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A new class of time discretization schemes for the Navier-Stokes equations with non-
periodic boundary conditions is constructed by combining the SAV approach for general 
dissipative systems in [15] and the consistent splitting schemes in [10]. The new schemes 
are unconditionally stable, only require solving linear equations with constant coefficients 
at each time step, and can be up to six-order accurate in time. With a Legendre-Galerkin 
method in space, the full discretized schemes can efficiently treat the Coriolis force 
implicitly. Delicate numerical simulations for highly complex rotating flows are presented 
to validate the new schemes.

© 2022 Elsevier Inc. All rights reserved.

1. Introduction

Numerical approximation of the incompressible Navier-Stokes equations plays an important role in computational fluid 
dynamics, and has been a subject of intensive study since the sixties. There is an ever increasing demand for numerical al-
gorithms which can efficiently and accurately capture the complex dynamics or turbulence statistics of incompressible flows. 
A large body of the literature has been devoted to construct various numerical algorithms for solving the incompressible 
Navier-Stokes equations, see [29,4,5,13,23] and the references therein. In particular, the projection method or fractional step 
method, originally proposed by Chorin [3] and Temam [28], and its various variants and improvements have been widely 
used thanks to its simplicity and efficiency, see [9] and references therein. Almost exclusively these schemes are restricted to 
first- or second-order accuracy in time, due in part to their operator-splitting nature with non-commutative operators, see 
however [17] for a third-order operator splitting scheme, which is later classified the velocity-correction method in [11], and 
[12] for high-order splitting schemes based on the artificial compressibility method which requires solving a non-separable 
system involving the ∇∇· operator.

Recently, the scalar auxiliary variable (SAV) approach for constructing efficient and stable time discretization schemes 
for gradient flows is proposed in [25,26], and is extended to Navier-Stokes equations in [20,19]. The original SAV approach 
allows us to construct linear, decoupled and unconditionally stable and up to second-order schemes. In [15], the authors 
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introduced a SAV approach to construct higher-order unconditionally stable schemes for general dissipative systems. This 
approach is successfully applied to Navier-Stokes equations with periodic boundary conditions in [14]. From a numerical 
point of view, it is much easier to design numerical algorithms for the Navier-Stokes equations with periodic boundary 
conditions due to the fact that the pressure can be explicitly expressed as a function of the velocity as no additional 
boundary condition is needed for the pressure. A main difficulty for the numerical approximation of the Navier-Stokes 
equations with non-periodic boundary conditions is the lack of explicit boundary condition for the pressure. Most projection 
type schemes, in one way or another, attempt to find a good approximation to the pressure boundary conditions [9]. In [10]
(see also [22]), a consistent splitting approach was proposed. This approach is based on a consistent pressure Poisson 
equation, and is free of large splitting error due to the approximate pressure boundary conditions associated with other 
projection type methods, higher-order consistent splitting schemes can be formally constructed. But unfortunately, one can 
only prove a rigorous stability result for the first-order scheme (see [10] and [22]). The first objective of this paper is to 
combine the approach in [15] for general dissipative systems and the consistent splitting approach in [10] to construct a 
class of efficient schemes, with up to six-order accuracy in time, for the Navier-Stokes equations with non-periodic boundary 
conditions, and to prove its stability.

The second objective of this paper is to validate this new class of numerical schemes by simulating a real world geophys-
ical flow problem with complex spatial-temporal structures that requires highly accurate and efficient numerical algorithms. 
Particularly, we are interested in parametrically forced rotating confined flows, which model the rotational dynamics of 
planets and stars involve periodic perturbations of shapes, the directions of rotational vectors, and rotation rates. These 
perturbations are categorized as tides, precession, and longitudinal libration in terms of geophysical flows, as articulated in 
the review paper [18]. Using a sequence of well designed flow simulations, we will show that the proposed SAV schemes 
implemented with Legendre-Galerkin method in space outperform the reference scheme, an improved second-order projec-
tion scheme with a spectral-collocation method in space, in terms of accuracy and efficiency. And our extensive simulations 
suggest that the third-order SAV scheme with Legendre-Galerkin method in space is the most efficient while highly complex 
spatial-temporal structures are present.

One salient feature of the geophysical flows is that the associated Ekman number, E = ν/(�0 L2), is extremely small 
(corresponding to very large Reynolds number), where ν is the viscosity of the fluid, �0 is the background rotation rate 
and L is the length scale of the computational domain. For instance, the Ekman number of Earth’s inner core is on the 
order of 10−15, which presents a great challenge for its numerical simulation. Parameters used in the state-of-the-art sim-
ulations [33,21,32] are far away from the realistic parameters due to the high computational cost and limited accuracy 
of the numerical schemes. In addition, these flows are driven by external mechanical forcing, which converts part of the 
background rotational energy and generates intense fluid motions through the excitation of localized jets, shear layers and 
resonant inertial modes [18]. In this scenario, the numerical scheme not only needs to resolve very thin boundary layers, 
but also to capture the intense shear layers and the inertial modes in the interior of the computational domain. Currently, 
majority of the simulations are conducted at the Ekman number E ≤ 10−6, and very few are conducted at E = 10−7, such 
as libration-driven flows in spherical shells [21] and in a cube [32]. The Coriolis force in these simulations is all treated 
explicitly which dictates a very several time step constraints due to the high background rotation. The third objective is 
to implement a Legendre-Galerkin method which can treat the Coriolis force implicitly with essentially the same compu-
tational cost, and use the validated third-order SAV scheme with this Legendre-Galerkin method to simulate the rotating 
flows with the Ekman number at least one order of magnitude lower, e.g. E ≤ 10−8.

The rest of the paper is organized as follows. In the next section, we describe the Navier-Stokes equations in inertial 
frame and in rotational frame, present our time and spatial discretization, provide a stability proof and carry out accuracy 
tests for a manufactured solution. In Section 3, we validate the new schemes with detailed simulations of rotating flows in 
three different settings: a librating cube with rotation axis (0, 0, 1), a librating cube with rotation axis (1, 1, 1)/

√
3, and a 

precessing cube with a precessing angle α = 1 degree. Some concluding remarks are given in the last section.

2. Problem description and the numerical schemes

We consider numerical approximation of the Navier-Stokes equations in the inertial reference frame:

∂u

∂t
+ u · ∇u − ν�u = −∇p + f , (1a)

∇ · u = 0, (1b)

in an open bounded domain D ⊂ Rd(d = 2, 3), where f is an external force, and in the rotating reference frame:

∂u

∂t
+ u · ∇u + 2� × u − ν�u = −∇p + f , (2a)

∇ · u = 0, (2b)

where � is a given background rotating velocity, � × u represents the Coriolis force, and f = d�
dt × r represents the Euler 

force with r = (x, y, z). Both systems are subjected to suitable boundary and initial conditions for the velocity. To simplify 
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the presentation, we only consider the no slip boundary conditions for the velocity, although other boundary conditions can 
be treated similarly. Setting � = 0 in (2), we recover (1). Hence, we shall only consider the system (2) and treat (1) as a 
special case of (2).

Let n be the outward normal to D , and denote

H = {v ∈ (L2(D))d : ∇ · v = 0, v · n|∂ D = 0}. (3)

Thanks to the identity

(u · ∇v, v) = 0 ∀u ∈ H , v ∈ (H1
0(D))d, (4)

it is easy to see that (2) with no slip boundary conditions satisfies the following energy law:

d

dt

1

2
‖u‖2 = −ν‖∇u‖2 + ( f , u). (5)

2.1. Time discretization by a SAV approach

Set E(u) = 1
2 ‖u‖2 and define a SAV: R(t) = E(u) + C0 with some C0 > 0, and expand the Navier-Stokes equations (2) as

∂u

∂t
+ u · ∇u + 2� × u − ν�u = −∇p + f , (6a)

∇ · u = 0, (6b)

∂ R

∂t
= R

E(u) + C0
[−ν‖∇u‖2 + ( f , u)]. (6c)

It is clear that any solution of the original Navier-Stokes equations (1) is a solution of the above system with R(0) =
−ν‖∇u|t=0‖2 + ( f , u)|t=0. Inspired by the SAV approach proposed in [25,26] and the consistent splitting scheme in [10], 
we construct the following k-th (1 ≤ k ≤ 6) order SAV schemes based on the BDF-k for the time derivative.

Given R j , u j ( j = n, n − 1, · · · , n − k + 1), we compute ūn+1, Rn+1, ξn+1, un+1 and pn+1 consecutively as follows

αk ūn+1 − Ak(ūn)

δt
− ν�ūn+1 + 2�n+1 × ûn+1 = −Bk(un) · ∇Bk(un) + ∇Bk(pn) + f n+1; (7a)

1

δt

(
Rn+1 − Rn) = Rn+1

E(ūn+1) + C0
(−ν‖∇ ūn+1‖2 + ( f n+1, ūn+1)); (7b)

un+1 = ηn+1
k ūn+1 with ηn+1

k = 1 − (1 − ξn+1)k and ξn+1 = Rn+1

E(ūn+1) + C0
; (7c)

〈∇pn+1,∇q〉 = 〈 f n+1 − un+1 · ∇un+1 − 2�n+1 × un+1 − ν∇ × ∇ × un+1,∇q〉, (7d)

where we can set ûn+1 = ūn+1, i.e., the Coriolis force is treated implicitly; or ûn+1 = Bk(un), i.e., the Coriolis force is treated 
explicitly.

In the above, αk , the operators Ak and Bk (k = 1, 2, 3), with a slight abuse of notations, are given by:

first-order:

α1 = 1, A1(un) = un, B1(ūn) = ūn; (8)

second-order:
α2 = 3

2
, A2(un) = 2un − 1

2
un−1, B2(ūn) = 2ūn − ūn−1; (9)

third-order:
α3 = 11

6
, A3(un) = 3un − 3

2
un−1 + 1

3
un−2, B3(ūn) = 3ūn − 3ūn−1 + ūn−2. (10)

The formulae for k = 4, 5, 6 can also be readily derived. Several remarks are in order:

• ūn+1 is determined by a usual k-th order semi-implicit scheme (7a).
• We observe that Rn+1 is a first-order approximation to E(u(·, tn+1)) + C0 which implies that ξn+1 is a first-order 

approximation to 1. Hence, ηn+1
k is a k-th order approximation to 1, and un+1 is a k-th order correction to ūn+1.

• The main computational cost is to solve the linear system (7a) and a pressure Poisson equation (7d). With ûn+1 =
Bk(un), (7a) reduces to decoupled Poisson type equations for each component of ūn+1, while with ûn+1 = ūn+1, the 
components of ūn+1 are coupled in (7a), making it more difficult to solve.
3
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• In practice, the term 〈∇ × ∇ × un+1, ∇q〉 can be computed as follows:
Let ω = ∇ × u be the vorticity field of the flow, then ∇ × ∇ × u = ∇ × ω.

〈∇ × ∇ × u,∇q〉 = 〈∇ × ω,∇q〉 =
∫
∂ D

(ω × ∇q) · nds, (11)

where n is the outward normal of ∂ D .

2.2. Spatial discretization

We first consider a generic spatial discretization as follows. Let Xh ⊂ H1
0(D), Xh = (Xh)d and Q h ⊂ H1(D) be a pair of 

finite dimensional spaces. The fully discrete version of the scheme (7) is: Find un+1
h ∈ Xh and pn+1

h ∈ Q h from:

(
αk ūn+1

h − Ak(ūn
h)

δt
, vh) + ν(∇ ūn+1

h ,∇vh)

+ 2(�n+1 × ûn+1
h , vh) = (−Bk(un

h) · ∇Bk(un
h) + ∇Bk(pn

h) + f n+1, vh), ∀vh ∈ Xh, (12a)

1

δt

(
Rn+1 − Rn) = Rn+1

E(ūn+1
h ) + C0

(−ν‖∇ ūn+1
h ‖2 + ( f n+1, ūn+1

h )), (12b)

ξn+1 = Rn+1

E(ūn+1
h )

; (12c)

un+1
h = ηn+1

k ūn+1
h with ηn+1

k = 1 − (1 − ξn+1)k, (12d)

(∇pn+1
h ,∇qh) = ( f n+1 − un+1

h · ∇un+1
h − 2�n+1 × un+1

h ,∇qh) − ν

∫
∂ D

(∇ × un+1
h × ∇qh) · nds, ∀qh ∈ Q h. (12e)

• It is clear that the fully discrete scheme (12) admits a unique solution so it is well posed.
• There is strong numerical evidences (cf. [10,9]) that the pair (Xh, Q h) does not need to satisfy the inf-sup condition for 

the pressure to have k-th order accuracy in time. Hence, we can use equal-order finite elements or spectral elements.

Since we shall consider a rectangular domain D = (−1, 1)d in our numerical simulations, we employ a Legendre-Galerkin 
method [27] for the spatial discretization. More precisely, let P M be the space of polynomials of degree less than or equal 
to M , we set Xh = P M ∩ H1

0(D) and Mh = P M with h = 1/M . If ûn+1
h = Bk(un

h), i.e., the Coriolis force is treated explicitly, 
(12a) reduces to a set of decoupled Poisson type equation for each component of ūn+1

h so it can be solved efficiently using a 
matrix diagonalization approach (cf. [27]). If ûn+1

h = ūn+1
h , all components of ūn+1

h in (12a) are coupled so one has to solve 
the following coupled system at each time step:

αk

δt
(uh, vh) + ν(∇uh,∇vh) + 2(� × uh, vh) = (gh, vh) ∀vh ∈ Xh, (13)

which can still be efficiently solved, with essentially the same computational cost as the decoupled case, by using a gener-
alized diagonalization approach described in [2].

2.3. Stability proof

The unconditional stability of a similar scheme in the absence of f can be proved as in [14]. We now state and prove a 
stability result in the presence of the external force f .

Theorem 1. Let ‖ f (·, t)‖ ≤ C f , ∀t ∈ [0, T ], and C0 ≥ max{2C2
f , 1}. Then, given Rn > 0, we have Rn+1 > 0, ξn+1 > 0 and there 

exists a constant MT only depends on T such that

‖un‖, ‖un
h‖ ≤ MT , ∀n ≤ T /δt, (14)

where {un} and {un
h} are the solutions of the schemes (7) and (12), respectively.

Proof. The proof for the two schemes is essentially the same, so we shall only consider the scheme (7).
By the assumptions on f and C0, we find

∣∣ ( f n+1, ūn+1)

E(ūn+1) + C

∣∣ ≤ ‖ f n+1‖‖ūn+1‖
E(ūn+1) + C

≤ ‖ f n+1‖‖ūn+1‖
1 ‖ūn+1‖2 + 2‖ f n+1‖2

≤ 1

2
. (15)
0 0 2

4
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Without loss of generality, we assume δt ≤ 1. Then, given Rn > 0, it follows from (7b) that

Rn+1 = Rn

(
1 + δtν‖∇ ūn+1‖2

E(ūn+1) + C0
− δt( f n+1, ūn+1)

E(ūn+1) + C0

)−1

> 0. (16)

Next, taking the sum of (7b) for n from 0 to m, using again (15), we obtain

Rm+1 = R0 − νδt
m∑

j=0

ξ j+1‖∇ ū j+1‖2 + δt
m∑

j=0

ξ j+1( f j+1, ū j+1)

≤ R0 + δt
m∑

j=0

R j+1

E(ū j+1) + C0
( f j+1, ū j+1)

≤ R0 + δt
m∑

j=0

‖ f j+1‖ ‖ū j+1‖
E(ū j+1) + C0

R j+1 ≤ R0 + δt

2

m∑
j=0

R j+1.

Applying a discrete Gronwall lemma (see, for instance, Lemma B10 in [24]): to the above, we obtain

Rm ≤ CT R0, ∀m ≤ T /δt,

which, along with C0 ≥ 1, implies that

|ξn+1| = Rn+1

E(ūn+1) + C0
≤ 2CT R0

‖ūn+1‖2 + 2
. (17)

Since ηn+1 = 1 − (1 − ξn+1)k , we have ηn+1 = ξn+1 Pk−1(ξ
n+1) with Pk−1 being a polynomial of degree k − 1. Then, we 

derive from inequality (17) that there exists MT > 0 such that

|ηn+1| = |ξn+1 Pk−1(ξ
n+1)| ≤ MT

‖ūn+1‖2 + 2
,

which, along with un+1 = ηn+1ūn+1, implies

‖un+1‖2 = (ηn+1)2‖ūn+1‖2 ≤
(

MT

‖ūn+1‖2 + 2

)2

‖ūn+1‖2 ≤ M2
T . �

Remark 1. The above theorem only shows that the L2-norm of the numerical solutions are uniformly bounded. In the space-
periodic case, starting with a similar stability result, optimal error estimates are established [14] for the k-th (1 ≤ k ≤ 5) 
order SAV schemes. However, in the non-periodic case, error estimates of the above schemes are still elusive.

2.4. Accuracy tests

We now validate the scheme (12) with the Legendre-Galerkin approximation described above in the inertial range (i.e., 
� = 0) with a manufactured analytical solution in D ∈ (−1, 1)2 with ν = 0.01:

u(x, y, t) = 1

2
cos2(

πx

2
) sin(π y) sin(t),

v(x, y, t) = −1

2
sin(πx) cos2(

π y

2
) sin(t),

p(x, y, t) = 104 cos(πx) sin(π y) sin(t).

The corresponding forcing term can be obtained from the equation (2a).
We set C0 = 100, and choose M = 20 so that the spatial discretization error is negligible compared with the time 

discretization error. Fig. 1 (a) shows that the scheme (12) achieves the expected order of accuracy with k = 2, 3, 4.

3. Application to rotating fluids in a cube

In this section, we apply the scheme (12) with the Legendre-Galerkin approximation to study the dynamics of rotating 
fluid in a cube in three different scenarios, see Fig. 2. In all simulations below, we choose C0 = 104.
5
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Fig. 1. (a) L2-error plot of the 2nd-order SG-SAV scheme; (b) L2-error plot of the 3rd-order SG-SAV scheme; (c) L2-error plot of the 4th-order SG-SAV 
scheme.

Fig. 2. (a) Schematic of the librating cube with rotation axis ez = (0, 0, 1); (b) schematic of the librating cube with rotation axis ξ̂ = (1, 1, 1)/
√

3; 
(c) schematic of the precessing cube with precessing angle α = 1 degree.

3.1. A librating cube with rotation axis ez = (0, 0, 1)

A librating cube is a cube mounted on a constant rotating table with mean rotation angular velocity �0. Meanwhile, the 
cube itself is modulated harmonically by an external forcing at a frequency 2ω and relative amplitude ε , which is often 
referred as the Rossby number of the libration, see Fig. 2(a), with the cube as the frame of reference, the non-dimensional 
governing equations are the Navier-Stokes equations (2) with the angular rotation velocity:

� = �0(1 + ε cos(2ω�0t))ez, (19)

where ez = (0, 0, 1). The boundary conditions for all velocity components are zero, and the phase of the librational forcing 
is defined as

ϕ = mod (2ω�0t,2π). (20)

Let Eτ denote the strobe kinetic energy at forcing phase ϕ , and let (χ, ψ, φ) = ∇ × u denote the vorticity field. The govern-
ing equations (2) with no-slip boundary conditions are invariant to a reflection through the plane z = 0 and a π/2 rotation 
about the z-axis. The actions of these symmetries on the velocity and pressure fields are

K(u, v, w, p)(x, y, z, t) = (u, v,−w, p)(x, y,−z, t), (21)

Rπ/2(u, v, w, p)(x, y, z, t) = (−v, u, w, p)(−y, x, z, t). (22)

The flow responses consist of two main components: resonant excitation of inviscid inertial eigenmodes of the cube, 
and inertial wavebeams whose orientation is governed by the inviscid dispersion relation. When the ratio between external 
librational forcing frequency 2ω�0 and twice the background rotation frequency 2�0 is ω ∈ [0, 1], the system will emanate 
inertial wavebeams from the edges where top and bottom walls meet each other due to the imbalance of flux on the 
surfaces of the cube. The angle θ formed by an inertial wavebeam and the plane orthogonal to the background rotation axis 
is determined by the dispersion relation [8]:

cos(θ) = 2ω�0/(2�0) = ω. (23)
6



K. Wu, F. Huang and J. Shen Journal of Computational Physics 458 (2022) 111097
Table 1
The strobe kinetic energy Eτ of synchronized periodic DNS solutions at librational forcing phase ϕ = 0, (�0, ε) = (106, 10−6), 
and the half forcing frequency ω = 0.677. The schemes, spatial resolutions M and number of time steps N per forcing period 
are indicated in the table. (x represents the solution blows up and NC represent the solution is not able to converge.)

M 2nd IPS 2nd SG-SAV-E 3rd SG-SAV-E 4th SG-SAV-E

128 156 168 128 156 168 128 156 168 128

N=50 x x x NC NC NC 0.0707 NC NC NC
N=100 0.0745 0.0745 0.0745 0.0745 0.0748 0.0746 0.0711 0.0711 0.0711 NC
N=200 0.0715 0.0715 0.0715 0.0715 0.0715 0.0715 0.0711 0.0711 0.0711 0.0711
N=400 0.0712 0.0712 0.0712 0.0712 0.0712 0.0712 0.0711 0.0711 0.0711 0.0711

Meanwhile, when the librational forcing frequency 2ω is close to the frequency 2σ of an inviscid inertial eigenmode pre-
serving K ×Rπ/2-symmetry, this particular eigenmode will be resonantly excited by the external librational forcing, which 
is both confirmed experimentally and numerically in [1] and [30]. In addition, the computation of intrinsic eigenmodes and 
eigen-frequencies with designated symmetries is presented in appendix A in [30].

This problem was initially studied through a physical experiment by [1], they conducted experiments at the background 
rotation rate �0 = 2.65 × 104.7 with ε = 0.02, and the half librational forcing frequency ω ∈ [0.60, 0.73]. In addition, they 
found that roughly at the forcing frequency ω = 0.69, the maximum energy was obtained under the external librational 
forcing. In order to better understand the physical mechanism of the flow dynamics inside a librating cube, a numerical 
investigation was conducted in [30] using a 2nd-order improved pseudo-spectral Chebyshev collocation method, hereafter 
referred as 2nd-order IPS scheme, which was proposed by [16]. The 2nd-order IPS scheme with explicit treatment of Coriolis 
force term is able to simulate the flow at background rotation rate as large as �0 = 106 with the modulation amplitude 
ε = 10−6, and the half forcing frequency ω from 0 to 1 with an increment 0.001. The challenges of simulating the flow at a 
very fast background rotation rate are: first, resolving the very thin boundary layers on each surface of the cube; second, the 
intense inertial wavebeams (shear layers) in the interior of the cube; third, the strong oscillations of excited eigenmodes of 
the cube while resonance occurs; fourth, large computational costs associated with increased resolution in space and time 
as there are several thousands cases need to be simulated. Therefore, a highly efficient and accurate numerical scheme is 
essential.

We first conduct a careful comparison between the 2nd-order IPS scheme and the SAV scheme with different-orders, all 
with explicit treatment of the Coriolis force. Note that the cost of the 2nd-order IPS scheme is roughly twice the cost of the 
SAV schemes, due to an extra step is used in the 2nd-order IPS scheme to update the velocity.

We simulate the librating flow at parameters (�0, ε) = (106, 10−6), and the half librational forcing frequency ω = 0.677, 
which corresponds to the first low order eigenmode M1.1 with the half frequency σ1.1 = 0.6742 (we adapt the notations 
used in [30]). The simulations are carried out at three different spatial resolutions M = 128, 156, 168 and four different 
numbers of time steps N = 50, 100, 200, 400 per librational forcing period for each single set of parameters (�0, ε, ω). For 
each single case, we computed at least 2000 librational forcing periods, which grantees that the flow is fully synchronized 
with the external librational forcing. The results are displayed in Table 1, where N denotes the number of time steps per 
librational forcing period, i.e., the time step is given by

δt = π/(Nω�0) (24)

Due to the very small modulation amplitude ε = 10−6, the steady state solutions are limit cycles with periods the same as 
the librational forcing. The flow is quantified by the strobe kinetic energy Eτ at each forcing period. For instance, when the 
flow is synchronized with a particular forcing frequency, then the strobe kinetic energy Eτ at each forcing period should be 
a constant.

Table 1 shows the strobe kinetic energy Eτ by different schemes with different discretization parameters. In Table 1
and hereafter, x means that the numerical scheme blows up, NC means that numerical solution failed to produce a con-
verged synchronized periodic solution, and SG-SAV-E means the Spectral-Galerkin SAV scheme with explicit treatment of 
the Coriolis force.

We observe that for each fixed number of time steps N , M = 128, 156, 168 lead to essentially the same result which 
indicates that M = 128 is sufficient for spatial resolution.

• For the 2nd-order IPS scheme, when N = 50 time steps per forcing period, the solution blows up, and it can lead to a 
decent converged synchronized periodic solution with N = 400.

• The accuracy of the 2nd-order SG-SAV-E scheme is similar to 2nd-order IPS scheme, although it does not blow up with 
N = 50, as the SAV approach is always stable, but it does not lead to meaningful result with N = 50.

• The 3rd-order SG-SAV-E scheme leads to a reasonable result with N = 50 and a very accurate result with N = 100, 
while fourth SG-SAV-E scheme requires N = 200 to produce an accurate result.

• In order to make a visual comparison, we plot in Fig. 3 the snapshots of the x-component vorticity χ in the plane 
x = 0, and in Fig. 4 z-component vorticity ψ in the plane z = 0 at the librational forcing phase ϕ = π/2 with different 
schemes. We observe that with N = 100, the results by both second-order schemes are qualitative different from those 
7
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Fig. 3. Contours of x-component vorticity χ in the vertical plane x = 0 at phase ϕ = π/2, (�0, ε, ω) = (106, 10−6, 0.677). The contour levels are equally 
spaced in [−2.5, 2.5] and the colormap is consistent with the contour levels. The DNS solutions are obtained by using M = 156 basis functions in each 
coordinate direction. The numerical schemes and the number of time steps N per forcing period are indicated in the table. Each snapshot is plotted on the 
201 by 201 uniform grids using spectral interpolation.

with N = 400, while the 3rd-order SG-SAV-E scheme with N = 100 leads to very accurate result. These are consistent 
with Table 1. Moreover, we observe from Fig. 4 that even at N = 400, the result obtained by the 2nd-order IPS scheme 
has visibly difference in the center with those by thee SAV schemes.

To summarize, the above results indicate that for this example, (i) the 2nd-order SG-SAV-E scheme has better stability 
and slightly better accuracy than the 2nd-order IPS scheme; (ii) the 4th-order SG-SAV-E scheme requires smaller time steps 
to obtain accurate results; (iii) the 3rd-order SG-SAV-E scheme is the most efficient in terms of the cost/accuracy ratio.

3.2. A librating cube with rotation axis ξ̂ = (1, 1, 1)/
√

3

The configuration of this problem is essentially the same as that of Subsection 3.1, the only difference is that the rotation 
axis is the diagonal line pointing at the direction ξ̂ = (1, 1, 1)/

√
3, see Fig. 2(b). The corresponding angular velocity vector 

is:

� = �0(1 + ε cos(2ω�0t))ξ̂ . (25)

The governing equations (2) and boundary conditions are invariant to a discrete rotation R2π/3 of angle 2π/3 about the 
rotation axis ξ and a reflection through the origin C. The actions of these two symmetries on the velocity and pressure 
fields are

R2π/3 : [u, v, w, p](x, y, z, t) �→ [w, u, v, p](z, x, y, t), (26)

C : [u, v, w, p](x, y, z, t) �→ [−u,−v,−w, p](−x,−y,−z, t). (27)
8
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Fig. 4. Contours of z-component vorticity ψ in the horizontal plane z = 0 at phase ϕ = 0, (�0, ε, ω) = (106, 10−6, 0.677). The contour levels are equally 
spaced in [−4, 4] and the colormap is consistent with the contour levels. The DNS solutions are obtained by using M = 156 basis functions in each 
coordinate direction. The numerical schemes and the number of time steps N per forcing period as indicated. Each snapshot is plotted on the 201 by 201
uniform grids using spectral interpolation.

The time evolution of the flow responses is quantified by the strobe kinetic energy Eτ at the librational forcing phase ϕ = 0. 
The visualization quantity used here is the enstrophy E, which is defined as

E= |∇ × u|2 (28)

Unlike the case in Subsection 3.1, the rotation axis ez = (0, 0, 1) is either parallel or orthogonal to the faces of the 
cube. With rotation axis ξ̂ = (1, 1, 1)/

√
3, which is neither parallel nor orthogonal the faces of the cube, the system only 

supports inertial wavebeams. A detailed numerical investigation of this problem for the background rotation as large as 
�0 = 107 with modulation amplitude ε = 10−7 is carried out using the 2nd-order IPS scheme in [32]. It is found that at 
very low frequencies, the 2nd-order IPS scheme requires a very large number of time steps per forcing period. For instance, 
at the parameter set (�0, ε, ω) = (107, 10−7, 0.05), it requires at least N = 1200 time steps per forcing period to obtain a 
synchronized periodic solution. In addition, when the background rotation rate further increased to �0 = 108 with ε = 10−8, 
the 2nd-order IPS scheme failed to obtain any meaningful solutions.

We first conduct the simulation at the same parameter set (�0, ε, ω) = (107, 10−7, 0.05), spatial resolution M = 200
using the 3rd SG-SAV-E scheme to validate the results. We observe from Fig. 5 that the 3rd-order SG-SAV-E is able to obtain 
a synchronized converged periodic solution using N = 200 time steps per forcing period with the strobe kinetic energy 
Eτ = 0.0863 at the same forcing phase. The results are also visually identical to those obtained with the 2nd-order IPS 
scheme using N = 1200 time steps per forcing period with the strobe kinetic energy Eτ = 0.0863.

Then we use the 3rd-order SG-SAV-E scheme to simulate the background rotation rate �0 = 108 with the modulation 
amplitude ε = 10−8, a case which the 2nd-order IPS scheme failed to obtain a convergent solution. The results are plotted in 
Fig. 6. Qualitatively, the structure of enstrophy is similar as in Fig. 5, but with much stronger intensity of the inertial wave-
beams due to the background rotation rate is one order of magnitude higher. The contours of the three plots are smooth, 
9
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Fig. 5. Contours of scaled enstrophy log10(E) in the diagonal planes (a) z = y, (b) z = −y, and scaled enstrophy E1/4 on the surfaces (c) at librational 
forcing phase ϕ = 0, (�0, ε, ω) = (107, 10−7, 0.05). The contour levels for (a), (b) are equally spaced in [0, 4], and the contour levels for (c) are equally 
spaced in [0, 100]. The DNS solutions are obtained using M = 200 basis functions in each coordinate direction, and the schemes and the number of time 
steps N per forcing period are indicated in the figure. Each snapshot is plotted on the 501 by 501 uniform grids using spectral interpolation.

Fig. 6. Contours of scaled enstrophy log10(E) in the diagonal planes (a) z = y, (b) z = −y, and scaled enstrophy E1/4 on the surfaces (c) at librational 
forcing phase ϕ = 0, (�0, ε, ω) = (108, 10−8, 0.05). The contour levels for (a), (b) are equally spaced in [0, 4], and the contour levels for (c) are equally 
spaced in [0, 100]. The DNS solution is obtained using M = 350 basis functions in each coordinate direction, and the scheme and the number of time steps 
N per forcing period are indicated in the figure. Each snapshot is plotted on the 501 by 501 uniform grids using spectral interpolation.

which indicate that the numerical solution is well resolved. This example demonstrates the robustness of the proposed 
3rd-order SG-SAV-E scheme, which allows us to conduct simulations in a much wide wider range in the parameter-space.

3.3. A precessing cube

In the previous two examples, we only considered SAV schemes with explicit treatment of the Coriolis force. We now 
examine the effectiveness of SAV schemes with implicit treatment of the Coriolis force. We consider a cube mounted at the 
center of a horizontal rotating table with constant angular velocity �p pointing in the vertical direction, and the cube itself 
rotates with a constant angular velocity �0 about its axis. The cube axis is tilted an angle α = 1◦ relative to the vertical 
axis and is at rest relative to the rotating table, see Fig. 2(c). In geophysical fluid dynamics, �p and α are termed as the 
precessing angular velocity and precessing angle respectively. Using Cartesian coordinates r = (x, y, z) in the non-inertial 
10
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Table 2
The strobe kinetic energy Eτ of synchronized periodic solutions 
at precessional forcing phase ϕ = π/2, (�0, ω) = (4 × 105, 0.507)

and the schemes, spatial resolutions M and the number of time 
steps N per forcing period are indicated in the table.

M 2nd 
IPS

2nd 
SG-E

2nd 
SG-SAV-E

3rd 
SG-I

3rd 
SG-SAV-I

128 128 128 128 128

N=100 x x 2008 2181 1937
N=200 2001 2007 1992 1961 1934
N=400 1952 1953 1951 1936 1934
N=800 1938 1938 1938 1934 1934

frame of reference attached to the cube with the z axis aligned with the precession axis and the origin at the center of 
the rotating table, the governing equations are still (2) and the boundary conditions are zero. The corresponding angular 
velocity is:

� = 〈�p sin(α) cos(�0t),�p sin(α) sin(�0t),�0 + �p cos(α)〉 (29)

The Reynolds number Re, Poincare number Po, precessing amplitude a and precessing frequency 2ω can be defined as:

Po = �p/�0

Re = �0 + �p cos(α)

a = |Po| sin(α)

2ω = �0/Re

(30)

Similar to the librating cube, when the ratio between the precessing rate �0 and twice the mean background rotation 
rate 2Re is ω ∈ [0, 1], the system will emit inertial wavebeams oblique to the rotation axis from the edges where vertical 
wall meets with horizontal walls. The angle β formed between the wave vector of a particular wavebeam and the plane 
orthogonal to the mean rotation axis (z axis in the cube reference) is determined by the dispersion relation:

cos(β) = ω (31)

On the other hand, when the precessional forcing frequency close to one of the frequencies of intrinsic eigenmodes 
which preserve the two space-time symmetries: Tτ/2K , a reflection about the axial midplane together with a half-period 
translation in time; Tτ/4Rπ/2, a quarter rotation about the axis together with a quarter period translation time where 
τ = π/ω is the period of the precessional forcing. The flip symmetry K about z = 0 and the π/2 rotational symmetry 
about the mean rotation axis are defined in (21) and (22) respectively. The time translation Tρ is defined as:

Tρ(u, v, w)(x, y, z, t) = (u, v, w)(x, y, z, t + ρ), for arbitrary ρ. (32)

The two space-time symmetries are the fundamental symmetries of the system, and they combine into a purely spatial 
centro-symmetry C, which is defined as:

C(u, v, w)(x, y, z, t) = (−u,−v,−w)(−x,−y,−z, t). (33)

The centro-symmetry will be used to track the time evolution of DNS solutions, especially when the system breaks the two 
fundamental symmetries. The centro-symmetry factor is defined as

S= ‖C(u) − u‖/‖u‖ (34)

This problem was initially investigated by [6] and [7] numerically using a finite difference scheme with slip boundary 
conditions to study the dynamo mechanism in a precessing cube. They used slip boundary conditions for the velocity fields 
and were only able to conduct the simulations for the Ekman number ranges from 10−3 to 10−5 due to the computational 
cost. Later a more detailed numerical study was conducted by [31] using the 2nd-order IPS scheme, in which the excitation 
of the intrinsic eigenmodes of the cube and the dynamical process of the emergence of triadic resonance is captured. In 
addition, the modes with different space-time symmetries are also identified.

3.3.1. Synchronized periodic solutions: excitation of intrinsic eigenmodes of the cube
In Table 2, we list the strobe kinetic energy Eτ of synchronized periodic solutions at the precessional forcing phase 

ϕ = π/2, (�0, ω) = (4 × 105, 0.507), and spatial resolution M = 128 obtained by different schemes. In the table, SG-E (resp. 
SG-I) means spectral-Galerkin method with explicit (resp. implicit) treatment of the Coriolis force.
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Fig. 7. Contours of (top row) x-component vorticity χ in the vertical plane x = 0 and contours of (bottom row) z-component vorticity ψ in the horizontal 
plane z = 1/6 at precessional forcing phase ϕ = π/2, (�0, ω) = (4 × 105, 0.507) obtained by different schemes as indicated. The contour levels are equally 
spaced in [−2.5, 2.5] × 103 and the colormap is consistent with the contour levels. The DNS solutions are obtained using M = 128 basis functions in each 
coordinate direction. The schemes and the number of time steps N per forcing period are indicated in the figure. Each snapshot is plotted on the 201 by 
201 uniform grids using spectral interpolation.

On the other hand, some visual comparisons are presented in Fig. 7. We observe no visual difference between the results 
obtained by the 3rd-order SG-SAV-I scheme with N = 100 time steps and the 2nd-order schemes with N = 400 time steps.

Hence, for this example, the following observations can be made:

• The three second-order schemes require N = 800 to obtain a reasonably accurate solution, the 2nd-order SG-SAV-E 
performs the best among the three schemes.

• The 3rd-order SG-I scheme is much better than all second-order schemes. However, it still requires N = 400 to obtain 
an accurate solution, and N = 800 to obtain a very accurate solution.

• The 3rd-order SG-SAV-I scheme performs the best among all schemes, requiring only N = 100 to obtain an accurate
solution and N = 200 to obtain a very accurate solution.

The above observations indicate that combining SAV, third-order and implicit treatment of the Coriolis force can greatly 
improve the efficiency and accuracy.

3.3.2. The functionality of SAV factor
The SAV factor ξn+1 plays a delicate role in balancing stability and accuracy. In order to articulate the functionality of the 

SAV factor ξn+1, we compare the solutions at the same parameter set (�0, ω) = (4 × 105, 0.507), space resolution M = 128, 
and initial conditions zero obtained by the proposed SAV schemes and the corresponding semi-implicit schemes, i.e., setting 
ηn+1 = 1 in the SAV schemes. In Fig. 8(a), we plot the temporal evolutions of the strobe kinetic energy Eτ obtained by the 
2nd-order SG-SAV-E and 2nd-order SG-E schemes. We observe that without using SAV, the strobe kinetic energy Eτ (the 
blue dashed curve), grows exponentially after roughly 1200 forcing periods and eventually blows up. On the contrary, the 
strobe kinetic energy Eτ (the red solid curve) obtained by the 2nd-order SG-SAV-E scheme stays bounded all time. We plot 
in Fig. 8(b) the evolution of the SAV factor ξn+1, and we observe that ξn+1 remains close but less than 1, which effectively 
stabilizes the numerical solution while preserves a reasonable accuracy.

3.3.3. Symmetry breaking solutions: triadic resonance
With small precessional forcing, the flow is periodic and preserves the two fundamental space-time symmetries: Tτ/2K , 

and Tτ/4Rπ/2. As the precessional forcing becomes stronger, e.g. increasing the precessional forcing amplitude, not only 
the intrinsic eigenmodes with the two space-time symmetries will be resonantly excited, but also the eigenmodes with 
other space-time symmetries would be excited too and triadic resonance occurs. Triadic resonance means that there are 
three different eigenmodes with different symmetries resonantly excited at the same time along with the breaking of the 
fundamental symmetries of the system. It has been identified that at the background rotation rate �0 = 5.8 × 104 and half 
12
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Fig. 8. Temporal evolutions of (a) strobe kinetic energy Eτ and (b) the SAV factor ξn+1 at (�0, ω) = (4 × 105, 0.507), spatial resolution M = 128, and 
N = 100 time steps per forcing period with the initial conditions zero. (For interpretation of the colors in the figure(s), the reader is referred to the web 
version of this article.)

Fig. 9. Temporal evolutions of (a) the strobe centro-symmetry factor S and (b) the strobe total kinetic energy Eτ at the rotation rate �0 = 5.8 · 104 and 
half precessional forcing frequency ω = 0.346(Po = 0.444) obtained by different schemes as indicated. The DNS solutions are obtained by using the same 
synchronized periodic solution at �0 = 5.6 · 104 and half precessional forcing frequency ω = 0.346 as the initial condition, M = 96 basis functions in each 
coordinate direction, and N = 200 time steps per precessional forcing period.

precessional forcing frequency ω = 0.346 (Po = 0.444), the flow becomes quasi-periodic and triadic resonance occurs. The 
three modes are: the dominant one M+

1.1, which has the two fundamental symmetries Tτ/2K and Tτ/2Rπ/2 symmetries; the 
secondary mode M−

2.18, which has K and T−τ/2Rπ/2 symmetries; the last mode is M−
1.1, which has Tτ/2K and T−τ/2Rπ/2

symmetries (more details can be found in section 7 triadic resonance of [31]).
Next, we present simulations using the proposed SAV schemes to reproduce the dynamical process from the synchronized 

periodic solution to the triadic resonate quasi-periodic solution.
At �0 = 5.6 × 104 and half precessing frequency ω = 0.346, spatial resolution M = 96, and N = 200 time steps per 

forcing period, the 2nd-order IPS, 2nd-order SG-SAV-E and 3rd SG-SAV-I schemes all obtain the same stable synchronized 
periodic solutions. We use these stable solutions as the initial conditions, and increase the background rotation rate to 
�0 = 5.8 × 104, while keeping all other parameters the same. The time evolution of the flow dynamics is tracked via the 
strobe centro-symmetry factor S defined in (34).

Fig. 9 shows the temporal evolutions of the strobe centro-symmetry factor S obtained by different schemes. Initially 
the symmetry factor S is close to machine epsilon. Roughly after 500 forcing periods, the blue dashed curve by the 2nd-
order IPS scheme starts to increase exponentially, which implies the system starts to break the centro-symmetry as a 
consequence of breaking the two fundamental space-time symmetries: Tτ/2K and T−τ/2Rπ/2, due to the excitation of 
intrinsic eigenmodes with different symmetries. After 4500 forcing periods, the blue dashed curve by the 2nd-order IPS 
scheme stops increasing and becomes flat, which implies the flow is fully stabilized and the centro-symmetry factor S is 
roughly 0.7. The temporal evolution of the strobe centro-symmetry factor S illustrated in Fig. 9 obtained by 2nd-order IPS 
scheme quantitatively demonstrates the dynamics process of emergence of the triadic resonance.

We observe from Fig. 9 that both SAV schemes capture the dynamical process of the triadic resonance, and the strobe 
centro-symmetry factors are all consistent with that of obtained by 2nd-order IPS scheme, but they take a much smaller 
number of forcing periods to reach the stabilized state of the triadic resonance.

Finally, we perform simulations using different schemes to reveal the structures of the eigenmodes of the identified 
triadic resonance, further validating the accuracy and efficiency of the SAV schemes.

We know the three eigenmodes are M+
1.1, M−

2.18 and M−
1.1. At the horizontal plane z = 0, the contributions of the eigen-

modes M+ and M− for z-component vorticity ψ are 0, and at the horizontal plane z = 0.25, the contribution of the modes 
1.1 1.1
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Fig. 10. Time series of the z-component of velocity w at the collocation grid point (x, y, z) = (0, 0, 0) for �0 = 5.8 × 104 and half forcing frequency 
ω = 0.343. The symbols labeled t1 through t6 corresponds to the times where snapshots of the flow are shown in Fig. 11 and Fig. 12.

M−
2.18 for z-component vorticity ψ is 0. In addition, at the different time instants, in the vertical plane x = 0, the structures 

of different eigenmodes can be distinguished too. Using the stabilized DNS solutions at 6000 forcing periods in Fig. 9 as 
initial conditions, let the flow responses further evolve 10 forcing periods, we plot in Fig. 10 the temporal evolutions of 
z-component velocity ψ at the physical space (x, y, z) = (0, 0, 0) obtained by different schemes.

Then, we plot in Fig. 11 snapshots of x-component vorticity in the vertical plane x = 0 and z-component vorticity in the 
horizontal planes z = 0 obtained by different schemes at the time instants t1, t3, t5 labeled in Fig. 10. Clearly, at the chosen 
time instants, the x-component vorticity χ in the vertical plane x = 0 shows the structure of x-component vorticity of the 
eigenmode M−

2.18. Qualitatively, the snapshots of x-component vorticity obtained by different schemes are all similar to each 
other, which is characterized by two cells line up in the vertical z direction with opposite signs and nine cells line up in 
the horizontal y direction with alternating signs of neighboring cells. At the horizontal plane z = 0, due to the fact that 
the contribution of the z-component vorticity ψ from eigenmodes M+

1.1 and M−
1.1 is zero, the z-component of the vorticity 

ψ of eigenmode M−
2.18, characterized by two strong small cells with alternating signs lie in the center of the plane and 

surrounded by multiple small cells, is well captured at these chosen times. Therefore the existence of eigenmode M−
2.18 is 

identified visually.
We also plot in Fig. 12 snapshots of vorticity fields on the indicated planes at time instants t2, t4, t6 labeled in Fig. 9. At 

the chosen time instants, in the vertical plane x = 0, the snapshots illustrate the structure of the x-component vorticity fields 
of the eigenmode M+

1.1, which is characterized by three cells with alternating signs line up in the y-coordinate direction. 
In the horizontal plane z = 0.25, the snapshots illustrate the structure of the z-component vorticity fields of the eigenmode 
M+

1.1 due to it is the dominate one, which is characterized by two large cells with opposite signs in the center of the 
plane. At the chosen time instants, the vorticity components in the plane x = 0 and z = 0.25 confirms the existence of the 
eigenmode M+

1.1.

4. Concluding remarks

We constructed a new class of time discretization schemes for the Navier-Stokes equations with non-periodic boundary 
conditions by combining the SAV approach for general dissipative systems in [15] and the consistent splitting schemes in 
[10], and validated the new schemes by simulating a series of highly complex geophysical flows.

Our main contributions are:

• The new class of SAV schemes are unconditionally stable, only require solving linear equations with constant coefficients 
at each time step, and can be up to six-order accurate in time.
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Fig. 11. Snapshots of x-component vorticity χ and z-component vorticity ψ in the indicated planes at (�0, ω) = (5.8 × 104, ω = 0.346) and the time 
instants t1, t3, t5 corresponding to the red symbols in the time series obtained by different schemes in Fig. 10. DNS solutions are plotted in the uniformly 
201 by 201 grid points through spectral interpolation, and all the contour levels are equally spaced in [−2.2, 2.2] × 104, and the colormap is consistent 
with the contour levels.

Fig. 12. Snapshots of x-component vorticity χ and z-component vorticity ψ in the indicated planes at (�0, ω) = (5.8 × 104, ω = 0.346) and the time 
instants t2, t4, t6 corresponding to the red symbols in the time series obtained by different schemes in Fig. 10. DNS solutions are plotted in the uniformly 
201 by 201 grid points through Legendre spectral interpolation, and all the contour levels are equally spaced in [−2.2, 2.2] × 104, and the colormap is 
consistent with the contour levels.

• We validated the new class of SAV schemes by simulating rotating flows with highly complex spatial-temporal struc-
tures, demonstrated advantages of the new SAV schemes compared with usual semi-implicit schemes.

• By using a Legendre-Galerkin method in space which can treat the Coriolis force implicitly with essentially the same 
computational cost as treating the Coriolis force explicitly, we were able to simulate the rotating flows at the Ekman 
number E = 10−8 with relatively large time steps, which is an order of magnitude smaller than the current available 
results.
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For the parameter ranges considered in this paper, it is found that the 3rd-order SAV schemes are the most efficient in 
terms of accuracy vs. computational cost, and the fourth-order SAV schemes require smaller time steps to obtain meaningful 
solutions. It can be speculated that when the flows become even more complex in time and space as we decrease further 
the Ekman number, the fourth or even higher-order SAV schemes would outperform the third-order SAV schemes.

We only considered the Navier-Stokes equations in this paper. However, the new SAV schemes that we constructed here 
can be coupled with the SAV approach for general dissipative systems to construct higher-order and decoupled schemes for 
other complex nonlinear systems such as the Navier-Stokes Cahn-Hilliard system for two-phase flows.
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