for any sequence {hk}, and ϕ�n+ 1=2 :¼ 3

2
ϕn� 1

2
ϕn�1.

It is clear that the above scheme is second-order accurate. Furthermore, by

taking the inner products of three equations in (6) with μn+1/2, ϕn+1 � ϕn, and

2rn+1/2, respectively, notice that the two terms with F0(ϕ) cancel each other

regardless the form of F(ϕ), so we obtain immediately the following result:

Theorem 1. The scheme (6) is unconditionally energy stable in the sense that

�E n+ 1ðϕ,rÞ� �E nðϕ,rÞ¼�ΔtðGμn+ 1=2,μn+ 1=2Þ,
where �E kðϕ,rÞ :¼ RΩ 1

2
ϕk Lϕkdx+ rk is the modified free energy at tk.

Note that the modified energy �Enðϕ,rÞ is an approximation of the original

energy EðϕnÞ provided that (rn)2 is an approximation of E1(ϕ
n) + C0. We

observe from the above theorem that not only the scheme (6) is uncondition-

ally energy stable, it also preserve the energy dissipation rate. In particular, it

is energy conservative if G is skew-symmetric.

Another important fact is that the SAV scheme (6) is easy to implement.

To this end, we write (6) in the following matrix form:

1

Δt
I
1

2
G 0

L �I *

* 0
1

Δt

0
BBBB@

1
CCCCA

ϕn + 1

μn+ 1

rn+ 1

0
B@

1
CA¼ bn, (7)

where bn is the vector with known quantities, and * represents known vectors

with variable coefficients. Hence, we can solve rn+1 with a block Gaussian elim-

ination, which requires solving a system with constant coefficients of the form
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1

Δt
I
1

2
G

L �I

0
@

1
A ϕ

μ

 !
¼ b: (8)

Once rn+1 is known, we can obtain (ϕn+1, μn+1) by solving one more equa-

tion in the above form.

Remark 1. Several remarks are in order:

l It should be noted that the SAV approach is inspired by the IEQ/EQ meth-

ods (Yang, 2016; Zhao et al., 2017). However, with the IEQ/EQ approach,

one has to solve a coupled linear system with time dependent variable

coefficients, so in this sense the SAV approach is computationally more

efficient.

l While, for the sake of simplicity, we described the scheme and its stability

in semidiscrete form, the above stability result carries over to any consistent

Galerkin type approximations, e.g. finite-elements or finite-differences,

which respect proper integration by parts.

l The linear system (8) can be reduced to

1

Δt
I +

1

2
GL

� �
ϕ¼ψ , (9)

with some known ψ . With any consistent Galerkin approximations of G
and L, the corresponding linear system for (9) is positive definite so can

be efficiently solved by one’s favourite method, e.g., preconditioned con-

jugate gradient method. In many common situations such as L¼�Δ and

G¼ I or �Δ with suitable boundary conditions, the corresponding linear

system for (9) can even be solved by fast direct methods such as fast

Poisson solvers. Hence, the scheme (6) is very efficient.

l Note that in a linearly implicit scheme with or without stabilization, one

also has to solve (8) at each time step. Therefore, the cost of the SAV

scheme is essentially twice of linearly implicit schemes which are usually

conditionally stable, and the benefit is that the scheme becomes uncondi-

tionally stable so an adaptive time stepping can be employed to further

reduce the computational cost.

For dissipative systems, it is usually better to use BDF type schemes rather

than the Crank–Nicolson scheme. For example, a semi-implicit second-order

scheme based on BDF2 formula is

3ϕn+ 1�4ϕn +ϕn�1

2Δt
¼Gμn+ 1, (10a)
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μn+ 1 ¼Lϕn+ 1 +
rn+ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E1 ϕn+ 1
	 
q F0 ϕn+ 1

	 

, (10b)

3rn+ 1�4rn + rn�1

2Δt
¼
Z
Ω

F0 ϕn+ 1
	 


2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E1ðϕn+ 1Þ

q 3ϕn+ 1�4ϕn +ϕn�1

2Δt
dx, (10c)

where ϕn + 1 :¼ 2ϕn�ϕn�1.

Taking the inner products of the three equations with μn+1, (3ϕn+1 � 4ϕn +

ϕn�1)/(2Δt), 2rn+1, respectively, and using the identity:

2ðak + 1,3ak + 1�4ak + ak�1Þ¼ jak + 1j2 + j2ak + 1�akj2 + jak + 1�2ak + ak�1j2

�jakj2�j2ak�ak�1j2,
(11)

we can obtain the following result:

Theorem 2. The scheme (10) is second-order accurate, and unconditionally
energy stable in the sense that

E�n+ 1ðϕ,rÞ�E�nðϕ,rÞ¼�ΔtðGμn+ 1,μn+ 1Þ

� 1

4
ϕn+ 1�2ϕn +ϕn�1,Lðϕn+ 1�2ϕn +ϕn�1Þ	 
�

+
1

2
ðrn+ 1�2rn + rn�1Þ2

�
,

where the modified discrete energy at tn+1 is defined as

E�n+ 1ðϕ,rÞ¼1

4
ðϕn+ 1,Lϕn + 1Þ+ 2ϕn+ 1�ϕn,Lð2ϕn+ 1�ϕnÞ	 
	 


+
1

2
ðrn+ 1Þ2 + ð2rn+ 1� rnÞ2
� �

:

Note that the modified discrete energy En+ 1ðϕ,rÞ Comparing with (6), the

scheme (10) introduces extra dissipation terms so the dissipation rate is not

exactly preserved as in (6). On the other hand, we can easily construct

higher-order SAV schemes by replacing BDF2 approximation with BDF-k
(k � 6) approximation. Numerical results (Shen et al., 2019) indicate that

these BDF-k (k � 6) schemes are also unconditionally energy stable although

a rigorous proof is still elusive.

We note that while the SAV schemes such as (6) and (10) are uncondition-

ally energy stable for any type of free energies as long as we can split the free

energy in the form of (1) satisfying (4). However, for the SAV schemes to be

most effective, the following two considerations are very important.
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2.1 Suitable energy splitting

The unconditional energy stability does not necessarily mean that the

corresponding SAV schemes such as (6) and (10) will be effective. For exam-

ple, if we take L¼ 0, the SAV schemes (6) and (10) are still unconditionally

energy stable, but they are fully explicit so exceedingly small time steps are

required to obtain reasonable accurate approximations. Therefore, the perfor-

mance of the SAV schemes depend intrinsically on how to split the free

energy. In principle, the splitting should be such that the linear term 1
2
ϕLϕ

should “dominate” the other term F(ϕ). Otherwise, accurate approximate

solutions can only be obtained with very small time steps. Hence, it is impor-

tant to find suitable splittings such that good approximations can be obtained

with reasonably large time steps.

Consider, for instance, a typical example with free energy

E½ϕ� ¼
Z

1

2
jrϕj2 + 1

4E2
ð1�ϕ2Þ2dx, (12)

where E is a small parameter. This type of free energy is often used in Allen–
Cahn (Allen and Cahn, 1979) and Cahn–Hilliard equations (Cahn and

Hilliard, 1958, 1959), and in the study of interfacial dynamics (Ainsworth

and Mao, 2017; Allen and Cahn, 1979; Anderson et al., 1998; Gurtin et al.,

1996; Kim, 2012; Liu and Shen, 2003; Lowengrub and Truskinovsky, 1998;

Rogers and Desai, 1989; Yue et al., 2004a). In typical situation, E, represent-
ing the interfacial width, is usually small so that the nonlinear term is not

“small” compared with the linear term. The consequence is that very small

time steps are needed for the approximate solution to be accurate. However,

this situation can be easily dealt with by using a suitable splitting of the free

energy as follows:

EðϕÞ¼
Z

1

2
jrϕj2 + β

E2
ϕ2

� �
+

1

4E2
ð1�ϕ2Þ2� β

E2
ϕ2

� �
dx, (13)

where β is a parameter of our choice. It can be easily shown that E1ðϕÞ¼R ½ 1
4E2 ð1�ϕ2Þ2� β

E2ϕ
2� dx has a lower bound for any β so SAV approach can

be applied.

As an illustrative example, we implemented the SAV scheme (10) for the

Cahn–Hilliard equation, which is the gradient flow with the above free energy

and L¼G¼�Δ. We assume the periodic boundary conditions in the domain

[0, 2π), and use the Fourier-spectral method in space with initial condition

ϕðx,0Þ¼ 0:2sinx. In the right of Fig. 1, we plot the numerical solutions of

the scheme with β ¼ 0 (no stabilization) and β ¼ 1 (with stabilization) using

a small Δt ¼ 10�4. We observe that both solutions have the correct profile.

However, with a relatively large Δt ¼ 4 � 10�3, see the left of Fig. 1, the

solution with no stabilization exhibits oscillations while that with stabilization

is still accurate.
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2.2 Adaptive time stepping

A main advantage of unconditional energy stable schemes is that they can be

easily implemented with an adaptive time stepping strategy so that the time

step is only dictated by accuracy rather than by stability as with conditionally

stable schemes. This is particularly important for those situations where the

solution may vary drastically in certain time intervals, but changes very little

elsewhere.

It should be noted that variation of energy alone does not provide enough

information to determine appropriate time steps. A suitable time adaptive

strategy similar to that employed in Gomez and Hughes (2011) is proposed

in Shen et al. (2016) (see also Shen et al. (2019)). In particular, the formula

for updating the time step size is given by

A dpðe,τÞ¼ ρ
tol

e

� �1=2

τ, (14)

along with prescribed minimum and maximum time steps. In the above, ρ is a

default safety coefficient, tol is a reference tolerance, and e is the relative error
at each time level. As an illustrative example, we consider the 2D Cahn–Hilliard
equation withL¼G¼�Δ on [0, 2π)� [0, 2π) with periodic boundary conditions
and random initial data. We take E ¼ 0.1, and use the Fourier-spectral method

with Nx ¼ Ny ¼ 256. We choose ρ ¼ 0.9 and tol ¼ 10�3. The minimum and

maximum time steps are taken as τmin ¼ 10�5 and τmax ¼ 10�2, respectively.

The initial time step is taken as τmin. Numerical results are shown in Fig. 2.

We observe that the adaptive time stepping leads to correct energy evolution

with the largest time step being several hundred times larger than the smallest

time step. This indicates that savings up to several orders of magnitude times

0 1 2 3 4 5 6

–1

–0.5

0

0.5

1

Small time step

SAVnoSTA
SAVwithSTA

0 1 2 3 4 5 6

–1

–0.5

0

0.5

1

Large time step

SAVnoSTA
SAVwithSTA

FIG. 1 The solution at T ¼ 0.1 with E ¼ 0.1. Left: Δt ¼ 4 � 10�3; Right: Δt ¼ 10�4. The red

dashed lines represent solutions with stabilization, while the black solid lines represent solutions
without stabilization.
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can be achieved by combining SAV schemes with an adaptive time stepping

compared with semi-implicit schemes whose time steps are dictated by sta-

bility constraint.

In summary, the SAV schemes possess some amazing advantages such as:

(i) it only requires solving elliptic systems with constant coefficients at each

time step; (ii) it is second-order accurate, unconditionally energy stable and

can be extended to higher-order. Ample numerical results in Shen et al.

(2019, 2018) have shown its advantages compared with other schemes. Fur-

thermore, it has been shown in Shen and Xu (2018) that the SAV schemes

converge under essentially the same conditions as are required for the well

posedness of the system (2), thanks to the unconditionally energy stability.

On the other hand, convergence of linearly implicit schemes (Condette

et al., 2011; Kessler et al., 2004; Shen and Yang, 2010b) usually requires that

the derivative of nonlinear free energy, F0(ϕ) is uniformed bounded, a condi-

tion which is not even satisfied by the double well potential. The convergence

results and error estimates in Shen and Xu (2018) for the semidiscrete case

have also been extended to fully discrete cases with finite-differences in Li

et al. (2019) and with finite-elements in Chen and Shen (2019).

3 Several extensions of the SAV approach

In the following, we present a few interesting extensions which enable us to

use the SAV approach for a larger class of complex nonlinear systems.

3.1 Problems with global constraints

Many complex systems not only obey energy dissipation/conservation but

also are constrained with other conservations such as mass, volume, surface

area, etc. A popular and effective approach is to introduce penalty terms in

the free energy so as to enforce, approximately, these constraints. Then, we

can apply the SAV approach.

0.2 0.4 0.6 0.8 1
0

500

1000

1500
Modified energy

Δ t = 10–5

Adaptive

Δ t = 10–3

0.2 0.4 0.6 0.8 1
10–6

10–4

10–2
Time steps

FIG. 2 Adaptive time stepping. Left: Energy evolution with small time steps, adaptive time

steps, and large time steps; Right: step sizes of adaptive time stepping.
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Consider, for example, the phase-field vesicle membrane model in Du

et al. (2004) with the elastic bending energy

EbðϕÞ¼ E
2

Z
Ω

�Δϕ +
1

E2
GðϕÞ

� �2

dx

¼ E
2

Z
Ω

jΔϕj2� 2

E2
jrϕj2 + 6

E2
ϕ2jrϕj2 + 1

E4
ðGðϕÞÞ2

� �
dx,

(15)

where G(ϕ)¼ F0(ϕ) with FðϕÞ¼ 1
4
ðϕ2�1Þ2, and subject to volume and surface

area conservation:

AðϕÞ¼ 1

2

Z
Ω
ðϕ+ 1Þdx� α, and BðϕÞ¼

Z
Ω

E
2
jrϕj2 + 1

E
FðϕÞ

� �
dx� β, (16)

where α, β represent the initial volume and surface area.

There is no mechanism in the SAV approach to enforce these constraints

directly. However, we can penalize the free energy to approximately enforce

them. More precisely, we consider the following free energy with additional

penalization terms:

EtotðϕÞ¼EbðϕÞ+ 1

2γ
AðϕÞ�αð Þ2 + 1

2η
BðϕÞ�βð Þ2, (17)

where γ and η are two small parameters. In order to apply the SAV approach,

we split Etot(ϕ) as follows

EtotðϕÞ¼ E
2

Z
Ω

E
2

jΔϕj2� 2

E2
jrϕj2

� �
+

1

2γ
ðAðϕÞ�αÞ2

� �

+

Z
Ω

E
2

6

E2
ϕ2jrϕj2 + 1

E4
ðGðϕÞÞ2

� �
+

1

2η
BðϕÞ�βð Þ2

� �
:

(18)

Note that the volume constraint is linear, so it is included in the first part.

Then, we can apply the SAV approach to the above energy to construct uncon-

ditional energy stable SAV schemes. Usually such schemes would be effective,

but due to the three small parameters in the free energy, it is observed in

Cheng and Shen (2018) that such SAV schemes, while unconditionally energy

stable, require exceedingly small time steps to obtain reasonable approximate

solutions.

To remedy this situation, a multiple SAV approach is introduced in Cheng

and Shen (2018). The basic strategy is to introduce one SAV for each small

parameter in the nonlinear part of the free energy. So we are led to introduce

two SAVs:

U¼BðϕÞ�β, V¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiZ
Ω

6

E2
ϕ2jrϕj2 + 1

E4
ðGðϕÞÞ2

� �
dx+C

s
, (19)
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where C is a positive constant, so the total energy becomes

Etotðϕ,U,VÞ¼ E
2

Z
Ω

jΔϕj2� 2

E2
jrϕj2

� �
dx+

1

2γ
ðAðϕÞ�αÞ2 + U2

2η
+
E
2
ðV2�CÞ:

Then, the L2 gradient flow with a mobility M can be written as:

ϕt ¼�Mμ, (20)

μ¼ δEtot

δϕ
¼ EΔ2ϕ +

2

E
Δϕ+

1

γ
ðAðϕÞ�αÞ+ 1

η
U
δU

δϕ
+ EV

δV

δϕ
, (21)

Ut ¼
Z
Ω

δU

δϕ
ϕtdx, Vt ¼

Z
Ω

δV

δϕ
ϕtdx: (22)

We can then apply the SAV approach to construct efficient energy stable

schemes. For example, a second-order SAV scheme based on Crank–Nicolson is

ϕn+ 1�ϕn

Δt
¼�M

μn+ 1 + μn

2
, (23)

μn+ 1 + μn

2
¼ EΔ2ϕ

n+ 1 +ϕn

2
+
2

E
Δ
ϕn + 1 +ϕn

2
+
1

γ
A

ϕn+ 1 +ϕn

2

� �
�α

� �
(24)

+
1

η

Un+ 1 +Un

2

δU

δϕ
ϕ?,n +

1
2

� �
+ E

Vn+ 1 +Vn

2

δV

δϕ
ϕ?,n +

1
2

� �
,

Un+ 1�Un

Δt
¼
Z
Ω

δU

δϕ
ϕ?,n+

1
2

� �
ϕn+ 1�ϕn

Δt
dx,

(25)

Vn+ 1�Vn

Δt
¼
Z
Ω

δV

δϕ
ϕ?,n+

1
2

� �
ϕn+ 1�ϕnΔtdx, (26)

where ϕ?,n+
1
2 ¼ 3

2
ϕn� 1

2
ϕn�1. Taking the inner products of (23) with μn + 1 + μn

2
,

(24) with ϕn+ 1�ϕn

Δt , (25) with Un+ 1 +Un

2
and (26) with Vn + 1 +Vn

2
, respectively, and

summing up the results, we obtain the following results:

Theorem 3. The scheme (23)–(26) is unconditionally energy stable in the
sense that

En+ 1ðϕ,U,VÞ�Enðϕ,U,VÞ¼�ΔtM k μn+ 1
2k2,

where

En+ 1ðϕ,U,VÞ¼ E
2
kΔϕn+ 1k2�1

E
krϕn+ 1k2 + 1

2η
ðUn+ 1Þ2 + E

2
ðVn+ 1Þ2 + 1

2γ
ðAðϕn+ 1Þ�αÞ2:

The above scheme can also be implemented as in the case with one SAV.

Indeed, we can write it as a matrix system

Efficient and accurate structure preserving schemes Chapter 17 657



1

Δt
I

M

2
0

� E
2
Δ2� EΔ� 1

4γ
I
1

2
I *

* 0 I2

0
BBBB@

1
CCCCA

ϕn+ 1

μn+ 1

rn+ 1

0
B@

1
CA¼ bn,

where rn + 1 ¼ðUn+ 1
,Vn+ 1Þt, I is the identity operator, I2 is the identity matrix

of order 2, * and bn include only the terms from previous time steps. There-

fore, we can first solve rn+ 1 using a block Gaussian elimination, which

requires solving two systems with constant coefficients of the form

1

Δt
I

M

2

� E
2
Δ2� EΔ� 1

4γ
I
1

2
I

0
BB@

1
CCA ϕ

μ

 !
¼ b,

which is a fourth-order equation with constant coefficients. With rn+ 1 known,
we can obtain (ϕn+1, μn+1) by solving one more system in the above form. We

refer to Cheng and Shen (2018) for more details with numerical validations.

3.2 L1 minimization via hyper regularization

In imaging processing and many other applications, one often considers

minimization of the free energy (Rudin et al., 1992)

EðϕÞ¼
Z
Ω

jrϕj+ λ

2
ðϕ�gÞ2

� �
dx, (27)

where g is a given function. Oftentimes, one attempts to find the minimizer by

finding the steady state solution of its gradient flow:

∂ϕ

∂t
¼r � 1

jrϕjrϕ� λðϕ�gÞ: (28)

However, there is no suitable energy splitting which would make the SAV

approach effective. Therefore, we consider a hyper regularized free energy

EEðϕÞ¼
Z
Ω

E
2
jð�ΔÞβϕj2 + λ

2
ðϕ�gÞ2 +FEðϕÞ� E2

� �
dx, (29)

where E ≪ 1 and β 	 1 are two parameters of our choice, and FEðϕÞ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jrϕj2 + E2

q
. Its gradient flow takes the form

∂ϕ

∂t
¼�Eð�ΔÞ2βϕ� λðϕ�gÞ�F0

EðϕÞ: (30)
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We can then introduce a SAV rðtÞ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E1,EðϕÞ

p
with E1,EðϕÞ¼

R
ΩFEðϕÞ, and

rewrite the hyper regularized gradient flow (30) as

∂ϕ

∂t
¼�Eð�ΔÞ2βϕ� λðϕ�gÞ� rðtÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E1,EðϕÞ
p F0

EðϕÞ,

rt ¼ 1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E1,EðϕÞ

p Z
Ω
F0
EðϕÞϕtdx:

(31)

Then, a first-order scheme based on the above regularized SAV formulation is:

ϕn+ 1�ϕn

Δt
¼�Eð�ΔÞ2βϕn+ 1� λðϕn+ 1�gÞ� rn+ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E1,EðϕnÞp F0
EðϕnÞ,

rn+ 1� rn

Δt
¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E1,EðϕnÞp Z
Ω
F0
EðϕnÞϕ

n+ 1�ϕn

Δt
dx:

(32)

Second- and higher-order SAV schemes can be constructed as usual.

Taking the inner products of two equations above with ϕn + 1�ϕn

Δt and 2rn+1,

respectively, one obtains:

Theorem 4. The scheme (32) is unconditionally energy diminishing in
the sense that

En+ 1ðϕ,rÞ�Enðϕ,rÞ¼�Δt kϕ
n+ 1�ϕn

Δt
k2� E

2
k ð�ΔÞβðϕn+ 1�ϕnÞk2�jrn+ 1� rnj2,

where En+ 1ðϕ,rÞ¼ E
2
k ð�ΔÞβϕn+ 1k2 + λ

2
kϕn+ 1�gk2 + jrn+ 1j2.

Note that at each time step, one only need to solve, twice, a system of

the form

αϕ + Eð�ΔÞ2βϕ¼ h,

with suitable boundary conditions. For imaging processing, periodic boundary

condition can be used so the above equation can be solved fast a Fourier spec-

tral method. One can then tune E and β to achieve desired results.

3.3 Free energies with highly nonlinear terms

For problems with nonlinear terms in the highest derivative terms, such as in

anisotropic Cahn–Hilliard equations (Torabi et al., 2009), it may not be easy

or even possible to find a suitable splitting. In these cases, one may combine

the SAV approach with a suitable regularization (Yang, 2018b). Consider for

example an free energy with a nonlinear operator L:

EðϕÞ¼
Z
Ω
½γðϕÞjrϕj2 +FðϕÞ�dx, (33)
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where γ(ϕ) 	 0 is certain nonlinear function of ϕ. The corresponding aniso-

tropic Cahn–Hilliard equation is

ϕt ¼Δμ; μ¼ δE

δϕ
: (34)

We shall approximate the above equation with the following regularized

equation:

ϕt ¼Δμ; μ¼�
X2
k¼0

Ekð�1ÞkΔkϕtt +
δE

δϕ
, (35)

where Ek ≪ 1 are free parameters and their choices depend on γ(ϕ) and F(ϕ).

Introducing a SAV rðtÞ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EðϕÞ+C0

p
where C0 is a suitable constant such

that E(ϕ) + C0 > 0, we can rewrite (35) as

ϕt ¼Δμ,

μ¼�
X2
k¼0

Ekð�1ÞkΔkϕtt +
rðtÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

EðϕÞ+C0

p δE

δϕ
,

rt ¼ 1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EðϕÞ+C0

p Z
Ω

δE

δϕ
ϕtdx:

(36)

Then, a second-order SAV Crank–Nicolson scheme is

ϕn+ 1�ϕn

Δt
¼Δμn+ 1=2,

μn+ 1=2¼�
X2
k¼0

Ek
Δt2

ð�1ÞkΔk ϕn+ 1�2ϕn +ϕn�1
	 


+
rn+ 1=2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E ϕ
�
n+ 1=2

� �
+C0

r δE

δϕ
ϕ
�n+ 1=2
� �

,

rn+ 1� rn

Δt
¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Eðϕ�n+ 1=2Þ+C0

q Z
Ω

δE

δϕ
ϕ
�n+ 1=2
� �ϕn+ 1�ϕn

Δt
dx,

(37)

where hn+ 1=2 :¼ 1
2
ðhn + 1 + hnÞ for any sequence {hk}, and ϕ�n+ 1=2 ¼ 3

2
ϕn� 1

2
ϕn�1.

Taking the inner products of the first equation with μn+1/2, the second

equation with ϕn+ 1�ϕn

Δt and the third equation with 2rn+1/2, summing up the

results, we obtain immediately the following results:

Theorem 5. The scheme (37) is unconditionally energy stable in the sense that

�En + 1ðϕ,rÞ� �Enðϕ,rÞ¼�Δt krμn+ 1=2k2�
X2
k¼0

Ek
2Δt

kΔk=2ðϕn+ 1�2ϕn +ϕn�1Þk2,

where �E j+ 1ðϕ,rÞ :¼P2
k¼0

Ek
2Δt2 kΔk=2ðϕj+ 1�ϕjÞk2 + ðrj + 1Þ2 is the modified

free energy at t j+1.
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The above approach was successfully used in Yang (2018b) to approxi-

mate the strongly anisotropic Cahn–Hilliard equation proposed in Torabi

et al. (2009). We refer to Yang (2018b) for details on the choice of Ek and their

effects on the accuracy.

3.4 Coupling with other physical conservation laws

In complex thermodynamic systems, e.g., phase-field models of multiphase

complex fluids (Liu and Shen, 2003; Yue et al., 2004b), only the order para-

meters such as the phase variable (Liu and Shen, 2003) and/or director field

(Yue et al., 2004b), are governed by gradient flows which are coupled

to other physical conservation laws such as momentum, mass, and energy

conservations. The SAV approach can be used to deal with the nonlinear

terms in gradient flow part to construct efficient numerical schemes for

the coupled thermodynamic systems (see also Zhu et al. (2018) and

Kou et al. (2018)).

Consider for example a phase-field model for the mixture of two incom-

pressible, immiscible fluids. Let ϕ be a labelling function to identify the

two fluids, i.e.,

ϕðx, tÞ¼ 1 x2 in fluid 1,

�1 x2 in fluid 2,

�
(38)

with a smooth interfacial layer of thickness η. Consider a mixing free

energy

EmixðϕÞ¼ λ

Z
Ω

1

2
jrϕj2 +FðϕÞ

� �
dx,

where FðϕÞ¼ 1
4η2 ðϕ2�1Þ2 and λ is a mixing coefficient. For the sake of

simplicity, we consider the two fluids having the same density ρ0 ¼ 1. Then,

the Navier–Stokes Cahn–Hilliard phase-field model for the two-phase incom-

pressible flow is as follows (cf., for instance, Anderson et al., 1998; Liu and

Shen, 2003):

∂ϕ

∂t
+r � ðuϕÞ¼r � ðγrμÞ, (39)

μ¼ δEmix

δϕ
¼�λΔϕ+ λF0ðϕÞ; (40)

∂u

∂t
+ ðu � rÞu¼ νΔu�rp�ϕrμ; (41)

r � u¼ 0; (42)

subject to suitable boundary conditions for ϕ, μ, u. In the above, γ is a relax-

ation coefficients and ν is the viscosity coefficient; the unknown are ϕ, μ, u,
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p with u being the velocity and p the pressure. Taking the inner products of

(39), (40) and (53) with μ, ∂ϕ
∂t and u, respectively, we obtain the following

energy dissipation law:

d

dt

Z
Ω

1

2
juj2 + λ

2
jrϕj2 + λFðϕÞ

� �
dx¼�

Z
Ω
fνjruj2 + γjrμj2g dx:

To apply the SAV approach, we set E1ðϕÞ¼
R
ΩFðϕÞ, introduce rðtÞ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E1ðϕÞ+ δ
p

with δ > 0, and replace (40) by

μ¼�λΔϕ + λ
rðtÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E1ðϕÞ+ δ
p F0ðϕÞ,

dr

dt
¼ 1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E1ðϕÞ + δ

p Z
Ω
F0ðϕÞ ∂ϕ

∂t
dx:

(43)

Then, we can combine the scheme (3.9) in Shen and Yang (2010a) and the

SAV approach to construct the following scheme for (39)–(42):

3ϕn+ 1�4ϕn +ϕn�1

2Δt
+ ûn+ 1 � rϕn+ 1 ¼ γΔμn+ 1,

μn+ 1 ¼�λΔϕn+ 1 +
λrn+ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E1ðϕn+ 1Þ+ δ
q F0ðϕn+ 1Þ,

3rn+ 1�4rn� rn�1

2Δt
¼
Z
Ω

F0ðϕn+ 1Þ
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E1ðϕn+ 1Þ+ δ

q 3ϕn+ 1�4ϕn +ϕn�1

2Δt
dx;

(44)

3~un+ 1�4un + un�1

2Δt
+ �un+ 1 � r~un+ 1

�νΔ~un+ 1 +rpn�μn+ 1rϕn+ 1 ¼ 0;

(45)

3

2Δt
ðun+ 1� ~un+ 1Þ+rðpn+ 1�pnÞ¼ 0,

r � un+ 1 ¼ 0; un+ 1 � nj
∂Ω ¼ 0:

(46)

In the above, ψ n+ 1 :¼ 2ψn�ψn�1 for any sequence {ψk}. As for ûn+ 1, we can

choose ûn+ 1 ¼ ~un+ 1 or ûn+ 1 ¼ 2un�un�1.

If ûn+ 1 ¼ ~un+ 1, we can show that the scheme is unconditionally energy

stable. More precisely, we have the following result:

Theorem 6. The scheme (44)–(46) with ûn + 1 ¼ ~un+ 1 is unconditionally energy
stable in the sense that

En+ 1ðϕ,u,pÞ�Enðϕ,u,pÞ��Δt½γ krμn+ 1k2 + ν kr~un + 1k2�,
where En+ 1ðϕ,u,pÞ is the modified total energy at tn+1 given by
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En+ 1ðϕ,μ,u,pÞ¼ λ

4
ðkrϕn+ 1k2 + krð2ϕn+ 1�ϕnÞk2Þ + λ

2
ðjrn+ 1j2 + j2rn+ 1� rnj2Þ

+
1

4
ðk un+ 1k2 + k 2un+ 1�unk2Þ + Δt2

3
krpn+ 1k2:

Proof. Taking the inner products of three equations in (44) with Δtμn+1,
1
2
ð3ϕn+ 1�4ϕn +ϕn�1Þ and 2Δtλrn+1, respectively, using the identity (11),

we obtain

λ

4

�
ðkrϕn+ 1k2 + krð2ϕn+ 1�ϕnÞk2Þ+ λ

2
ðjrn+ 1j2 + j2rn+ 1� rnj2Þ

�

� λ

4

�
ðkrϕnk2 + krð2ϕn�ϕn�1Þk2Þ + λ

2
ðjrnj2 + j2rn� rn�1j2Þ

�
+Δtð~un+ 1rϕn+ 1,μn+ 1Þ

¼�Δtγ k μn+ 1k2� λ

4
krðϕn+ 1�2ϕn +ϕn�1Þk2� λ

2
jrn + 1�2rn + rn�1j2:

(47)

Next, taking the inner product of (45) with Δtun+1, and using the property

ðu � rv,vÞ¼ 0, 8u2H, v2 ðH1
0ðΩÞÞd, (48)

where H ¼ {u 2 (L2(Ω))d: r� u ¼ 0, u � nj∂Ω ¼ 0}, we obtain

1

2
ð3~un+ 1�4un + un�1, ~un+ 1Þ +Δtðrpn, ~un+ 1Þ�Δtðμn+ 1rϕn+ 1, ~un+ 1Þ¼�μΔt kr~un+ 1k2:

(49)

Then, we rearrange (46) as

ffiffiffi
3

p

2
un+ 1 +

Δtffiffiffi
3

p rpn+ 1 ¼
ffiffiffi
3

p

2
~un+ 1 +

Δtffiffiffi
3

p rpn, (50)

and take the inner products of both side with itself to get

3

4
k un+ 1k2 + Δt2

3
k pn+ 1k2 ¼ 3

4
k ~un+ 1k2 + Δt2

3
k pnk2 +Δtðrpn, ~un+ 1Þ: (51)

Since the term Δtðrpn, ~un + 1Þ in (51) and (49) cancel each other, and the

term Δtðμn + 1rϕn+ 1, ~un+ 1Þ in (49) and (47) cancel each other, it remains to

deal with the first term in (49), which we write as

1

2
ð3~un+ 1�4un + un�1, ~un+ 1Þ¼ 3

2
ð~un+ 1�un+ 1, ~un+ 1Þ

+
1

2
ð3un+ 1�4un + un�1, ~un+ 1�un+ 1Þ

+
1

2
ð3un+ 1�4un + un�1,un + 1Þ :¼ I1 + I2 + I3:

(52)

Efficient and accurate structure preserving schemes Chapter 17 663



We have I1 ¼ 3
4
ðk ~un+ 1k2�k un+ 1k2 + k ~un+ 1�un+ 1k2Þ, and for I3 we use

(11). On the other hand, by using (46), we derive that I2 ¼ 0. Finally, collect

all the results in the above identities, we obtain the desired result. □

Several remarks are in order:

l The pressure-correction step (46) is decoupled from the rest. More pre-

cisely, if ~un+ 1 is known, one can determine (pn+1, un+1) from (46) by solving

a Poisson equation for pn+1 � pn with a homogeneous Neumann boundary

condition.

l If we take ûn + 1 ¼ 2un�un�1, one can eliminate rn+1 from (44) as before,

so the scheme is linear, decoupled, second-order, and only requires solving

a sequence of elliptic type equations at each time step, but not uncondi-

tionally energy stable.

l On the other hand, if we take ûn+ 1 ¼ ~un+ 1, the scheme is unconditionally

energy stable, linear and second-order. However, it is weakly coupled

between ðϕn+ 1,wn+ 1, ~un+ 1Þ by the term ~un+ 1 � rϕn+ 1. The weakly coupled

linear system is positive definite, and one can use the decoupled scheme

with ûn + 1 ¼ 2un�un�1 as a preconditioner for the coupled scheme with

ûn+ 1 ¼ ~un+ 1.

3.5 Dissipative/conservative systems which are not driven
by free energy

In a recent work (Lin and Dong (2018)), the authors presented an interesting

extension of the SAV approach to the following incompressible Navier–
Stokes equations (NSE):

ut + ðu � rÞu¼ νΔu�rp,

r � u¼ 0, uj
∂Ω ¼ 0,

(53)

which is not a gradient flow but consists of only physical conservation laws

and satisfies an energy dissipation law:

1

2

d

dt

Z
juj2dx¼�ν

Z
Ω
jruj2: (54)

A usual semi-implicit scheme for (53) is

un+ 1�un

Δt
+ ðun � rÞun ¼ νΔun+ 1�rpn+ 1,

r � un+ 1 ¼ 0, un + 1j
∂Ω ¼ 0:

(55)

However, it is not unconditionally energy stable.

Let EðtÞ¼ RΩ 1
2
juj2dx+ δ with any δ > 0, and introduce a SAV variable

RðtÞ¼ ffiffiffiffiffiffiffiffiffi
EðtÞp

. We can rewrite the NSE (53) as
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ut +
RðtÞffiffiffiffiffiffiffiffiffi
EðtÞp ðu � rÞu¼ νΔu�rp, uj

∂Ω ¼ 0;

r � u¼ 0;

2RðtÞR0ðtÞ¼ ðut,uÞ¼ ut +
RðtÞffiffiffiffiffiffiffiffiffi
EðtÞp ðu � rÞu,u

 !
:

(56)

In the last equation, we have used the property ((u �r)u, u) ¼ 0 for all u such

that r� u ¼ 0 and uj∂Ω ¼ 0. With Rð0Þ¼ ffiffiffiffiffiffiffiffiffiffi
Eð0Þp

, the above system is equiva-

lent to the original NSE (53).

The following semi-implicit SAV scheme based on the above reformula-

tion is proposed in Lin and Dong (2018):

un + 1�un

Δt
+

Rn+ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Eðtn+ 1Þ

p ðun � rÞun ¼νΔun+ 1�rpn+ 1,

r � un+ 1 ¼0, un+ 1j
∂Ω ¼ 0;

2Rn+ 1R
n+ 1�Rn

Δt
¼ un+ 1�un

Δt
+

Rn+ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Eðtn+ 1Þ

p ðun � rÞun,un+ 1
 !

:

(57)

Taking the inner product of the first equation with un+1 and sum up with the

third equation, we obtain:

Theorem 7. The scheme (57) is unconditionally energy stable in the sense
that all its solutions satisfy

1

Δt
ðjRn+ 1j2�jRnj2 + jRn+ 1�Rnj2Þ+ ν krun+ 1k2 ¼ 0:

The above result is very surprising since the nonlinear term is treated

explicitly.

The above scheme can also be implemented very efficiently. Indeed,

denote Sn+ 1 ¼ Rn + 1ffiffiffiffiffiffiffiffiffiffiffi
Eðtn + 1Þ

p and set

un + 1 ¼ un+ 11 + Sn+ 1un+ 12 , pn+ 1 ¼ pn+ 11 + Sn+ 1pn+ 12 :

Plugging the above in (57), we find that ðun+ 1i ,pn+ 1i Þ ði¼ 1,2Þ can be deter-

mined separately from:

un+ 11 �un

Δt
¼ νΔun+ 11 �rpn+ 11 , un+ 11 j

∂Ω ¼ 0;

r � un+ 11 ¼ 0;

(58)

Efficient and accurate structure preserving schemes Chapter 17 665



and

un+ 12

Δt
+ ðun � rÞun ¼ νΔun+ 12 �rpn+ 12 , un+ 12 j

∂Ω ¼ 0;

r � un+ 12 ¼ 0:

(59)

Once ðun+ 1i ,pn+ 1i Þ ði¼ 1,2Þ are known, the last equation in (57) becomes a

nonlinear algebraic equation for Sn+1 which can be solved by a Newton

iteration.

Several remarks are in order:

l The cost of solving the nonlinear algebraic equation for Sn+1 is negligible.
The main cost at each time step is to solve (58) and (59). So the computa-

tional cost is about twice of that for the usual semi-implicit scheme (55)

but it has the advantage of being unconditionally energy stable.

l Existence of a positive solution for Sn+1 is still elusive. But in practice, this

is always true as long as Δt is not “too” large. Since Sn+1 is designed to be

an approximation to 1, the difference jSn+1 � 1j provides a “free” estima-

tor for adaptive time stepping: if jSn+1 � 1j is not “sufficiently small”,

then, one needs to reduce Δt.
l Ample numerical results in Lin and Dong (2018) show that the SAV

approach is more efficient and robust than the usual semi-implicit schemes.

l This approach is not restricted to the Navier–Stokes equations and can be

applied to other nonlinear systems. For example, we can couple this

approach with the scheme (44)–(46) to construct new efficient schemes

for two-phase phase-field models, we refer to Yang and Dong (2018) for

an attempt in this direction.

4 Conclusion

We provided an updated account for the recently proposed SAV approach for

complex dissipative/conservative systems. The SAV approach was originally

developed for dealing with gradient flows. But as shown in the last section,

the idea can be extended to deal with a large class of complex dissipative/con-

servative systems which are not gradient flows, and still lead to efficient and

accurate numerical schemes.

Acknowledgements

This work is partially supported by NSF DMS-1620262 & DMS-1720442 and AFOSR

FA9550-16-1-0102.

References

Ainsworth, M., Mao, Z., 2017. Analysis and approximation of a fractional Cahn-Hilliard equation.

SIAM J. Numer. Anal. 55 (4), 1689–1718. ISSN 0036-1429.

666 Handbook of Numerical Analysis

http://refhub.elsevier.com/S1570-8659(19)30012-2/rf0010
http://refhub.elsevier.com/S1570-8659(19)30012-2/rf0010


Allen, S.M., Cahn, J.W., 1979. A microscopic theory for antiphase boundary motion and its appli-

cation to antiphase domain coarsening. Acta Metall. 27 (6), 1085–1095.

Anderson, D.M., McFadden, G.B., Wheeler, A.A., 1998. Diffuse-interface methods in fluid

mechanics. Annu. Rev. Fluid Mech. 30 (1), 139–165.

Cahn, J.W., Hilliard, J.E., 1958. Free energy of a nonuniform system. I. Interfacial free energy.

J. Chem. Phys. 28 (2), 258–267.

Cahn, J.W., Hilliard, J.E., 1959. Free energy of a nonuniform system. III. Nucleation in a

two-component incompressible fluid. J. Chem. Phys. 31 (3), 688–699.

Cai, W., Jiang, C., Wang, Y., 2018. Structure-preserving algorithms for the two-dimensional sine-

Gordon equation with Neumann boundary conditions. arXiv preprint arXiv:1809.02704.

Chen, H., Shen, J., 2019. Optimal error estimates for SAV finite-element schemes for gradient

flows. Numer. Math. (submitted for publication).

Cheng, Q., Shen, J., 2018. Multiple scalar auxiliary variable (MSAV) approach and its

application to the phase-field vesicle membrane model. SIAM J. Sci. Comput. 40 (6),

A3982–A4006.

Cheng, Q., Shen, J., Yang, X., 2019. Highly efficient and accurate numerical schemes for the epi-

taxial thin film growth models by using the SAV approach. J. Sci. Comput. 78 (3), 1467–1487.

Condette, N., Melcher, C., S€uli, E., 2011. Spectral approximation of pattern-forming nonlinear

evolution equations with double-well potentials of quadratic growth. Math. Comp. 80 (273),

205–223. ISSN 0025-5718. https://doi.org/10.1090/S0025-5718-10-02365-3.

Doi, M., Edwards, S.F., 1988. The Theory of Polymer Dynamics. vol. 73. Oxford University Press.

Du, Q., Feng, X., 2019. The phase field method for geometric moving interfaces and their numer-

ical approximations. arXiv preprint arXiv:1902.04924.

Du, Q., Nicolaides, R.A., 1991. Numerical analysis of a continuum model of phase transition.

SIAM J. Numer. Anal. 28 (5), 1310–1322. ISSN 0036-1429. https://doi.org/10.1137/0728069.

Du, Q., Liu, C., Wang, X., 2004. A phase field approach in the numerical study of the elastic

bending energy for vesicle membranes. J. Comput. Phys. 198 (2), 450–468.

Forest, M.G., Wang, Q., Zhou, R., 2004. The flow-phase diagram of Doi-Hess theory for sheared

nematic polymers II: finite shear rates. Rheol. Acta 44 (1), 80–93.

Forest, M.G., Wang, Q., Zhou, R., 2004. The weak shear kinetic phase diagram for nematic poly-

mers. Rheol. Acta 43 (1), 17–37.

Giacomelli, L., Otto, F., 2001. Variatonal formulation for the lubrication approximation of the

Hele-Shaw flow. Calc. Var. 13 (3), 377–403.

Gomez, H., Hughes, T.J.R., 2011. Provably unconditionally stable, second-order time-accurate,

mixed variational methods for phase-field models. J. Comput. Phys. 230 (13), 5310–5327.

ISSN 0021-9991. https://doi.org/10.1016/j.jcp.2011.03.033.

Gurtin, M.E., Polignone, D., Vinals, J., 1996. Two-phase binary fluids and immiscible fluids

described by an order parameter. Math. Models Methods Appl. Sci. 6 (06), 815–831.

He, Z., Chen, J., Chen, Z., 2018. Efficient linearly and unconditionally energy stable schemes for

the phase field model of solid-state dewetting problems. In: International Conference on

Computational Science, pp. 102–112.

Kessler, D., Nochetto, R.H., Schmidt, A., 2004. A posteriori error control for the Allen-Cahn

problem: circumventing Gronwall’s inequality. M2AN Math. Model. Numer. Anal. 38 (1),

129–142. ISSN 0764-583X. https://doi.org/10.1051/m2an:2004006.

Kim, J., 2012. Phase-field models for multi-component fluid flows. Commun. Comput. Phys.

12 (03), 613–661.

Kou, J., Sun, S., Wang, X., 2018. Linearly decoupled energy-stable numerical methods for multi-

component two-phase compressible flow. SIAM J. Numer. Anal. 56 (6), 3219–3248.

Efficient and accurate structure preserving schemes Chapter 17 667

http://refhub.elsevier.com/S1570-8659(19)30012-2/rf0015
http://refhub.elsevier.com/S1570-8659(19)30012-2/rf0015
http://refhub.elsevier.com/S1570-8659(19)30012-2/rf0020
http://refhub.elsevier.com/S1570-8659(19)30012-2/rf0020
http://refhub.elsevier.com/S1570-8659(19)30012-2/rf0025
http://refhub.elsevier.com/S1570-8659(19)30012-2/rf0025
http://refhub.elsevier.com/S1570-8659(19)30012-2/rf0030
http://refhub.elsevier.com/S1570-8659(19)30012-2/rf0030
http://refhub.elsevier.com/S1570-8659(19)30012-2/rf0035
http://refhub.elsevier.com/S1570-8659(19)30012-2/rf0035
http://refhub.elsevier.com/S1570-8659(19)30012-2/rf0040
http://refhub.elsevier.com/S1570-8659(19)30012-2/rf0040
http://refhub.elsevier.com/S1570-8659(19)30012-2/rf0045
http://refhub.elsevier.com/S1570-8659(19)30012-2/rf0045
http://refhub.elsevier.com/S1570-8659(19)30012-2/rf0045
http://refhub.elsevier.com/S1570-8659(19)30012-2/rf0050
http://refhub.elsevier.com/S1570-8659(19)30012-2/rf0050
https://doi.org/10.1090/S0025-5718-10-02365-3
http://refhub.elsevier.com/S1570-8659(19)30012-2/rf0060
http://refhub.elsevier.com/S1570-8659(19)30012-2/rf0065
http://refhub.elsevier.com/S1570-8659(19)30012-2/rf0065
https://doi.org/10.1137/0728069
http://refhub.elsevier.com/S1570-8659(19)30012-2/rf0075
http://refhub.elsevier.com/S1570-8659(19)30012-2/rf0075
http://refhub.elsevier.com/S1570-8659(19)30012-2/rf0080
http://refhub.elsevier.com/S1570-8659(19)30012-2/rf0080
http://refhub.elsevier.com/S1570-8659(19)30012-2/rf0085
http://refhub.elsevier.com/S1570-8659(19)30012-2/rf0085
http://refhub.elsevier.com/S1570-8659(19)30012-2/rf0090
http://refhub.elsevier.com/S1570-8659(19)30012-2/rf0090
https://doi.org/10.1016/j.jcp.2011.03.033
http://refhub.elsevier.com/S1570-8659(19)30012-2/rf0100
http://refhub.elsevier.com/S1570-8659(19)30012-2/rf0100
http://refhub.elsevier.com/S1570-8659(19)30012-2/rf0105
http://refhub.elsevier.com/S1570-8659(19)30012-2/rf0105
http://refhub.elsevier.com/S1570-8659(19)30012-2/rf0105
https://doi.org/10.1051/m2an:2004006
http://refhub.elsevier.com/S1570-8659(19)30012-2/rf0115
http://refhub.elsevier.com/S1570-8659(19)30012-2/rf0115
http://refhub.elsevier.com/S1570-8659(19)30012-2/rf0120
http://refhub.elsevier.com/S1570-8659(19)30012-2/rf0120


Larson, R.G., 1990. Arrested tumbling in shearing flows of liquid crystal polymers.

Macromolecules 23 (17), 3983–3992.

Leslie, F.M., 1979. Theory of flow phenomena in liquid crystals. Adv. Liq. Cryst. 4, 1–81.

Li, X., Shen, J., Rui, H., 2019. Energy stability and convergence of SAV block-centered finite dif-

ference method for gradient flows. Math. Comp. 88 (319), 2047–2068.

Lin, L., Dong, S., 2018. Numerical approximation of incompressible Navier-Stokes equations

based on an auxiliary energy variable. arXiv:1804.10859.

Liu, C., Shen, J., 2003. A phase field model for the mixture of two incompressible fluids and its

approximation by a Fourier-spectral method. Physica D 179 (3), 211–228.

Lowengrub, J., Truskinovsky, L., 1998. Quasi-incompressible Cahn-Hilliard fluids and topologi-

cal transitions. In: Proceedings of the Royal Society of London A: Mathematical, Physical

and Engineering Sciences, vol. 454. The Royal Society, pp. 2617–2654.

Otto, F., 1998. Lubrication approximation with prescribed nonzero contact angle. Commun. Par-

tial Differ. Equ. 23 (11–12), 2077–2164.

Rogers, T.M., Desai, R.C., 1989. Numerical study of late-stage coarsening for off-critical

quenches in the Cahn-Hilliard equation of phase separation. Phys. Rev. B 39 (16), 11956.

Rudin, L.I., Osher, S., Fatemi, E., 1992. Nonlinear total variation based noise removal algorithms.

Physica D 60 (1–4), 259–268.

Shen, J., Xu, J., 2018. Convergence and error analysis for the scalar auxiliary variable (SAV)

schemes to gradient flows. SIAM J. Numer. Anal. 56 (5), 2895–2912. ISSN 0036-1429.

https://doi.org/10.1137/17M1159968.

Shen, J., Yang, X., 2010. Energy stable schemes for Cahn-Hilliard phase-field model of two phase

incompressible flows equations. Chin. Ann. Math. B 31, 743–758.

Shen, J., Yang, X., 2010. Numerical approximations of Allen-Cahn and Cahn-Hilliard equations.

Discrete Contin. Dynam. Systems. A 28, 1669–1691.

Shen, J., Tang, T., Yang, J., 2016. On the maximum principle preserving schemes for the

generalized Allen-Cahn equation. Comm. Math. Sci. (14), 1517–1534.

Shen, J., Xu, J., Yang, J., 2019. A new class of efficient and robust energy stable schemes for gra-

dient flows. SIAM Rev. (submitted for publication).

Shen, J., Xu, J., Yang, J., 2018. The scalar auxiliary variable (SAV) approach for gradient

flows. J. Comput. Phys. 353, 407–416. ISSN 0021-9991. https://doi.org/10.1016/

j.jcp.2017.10.021.

Torabi, S., Lowengrub, J., Voigt, A., Wise, S., 2009. A new phase-field model for strongly aniso-

tropic systems. In: Proceedings of the Royal Society of London A: Mathematical, Physical

and Engineering Sciences. The Royal Society. pp. rspa–2008.

Yang, X., 2016. Linear, first and second-order, unconditionally energy stable numerical schemes

for the phase field model of homopolymer blends. J. Comput. Phys. 327, 294–316.

Yang, X., 2018. Efficient schemes with unconditionally energy stability for the anisotropic Cahn-

Hilliard equation using the stabilized-scalar augmented variable (S-SAV) approach. arXiv

preprint arXiv:1804.02619.

Yang, X., 2018. Efficient schemes with unconditionally energy stability for the anisotropic Cahn-

Hilliard equation using the stabilized-scalar augmented variable (S-SAV) approach. arXiv

preprint arXiv:1804.02619.

Yang, Z., Dong, S., 2018. An unconditionally energy-stable scheme based on an implicit auxiliary

energy variable for incompressible two-phase flows with different densities involving only

precomputable coefficient matrices. arXiv preprint arXiv:1811.07888.

Yu, H., Ji, G., Zhang, P., 2010. A nonhomogeneous kinetic model of liquid crystal polymers and

its thermodynamic closure approximation. Commun. Comput. Phys. 7 (2), 383.

668 Handbook of Numerical Analysis

http://refhub.elsevier.com/S1570-8659(19)30012-2/rf0125
http://refhub.elsevier.com/S1570-8659(19)30012-2/rf0125
http://refhub.elsevier.com/S1570-8659(19)30012-2/rf0130
http://refhub.elsevier.com/S1570-8659(19)30012-2/rf8870
http://refhub.elsevier.com/S1570-8659(19)30012-2/rf8870
http://refhub.elsevier.com/S1570-8659(19)30012-2/rf0140
http://refhub.elsevier.com/S1570-8659(19)30012-2/rf0140
http://refhub.elsevier.com/S1570-8659(19)30012-2/rf0145
http://refhub.elsevier.com/S1570-8659(19)30012-2/rf0145
http://refhub.elsevier.com/S1570-8659(19)30012-2/rf0150
http://refhub.elsevier.com/S1570-8659(19)30012-2/rf0150
http://refhub.elsevier.com/S1570-8659(19)30012-2/rf0150
http://refhub.elsevier.com/S1570-8659(19)30012-2/rf0155
http://refhub.elsevier.com/S1570-8659(19)30012-2/rf0155
http://refhub.elsevier.com/S1570-8659(19)30012-2/rf0160
http://refhub.elsevier.com/S1570-8659(19)30012-2/rf0160
http://refhub.elsevier.com/S1570-8659(19)30012-2/rf0165
http://refhub.elsevier.com/S1570-8659(19)30012-2/rf0165
https://doi.org/10.1137/17M1159968
http://refhub.elsevier.com/S1570-8659(19)30012-2/rf0175
http://refhub.elsevier.com/S1570-8659(19)30012-2/rf0175
http://refhub.elsevier.com/S1570-8659(19)30012-2/rf0180
http://refhub.elsevier.com/S1570-8659(19)30012-2/rf0180
http://refhub.elsevier.com/S1570-8659(19)30012-2/rf0185
http://refhub.elsevier.com/S1570-8659(19)30012-2/rf0185
http://refhub.elsevier.com/S1570-8659(19)30012-2/rf0190
http://refhub.elsevier.com/S1570-8659(19)30012-2/rf0190
https://doi.org/10.1016/j.jcp.2017.10.021
https://doi.org/10.1016/j.jcp.2017.10.021
http://refhub.elsevier.com/S1570-8659(19)30012-2/rf0200
http://refhub.elsevier.com/S1570-8659(19)30012-2/rf0200
http://refhub.elsevier.com/S1570-8659(19)30012-2/rf0200
http://refhub.elsevier.com/S1570-8659(19)30012-2/rf0205
http://refhub.elsevier.com/S1570-8659(19)30012-2/rf0205
http://refhub.elsevier.com/S1570-8659(19)30012-2/rf0210
http://refhub.elsevier.com/S1570-8659(19)30012-2/rf0210
http://refhub.elsevier.com/S1570-8659(19)30012-2/rf0210
http://refhub.elsevier.com/S1570-8659(19)30012-2/rf0215
http://refhub.elsevier.com/S1570-8659(19)30012-2/rf0215
http://refhub.elsevier.com/S1570-8659(19)30012-2/rf0215
http://refhub.elsevier.com/S1570-8659(19)30012-2/rf0220
http://refhub.elsevier.com/S1570-8659(19)30012-2/rf0220
http://refhub.elsevier.com/S1570-8659(19)30012-2/rf0220
http://refhub.elsevier.com/S1570-8659(19)30012-2/rf0225
http://refhub.elsevier.com/S1570-8659(19)30012-2/rf0225


Yue, P., Feng, J.J., Liu, C., Shen, J., 2004. A diffuse-interface method for simulating two-phase

flows of complex fluids. J. Fluid Mech. 515, 293–317.

Yue, P., Feng, J.J., Liu, C., Shen, J., 2004. A diffuse-interface method for simulating two-phase

flows of complex fluids. J. Fluid Mech. 515, 293–317.

Zhao, J., Wang, Q., Yang, X., 2017. Numerical approximations for a phase field dendritic crystal

growth model based on the invariant energy quadratization approach. Int. J. Numer. Methods

Eng. 110 (3), 279–300.

Zhu, G., Kou, J., Sun, S., Yao, J., Li, A., 2018. Decoupled, energy stable schemes for a phase-field

surfactant model. Comput. Phys. Commun. 233, 67–77.

Zhuang, Q., Shen, J., 2019. Efficient SAV approach for imaginary time gradient flows with appli-

cations to one- and multi-component Bose-Einstein Condensates. J. Comput. Phys. (submitted

for publication).

Efficient and accurate structure preserving schemes Chapter 17 669

http://refhub.elsevier.com/S1570-8659(19)30012-2/rf0230
http://refhub.elsevier.com/S1570-8659(19)30012-2/rf0230
http://refhub.elsevier.com/S1570-8659(19)30012-2/rf0235
http://refhub.elsevier.com/S1570-8659(19)30012-2/rf0235
http://refhub.elsevier.com/S1570-8659(19)30012-2/rf0240
http://refhub.elsevier.com/S1570-8659(19)30012-2/rf0240
http://refhub.elsevier.com/S1570-8659(19)30012-2/rf0240
http://refhub.elsevier.com/S1570-8659(19)30012-2/rf0250
http://refhub.elsevier.com/S1570-8659(19)30012-2/rf0250
http://refhub.elsevier.com/S1570-8659(19)30012-2/rf9000
http://refhub.elsevier.com/S1570-8659(19)30012-2/rf9000
http://refhub.elsevier.com/S1570-8659(19)30012-2/rf9000

	Efficient and accurate structure preserving schemes for complex nonlinear systems
	Introduction
	The SAV approach
	Suitable energy splitting
	Adaptive time stepping

	Several extensions of the SAV approach
	Problems with global constraints
	L1 minimization via hyper regularization
	Free energies with highly nonlinear terms
	Coupling with other physical conservation laws
	Dissipative/conservative systems which are not driven by free energy

	Conclusion
	Acknowledgements
	References




