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Abstract. We consider in this paper numerical approximation of the linear fluid-structure
interaction (FSI). We construct a new class of pressure-correction schemes for the linear
FSI problem with a fixed interface, and prove rigorously that they are unconditionally
stable. These schemes are computationally very efficient, as they lead to, at each time
step, a coupled linear elliptic system for the velocity and displacement in the whole
region and a discrete Poisson equation in the fluid region.
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1. Introduction

Fluid-Structure Interaction (FSI) plays an important role in many scientific/engineering
applications, e.g., design of engineering systems, blood flow in human arteries, etc. It
has been extensively studied in recent years both analytically and computationally (cf.
[5,7,9,14] and the references therein).

The fluid velocity, pressure and structure displacement in the FSI problems are cou-
pled together, making it difficult to solve numerically. For fluid problems, an effective
approach to decouple the computation of the pressure from that of the velocity is to use
a so-called projection type method, originally proposed by Chorin and Temam in the late
60’s. A comprehensive review on various projection type methods can be found in [12].
However, a main difficulty in the design of a projection method is what boundary con-
dition to use for the pressure at the interface. It is well known that a proper boundary
condition, at the Dirichlet part of the boundary, for the pressure Poisson equation in a
projection type method is the homogeneous Neumann boundary condition. Indeed, most
existing projection type schemes (cf., for instance, [1,3,10]) for FSI problem also use, ex-
plicitly or implicitly, Neumann type boundary condition for the pressure Poisson equation
at the Dirichlet part of the boundary as well as at the interface. However, imposing a Neu-
mann type boundary condition for the pressure at the interface appears to affect, in certain
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degree, the stability of the scheme, and we are not aware of any proof of unconditional
stability for this type of projection scheme for the FSI problem, although a conditional
stability has been proven in [10].

In [11], the authors proposed and analyzed pressure-correction projection schemes for
Navier-Stokes equations with open boundary where the usual stress-free boundary condi-
tion is applied. It is shown that the proper boundary condition at the open boundary is of
Dirichlet type instead of Neumann type. Two schemes are constructed in [11]. One is based
on the standard pressure-correction which leads to poor accuracy at the open boundary, the
other is based on the rotational pressure-correction and with a proper Dirichlet boundary
condition at the open boundary. It is shown in [11] that both the standard and rotational
pressure-correction projection schemes, when applied to the time-dependent Stokes prob-
lem, are unconditionally stable, but the rotational version leads to much better accuracy.
Since one of matching interface condition for the FSI problem is related to the stress, it
is sensible to extend the approach in [11] for problems with open boundary to the FSI
problem.

In this paper, we shall construct a different class of projection semi-implicit schemes
which decouple the computation of pressure from that of the velocity and structure dis-
placement. Our schemes will be computationally very efficient. More precisely, in the first
step of our schemes, we solve a coupled, but elliptic, system for an intermediate fluid ve-
locity and the structure displacement, then in the second step, we solve a Poisson equation
for the fluid pressure and obtain the fluid velocity with a simple correction. Furthermore,
we shall also prove rigorously that these schemes are unconditionally stable.

To fix the idea, we consider in this paper a simple model of the FSI problem where
the movement of the interface is assumed infinitesimal so the interface is treated as fixed.
This linear FSI problem captures many of the essential difficulties of the more general FSI
problems with moving interface.

The rest of the paper is organized as follows. In the next section, we describe the
governing equations for our FSI model, formulate its weak form and the energy dissipation
law. In Section 3, we construct standard and rotational pressure-correction scheme for the
FSI problem, and prove their unconditional stability. Then, in Section 4, we describe a
Fourier-Legendre method for a special case when the domain is a periodic channel. We
present some numerical results in Section 5 to validate our numerical schemes and to
demonstrate their temporal accuracy. Some concluding remarks are given in Section 6.

2. Governing Equations

We consider the following model for interaction of a viscous fluid with an elastic body
in a two- or three-dimensional bounded domain Ω, with the fluid region Ω f , the solid
region Ωs and the interface Γc , so we have Ω = Ω f ∪Ωs ∪Γc . We also denote Γ f = ∂Ω f \Γc
and Γs = ∂Ωs\Γc (cf. Fig. 1).

We assume that the interface undergoes infinitesimal displacements, i.e., Γc is assumed
to be fixed. The more complicated situation with moving interface will be considered in a
forthcoming paper.
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Figure 1: Geometry discription for fluid-structure problem

In the fluid region Ω f , we have the Stokes equations:

ρ f ut − div ε(u) +∇p = ρ f f1, in Ω f × (0, T ), (2.1a)

div u= 0, in Ω f × (0, T ), (2.1b)

u= 0, on Γ f × (0, T ), (2.1c)

u|t=0 = u0, in Ω f (2.1d)

where u denotes the fluid velocity, p the fluid pressure, u0 the given initial velocity, f1
the given body force per unit mass, ε(u) = µ

2
(∇u+∇uT ) the strain tensor, ρ f and µ the

constant fluid density and viscosity.
In the solid region Ωs, we have the wave equation for linear elasticity:

ρswt t − div σ(w) = ρs f2, in Ωs × (0, T ), (2.2a)

w = 0, on Γs × (0, T ), (2.2b)

w(·, 0) = w0, in Ωs, (2.2c)

wt(·, 0) = w1, in Ωs (2.2d)

where w denotes the displacement of the solid, w0 and w1 the given initial data, and σ(w)
the elastic stress tensor, given by

σi j(w) = λ
3
∑

k=1

εkk(w) + 2µ2εi j(w),

f2 the given loading force per unit mass, λ and µ2 the Lamé constants, and ρs the constant
solid density.

Across the fixed interface Γc between the fluid and solid, the velocity and the stress
vector are required to be continuous, i.e.,

wt = u, on Γc × (0, T ) (2.3)

and
σ(w) · n= ε(u) · n− pn, on Γc × (0, T ) (2.4)
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where n denotes the outward normal vector along Γc w.r.t. Ωs.
For simplicity, we take in this paper ρ f = ρs = 1, f1 = f2 = 0. We further take λ = 1

and µ2 = 0 which imply div σ(w) = ∆w, and the interface condition (2.4) is reduced to

∂ w

∂ n
= µ

∂ u

∂ n
− pn, on Γc × (0, T ). (2.5)

In order to derive a weak formulation for (2.1)- (2.2), we need to introduce some
notations. Let us denote by Hk(Ω) and Hk

0(Ω) (for k ≥ 0) the standard Sobolev spaces,
equipped with the standard norm ‖ ·‖k,Ω. In particular, we denote L2(Ω) = H0(Ω) with the
associated norm ‖ · ‖. We will use Hk(Ω f ) to denote the vector-valued Sobolev spaces. We
also denote

H1
0,Γ f
(Ω f ) = {v ∈ H1(Ω f ) : v|Γ f

= 0}, H1
0,Γs
(Ωs) = {v ∈ H1(Ωs) : v|Γs

= 0}.

Then, a weak solution (u, p, w) for (2.1)-(2.2) will satisfy

(ut ,ϕ)Ω f
+ (µ∇u,∇ϕ)Ω f

− (p, divϕ)Ω f
+ (µ

∂ u

∂ n
− pn,ϕ)Γc

= 0, ∀ϕ ∈ H1
0,Γ f
(Ω f ),

(2.6a)

(divu, q)Ω f
= 0, ∀q ∈ L2(Ω f ), (2.6b)

(wt t ,ψ)Ωs
+ (∇w,∇ψ)Ωs

− (
∂ w

∂ n
,ψ)Γc

= 0, ∀ψ ∈ H1
0,Γs
(Ωs) (2.6c)

with the interface conditions (2.3) and (2.5) on Γc .
We can reformulate the above, using (2.5), to:

(ut + (u · ∇)u,ϕ)Ω f
+ (µ∇u,∇ϕ)Ω f

− (p, divϕ)Ω f
+ (
∂ w

∂ n
,ϕ)Γc

= 0, ∀ϕ ∈ H1
0,Γ f
(Ω f ),

(2.7a)

(divu, q)Ω f
= 0, ∀q ∈ L2(Ω f ),

(2.7b)

(wt t ,ψ)Ωs
+ (∇w,∇ψ)Ωs

− (
∂ w

∂ n
,ψ)Γc

= 0, ∀ψ ∈ H1
0,Γs
(Ωs)

(2.7c)

with u= wt on the interface Γc .
Setting ϕ = u,ψ = wt in (2.7a) and (2.7c), and summing up the two resultant equa-

tions, we obtain

1

2
∂t‖u‖2Ω f

+µ‖∇u‖2Ω f
+

1

2
∂t‖wt‖2Ω f

+
1

2
∂t‖∇w‖2Ωs

= 0,

or equivalently

∂t

n

‖u‖2Ω f
+ ‖wt‖2Ω f

+ ‖∇w‖2Ωs

o

=−2µ‖∇u‖2Ω f
≤ 0, (2.8)
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where

E(u, w, wt) := ‖u‖2Ω f
+ ‖wt‖2Ω f

+ ‖∇w‖2Ωs
(2.9)

is the total energy of the FSI system.
Thus, the well posedness of the system (2.7) can be easily established by using a stan-

dard procedure. In fact, the well posedness of a related nonlinear system, with the Stokes
equations (2.1) replaced by the Navier-Stokes equations, is studied in [17].

In [6], the authors studied a semi-discrete (in space) finite-element method for the
linear FSI problem with a fixed interface. On the other hand, we shall be mainly concerned
with semi-discrete (in time) projection type schemes.

3. Time Discretization

For FSI problems, it is very important to design numerical schemes which have good
stability property. Usually, this is achieved by fully coupled, implicit schemes which require
solving, at each time step, a coupled saddle-point system.

We construct in this section time discretization schemes based on standard and rota-
tional pressure-correction approach for (2.7). These schemes are unconditionally stable,
and lead to, at each time step, a coupled, linear elliptic system in Ω and a pressure Pois-
son equation in Ω f , which can be efficiently solved by standard numerical methods. The
stability analysis for each scheme is carried out in this section.

3.1. Standard Pressure-Correction Scheme

We first construct a first-order scheme for the FSI problem based on the standard
pressure-correction scheme for Navies-Stokes problem with open boundary condition [11]:

Step 1 : Given (un, pn, wn), compute ũn+1 ∈ H1
0,Γ f
(Ω f ) and wn+1 ∈ H1

0,Γs
(Ωs) by solving

(
ũn+1− un

4t
,ϕ)Ω f

+ (µ∇ũn+1,∇ϕ)Ω f
− (pn, divϕ)Ω f

+ (
∂ wn+1

∂ n
,ϕ)Γc

= 0, (3.1a)

ũn+1 =
wn+1−wn

4t
, on Γc , (3.1b)

(
wn+1− 2wn+wn−1

4t2 ,ψ)Ωs
+ (∇wn+1,∇ψ)Ωs

− (
∂ wn+1

∂ n
,ψ)Γc

= 0, (3.1c)

for all ϕ ∈ H1
0,Γ f
(Ω f ) and ψ ∈ H1

0,Γs
(Ωs).

This is a coupled, linear elliptic system for (ũn+1, wn+1), with the coupling condition
at the interface Γc . Hence, it can be efficiently solved, for example, by a standard domain
decomposition approach (cf., for instance, [20,22]).
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Step 2 : Compute un+1 ∈ H1(Ω f ) and pn+1 ∈ H1(Ω f ) by solving

un+1− ũn+1

4t
+∇(pn+1− pn) = 0, (3.2a)

div un+1 = 0, in Ω f , (3.2b)

un+1 · n|Γ f
= 0 and pn+1|Γc

= pn|Γc
. (3.2c)

We observe that a Dirichlet boundary condition is imposed for pn+1 on the interface Γc , as
opposed to the usual Neumann boundary condition in a pressure-correction formulation.
This is due to the interface condition (2.5) which is similar to the open boundary condition
considered in [11].

We denote H1
0,Γc
(Ω f ) = {q ∈ H1(Ω f ) : q|Γc

= 0}. Then, the above system is equivalent

to: Find (pn+1− pn) ∈ H1
0,Γc
(Ω f ) such that

(∇(pn+1− pn),∇q) = −
1

4t
(∇ · ũn+1, q), ∀q ∈ H1

0,Γc
(Ω f ), (3.3a)

un+1 = ũn+1−4t∇(pn+1− pn). (3.3b)

Hence, we only have to solve a Poisson equation at this step.
For the above scheme, we have the following result:

Theorem 3.1. The scheme (3.1)-(3.3), with p0|Γc
= 0, is unconditionally stable. More pre-

cisely, if we define the discrete energy

En = ‖un‖+ ‖δt w
n‖2+ ‖∇wn‖2+ (4t)2‖∇pn‖2,

then we have, for all n≥ 0,

En+1− En+ ‖ũn+1− un‖2+ 2µ4t‖∇ũn+1‖2+4t2‖δ2
t t w

n+1‖2+4t2‖∇(δt w
n+1)‖2 ≤ 0.

Proof. To simplify the notations, we define, for any sequence {uk}, the discrete time

derivatives δtu
n+1 := un+1−un

4t
and δ2

t tu
n+1 := δt u

n+1−δt u
n

4t
= un+1−2un+un−1

4t2 .

Taking ϕ = 2ũn+1 in (3.1a), ψ = 2δt w
n+1 in (3.1c), and taking the inner product of

(3.2a) with q = 24t∇pn, then summing up the three relations, we obtain:

1
4t
{‖ũn+1‖2−‖un‖2+ ‖ũn+1− un‖2}+ 2‖∇ũn+1‖2− 2(pn, div ũn+1)Ω f

+ 1
4t
{‖δt w

n+1‖2−‖δt w
n‖2+ ‖δt w

n+1−δt w
n‖2}

+ 1
4t
{‖∇wn+1‖2−‖∇wn‖2+4t2‖∇δt w

n+1‖2}= 0.
(3.4)

Rewrite (3.2a) as

un+1

p

4t
+
p

4t∇pn+1 =
ũn+1

p

4t
+
p

4t∇pn. (3.5)
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Taking inner product with itself from both sides and integrating by parts, thanks to pk|Γc
=

0 for all k (due to p0|Γc
= 0), and ũn+1 · n|Γ f

= 0= un+1 · n|Γ f
, we obtain

1

4t
‖un+1‖2+4t‖∇pn+1‖2 =

‖ũn+1‖2

4t
+4t‖∇pn‖2− 2(pn, divũn+1)Ω f

. (3.6)

Summing up (3.4) and (3.6), we obtain

1
4t
{‖un+1‖2−‖un‖2+ ‖ũn+1− un‖2}+ 2‖∇ũn+1‖2

+ 1
4t
{‖δt w

n+1‖2−‖δt w
n‖2+ ‖δt w

n+1−δt w
n‖2}

+ 1
4t
{‖∇wn+1‖2−‖∇wn‖2+4t2‖∇δt w

n+1‖2}+4t{‖∇pn+1‖2−‖∇pn‖2}= 0,

which implies the desired result. �

Due to the artificial Dirichlet boundary condition for the pressure, pn+1|Γc
= pn|Γc

=
· · · = 0, the pressure approximation has a poor accuracy which can not be improved by
using a higher-order discretization. In fact, it is shown in [11] that the L2-error of the
pressure approximation converges at the rate of 1

2
. Hence, in order to construct an im-

proved scheme, one needs to resort to the rotational pressure-correction (cf. [11]).

3.2. Rotational Pressure-Correction Scheme

The main difference between the standard and rotational pressure-correction schemes
is in the computation of the pressure update. The first step is still the same:

Step 1: Given (un, vn, wn, pn), compute ũn+1 ∈ H1
0,Γ f
(Ω f ) and wn+1 ∈ H1

0,Γs
(Ωs) by

solving

( ũn+1−un

4t
,ϕ)Ω f

+ (µ∇ũn+1,∇ϕ)Ω f
− (pn, divϕ)Ω f

+ ( ∂ wn+1

∂ n
,ϕ)Γc

= 0, (3.7a)

ũn+1 = wn+1−wn

4t
, on Γc , (3.7b)

(wn+1−2wn+wn−1

4t2 ,ψ)Ωs
+ (∇wn+1,∇ψ)Ωs

− ( ∂ wn+1

∂ n
,ψ)Γc

= 0 (3.7c)

for all ϕ ∈ H1
0,Γ f
(Ω f ) and ψ ∈ H1

0,Γs
(Ωs).

In the second step, we modify (3.3) as follows:
Step 2: Compute un+1 ∈ H1(Ω f ) and pn+1 ∈ H1(Ω f ) by solving

(un+1−ũn+1)
4t

+∇(pn+1− pn+λµdivũn+1) = 0, in Ω f , (3.8a)

div un+1 = 0, in Ω f , (3.8b)

un+1 · n|Γ f
= 0 and pn+1|Γc

= (pn−λµdivũn+1)|Γc
(3.8c)

where λ ∈ (0, 2
d
) (with d being the space dimension) is a preselected parameter. We note

that when λ= 0, the scheme is reduced to the standard pressure-correction scheme.
We observe that, thanks to the additional term λµdivũn+1 in (3.8a), we have an im-

proved pressure B.C. pn+1|Γc
= (pn − λµdivũn+1)|Γc

. On the other hand, the numerical
procedure for the two schemes are essentially identical.
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Theorem 3.2. The scheme (3.7)-(3.8), with p0|Γc
= 0, is unconditionally stable. More pre-

cisely, if we define the discrete energy as

En+1 =‖δtu
n+1‖2+

1

4t2 ‖δt(w
n+1−wn)‖2+ ‖∇δt w

n+1‖2+ ‖∇qn+1‖2+
λµ

4t
‖divũn+1‖2,

then we have

En+1− En+ ‖δt(ũ
n+1− un)‖2+ ‖δt(w

n+1− 2wn+wn−1)‖2

+4t2‖∇δt(w
n+1−wn)‖2+ (2− dλ)4tµ‖∇ũn+1‖2 ≤ 0.

Proof. Taking the δt operator on system (3.7), we have

(δt ũ
n+1−δt u

n

4t
,ϕ)Ω f

+ (µ∇δt ũ
n+1,∇ϕ)Ω f

− (δt p
n, divϕ)Ω f

+ ( ∂ δt w
n+1

∂ n
,ϕ)Γc

= 0,

(3.9a)

δt ũ
n+1 =

δt w
n+1−δt w

n

4t
, on Γc , (3.9b)

(
δt w

n+1− 2δt w
n+δt w

n−1

4t2 ,ψ)Ωs
+ (∇δt w

n+1,∇ψ)Ωs
− (
∂ δt w

n+1

∂ n
,ψ)Γc

= 0. (3.9c)

Setting ϕ = 24tδt ũ
n+1 in (3.9a) and ψ = 2(δt w

n+1 − δt w
n) in (3.9c) , and summing up

the two resulting equalities, we have

0=‖δt ũ
n+1‖2−‖δtu

n‖2+ ‖δt(ũ
n+1− un)‖2+ 2µ4t‖∇δt ũ

n+1‖2

+
1

4t2

¦

‖δt(w
n+1−wn)‖2−‖δt(w

n−wn−1)‖2+ ‖δt(w
n+1− 2wn+wn−1)‖2

©

+ ‖∇δt w
n+1‖2−‖∇δt w

n‖2+ ‖∇δt(w
n+1−wn)‖2− 24t(δt p

n, divδt ũ
n+1)Ω f

.

(3.10)

Next we shall use equation (3.8) to deal with the term 24t(δt p
n, divδt ũ

n+1)Ω f
.

Taking δt operator on system (3.8), we have

δt u
n+1−δt ũ

n+1

4t
+∇δtq

n+1 = 0, in Ω f , (3.11a)

div δtu
n+1 = 0, in Ω f , (3.11b)

δun+1 · n|Γ f
= 0 and qn+1|Γc

= 0, (3.11c)

where qn = pn+1− pn+λµdivũn+1.
Rewrite (3.11a) as

δtu
n+1+∇qn+1 = δt ũ

n+1+∇qn, in Ω f .

Taking the inner product with itself from both sides and integrating by parts, thanks to
qk|Γc

= 0 for all k (due to q0|Γc
= 0), and δt ũ

n+1 · n|Γ f
= 0= δtu

n+1 · n|Γ f
, we obtain

‖δtu
n+1‖2+ ‖∇qn+1‖2 = ‖δt ũ

n+1‖2+ ‖∇qn‖2− 2( div δt ũ
n+1, qn)Ω f

. (3.12)



Unconditionally Stable Pressure-Correction Schemes 9

Since qn =4tδt p
n+λµdivũn, we have

− 2( div δt ũ
n+1, qn)Ω f

=− 2( div δt ũ
n+1,4tδt p

n+λµdivũn)Ω f

=− 24t( div δt ũ
n+1,δt p

n)Ω f
+
λµ

4t
( div (ũn− ũn+1), 2divũn)Ω f

=− 24t( div δt ũ
n+1,δt p

n)Ω f
+
λµ

4t
(‖ div ũn‖2−‖ div ũn+1‖2) +λµ4t‖ div δt ũ

n+1‖2.

(3.13)

Now using the well-known inequality ‖div ũn+1‖2 ≤ d‖∇ũn+1‖2 (with d = 2 or 3 being the
space dimension), and summing up (3.10) (3.12) and (3.13), we obtain

En+1− En+
�

‖δt(ũ
n+1− un)‖2+

1

4t2 ‖δt(w
n+1− 2wn+wn−1)‖2+ ‖∇δt(w

n+1−wn)‖2
�

≤−
¦

2µ4t‖∇δt ũ
n+1‖2−λµ4t‖ div δt ũ

n+1‖2
©

≤− (2−λd)µ4t‖∇δt ũ
n+1‖2

which implies the desired result. �

3.3. Extension to a nonlinear FSI problem

The above schemes can be easily extended to deal with the following nonlinear FSI
problem [17]:

ut −µ∆u+ (u · ∇)u+∇p = 0, in Ω f × (0, T ), (3.14a)

div u= 0, in Ω f × (0, T ), (3.14b)

wt t −∆w = 0, in Ωs × (0, T ) (3.14c)

with the boundary condition:

u= 0, on Γ f × (0, T ), (3.15a)

w = 0, on Γs × (0, T ), (3.15b)

u= wt , on Γc × (0, T ), (3.15c)

∂ w

∂ n
= µ

∂ u

∂ n
− pn−

1

2
(u · n)u, on Γc × (0, T ). (3.15d)

For example, a rotational pressure-correction scheme for the above system is:
Step 1: Given (un, vn, wn, pn), compute ũn+1 ∈ H1

0,Γ f
(Ω f ) and wn+1 ∈ H1

0,Γs
(Ωs) by
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solving

( ũn+1−un

4t
,ϕ)Ω f

+ (µ∇ũn+1,∇ϕ)Ω f
+ ((un · ∇)ũn+1,ϕ)Ω f

−(pn, divϕ)Ω f
+ ( ∂ wn+1

∂ n
+ 1

2
(un · n)ũn+1,ϕ)Γc

= 0, ∀ϕ ∈ H1
0,Γ f
(Ω f ),

(3.16a)

ũn+1 =
wn+1−wn

4t
, on Γc , (3.16b)

(
wn+1− 2wn+wn−1

4t2 ,ψ)Ωs
+ (∇wn+1,∇ψ)Ωs

− (
∂ wn+1

∂ n
,ψ)Γc

= 0, ∀ψ ∈ H1
0,Γs
(Ωs).

(3.16c)

Step 2: Compute un+1 ∈ H1(Ω f ) and pn+1 ∈ H1(Ω f ) by solving

(un+1−ũn+1)
4t

+∇(pn+1− pn+λµdivũn+1) = 0, in Ω f ,

div un+1 = 0, in Ω f ,
un+1 · n|Γ f

= 0 and pn+1|Γc
= (pn−λµdivũn+1)|Γc

(3.17a)

where λ ∈ (0, 2
d
) (with d being the space dimension) is a preselected parameter. We note

that (3.16a) implies the following weakly satisfied boundary condition

∂ wn+1

∂ n
|Γc
= (µ

∂ ũn+1

∂ n
− pnn−

1

2
(un · n)ũn+1)|Γc

which is a consistent approximation to (3.15d).
The above scheme is numerically as efficient as its counterpart for the linear FSI prob-

lem. However, the stability proof of Theorem 3.2 can not be easily extended to the non-
linear case, since an essential step in the proof is to take the discrete time derivative which
leads to complicated nonlinear terms that can not be easily controlled.

4. A Fourier-Galerkin Spatial Discretization for the case of periodic channel

As an example, we consider a two-dimensional periodic channel with Ω f = (0,2π)×
(0,1), Ωs = (0,2π)× (−1, 0), so Ω = (0,2π)× (−1,1), Γ f = {(x , y)| x ∈ (0,2π), y = 1},
Γc = {(x , y)| x ∈ (0, 2π), y = 0} and Γs = {(x , y)| x ∈ (0,2π), y = −1}. We denote
I+ , I− , I by I+ = [0,1], I− = [−1, 0] and I = [−1,1]. We assume that all functions are
periodic in the x-direction.

Let h= (M , N) where M is the number of equally spaced points in the x-direction, and
N + 1 is the number of Legendre-Gauss-Lobatto points in the y direction of Ω f and Ωs.
For simplicity, we have assumed to use the same number of points in the y direction of Ω f
and Ωs, while in practice, different number of points can be used. Let PN be the set of all
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polynomials of degree less than or equal to N . We set

Xh = {vh =
M/2
∑

k=−M/2

vk(y)e
ikx with vk(·) ∈ PN , vk(1) = 0}, Xh = Xh× Xh,

Wh = {wh =
M/2
∑

k=−M/2

wk(y)e
ikx with wk(·) ∈ PN , wk(−1) = 0}, Wh =Wh×Wh,

Mh = {qh =
M/2
∑

k=−M/2

qk(y)e
ikx with qk(·) ∈ PN−1},

M0
h = {qh ∈ Mh : qh|y=0 = 0}, Yh = Xh+∇M0

h ,

X 0
N = {v ∈ H1(I) : v|I+ , v|I− ∈ PN , v(−1) = v(1) = 0}, X0

N = X 0
N × X 0

N .

(4.1)

Then, the Fourier-Legendre-Galerkin approximation of the scheme (3.7)-(3.8) is as follows:
Step 1. Let w̃n+1

h = δt w
n+1
h , we look for (un+1

h , w̃n+1
h ) ∈ Xh×Wh such that

α(ũn+1
h ,ϕh)Ω f

+ (∇ũn+1
h ,∇ϕh)Ω f

+ β(
∂ w̃n+1

h

∂ n
,ϕh)Γc

=< f n
h ,ϕh >Ω f

, ∀ϕh ∈ Xh, (4.2a)

ũn+1
h = w̃n+1

h , on Γc , (4.2b)

α(w̃n+1
h ,ψh)Ωs + β(∇w̃n+1

h ,∇ψh)Ωs
− β(

∂ w̃n+1
h

∂ n
,ψh)Γc

=< gh,ψh >Ωs
, ∀ψh ∈Wh,

(4.2c)

where α= 1
4t

,β =4t, and

< f n
h ,ϕh >Ω f

:= α(un
h,ϕh)Ω f

+ (pn
h , divϕh)Ω f

− (
∂ wn

h

∂ n
,ϕh)Γc

, (4.3)

and

< gn
h ,ψh >Ωs

:= α(w̃n
h ,ψn

h)Ωs
− (∇wn

h ,∇ψh)Ωs
+ (
∂ wn

h

∂ n
,ψh)Γc

. (4.4)

Step 2. Find φn+1
h ∈ M0

h such that

(∇φn+1
h ,∇qh)Ω f

=
1

4t
(ũn+1

h ,∇qh)Ω f
, ∀qh ∈ M0

h , (4.5)

and compute un+1
h ∈ Yh and pn+1

h ∈ Mh by

un+1
h = ũn+1

h −4t∇φn+1
h ,

pn+1
h = pn

h +φ
n+1
h −λµQhdivũn+1

h ,
(4.6)

where Qh is a L2-projection operator onto Mh.



12 Ying He and Jie Shen

Define

ûn+1
h (x) =

¨

ũn+1
h (x), if x ∈ Ω f ,

w̃n+1
h (x), if x ∈ Ωs;

β̂(x) :=

¨

1, if x ∈ Ω f ,
β , if x ∈ Ωs;

and
Xh = {ûh ∈ H1(Ω) : ûh|Ω f

∈ Xh, ûh|Ωs
∈Wh}.

Then, we can rewrite (4.2) as: Find ûn+1
h ∈ Xh such that

α(ûn+1
h ,φh) + (β̂∇ûn+1

h ,∇φh) =< f n
h ,φh >Ω f

+< gn
h ,φh >Ωs

, ∀φh ∈ Xh. (4.7)

Thus, the equation (4.7) can be viewed as a domain-decomposition (with two-domains)
approximation to a linear elliptic problem with discontinuous coefficient β̂ .

Expand all the functions in discrete Fourier series, e.g.,

�

ûn+1
h , f n

h , gn
h

�

=
M/2
∑

m=−M/2

�

un+1
m (y), f n

m(y), gn
m(y)

�

eimx . (4.8)

Then the system (4.7) is reduced to: For m = −M/2, · · · , 0, 1, · · · , M/2, find un+1
m ∈ X0

N
such that

(αmun+1
m ,φ)I+ (β̂

dun+1
m

d y
,

dφ

d y
)I = ( f

n
m,φ)I+ + (g

n
m,φ)I− , ∀φ ∈ X0

N , (4.9)

where

αm =

¨

α+m2, if y ∈ I+,
α+ βm2, if y ∈ I−.

Next we construct a set of basis functions for X 0
N .

We define, for i = 0, 1, ..., N − 2,

ϕ̂i(y) =

¨

Lk(2y − 1)− Lk+2(2y − 1), if y ∈ I+,
0, if y ∈ I−;

ϕ̂N−1+i(y) =

¨

0, if y ∈ I+,
Lk(1+ 2y)− Lk+2(1+ 2y), if y ∈ I−;

and the basis function at the interface is

ϕ̂2N−2 =

¨

1− y, if y ∈ I+,
1+ y, if y ∈ I−.

Then
X 0

N = span
�

ϕ̂0, ϕ̂1, · · · , ϕ̂2N−2
	

. (4.10)
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Then, writing

un+1
m (y) =

2N−2
∑

k=0

ûn+1
m,k ϕ̂k(y), f̂ n

m,k = ( f
n

m, ϕ̂k)I+ + (g
n
m, ϕ̂k)I− ,

and taking ϕ = ϕ̂k in (4.9), we can derive the following linear system:





α







M11 0 m13
0 M22 m23
mT

31 mT
32 m33






+







S11 0 s13
0 S22 s23
sT
31 sT

32 s33



















ū1
ū2
ū3






=







f̄1
f̄2
f̄3






, (4.11)

where ū1 = (û
n+1
m,0 , ûn+1

m,1 , · · · , ûn+1
m,N−2)

T , ū2 = (û
n+1
m,N−1, ûn+1

m,N , · · · , ûn+1
m,2N−3)

T and ū3 = un+1
m,2N−2,

similarly for f̄1, f̄2 and f̄3; Mi j and Si j are block mass and stiffness matrices. We recall that
Mii (i = 1, 2) are penta-diagonal and Sii (i = 1, 2) are diagonal (cf. [13,21]). So the linear
system can be easily solved by the Schur-complement approach. More precisely, solve first
ū3 using a block Gaussian elimination, and then solve ū1 and ū2 separately.

It is clear that (4.5) will be reduced to a sequence of one-dimensional problems in I+

which can be easily solved by a Legendre-spectral method [21].

5. Numerical Results

To examine the correctness and accuracy of the proposed numerical schemes, we con-
sider the following non-homogeneous problem

ut −∆u+∇p = f , in Ω f × (0, T ), (5.1a)

divu= 0, in Ω f × (0, T ), (5.1b)

wt t −∆w = g, in Ωs × (0, T ) (5.1c)

with the boundary condition:

u= 0, on Γ f × (0, T ), (5.2a)

w = 0, on Γs × (0, T ), (5.2b)

u= wt , on Γc × (0, T ), (5.2c)

∂ w

∂ n
=
∂ u

∂ n
− pn+ h, on Γc × (0, T ) (5.2d)

where Ω f = (0, 2π)× (0, 1), Ωs = (0, 2π)× (−1,0) with periodic boundary conditions in
the x-direction.

We set the exact solution to be

u= (− sin(πt) cos(x) sin(y − 1), sin(πt) sin(x)(cos(y − 1)− 1)),

p = sin(πt) cos(x) cos(y),

w = (− cos(πt) cos(x) sin(y − 1),− cos(πt) sin(x)(cos(y + 1)− 1)).
(5.3)
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Figure 2: L2-errors of first order standard and rotational schemes.

The functions f , g, h can then be computed accordingly.

We employ the Fourier-Legendre method presented in the last section, and choose
(M , N) large enough so that the errors are dominated by that from the time discretization.
In the following examples, we choose λ = 1

4
, which is a preselected parameter introduced

in (3.8a).

In Figure 2, we plot evolutions of the L2-errors for the pressure, velocity and displace-
ment with the first-order standard and rotational pressure-correction schemes. We observe
that the rotational scheme provides much better pressure approximation than the standard
scheme.

In Figure 3 and 4, we examine the convergence rates for the first-order standard and
rotational schemes. We consider ending time T = 2 and vary the step size4t. In Figure 3,
we observe that the (maximum in time) L2 errors for the fluid velocity and the structure
displacement in the standard scheme all converge at a rate close to 1, but the pressure
error converges at a rate close to 1

2
. In Figure 4, the convergence rate of the fluid pressure

has been improved from order 1
2

to almost order 1 in the rotational scheme, and the fluid
velocity and the structure displacement still converge at a rate close to 1. These results are
consistent with the error estimates for the velocity and pressure given in [11] for Stokes
equations with open boundary.

Next, we examine the energy stability of our schemes by solving the homogeneous
(with f , g and h being zero) FSI problem with the same initial conditions as in the last
example. We compute the discrete energy defined in (3.1) and (3.2), and plot in Figure
5 the discrete energy for standard and rotational schemes with time step 4t = 0.01. We
observe that the discrete energy indeed decays monotonically for both schemes.
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Figure 3: (maximum in time) L2-errors of first-order standard scheme.

6. Conclusion

We constructed in this paper standard and rotational pressure correction schemes for
the linear FSI problem with a fixed interface, and proved rigorously that they are uncondi-
tionally energy stable. These schemes are new and fundamental different from the existing
schemes. Besides their unconditional stability, they are also computationally very efficient:
at each time step, they lead to (i) a coupled linear elliptic system for the velocity and
displacement, with the coupling conditions at the interface between the fluid and solid
regions, which can be efficiently solved by using a standard domain decomposition (with
two domains) approach; and (ii) a discrete Poisson equation in the fluid region.

We validated these schemes by using a Fourier-Legendre spatial discretization for the
FSI problem in a periodic channel. In particular, our numerical results indicate that the
convergence rates of the first-order rotational scheme for the velocity, pressure and dis-
placement in L2-norm are close to order one.

Although we only considered the linear FSI problem with fixed interface, we believe
that the essential approaches used here in constructing our numerical schemes can be
extended to nonlinear FSI problems and/or with moving interface.
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190:3247âĂŞ3270, 2001.

[9] M. A. Fernández. Coupling schemes for incompressible fluid-structure interaction: implicit,
semi-implicit and explicit. S~eMA J., (55):59–108, 2011.

[10] M. A. Fernández, J.-F. Gerbeau, and C. Grandmont. A projection semi-implicit scheme for



Unconditionally Stable Pressure-Correction Schemes 17

0 0.5 1 1.5 2 2.5 3 3.5 4
10

−2

10
−1

10
0

10
1

Time t (dt=0.01)

D
is

c
re

te
 E

n
e

rg
y

 

 

Energy Standard

Energy Rotational

Figure 5: Plots of discrete energy for standard and rotational schemes with time step 0.01.

the coupling of an elastic structure with an incompressible fluid. Internat. J. Numer. Methods
Engrg., 69(4):794–821, 2007.

[11] J. L. Guermond, P. Minev, and J. Shen. Error analysis of pressure-correction schemes for
the time-dependent Stokes equations with open boundary conditions. SIAM J. Numer. Anal.,
43(1):239–258 (electronic), 2005.

[12] J. L. Guermond, P. Minev, and J. Shen. An overview of projection methods for incompressible
flows. Comput. Methods Appl. Mech. Engrg., 195(44-47):6011–6045, 2006.

[13] Y. He, D. P. Nicholls, and J. Shen. An efficient and stable spectral method for electromagnetic
scattering from a layered periodic structure. J. Comput. Phys., 231(8):3007–3022, 2012.

[14] G. Hou, J. Wang, and A. Layton. Numerical methods for fluid-structure interaction—a review.
Commun. Comput. Phys., 12(2):337–377, 2012.

[15] J. Hron and S. Turek. A monolithic FEM/multigrid solver for an ALE formulation of fluid-
structure interaction with applications in biomechanics. Springer, 2006.

[16] B. Hübner, E. Walhorn, and D. Dinkler. A monolithic approach to fluid–structure interaction
using space–time finite elements. Computer methods in applied mechanics and engineering,
193(23):2087–2104, 2004.

[17] I. Kukavica, A. Tuffaha, and M. Ziane. Strong solutions to a nonlinear fluid structure interac-
tion system. J. Differential Equations, 247(5):1452–1478, 2009.

[18] U. Küttler and W. A. Wall. Fixed-point fluid–structure interaction solvers with dynamic relax-
ation. Computational Mechanics, 43(1):61–72, 2008.

[19] H. G. Matthies and J. Steindorf. Partitioned strong coupling algorithms for fluidâĂŞstructure
interaction. 81:805 – 812, 2003.

[20] A. Quarteroni and A. Valli. Domain decomposition methods for partial differential equations.
Numerical Mathematics and Scientific Computation. The Clarendon Press Oxford University
Press, New York, 1999. Oxford Science Publications.

[21] J. Shen. Efficient spectral-Galerkin method. I. Direct solvers of second- and fourth-order
equations using Legendre polynomials. SIAM J. Sci. Comput., 15(6):1489–1505, 1994.

[22] A. Toselli and O. Widlund. Domain decomposition methods—algorithms and theory, volume 34



18 Ying He and Jie Shen

of Springer Series in Computational Mathematics. Springer-Verlag, Berlin, 2005.


