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The Patlak-Keller-Segel-Navier-Stokes system describes the biological chemotaxis phe-
nomenon in the fluid environment. It is a coupled nonlinear system with unknowns being 
the cell density, the concentration of chemoattractants, the fluid velocity and the pressure, 
and it satisfies an energy dissipation law, preserves the bound/positivity and mass of the 
cell density. We develop in this paper a class of scalar auxiliary variable (SAV) schemes 
with relaxation which preserve these properties unconditionally at the discrete level, and 
only require solving decoupled linear systems with constant coefficients at each time step. 
We present ample numerical results to validate these schemes, simulate the chemotactic 
non-aggregation and aggregation with a saturation concentration, as well as investigate the 
blow-up phenomenon.

© 2023 Elsevier Inc. All rights reserved.

1. Introduction

The biological chemotaxis phenomenon refers to the directional movement of cells along the concentration gradient of 
the chemoattractant in their tissues or living environments. To describe this phenomenon, many mathematical models have 
been proposed [2,16,21]. Among these models, the Patlak-Keller-Segel-Navier-Stokes (PKS-NS) model, firstly introduced by 
[14], couples the parabolic-elliptic Patlak-Keller-Segel (PKS) equations describing the interaction between cells and chemoat-
tractant [30,37], and the well-known incompressible Navier-Stokes (NS) equations controlling the motion of the fluid [40]. 
It indicates that cells and chemoattractant are transported by the fluid in their living environment when cells move towards 
the direction of high concentration of the chemoattractant, while the motion of fluid is further affected by a friction force 
on the moving cells.

It is known that, if the fluid transport structure is introduced in the cell density evolution equation, the classical free 
energy will no longer decay in general. This causes a major difficulty in analyzing the classical coupled chemotaxis-fluid 
model, proposed by Hillesdon et al. [22] and Tuval et al. [41]. Some theoretical results on the existence and uniqueness of 
solutions for the classical chemotaxis-fluid model are presented in [7,28,32,44]. On the other hand, the PKS-NS system that 
we consider in this paper inherits the energy dissipation of the classical PKS system, and some analytical results for the 
PKS-NS model are available. For examples, Gong and He [14] first proved that, if the total mass of cells Mρ is strictly less 
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than 8π , then classical solutions exist for any finite time and their H s norms are almost uniformly bounded in time. Later, 
Lai et al. [35] analyzed the global existence of the PKS-NS system with critical and subcritical mass, and pointed out that 
the positivity of cell density is a direct consequence of the strong maximum principle.

It is worth mentioning that the aggregation can lead to blow-up for the two-dimensional PKS equations once Mρ exceeds 
a threshold [4,16,27,36]. Here the blow-up, which does not occur in reality, means that the concentration reaches several 
orders of magnitude larger and is beyond the range that the model can describe. An interesting and important question is 
how the fluid coupling can change the blow-up behavior. Numerical evidence in [33] indicates that solutions to a parabolic-
elliptic PKS-Stokes model exist for initial mass Mρ ≈ 27, which is larger than 8π (the critical mass for the system without 
fluid), but for even larger mass Mρ ≈ 40, blow-up seems to occur. Lorz [33] pointed out that the blow-up could be delayed 
when the PKS system is coupled with fluids. By analyzing the PKS equations with an additional advection term modeling 
ambient fluid flow, Kiselev and Xu [31] indicated that the fluid flow might suppress the potential chemotactic blow-up. 
Suppression of explosion in parabolic-elliptic and parabolic-parabolic PKS system via shear flows was proved in [5,17]. 
Despite of the known analytical results on blow-up suppression, finite-time blow-up of the PKS-NS system is still possible. 
For the Keller-Segel system coupled with the Navier-Stokes fluid, finite time blow-up criterion was analyzed in [29]. But 
for the PKS-NS system that we studied in this paper, it is unclear if solutions exist globally or blow up in finite time with 
Mρ > 8π .

Compared with analytical works, the PKS-NS system is less studied numerically. There are two main difficulties to con-
struct suitable numerical schemes: one is to preserve, at the discrete level, essential properties of the PKS-NS system which 
are mainly inherited from the PKS equations, including the bound/positivity preservation [6,12,20,42,43], energy dissipation 
and mass conservation [16,21,23,39]; the other is to efficiently deal with the strong nonlinear coupling for the fluid flow. 
Most existing methods mainly focus on the positivity preserving with a particular spatial discretization and usually lead 
to strict CFL restrictions on the time step [8,10,11,19,34]. Although there exist some unconditionally positivity-preserving 
schemes for the KS equations, such as the linear finite-volume scheme in combination with the upwind technique for KS 
equations in [47], it can only achieve first-order accuracy both in time and space, see also [1] for a nonlinear finite-volume-
based scheme with the upwind technique; Shen and Xu [39] constructed numerical schemes for the classical and modified 
KS systems with a gradient flow structure by rewriting the term �ρ as ∇ · (∇ f ′(ρ)

f ′′(ρ)
), where f ′′(ρ) = 1

η(ρ)
, however, the en-

ergy stability is proved only for the first-order scheme, see [9] for a related work; a new class of bound/positivity preserving 
and energy stable schemes by combining SAV approach and the function transform approach were proposed in [23] for KS 
equations.

On the other hand, to deal with the strong nonlinear coupling for the fluid flow in the classical chemotaxis-fluid model, 
the vorticity formulation was used in [8] and [13]; a particle method combining with the finite volume method based 
on semi-implicit pressure was proposed in [18]; an operator splitting-type NS solver was used in [34] and the pressure-
correction scheme was used in [19]. However, almost exclusively these schemes are restricted to first- or second-order 
accuracy in time. Very recently, Huang and Shen [24] constructed high-order semi-discrete-in-time and fully discrete (with 
Fourier-Galerkin in space) schemes for the incompressible NS equations with periodic boundary conditions, and carried out 
corresponding error analysis. Furthermore, this method was generalized to the non-periodic boundary conditions [45] in 
combination with consistent splitting schemes [15].

A main purpose of this paper is to construct a class of fully decoupled, bound/positivity preserving schemes for the 
PKS-NS system by combining the distinctive advantages of the methods presented in [23,24,26,45,48]:

• For the bound/positivity preservation, energy dissipation and mass conservation, we employ the approach in [23]. 
Namely, a suitable function transform is proposed first to keep the bound/positivity of the density solution, and then 
the generalized SAV approach is adopted to retain the energy dissipation and mass conservation. Different from the SAV 
scheme in [23,25], we introduce a relaxation factor to penalize the numerical error of the auxiliary variable [26,46,48]. 
This makes its modified energy closer to the original energy and improves its accuracy further.

• For the strong nonlinear coupling, we construct high-order semi-implicit SAV schemes based on the k-th order BDF-
Adams-Bashforth schemes as in [24,45]. In the case of periodic boundary conditions, the pressure can be explicitly 
expressed as a function of the velocity so the method in [24,25] can be applied directly for the NS part. For non-
periodic boundary conditions, we employ the consistent splitting approach and generalized semi-implicit SAV schemes 
as in [45].

The resultant schemes are totally decoupled, only requiring to solve a sequence of linear equations with constant coefficients, 
can be high-order in time and preserve essential properties of PKS-NS system.

Another main purpose of this paper is to use the proposed schemes to numerically investigate if solutions to the PKS-NS 
system exist globally or would blow up in finite time when Mρ > 8π .

The rest of paper is organized as follows. In Section 2, we introduce the PKS-NS system and state some basic properties. 
In Section 3, a class of bound/positivity preserving generalized SAV schemes with relaxation (R-GSAV) are proposed in detail. 
Firstly, function transform for the PKS part of the system are proposed, and then decoupling techniques for the NS part are 
presented, followed by the fully decoupled R-GSAV scheme. Moreover, we show that these schemes enjoy bound/positivity 
preservation, unconditionally energy dissipation and mass conservation. Next, we validate these properties and the accuracy 
of the proposed scheme, simulate the chemotactic non-aggregation and aggregation with a saturation concentration, as well 
2
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as study the blow-up phenomenon by a series of numerical tests in Section 4. We end the paper with some concluding 
remarks in Section 5.

2. The PKS-NS system

We consider the following PKS-NS system:

∂ρ

∂t
+ u · ∇ρ = �ρ − ∇ · (η(ρ)∇c

)
, (2.1)

− �c = −αc + ρ, (2.2)
∂u

∂t
+ u · ∇u + ∇p = ν�u + ρ∇c, (2.3)

∇ · u = 0, (2.4)

with initial conditions

ρ|t=0 = ρ0, u|t=0 = u0, (2.5)

in a bounded domain 	 ⊂ R2 and a time interval [0, T ] with a finite time T , and with either

• periodic boundary conditions for all quantities; or
• the no-flux boundary condition for the cell density ρ , the homogeneous Neumann boundary condition for the concen-

tration of chemoattractants c, and the no-slip boundary condition for the fluid velocity u:

∂ρ

∂n
− η(ρ)

∂c

∂n
= 0,

∂c

∂n
= 0, u = 0, on ∂	, (2.6)

where n is the outward unit-normal to the boundary ∂	.

The function η(ρ) ≥ 0 describes the concentration-dependent mobility. It is a smooth function with η(0) = 0. The coefficient 
α ≥ 0 represents the consumption rate of the chemoattractant. Note that when α = 0, the equation (2.2) should be adjusted 
as −�c = ρ − 〈ρ〉 with 〈ρ〉 = 1

|	|
∫
	

ρdx, due to the compatibility with the boundary conditions involved [14,27,33,36]. The 
first two equations are the PKS equations with a transport term due to the fluid velocity, in which the first equation reveals 
the time evolution of the cell density subjected to aggregation induced by chemoattractant c, diffusion caused by random 
Brownian motion, and transportation by fluid flow u, while the second equation describes the connection between the cell 
density ρ and the chemoattractant c. The last two equations are the Navier-Stokes equations with viscosity coefficient ν
and a friction force ρ∇c on the moving cells and reaction forces act on the fluid [14].

It can be easily shown (see below) that PKS-NS system is dissipative with the following free energy

Etot(ρ, c, u) =
∫
	

(
f (ρ) − ρc + 1

2
|∇c|2+α

2
c2 + 1

2
|u|2

)
dx (2.7)

where the function f (ρ) is determined from f ′′(ρ) = 1
η(ρ)

.
Several typical choices of η(ρ) and the corresponding function f (ρ) are as follows:

1. The classical PKS-NS system: η(ρ) = ρ . We can choose f (ρ) = ρ logρ − ρ with ρ ∈ (0, +∞) [35].
2. The PKS-NS system with a bounded mobility: η(ρ) = ρ

1+κρ (κ > 0) [42,43]. In this case, we set f (ρ) = ρ logρ−ρ+ κ
2 ρ2

with ρ ∈ (0, +∞).
3. The PKS-NS system with a saturation concentration: η(ρ) = ρ(1 − ρ

M ), here M > 0 is the saturation concentration, and 
the mobility tends to zero when it is near saturation [12,20]. We can set f (ρ) = ρ logρ + (M − ρ) log(1 − ρ

M ) with 
ρ ∈ (0, M).

Hence, the density solution ρ of the PKS-NS system is positivity preserving in Cases 1 and 2, and bound preserving in Case 
3.

Using the identity �ρ = ∇ · ( 1
f ′′(ρ)

∇ f ′(ρ)), we can rewrite (2.1)-(2.2) as a gradient flow about ρ and c with an extra 
transport term:

∂ρ

∂t
+ u · ∇ρ = ∇ ·

( 1

f ′′(ρ)
∇( f ′(ρ) − c)

)
= ∇ ·

(
η(ρ)∇ δEtot

δρ

)
, (2.8)

0 = −�c+αc − ρ = δEtot

δc
. (2.9)
3
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Taking the inner products of (2.8) with δEtot
δρ = f ′(ρ) − c and of (2.3) with δEtot

δu = u, integrating by parts, thanks to ∇ · u = 0, 
we find

(
∂ρ

∂t
,
δEtot

δρ
) = −

∫
	

η(ρ)|∇ δEtot

δρ
|2dx − (u · ∇c,ρ) , (2.10)

(
∂u

∂t
,
δEtot

δu
) = −

∫
	

ν|∇u|2dx + (ρ∇c, u) . (2.11)

Summing up equations (2.10) and (2.11), we immediately obtain the energy dissipative law

dEtot(ρ, c, u)

dt
= −

∫
	

(
η(ρ)|∇ δEtot

δρ
|2 + ν|∇u|2

)
dx. (2.12)

Integrating (2.1) over 	, we deduce that

d

dt

∫
	

ρdx = 0. (2.13)

Remark 2.1. We note that the PKS-NS system with u ≡ 0 reduces to the classical PKS model. In Case 1, i.e., η(ρ) = ρ , it 
is known that the density ρ of two-dimensional PKS model can blow up in finite time if the initial mass Mρ exceeds a 
threshold [16,27,36].

3. Bound/positivity preserving R-GSAV schemes

We first use a suitable function transform for the cell density so that the bound or positivity of the cell density can 
always be preserved, and then describe decoupling techniques for the NS part, followed by constructing fully decoupled R-
GSAV schemes which enjoy following properties: the bound/positivity preservation, unconditionally energy dissipation and 
mass conservation.

3.1. Function transform for the cell density ρ

For preserving positivity in Cases 1 and 2, we set

ρ = exp(v). (3.1)

Substituting the above into (2.1), we get

∂v

∂t
+ u · ∇v = �v + |∇v|2 − 1

exp(v)
∇ · (η(ρ)∇c). (3.2)

For preserving the bound (0, M) in Case 3, we use the function transform

ρ = M

2
tanh(v) + M

2
. (3.3)

Substituting this transform into (2.1), we obtain

∂v

∂t
+ u · ∇v = �v + tanh′′(v)

tanh′(v)
|∇v|2 − 2

M tanh′(v)
∇ · (η(ρ)∇c). (3.4)

3.2. Decoupling techniques for the velocity u and pressure p

Since the NS equations with different boundary conditions require different decoupling techniques for the velocity u and 
pressure p, we consider periodic boundary conditions and non-periodic boundary conditions, respectively.

For periodic boundary conditions, we can explicitly eliminate the pressure as follows. Taking the divergence on both 
sides of (2.3) and (2.4), we have

− �p = ∇ · (u · ∇u − ρ∇c) , (3.5)

∇p = − (u · ∇u − ρ∇c) − A (u · ∇u − ρ∇c) , (3.6)

where A is a linear operator in L2(	) := {v ∈ L2(	) : ∫ vdx = 0} defined by
0 	

4
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Av := ∇ × ∇ × �−1 v, ∀v ∈ L2
0(	). (3.7)

Hence equations (2.3) and (2.4) reduce to

∂u

∂t
= ν�u + A (u · ∇u − ρ∇c) . (3.8)

Therefore, we can obtain the velocity u from (3.8) and the pressure p from (3.5).
In the case of non-periodic boundary conditions, we adopt the consistent splitting approach [15,45] which is based on 

replacing the divergence free condition (2.4) by the following pressure-Poisson equation in the weak form

(∇p,∇q) = (ν�u − u · ∇u + ρ∇c,∇q)

= (−ν∇ × ∇ × u − u · ∇u + ρ∇c,∇q) , ∀q ∈ H1(	). (3.9)

Then, we can decouple the velocity u and pressure p by semi-implicit schemes for equations (2.3) and (3.9) described in 
the next subsection.

3.3. Fully decoupled R-GSAV schemes

To avoid repetition, we present the schemes for the PKS-NS system with non-periodic boundary conditions (2.6). The 
case of periodic boundary condition is much simpler and can be dealt with similarly.

To fix the idea, we consider positivity preserving, i.e., η(ρ) = ρ , the case of bound preserving can be treated similarly. 
In this case, f (ρ) = ρ log(ρ) − ρ is strictly convex and Etot(ρ, c, u) is bounded from below. Hence, there exists C0 > 0 such 
that E(ρ, c, u) := Etot(ρ, c, u) + C0 ≥ 1. Following the paper [25], we introduce a SAV

r(t) = E(ρ, c, u), (3.10)

after applying the function transform (3.1) for the cell density ρ , then we expand the PKS-NS system as

∂v

∂t
+ u · ∇v = �v + |∇v|2 − 1

exp(v)
∇ · (η(ρ)∇c), (3.11)

− �c = −αc + ρ, (3.12)

∂u

∂t
+ u · ∇u + ∇p = ν�u + ρ∇c, (3.13)

dr

dt
= − r

E(ρ, c, u)
G(ρ, c, u), (3.14)

(∇p,∇q) = (−ν∇ × ∇ × u − u · ∇u + ρ∇c,∇q) , ∀q ∈ H1(	), (3.15)

where G(ρ, c, u) = ∫
	

(
η(ρ)|∇ δEtot

δρ |2 + ν|∇u|2)dx ≥ 0, and the boundary conditions are

exp(v)
∂v

∂n
− η(ρ)

∂c

∂n
= 0,

∂c

∂n
= 0, u = 0, on ∂	. (3.16)

We construct k-th order fully decoupled and bound/positivity preserving R-GSAV schemes for the above system as follows.

Scheme 3.1 (k-th order fully decoupled and bound/positivity preserving R-GSAV schemes). Given (v j , ρ j , c j , u j , r j , p j ), j = n, n −
1, ..., n − k + 1, we find (vn+1, ρn+1, cn+1, un+1, rn+1, pn+1) as follows:

αk vn+1 − Ak(vn)

δt
− �vn+1 = −Bk(un · ∇vn) + |∇Bk(vn)|2

− 1

exp (Bk(vn))
∇ · (η(Bk(ρ

n))∇Bk(cn)
)
,

(
exp(Bk(vn))

∂vn+1

∂n
− η(Bk(ρ

n))
∂ Bk(cn)

∂n

)|∂	 = 0,

(3.17)

ρ̄n+1 = exp(vn+1), (3.18)

λn+1 =
∫
	

Ak(ρ
n)dx∫

	
αkρ̄n+1dx

, (3.19)

ρn+1 = λn+1ρ̄n+1, (3.20)
5
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Fig. 1. Example 1: The convergence rates of positivity preserving Scheme 3.1 in the L2-norm for the periodic PKS-NS system.

Fig. 2. Example 2: The convergence rates of bound preserving Scheme 3.1 in the L2-norm for the non-periodic PKS-NS system.

− �cn+1+αcn+1 = ρn+1,
∂cn+1

∂n
|∂	 = 0, (3.21)

αkun+1 − Ak(un)

δt
− ν�un+1 = −Bk(un · ∇un) − ∇Bk(pn) + ρn+1∇ c̄n+1,

un+1|∂	 = 0,

(3.22)

r̃n+1 − rn

δt
= − r̃n+1

E(ρn+1, cn+1, un+1)
G(ρn+1, cn+1, un+1), (3.23)

ξn+1 = r̃n+1

E(ρn+1, cn+1, un+1)
, ηn+1

k = 1 − (
1 − ξn+1)k

, (3.24)

cn+1 = ηn+1
k cn+1, un+1 = ηn+1

k un+1, (3.25)

rn+1 = ζn+1
0 r̃n+1 + (1 − ζn+1

0 )E(ρn+1, cn+1, un+1), (3.26)

and

(∇pn+1,∇q) = (−ν∇ × ∇ × un+1 − un+1 · ∇un+1 + ρn+1∇cn+1,∇q
)
, ∀q ∈ H1(	), (3.27)

where ζn+1
0 ∈ [0, 1] is a parameter to be determined in the admissible set

V =
{
ζ ∈ [0,1]s.t. rn+1 − r̃n+1

δt
= −γ n+1G(ρn+1, cn+1, un+1) + r̃n+1G(ρn+1, cn+1un+1)

E(ρn+1, cn+1, un+1)

}
, (3.28)

with γ n+1 ≥ 0 to be determined so that V is not empty. In the above αk , Ak and Bk (k = 1, 2, 3) are given by:
first-order scheme:

α1 = 1, A1
(

vn) = vn, B1
(

wn) = wn;
second-order scheme:
6
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Fig. 3. Example 3: Evolutions of max ρ , min ρ , mass of ρ , and total energy Etot with initial data (4.3).

α2 = 3

2
, A2

(
vn) = 2vn − 1

2
vn−1, B2

(
wn) = 2wn − wn−1;

third-order scheme:

α3 = 11

6
, A3

(
vn) = 3vn − 3

2
vn−1 + 1

3
vn−2, B3

(
wn) = 3wn − 3wn−1 + wn−2.

The formulae for k = 4, 5, 6 can be derived similarly.

Remark 3.1. We emphasize that Scheme 3.1 is totally decoupled, and can be solved consecutively. In fact, the main compu-
tational costs are (i) Solving vn+1 from (3.17); (ii) Solving un+1 from (3.22); and (iii) Solving pn+1 from (3.27). Note that 
these are all elliptic equations with constant coefficients so they can be solved very efficiently.

We now discuss how to determine ζn+1
0 and γ n+1. Plugging the equation (3.26) into (3.28), we observe that if we choose 

ζn+1
0 and γ n+1 such that(

r̃n+1 − E(ρn+1, cn+1, un+1)
)
ζn+1

0 =r̃n+1 − E(ρn+1, cn+1, un+1) − δtγ n+1G(ρn+1, cn+1, un+1)

+ δt
r̃n+1G(ρn+1, cn+1, un+1)

E(ρn+1, cn+1, un+1)
, (3.29)

then, ζn+1
0 ∈ V .

The choice of ζn+1
0 and γ n+1 as well as properties of Scheme 3.1 are summarized in the theorem below.

Theorem 3.1. We choose ζn+1
0 in (3.26) and γ n+1 in (3.28) as follows:

1. If ̃rn+1 = E(ρn+1, cn+1, un+1), we set ζn+1
0 = 0 and γ n+1 = r̃n+1G(ρn+1,cn+1,un+1)

n+1 n+1 n+1 n+1 n+1 n+1 .

E(ρ ,c ,u )G(ρ ,c ,u )

7
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Fig. 4. Example 3: Snapshots of the cell density ρ for the chemotactic non-aggregation. (For interpretation of the colors in the figure(s), the reader is 
referred to the web version of this article.)

2. If ̃rn+1 > E(ρn+1, cn+1, un+1), we set ζn+1
0 = 0 and γ n+1 = r̃n+1−E(ρn+1,cn+1,un+1)

δtG(ρn+1,cn+1,un+1)
+ r̃n+1G(ρn+1,cn+1,un+1)

E(ρn+1,cn+1,un+1)G(ρn+1,cn+1,un+1)
.

3. If ̃rn+1 < E(ρn+1, cn+1, un+1) and r̃n+1 − E(ρn+1, cn+1, un+1) + δt r̃n+1G(ρn+1,cn+1,un+1)

E(ρn+1,cn+1,un+1)
≥ 0, we set ζn+1

0 = 0 and γ n+1 =
r̃n+1−E(ρn+1,cn+1,un+1)

δtG(ρn+1,cn+1,un+1)
+ r̃n+1G(ρn+1,cn+1,un+1)

E(ρn+1,cn+1,un+1)G(ρn+1,cn+1,un+1)
.

4. If r̃n+1 < E(ρn+1, cn+1, un+1) and r̃n+1 − E(ρn+1, cn+1, un+1) + δt r̃n+1G(ρn+1,cn+1,un+1)

E(ρn+1,cn+1,un+1)
< 0, we set ζn+1

0 = 1 −
δtr̃n+1G(ρn+1,cn+1,un+1)

E(ρn+1,cn+1,un+1)(E(ρn+1,cn+1,un+1)−r̃n+1)
and γ n+1 = 0.

Then, (3.29) is satisfied in all cases above and ζn+1
0 ∈ V . Besides, given ρ j > 0 such that∫

	

ρ jdx =
∫
	

ρ0dx, j = n,n − 1, ...,n − k + 1. (3.30)

The Scheme 3.1 is uniquely solvable and satisfies the following properties unconditionally:

• Positivity preserving: ρn+1 > 0.
• Mass conserving: 

∫
	

ρn+1dx = ∫
	

ρ0dx.
• Given rn ≥ 0, we have rn+1 ≥ 0, ξn+1 ≥ 0, and the Scheme 3.1 is unconditionally stable in the sense that the modified energy 

satisfies

rn+1 − rn = −δtγ n+1G(ρn+1, cn+1, un+1) ≤ 0. (3.31)

Moreover,

rn+1 ≤ E(ρn+1, cn+1, un+1), ∀n. (3.32)
8
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Fig. 5. Example 4: Evolutions of max ρ , min ρ , mass of ρ , and total energy Etot with initial data (4.4).

• There exists a constant Mk > 0 such that∫
	

(
1

2
|∇cn|2 + α

4
(cn)2

)
dx ≤ M2

k , ∀n. (3.33)

Proof. From (3.18), we have ρ̄n+1 > 0.
Based on (3.30) and the definition of coefficients αk and Ak , we have∫

	

Ak(ρ
n)dx = αk

∫
	

ρ0dx. (3.34)

Followed by (3.34) and (3.19), we obtain

λn+1
∫
	

ρ̄n+1dx =
∫
	

ρ0dx. (3.35)

Thanks to ρ̄n+1 > 0, we know that λn+1 > 0. Then (3.20) implies ρn+1 > 0. Therefore, we derive that 
∫
	

ρn+1dx = ∫
	

ρ0dx.
Given rn ≥ 0, it follows from (3.23) that

r̃n+1 = rn

1 + δt G(ρn+1,cn+1,un+1)

E(ρn+1,cn+1,un+1)

≥ 0 (3.36)

since that G(ρn+1, cn+1, un+1) ≥ 0 and E(ρn+1, cn+1, un+1) > 0. Then (3.24) implies ξn+1 ≥ 0 and (3.26) implies rn+1 ≥ 0. 
Additionally, we get (3.31) by combining (3.23) and (3.28).

In Cases 1-3, we have ζn+1
0 = 0 so rn+1 = E(ρn+1, cn+1, un+1). In Case 4, due to ζn+1

0 = 1 −
δtr̃n+1G(ρn+1,cn+1,un+1)

E(ρn+1,cn+1,un+1)(E(ρn+1,cn+1,un+1)−r̃n+1)
∈ [0, 1] and ̃rn+1 < E(ρn+1, cn+1, un+1), we know that rn+1 ≤ E(ρn+1, cn+1, un+1) from 

(3.26).
9
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Fig. 6. Example 4: Snapshots of the cell density ρ for the chemotactic aggregation with a saturation concentration.

Fig. 7. Example 5: Evolutions of max ρ of the PKS system and PKS-NS system with initial data (4.5).

We denote M0 := r0 = E(ρ(·, 0), c(·, 0), u(·, 0)) and have ̃rn+1 ≤ M0 (∀n) from (3.31) and (3.36). Setting

Etot(ρ
n, cn, un) =

∫
	

(
f (ρn) − ρncn+α

4
(cn)2 + 1

2
|un|2

)
dx +

∫
	

(
1

2
|∇cn|2+α

4
(cn)2

)
dx

:= E1(ρ
n, cn, un) + E0(cn),

since f (ρn) = ρn log(ρn) − ρn is strictly convex and E1(ρ
n, cn, un) is bounded from below, there exists C0 > 0 such that 

E1(ρ
n, cn, un) + C0 > 1 for all ρn and cn . Then we derive from (3.24) that
10
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Fig. 8. Example 5: Evolutions of min ρ , mass of ρ , total energy Etot , and kinetic energy of the PKS-NS system with initial data (4.5).

| ξn+1 |= r̃n+1

E(ρn+1, cn+1, un+1)
≤ M0

E0(cn+1) + 1
. (3.37)

For ηn+1
k = 1 − (

1 − ξn+1
)k

, there exists a polynomial Pk−1 of k − 1 and a constant Mk > 0 such that

| ηn+1
k |=| ξn+1 Pk−1(ξ

n+1) |≤ Mk

E0(cn+1) + 1
. (3.38)

Indeed, 
√

A ≤ A + 1 for all A ≥ 0. Therefore, we derive from (3.25) that

√
E0(cn+1) =| ηn+1

k |
√

E0(cn+1) ≤ Mk.

That is,∫
	

(
1

2
|∇cn|2 + α

4
(cn)2

)
dx ≤ M2

k , ∀n,

which completes the proof. �
Remark 3.2. Note that in most cases, we can choose ζn+1

0 = 0 which implies that rn+1 = E(ρn+1, cn+1, un+1). Then, we can 
derive from (3.31) and (3.32) that

E(ρn+1, cn+1, un+1) = rn+1 ≤ rn ≤ E(ρn, cn, un),

i.e., the original energy is also dissipative when ζn+1
0 = 0.

We note that the above result carries over to fully discretized versions of Scheme 3.1 using Galerkin-type spatial dis-
cretizations with consistent discrete integration by parts.
11



Fig. 9. Example 5: Snapshots of the cell density ρ , fluid velocity u, and vorticity contours of the PKS-NS system with initial data (4.5).

4. Numerical experiments

In this section, we first carry out some numerical experiments to confirm the accuracy of our fully decoupled R-GSAV 
schemes for the PKS-NS system (2.1)-(2.5). Then, we provide two numerical examples to simulate the chemotactic non-
aggregation and aggregation with a saturation concentration, as well as to validate the properties of bound preserving, 
energy dissipation and mass conservation. Finally, we present a series of numerical examples to investigate chemotactic 
blow-up of the PKS-NS system, and to validate the property of positivity preserving.

In all computations below, we use Fourier spectral method [3] in the directions with periodic boundary conditions, and 
the Legendre-Galerkin method [38] in the directions with non-periodic boundary conditions.

4.1. Accuracy test

We start by checking the accuracy of Scheme 3.1 (k = 1, 2, 3) for the PKS-NS system subject to different coefficients and 
boundary conditions.

Example 1. The PKS-NS system with η(ρ) = ρ , α = 0 and ν = 1 in 	 = (0, 2) × (0, 2) with periodic boundary conditions. We set 
exact solutions as follows
X. Huang and J. Shen Journal of Computational Physics 480 (2023) 112034
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Fig. 10. Example 5: Vector plots of the fluid flux ρu, chemotactic flux −∇ρ + ρ∇c and total flux ρu − ∇ρ + ρ∇c of the PKS-NS system with initial data 
(4.5).

Fig. 11. Example 6: Evolutions of max ρ of the PKS system and PKS-NS system with initial data (4.6).
13
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Fig. 12. Example 6: Evolutions of min ρ , mass of ρ , total energy Etot , and kinetic energy of the PKS-NS system with initial data (4.6).

Fig. 13. Example 7: Evolutions of max ρ of the PKS system and PKS-NS system with initial data (4.7).

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

u1 = π exp(sin(πx))exp(sin(π y)) cos(π y) sin2(t),

u2 = −π exp(sin(πx))exp(sin(π y)) cos(πx) sin2(t),

p = exp(cos(πx) sin(π y)) sin2(t),

ρ = c = sin(πx) sin(π y) sin(t) + 1.1.

(4.1)

We apply Fourier-spectral method in space with 32 × 32 modes so that the spatial discretization error is negligible with 
respect to the time discretization error. The convergence rates in the L2-norm for the PKS-NS system at T = 1 by using first-
to third-order schemes are shown in Fig. 1, which are consistent with orders of these schemes.
14
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Fig. 14. Example 7: Snapshots of the cell density ρ , fluid velocity u, and vorticity contours of the PKS-NS system with initial data (4.7).

Example 2. The PKS-NS system with η(ρ) = ρ(1 − ρ
M ), M = 3, α = 1 and ν = 0.01 in 	 = (−1, 1) × (−1, 1) with non-periodic 

boundary conditions (2.6). We change exact solutions as⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

u1 = π sin(πx)2 sin(2π y) sin(t),

u2 = −π sin(2πx) sin(π y)2 sin(t),

p = cos(πx) sin(π y) sin(t),

ρ = c = cos(πx) cos(π y) sin(t) + 1.1.

(4.2)

We use the Legendre Galerkin method in space with 60 × 60 modes. The convergence rates with k = 1, 2, 3 in the L2-norm 
for the PKS-NS system at T = 1 are plotted in Fig. 2. We observe that all the convergence rates are consistent with the order 
of the corresponding scheme.

4.2. Simulations of the chemotactic non-aggregation and aggregation

To validate the property of bound preserving for the cell density, we fix η(ρ) = ρ(1 − ρ
M ) with a saturation concentration 

M = 50 for the PKS-NS system (2.1)-(2.5) in a bounded domain 	 = (0, 2π) × (0, 2π) with periodic boundary conditions. 
Besides, the initial fluid velocity u0 = 0, the viscosity coefficient ν = 1 and the consumption rate α = 0 unless otherwise 
specified. We use the Fourier-spectral method in space with 128 × 128 modes, and first order Scheme 3.1 (k = 1) with time 
step δt = 10−3 for simulations in this subsection.
15
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Fig. 15. Example 7: Vector plots of the fluid flux ρu, chemotactic flux −∇ρ + ρ∇c and total flux ρu − ∇ρ + ρ∇c of the PKS-NS system with initial data 
(4.7).

Example 3. Chemotactic non-aggregation. Initial conditions are given by

ρ(x, y,0) = 2 exp
( − 1

4

(
(x − π)2 + (y − π)2)). (4.3)

The simulation is carried out until the system reaches the steady state at t = 8. Fig. 3 displays evolutions of max ρ , min ρ , 
mass of ρ , and total energy Etot . We observe that ρ remains in the interval (0, M), the total energy is dissipative, and the 
mass of ρ is preserved at all time. Several snapshots of the cell density ρ are shown in Fig. 4. We observe that in this case 
there is no chemotactic accumulation for cells.

Example 4. Chemotactic aggregation with a saturation concentration. We change the initial conditions to

ρ(x, y,0) = 4 exp
( − 1

4

(
(x − π)2 + (y − π)2)), (4.4)

with a larger total mass of the cell density so that chemotactic accumulations could occur. Evolutions of max ρ , min ρ , 
mass of ρ and total energy Etot are presented in Fig. 5. We observe that ρ still remains in the range of (0, M), the total 
energy is dissipative, and the mass of ρ is conserved. Snapshots of the cells density are shown in Fig. 6 which indicates 
that the cells accumulate until the density reaches the largest concentration M = 50.
16
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Fig. 16. Example 8: Evolutions of max ρ and kinetic energy of the PKS-NS system with different ν and u0.

4.3. Investigation of the blow-up phenomenon

We consider the PKS-NS system (2.1)-(2.6) with η(ρ) = ρ , the viscosity coefficient is ν = 1 unless otherwise specified.
We start with the initial fluid velocity u0 = 0, and compare the results obtained by the PKS-NS system with those by the 

PKS system (u ≡ 0) to explore the influence of the fluid flow on the chemotactic blow-up.

Example 5. Global existence with Mρ ≈ 24.67 < 8π . According to the existence condition of the PKS-NS system in [14], i.e., 
the total mass of cells Mρ is strictly less than 8π , we set the initial cell density as

ρ(x, y,0) = 50 exp
( − 5

(
(x − 0.5)2 + (y − 0.5)2)), (4.5)

where the total mass of cells Mρ ≈ 24.67 in 	 = (0, 1) × (0, 1). We apply the Fourier-spectral method in space with 
128 × 128 modes, and use the first order Scheme 3.1 (k = 1) with δt = 10−3 to solve the PKS-NS system. Maxima of ρ
of the PKS system and PKS-NS system are shown in Fig. 7. It is clear that the two maxima of ρ gradually decrease and 
reach their steady states almost simultaneously. Fig. 8 displays evolutions of min ρ , mass of ρ , total energy Etot , and kinetic 
energy of the PKS-NS system. We observe that the value of ρ remains non-negative, the mass of ρ is preserved, and the total 
17
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Fig. 17. Example 8: The cell density ρ , fluid velocity u, and vorticity contours of the PKS-NS system with different ν and u0 at t = 0.176.

energy is dissipative, the kinetic energy fluctuates for a short period of time initially but quickly becomes stable. Snapshots 
of the cell density ρ , fluid velocity u and vorticity contours are shown in Fig. 9, and the fluid flux ρu, chemotactic flux 
−∇ρ + ρ∇c and total flux ρu − ∇ρ + ρ∇c are shown in Fig. 10.

Example 6. Blow-up with Mρ ≈ 27.23 > 8π . In order to explore the chemotactic blow-up, we increase the total mass of cell 
density to Mρ ≈ 27.23 by changing the initial cell density as

ρ(x, y,0) = 130 exp
( − 15

(
x2 + y2)) (4.6)

in the domain 	 = (−1, 1) × (−1, 1). To ensure the reliability of the numerical results, we refine the mesh with 500 × 500
modes. We use the first order Scheme 3.1 (k = 1) with δt = 10−5.

We observe in Fig. 11 that maxima of ρ of the PKS-NS system and PKS system both increase continuously, and eventually 
blow up in finite time. The blow-up process of the PKS-NS system is very similar to that of the PKS system in the sense 
that evolutions of their cell density maxima are similar. As pointed in [35], “in the radially symmetric class, the PKS-NS 
system is decoupled which can be seen from the dynamics of the second moment and PKS system itself can develop finite 
time singularities in the case Mρ > 8π ”. We recall that the numerical result in [33] indicated that solutions to a PKS-Stokes 
model did not blow-up with initial mass Mρ ≈ 27.

Moreover, we observe in Fig. 12 that the positivity of ρ is preserved, the mass of ρ is conserved, and the total energy is 
dissipative in the whole process, the kinetic energy fluctuates greatly but at very small magnitude.
18
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Fig. 18. Example 9: Evolutions of max ρ , min ρ , total energy Etot , and kinetic energy of the PKS-NS system with η(ρ) = ρ
1+κρ .

Example 7. Blow-up with Mρ ≈ 39.96 > 8π . Next we study the blow-up with a larger Mρ by setting the initial cell density 
to

ρ(x, y,0) = 81 exp
( − 5

(
(x − 0.5)2 + (y − 0.5)2)) (4.7)

in the domain 	 = (0, 1) × (0, 1). We use the Fourier-spectral method in space with 400 × 400 modes, and the third order 
Scheme 3.1 (k = 3) with δt = 10−5. Fig. 13 indicates that, for both PKS system and PKS-NS system, the magnitude of max 
ρ increases rapidly after an initial time interval, and blows up in finite time. Fig. 14 (a)-(c) reveal that the cell density ρ
accumulates toward the center as time increases. Distributions of fluid velocity u, and vorticity contours are displayed in 
Fig. 14 (d)-(f) and (g)-(i), and the fluid flux ρu, chemotactic flux −∇ρ + ρ∇c and total flux ρu − ∇ρ + ρ∇c are shown in 
Fig. 15.

Example 8. The influence of the viscosity and initial fluid velocity on the blow-up. First, we compare the results with viscosity 
coefficient ν = 1, 10−4, but keep other parameters the same as those in Example 7. Fig. 16 shows evolutions of max ρ
and kinetic energy of the PKS-NS system with different parameters. We find that when the viscosity coefficient of the fluid 
is changed from ν = 1 to ν = 10−4, the kinetic energy has increased and its evolution form has changed. But there is no 
significant effect on blow-up by the change of viscosity. Fig. 17 displays the cell density ρ , fluid velocity u, and vorticity 
contours of the PKS-NS system with different parameters at t = 0.176. We observe that the small viscosity increases the 
fluid velocity and makes the fluid more chaos, but has little effect on the chemotactic blow-up.

Next, we increase the initial fluid velocity to u0 = (5; 5), but keep other conditions the same as those in Example 7. 
We observe in Fig. 16 that when the initial fluid velocity is changed from u0 = (0; 0) to u0 = (5; 5), the kinetic energy has 
increased significantly, while the evolution form has hardly changed. In addition, the evolution of max ρ also has hardly 
changed. However, the concentration point of the cell density shifts from the center of the area due to the given initial fluid 
velocity.

Example 9. Prevention of blow-up with η(ρ) = ρ
1+κρ . In this example, we investigate whether a concentration-dependent 

mobility would prevent blow-up. We set η(ρ) = ρ and κ = 0.01 for the PKS-NS system, but keep other parameters 
1+κρ
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Fig. 19. Example 9: Snapshots of the cell density ρ , fluid velocity u, and vorticity contours of the PKS-NS system with η(ρ) = ρ
1+κρ .

the same as those in Example 7. We use the Fourier-spectral method in space with 300 × 300 modes, and the first order 
Scheme 3.1 (k = 1) with δt = 10−4 to solve this PKS-NS system.

Evolutions of max ρ , min ρ , total energy Etot and kinetic energy are presented in Fig. 18. It indicates that the maximum 
of ρ keeps decreasing until it reaches a steady state. Additionally, the positivity of ρ is preserved, and the total energy is 
dissipative. Fig. 19 shows snapshots of the cell density ρ , fluid velocity u, and vorticity contours. We observe that there is no 
chemotactic accumulation for cells. In other words, the blow-up in Example 7 is prevented with a concentration-dependent 
mobility.

5. Concluding remarks

We developed in this paper a class of efficient and accurate semi-discrete-in-time schemes for the PKS-NS system. These 
schemes enjoy the following remarkable features:

• bound/positivity preserving for the cell density through a suitable function transform;
• fully decoupled and require only solving a sequence of linear equations with constant coefficients;
• unconditional energy dissipation with a modified energy and mass conservation;
• can be higher-order accurate; and
• can be combined with any consist Galerkin-type discretization in space.
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We carried out a host of numerical tests to validate our schemes, and simulated the chemotactic non-aggregation and 
aggregation with a saturation concentration, and investigated blow-up phenomena of the PKS-NS system. Our numerical 
tests indicate that solutions to the PKS-NS system globally exist when the total mass of cells Mρ is strictly less than 8π , 
and can blow up in finite time when Mρ > 8π . Besides, the blow-up phenomenon is very similar to that of the PKS system 
without flow in the sense that evolutions of their cell density maxima are similar. On the other hand, the blow-up of the 
PKS-NS system can be prevented with a concentration-dependent mobility function η(ρ). Our numerical results also indicate 
that smaller viscosity and larger initial velocity did not have much effect on the blow-up, at least for the parameter ranges 
that we simulated. However, whether the blow-up would be suppressed with even stronger fluid flow requires further 
investigation.
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