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STABILITY AND ERROR ANALYSIS OF A CLASS OF
HIGH-ORDER IMEX SCHEMES FOR NAVIER-STOKES
EQUATIONS WITH PERIODIC BOUNDARY CONDITIONS*
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Abstract. We construct high-order semidiscrete-in-time, and fully discrete (with Fourier—
Galerkin in space) schemes for the incompressible Navier—-Stokes equations with periodic boundary
conditions and carry out corresponding error analysis. The schemes are of implicit-explicit type
based on a scalar auxiliary variable approach. It is shown that numerical solutions of these schemes
are uniformly bounded without any restriction on time step size. These uniform bounds enable us
to carry out a rigorous error analysis for the schemes up to fifth-order in a unified form and derive
global error estimates in [°°(0, T; H')N12(0, T; H?) in the two-dimensional case as well as local error
estimates in [°°(0,T; H') N 12(0,T; H?) in the three-dimensional case. We also present numerical
results confirming our theoretical convergence rates and demonstrating advantages of higher-order
schemes for flows with complex structures in the double shear layer problem.
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1. Introduction. Numerical approximation of the Navier—Stokes equations has
been a subject of intensive study for many decades and continues to attract con-
siderable attention, as it plays a fundamental role in computational fluid dynamics.
Most of the work is concerned with the Navier—Stokes equations with nonperiodic
boundary conditions, as is the case with most applications. An enormous amount
of work has been devoted to constructing efficient and stable numerical algorithms
for solving the incompressible Navier-Stokes equations with nonperiodic boundary
conditions; see [14, 43, 9, 15, 18, 32] and the references therein. In particular, the
papers [3, 22, 12, 17, 20, 8], among others, are concerned with the error estimates for
semidiscrete-in-time or fully discrete schemes.

We consider in this paper numerical approximation of the incompressible Navier—
Stokes equations in primitive formulation:

(1.1a) % —vAu+ (u-V)u+Vp=0,
(1.1b) V-u=0,

with a suitable initial condition u|;—o = u¢ in a rectangular domain Q C R? (d = 2, 3)
with periodic boundary conditions. The unknowns are velocity u and the pressure p,
which is assumed to have zero mean for uniqueness, and v > 0 is the viscosity. To
simplify the presentation, we have set the external force to be zero. But our schemes
and analytical results can be naturally extended to the case with a nonzero external
force.
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The incompressible Navier—Stokes equations with periodic boundary conditions
retain the essential mathematical properties/difficulties of the system with nonpe-
riodic boundary conditions but are amenable to very efficient numerical algorithms
using the Fourier spectral method and are particularly useful in the study of homo-
geneous turbulence [31, 34, 29].

There exists also a significant number of works devoted to the numerical analysis
for Navier—Stokes equations with periodic boundary conditions. For example, in [19],
Hald proved the convergence of semidiscrete Fourier—Galerkin methods in two and
three dimensions; in [11], E used semigroup theory to establish convergence and er-
ror estimates of the semidiscrete Fourier—Galerkin and Fourier-collocation methods in
various energy norms and LP-norms; in [45], Wang proved uniform bounds and conver-
gence of long time statistics for a semidiscrete second-order implicit-explicit (IMEX)
scheme for the two-dimensional Navier—Stokes equations with periodic boundary con-
ditions in vorticity-stream function formulation (see also related work in [16, 44]);
in [7], Cheng and Wang established uniform bounds for a semidiscrete higher-order
(up to fourth-order) IMEX scheme for the two-dimensional Navier-Stokes equations
with periodic boundary conditions in vorticity-stream function formulation; in [21],
Heister, Olshanskii, and Rebholz proved uniform bounds for a fully discrete finite-
element and second-order IMEX scheme for the two-dimensional Navier—Stokes equa-
tions with periodic boundary conditions in vorticity-velocity formulation. Note that
the uniform bounds for semidiscrete IMEX schemes obtained in the above references
are for two-dimensional cases only and require that the time step be sufficiently small.

It appears that, except some recently constructed schemes based on the scalar
auxiliary variable (SAV) approach [27, 25], all other IMEX type schemes (i.e., the
nonlinear term is treated explicitly) for Navier—Stokes equations require the time
step to be sufficiently small to have a bounded numerical solution. Furthermore, to
the best of our knowledge, there is no error analysis for any IMEX scheme for the
three-dimensional Navier—Stokes equations, and no error estimate is available for any
higher-order (> 3) IMEX scheme. The main difficulties in these cases are (i) lack
of uniform bounds for the numerical solution and (ii) the explicit treatment of the
nonlinear term.

The original SAV approach proposed in [39, 40] is a powerful approach to con-
struct efficient time discretization schemes for gradient flows and has been applied
to various problems (see, for instance, [36, 41] and the references therein). Numer-
ous works have been devoted to the error analysis of SAV schemes, e.g., rigorous
error analysis of the semidiscretized first-order original SAV schemes for L? and H~!
gradient flows with minimum assumptions in [38] (cf. [26] and [6] for the fully dis-
cretized SAV schemes with finite differences and finite elements), error analysis for
a related semidiscretized gPAV scheme for the Cahn-Hilliard equation in [33], and
error analysis for the SAV approach coupled with extrapolated and linearized Runge—
Kutta methods in [2]. Recently, a new SAV approach which can be used for general
dissipative systems was introduced in [23].

Inspired by the approach in [23], we construct in this paper semidiscrete and fully
discrete with Fourier—Galerkin in space SAV IMEX schemes for the Navier—Stokes
equations, and carry out a unified stability and error analysis. The main advantages,
compared with other SAV approaches proposed in [27, 25] for Navier—Stokes equations
is that our schemes are linear and decoupled and can be high-order. Moreover, in the
two-dimensional case, we use a stronger energy dissipation law (2.6), which is true only
for the two-dimensional Navier—Stokes equations with periodic boundary conditions,
that leads to a uniform bound for the numerical solution in [°°(0, T'; H'), as opposed
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to 1°°(0,T; L?) in the three-dimensional case. Our main contributions include the
following:
e Our semidiscrete and fully discrete schemes of arbitrary order in time are
unconditionally stable without any restriction on time step size.
e Global error estimates in [*°(0,7; H') N1%(0,T; H?) up to fifth-order in time
are established for the two-dimensional case.
e Local error estimates in [°°(0, Ty; H') N 12(0, Ty; H?) (with a T, < T) up to
fifth-order in time are established for the three-dimensional case.

The rest of the paper is organized as follows. In the next section, we provide some
preliminaries to be used in what follows. In section 3, we describe our semidiscrete
and fully discrete with Fourier—Galerkin SAV schemes for the Navier—Stokes equations
with periodic boundary condition, prove their unconditionally stability, and provide
some numerical results to demonstrate the convergence rates and validate the robust-
ness of our schemes. In section 4, we present a detailed error analysis for the kth-order
schemes (k = 1,2,3,4,5) in a unified form. Some concluding remarks are given in the
last section.

2. Preliminaries. We first introduce some notation. We denote by (-,-) and
|| - || the inner product and the norm in L?(2) and denote

HP(Q):{u](jZO,l,...,k)ELZ(Q).UJ(]—O,I,...,k—l) periodic}

with norm || - [|x. For noninteger s > 0, H,(f2) and the corresponding norm || - |[s are
defined by space interpolation [1]. In particular, we set HJ(€2) = L*(Q2). We denote
L3(Q) = {v € L*(Q) : [, vdx = 0}.

Letting V be a Banach space, we shall also use the standard notation L?(0,T;V)
and C([0,T];V). To simplify the notation, we often omit the spatial dependence
for the exact solution w, i.e., u(x,t) is often denoted by wu(t). We shall use boldface
letters to denote vectors and vector spaces, and we use C to denote a generic positive
constant independent of the discretization parameters.

We now define the following spaces, which are particularly used for Navier—Stokes
equations:

H={veLjQ):V-v=0}, V={veHyQ):V- -v=0}

Letting v € L3(2), we define w := A™1v as the solution of

Aw=v x€(); w periodic with zero mean.

Note that in the periodic case, we can define the operators V, V- and A~! in the
Fourier space by expanding functions and their derivatives in Fourier series, and one
can easily show that these operators commute with each other.

We define a linear operator A in LZ(Q) by

(2.1) Av:=V xVxAlv VYuecL39).
Since

[Aw|? =V x V x w|]* + |[VV - w|* Vw € H;(Q),
we derive immediately from the above that

(2.2) [Av|* = [AAT D|? — |VV - A7 l* < |[o]* Vo € L§(Q).
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Next, we define the trilinear form b(-,-,-) and ba(-,-,-) by
b(u,v,w) = /(u -V)v - wdx, ba(u,v,w) = / A((u-V)v) - wdez.
Q Q

In particular, we have
b(u, v, w) = —b(u, w,v) Vu € H, v,w € H (1),
which implies
(2.3) b(u,v,v) =0Vu € H, v € Hy(Q).
In the two-dimensional periodic case, we have also (cf. page 19, Lemma 3.1, in [42]):
(2.4) b(u,u, Au) =0 Vu € H.().

Taking the inner product of (1.1) with u, thanks to (2.3), we find that the solution
of the Navier-Stokes equations (1.1) satisfies the energy dissipation law

1d 2 9 B
(25) Sl = —v|Vul?  (@=2,3)

On the other hand, in the two-dimensional periodic case, taking the inner product of
(1.1) with —Aw, thanks to (2.4), we derive another energy dissipation law [42],

Ld

(2.6) 57

IVal? = —vAuf®  (@=2).

Using (2.2), the Holder inequality, and the Sobolev inequality, we have [42]

2 1/2
27)  blu,v,w), ba(u,v,w) < clluly* a2 vy v wl,  d=2;

(28)  b(u,0,w), ba(u,0,w) < cllul[|Vollysfw], d=3.

1/2 1/2
1

We also use frequently the following inequalities [42]:

cllulli|lvlliflw];
cllull2f[vfloflwll1;

(2.9) b(u,v,w), ba(u,v,w) < ¢ cllulzlv]1]wlo; d <4.
cllullf[vf2]lwllo;
cllullollvll2llw;

Note that (2.4), (2.6), and (2.7) enable us to obtain global error estimates in the
two-dimensional case.

3. The SAV schemes and stability results. In this section, we construct
semidiscrete and fully discrete SAV schemes for the incompressible Navier—Stokes
equations and establish stability results for both semidiscrete and fully discrete
schemes. More precisely, we shall prove the uniform L? bound for the SAV scheme
based on the dissipation law (2.5) in the three-dimensional case and prove a uni-
form H! bound for the SAV scheme based on the dissipation law (2.6) in the two-
dimensional case.
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3.1. The SAV schemes. Following the ideas in [23] for the general dissipative
systems, we construct below unconditionally energy stable schemes for (1.1).

For Navier—Stokes equations with periodic boundary conditions, we can explicitly
eliminate the pressure from (1.1). Indeed, taking the divergence on both sides of (1.1),
we find

(3.1) —Ap=V-(u-Vu),
from which we derive
Vp=VA'Ap=-VA~'V.(u-Vu)
(3.2) =-VV- A (u-Vu) = —(A+V x Vx)A  (u- Vu)
=—u-Vu—-VxVxA ' (u Vu)=—u-Vu—Au-Vu),
where A is defined in (2.1). Hence, (1.1) is equivalent to (3.1) and

(3.3) 88—1: —vAu — A(u-Vu) =0.

In order to apply the SAV approach, we introduce a SAV, r(t) = E(u(t)) + 1,
and expand (3.3) as

ou

(3.4a) i vAu — A(u Vau) =0,
(3.4b) e _ { E(u(t 57T IIAuH2 d=2,
| vl Val?, d=3,
where
HVul?, d=2
3.5 FE — 2 ’ )
(3.5) (u) {%HuHQ’ d=3.

We construct below semidiscrete and fully discrete schemes for the expanded system
(3.4).

3.1.1. Semidiscrete SAV schemes. We consider first the time discretization
of (3.4) based on the IMEX BDF-k formulae in the following unified form.
Given ", w/ (j =n,n—1,...,n —k + 1), we compute @" ! yntl pntl entl

and u™*! consecutively by
n+1 A ~—n
(368,) apu ~ k(u ) —_ A"t — A(Bk(u”) . VBk(’LLn)) =0,
rrtl n+1)2 —
(3 Gb) l(rn-‘rl _ ,rn) — VE(u’H’l)—]—l HAU * H d - 23
: ot —v— | vant2, d—3:
VE@TOFI =%
n+1
3.6 LA A
(3.6¢) ¢ E(a"t1) 4+ 1’
(3.6d) uw"th = et with gttt =1 — (1 - €Tk

Whenever pressure is needed, it can be computed from

(3.7) Ap"tt = -V (u" T V.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 05/22/22 to 128.210.107.25 . Redistribution subject to SIAM license or copyright; see https.//epubs.siam.org/terms-privacy

HIGH-ORDER SCHEMES AND ERROR ANALYSIS FOR NSEs 2931

In the above, ay, the operators Ay and By (k =1,2,3,4,5) are given by
first-order,

(38) a1 = 1, Al(ﬁn) = ﬁn, Bl(u") = u";
second-order,
(39) Qo =

third-order,

11 3 1

(3.10) az =, As(@") = 3a”—§a”—1+§u"—2, Bs(u™) = 3u"—3u" "t fu" "2

fourth-order,

25 4 1
(3.11) g = 5, Ag(") =4a" — 3u" + ga”” - Za"*,
By(u") = 4u™ — 6u" " +4u""? — w3,
fifth-order,
137 10 ) 1
= A-(a™ :5—n_5—n—1 “Van—=2 _ Y -n-3 7—n—4’

(312) 5T go M@ =sut-sut -

B5(Un) _ 5un _ 1Oun—1 4 10un—2 _ 5un—3 4 un—4.

Several remarks are in order:

e We observe from (3.6b) that r"*! is a first-order approximation to
E(u(-,tp+1)) + 1, which implies that £"*! is a first-order approximation to 1.

e (3.6a) is a kth-order approximation to (3.3) with kth-order BDF for the linear
terms and kth-order Adams—Bashforth extrapolation for the nonlinear terms.
Hence, u"*! is a kth-order approximation to w(-,t"*1), which, along with
(3.6b) and (3.6a), implies that w"*! and p"*! are kth-order approximations
for w(-,t"*1) and p(-,t"+1).

e The main computational cost is to solve the Poisson type equation (3.6a).

3.1.2. Fully discrete schemes with Fourier spectral method in space.
We now consider = [0,L,) x [0, L,) x [0, L.) with periodic boundary conditions.
We partition the domain Q = (0, L) x (0,L,) x (0, L.) uniformly with size h, =
L,/Ny,hy = Ly/Ny,h, = L,/N,, and Nz, Ny, Nz are positive even integers. Then
the Fourier approximation space can be defined as

) ) X N, . N, N,
SN = span eliTeimypinz . 1T < j<=E -1, -2 <k
2 2 2
< &_17_&§1S&_1 \R7
2 2 2

where i = v/—1, {; = 2nj/Ly, ny = 2wk/L,, and 7; = 2wl/L,. Then, any function
u(x,y,z) € L?(2) can be approximated by

u(gjvy?z) ~ ’LLN(:I,y7Z) = ﬁj,k,leigjzeinkyeiﬂza
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with the Fourier coefficients defined as
Uj k) = L/ ue & FMYETE) g
19 Jo

In the following, we fix N, = N, = N, = N for simplicity.
Define the L2-orthogonal projection operator Iy : L?(Q) — Sy by

(Myu—u,¥) =0 V¥eSy, wucL*Q);

then we have the following approximation results (cf. [24]).

LEMMA 3.1. For any 0 < k < m, there exists a constant C such that
(3.13) ITyu — ullp < Cllul|mN¥™ Vu € H" ().

We are now ready to describe our fully discrete schemes.
Given 7" and ul €Sy for j = n,...,n—k+1, we compute @, 71 phtt entl

and u’]i,ﬂ consecutively by
—n—+1 —_A ~—n
(3.14a) <akuN 5 k(uN),vN) + V(VﬁX,H,VvN)
- (A(Bk(u’](;) . VBk(u}{;)),vN) =0 Yoy € SN,
n+1
—v——r—[lAayt? d=2

I S VN,

ot —VWHVQ%HHZ, d=3;

n+1

3.14c bl _ T
(3.14d) ui™ = gp et with gptt =1 (1 - ¢MThHE,

where oy, and the operators Ay, and By (k =1,2,3,4,5) are given in (3.8)—(3.12).

Note that Fourier approximation of Poisson type equations leads to diagonal
matrix in the frequency space, so the above scheme can be efficiently implemented as
follows:

(i) Compute ﬁ"N+1 from (3.14a), which is a Poisson type equation.

(ii) With @™ known, determine r"*1 explicitly from (3.14b).

(iii) Compute £"+1, n ™t and w™ from (3.14c) and (3.14d), goto the next step.
Finally, whenever pressure is needed, it can be computed from

(8.15) Apy = TN - (! ugt).

3.2. Stability results. We have the following results concerning the stability
of the above schemes.

THEOREM 3.2. Let ug € VNH? if d=2 and ug € V if d = 3. Let {r¥, &, af,
uk.} be the solution of the fully discrete scheme (3.14). Then, given r™ > 0, we have

Tl >0, v >0, and for any k, the scheme (3.14) is unconditionally energy stable
in the sense that

—Stvem | A2 <o,

n+l _ .n _
(316) T T { —5tV§”+1||Vﬁ?\',+1H2 S 0’
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Furthermore, there exists My > 0 such that

IVuy™|* < Mp, d=2,

1
(3:17) e <Mz d=3,

1 +1

The same results hold for the semidiscrete schemes (3.6) with @' and ui™ in

(3.16) and (3.17) replaced by u™*' and u™*!.

Proof. Since the proofs for the fully discrete scheme (3.14) and for the semidiscrete
scheme (3.6) are essentially the same, we shall give only the proof for the fully discrete
scheme (3.14) below.

Assume 7" > 0. Since E(a’y™) > 0, it follows from (3.14b) that

oodsapE 20 d=2
7"n+1 _ E(ﬁ}i]+1)+1
Ivagttiz =
1+6tvm
Then we derive from (3.14c) that £ > 0 and obtain (3.16).
Denote M := 7% = E[u(-,0)]; then (3.16) implies 7" < M Vn. It then follows

from (3.14c) that

M
,r.nJrl 7V73+1 ERY d:2,
(3.18) |€”+1| = < { I UQIYV[ 12+ -
E( n+ )+ 1 TRaE=h d=3.

Since npt! =1 — (1 — &1k we have npt! = €"F1P,_;(¢"*1) with P,_; being a
polynomial of degree k — 1. Then, we derive from (3.18) that there exists My > 0
such that

| = € P (f"+1>S{ e dd_327
Tan T2’ =
which, along with uﬁ,ﬂ = nZ+1ﬁ71§[+17 implies
IV 2 = IV I < (pogtsg) IVa 2 < MR a=2
o = O R < (i) IR 2 < M2 d =3 .

3.3. Numerical examples. Before we start the error analysis, we provide nu-
merical examples to demonstrate the convergence rates and compare the performance
of the schemes with different orders on a classical benchmark problem.

Ezample 1: Convergence test. Consider the Navier—Stokes equations (1.1) with
an external forcing f in Q = (0, 2) x (0,2) with periodic boundary condition such that
the exact solution is given by

u1(z,y) = mexp(sin(rz)) exp(sin(ry)) cos(my) sin?(t);
us(z,y) = —mexp(sin(mz)) exp(sin(ry)) cos(mz) sin®(t);
p(z,y) = exp(cos(mz) sin(ry)) sin’(t).

We set v = 1 in (1.1) and use the Fourier spectral method with 40 x 40 modes for
space discretization so that the spatial discretization error is negligible with respect
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—6—velocity
—H— pressure

1st reference

g —6— velocity
—— pressure

2nd reference

H'-error

10° 107°
10° 10 10° 10% 10° 10 10° 10”

dt dt
(a) BDF1 errors of velocity and pressure (b) BDF2 errors of velocity and pressure
10” T T 10°
—6—velocity —6—velocity
—k—pressure | —h—pressure |
1071 3rd reference 107 4th reference p
1071 10t r
;_ =
g g
O 10t r O 10°
T T
10° 10°
108 1070+
1070 10712
107 10° 102 107 107 10° 107 107
dt dt
(c) BDF3 errors of velocity and pressure (d) BDF4 errors of velocity and pressure

Fi1G. 1. Convergence test for the Navier—Stokes equations using SAV/BDFk (k =1,2,3,4).

to the time discretization error. In Figure 1, we plot the convergence rate of the H!
error for the velocity and the pressure at T' = 1 by using first- to fourth-order schemes.
We observe the expected convergence rates for both the velocity and the pressure.

Ezample 2: Double shear layer problem [4, 5, 10]. Consider the Navier—Stokes
equations (1.1) in = (0, 1) x (0, 1) with periodic boundary conditions and the initial
condition given by

tanh(p(y — 0.25)), y < 0.5,

) 70 =
wu(@y,0) {tanh(p(0.75 —v)), y > 0.5,

uz(x,y,0) = dsin(2rz),

where p determines the slope of the shear layer and ¢ represents the size of the
perturbation. In our simulations, we fix 6 = 0.05.

We first test a thick layer problem by choosing p = 30 and v = 0.0001. We use
the Fourier spectral method with 128 x 128 modes for the space discretization, and
set 8t = 8 x 10™%. In Figure 2, we show the vorticity contours at T = 1.2 obtained
with first- to fourth-order schemes. We observe that a correct solution is obtained
with the third- and fourth-order schemes while the first-order scheme gives totally
wrong results and the second-order scheme leads to inaccurate results.
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(a) 1st order (b) 2nd-order

(¢) 3rd-order (d) 4th-order

Fic. 2. Thick layer problem: worticity contours at T = 1.2 with p = 30, v = 0.0001, and
ot =8x10"%

Next, we test a thin layer problem by choosing p = 100 and v = 0.00005. We use
first- to fourth-order schemes with 256 x 256 Fourier modes and §t = 3 x 1074, In
Figure 3, we plot the vorticity contours at T = 1.2. We observe that correct solutions
are obtained with the third- and fourth-order schemes while first- and second-order
schemes lead to wrong results.

In order to examine the effect of the SAV approach, we plot in Figure 4 evolution
of the SAV factor n = 1—(1—¢)? and the vorticity contours at T = 1.2, computed with
the second-order scheme with 6t = 2.5 x 10~4. We observe that at around t = 1.05,
the usual semi-implicit second-order scheme blows up (see Figure 4(a)) while the SAV
factor dips slightly to allow the scheme continue to produce a correct simulation (see
Figure 4(b), (c)).

Remark 1. These two tests indicate that for high Reynolds number flows with
complex structures, higher-order schemes are preferred over lower-order schemes, as
much smaller time steps have to be used to obtain correct solutions with lower-order
schemes.

Note that if we use the usual semi-implicit schemes with the same time steps
in the above tests, the first- and second-order schemes would blow up. So the SAV
approach can effectively prevent the numerical solution from blowing up, although
sufficient small time steps are needed to capture the correct solution. Thus, one is
advised to adopt a suitable adaptive time stepping to take full advantage of the SAV
schemes.
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(a) 1st-order (b) 2nd-order

(¢) 3rd-order (d) 4th-order

Fic. 3. Thin layer problem: wvorticity contours at T = 1.2 with p = 100, v = 0.00005, and
5t =3x10"%

4. Error analysis. In this section, we carry out a unified error analysis for the
fully discrete schemes (3.14) with 1 < k < 5 and state, as corollaries, similar results
for the semidiscrete schemes (3.6).

We denote

t"=ndt, s"=r"-—rt"),
ey =uy —Uyu(-,t"), ey =ul —Uyu(,t"), eq=Iyu(-t")—u(,t"),
P

e"=ay —u(-,t")=éex +ef, e"=uy—u(,t")=ey+ef.

To simplify the notation, we dropped the dependence on N for €” and e™ in the
above, and will do so for some other quantities in what follows.

4.1. Several useful lemmas. We will frequently use the following two discrete
versions of the Gronwall lemma.

LEMMA 4.1 (discrete Gronwall lemma 1 [37]). Let y*, h¥, gk, f* be four non-
negative sequences satisfying

n n T/6t
y 46ty BE <B4ty (gFyF 4 fY) with 6t gF <M, V0O<n<T/bt.
k=0 k=0 k=0
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(a) Evolution of Energy by a usual (b) Evolution of n
semi-implicit scheme

(c) Vorticity contours at ¢t = 1.2

FIG. 4. Thin layer problem: second-order scheme with p = 100, v = 0.00005, and §t = 2.5 x 10~4.
We assume 0t g* < 1V k, and let o = maxo<p<r/5¢(1 — Stg®)~L. Then

y”—i—dchkgeXp(aM) B—|—5t2fk Vn < T/t
k=1 k=0

LEMMA 4.2 (discrete Gronwall lemma 2 [35]). Let ay, by, ¢,, and d, be four
nonnegative sequences satisfying

m m—1 m—1
U +TY by ST andn+7 Y cn+Com>1,
n=1 n=0 n=0

where C' and T are two positive constants. Then

m m—1 m—1
am—i—Tan < exp <7'Zdn> (Tch—i—C) ,m>1.
n=1 n=0 n=0
Based on Dahlquist’s G-stability theory, Nevanlinna and Odeh [30] proved the
following result, which plays an essential role in our error analysis.

LEMMA 4.3. For 1 < k <5, there exist 0 < 7, < 1, a positive definite symmetric

matriz G = (gi;) € R, and real numbers &, ..., 8 such that
k
(akunJrl o Ak(un)7un+1 . Tkun) _ E gij(un+1+sz,un+1+j7k)
ij=1
k k 2
o 2 gij (unJrsz,unijfk) + E 5iun+1+7,7k ,
ij=1 i=0
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where the smallest possible values of T are
1 =19=0, 73=0.0836, 74,=0.2878, 75 =0.8160,

and ag, Ay are defined in (3.10)—(3.12).
We also recall the following lemma [28], which will be used to prove local error

estimates in the three-dimensional case.

LEMMA 4.4. Let ¢ : (0,00) — (0,00) be continuous and increasing, and let M >
0. Given T, such that 0 < T, < fj\oj dz/¢(2), there exists C, > 0 independent of
ot > 0 with the following property. Suppose that quantities z,, wy, > 0 satisfy

n—1 n—1
Zn + Z Otwy, < yp =M + Z 0td(zk) Vn < n,
k=0 k=0

with ot < Ty. Then y,, < C,.
4.2. Error analysis for the velocity in two dimensions.

THEOREM 4.5. Let d = 2, ug € VN H" with m > 3 and w be the solution of
(1.1). We assume that u’, and u’, (i = 1,...,k — 1) are computed with a proper
initialization procedure such that

I N B 0
H’EﬁV - u('7ti)||2ﬂ Hu?\f - u('7ti)||2 = O((Stk + N2_m)7 ’ ’

Let @yt and ut™ be computed with the kth-order scheme (3.14) (1 <k < 5), and
=1 (1= gt =1 - (1= (R =2,3,4,5).
Then for any T > 0, and n+1 < T/0t with §t < W and N > 2k+2Cl’S[+1 +1,
we have
a2 — ()2, s — () < O + ON20=)

and

5tZHu‘Z“ (-t I3, 5t2||u‘”1 (-, 1972 < €512 + N2,

where the constants Cy, Cr1, and C' are dependent on T, Q, the k x k matriz G = (gi;)
in Lemma 4.3, and the exact solution uw but are independent of dt and N.

Proof. It is shown in [42] that in the periodic case, ug € H," implies that u(-,?) €
H"Vt<T,and furthermore, it is shown in [13] that uw has Gevrey class regularity.
In particular, we have

(4.2)

. gm P u 2 e -
u GC([OaT]va ),TTLZS, % €L (O7T7Hp) 1 S] Sk

k+1

2 2
8k+1eL(OTL)

To simplify the presentation, we assume u’, = u’, = [yu(t;) and r* = Eluly] + 1
fori=1,...,k—1so that (4.1) is obviously satisfied.
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The main task is to prove by induction,
(4.3) |1 —€9] < Cy ot + CyN*~™ Yq < T/6t,

where the constant Cy and Cpp will be defined in the induction process below.
Under the assumption, (4.3) certainly holds for ¢ = 0. Now suppose we have

(4.4) 11— €9 < Cydt + CpN?*~™ Vg < n;
we shall prove below
(4.5) 11— ") < Cobt + CpN2~™.

We shall first consider £ = 2,3,4,5 and point out the necessary modifications for the
case k = 1 later.
Step 1: Bounds for Va¥;, Au%, and Au%, Vg < n. We first recall the inequality

(4.6) (a+0b)* < 2" YaF + ) Va,b >0, k> 1.

Under the assumption (4.4), if we choose ¢t small enough and N large enough such
that

(4.7) ot < min{ N > max{2"*2Cy, 1},

1
PYSYETR 1} 9
2k+2Ck

we have
(4.8)

) L N <14 LN
— n?
2k+2Cp—t  okt2CfTt ) T T Yo TR Te

and

Stk—1 NE@-m)+1

1—¢enk < <
A-&)'s ——+—F—VYa=n,
and
1 Sth—1 NFkQ@2-—m)+1 Sth—1 NE@R-m)+1
- <1- <|nil<1 2Vq <n.
2< ( 1 + 1 )_|77k|_ + 1 + n <2Vqg<n
Then it follows from the above and (3.17) that
(4.9) af ]l <2My Vg <n.

Moveover, (3.16) and m > 3 imply that

(4.10) vty | Aak | < é <40 Cy>1, O > 1,
qg=1
and
(4.11) vot Y Auk|* < 16r°, Co > 1, Cn > 1.
g=1
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Step 2: Estimates for Vexu and Aéwt'. By the assumptions on the exact
solution v and (4.9), we can choose C large enough such that

(4.12) lu()||2: <CVE<T, |ad|: < C Vg <n.

From (3.14a), we can write the error equation as
(4.13)
(a;.céqJrl — Ak(éq),vN) + 5t1/(Véq+1,VUN) = (RZ,’UN) + (51?(@%,1}1\;) Yoy € Sy,

where Qf and R} are given by
(4.14) 1 = —A((Bru?) - V)Bi(u)) + A(u(t?) - Vu(t?™))
and
R = —agu(t™) + Ap(u(t?)) + dtu (t74)
(4.15) 1+ . iy
= Zaz thrl - S)kW(s)ds,

1—
i=1 ta+1—i

with a; being some fixed and bounded constants determined by the truncation errors,
for example, in the case k = 3, we have

tatl g+l

0*u 3 . 0%u

- 71— s d 17— 5)3——(s)d

Ri==3 [ - GRaseg [ @ =P G
g+l

1 0*u
_ - =2 _ N3 7
3 /trr? (t s) 5 (s)ds.

Letting vy = —A&4™ + 7,A&% in (4.13), it follows from Lemma 4.3 and (3.13)
that

(4. 16)
5 (Ve Vel ) - 3 (vl ver )
i,j=1 1,j=1

+ tv||Aey |2

k
_q+1+i—k
=0

= otv(Aed ! rAed) + (R, — el + nAed) + 0t(Qy, —Ael ™ + mpAed).

Next, we bound the right-hand side of (4.16). It follows from (4.15) that

2 2k+1 N
4.17 RI|I? < C6t _— ds.
(417) IRy < coerst [ TR o)) as
Therefore,
q q+1 54 0(5) a2 _ Agttl 57 |2
(Rka —Aey +TkAeN) < ”RkH + dte|| Aey +TkAeN||’
_c
(418) © rg)e + %teuAeﬁHF +2dte] Ak |2
$at1 6k+1u 2
< 26te]|AeTH? + 26t]| e, |2 + C(e)5t% / %) ds.
tatl—k 8t +
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For the term with Qf, we split it as
(4.19)
Qi —Aef +meael) = (A([w(t™™) - By(u?) - Vu(t™)), —Aek + naed, )
(A(Bu(w?) - Vu(tr) - Bi(u(t))]), ~Ael! + nae )
- (A(Bk(eq) . VBi(e)), —Ael + TkAé‘;V)
(A(Bk(u(tq)) - VBi(e?)), A& + TkAé?v>.

We bound the terms on the right-hand side of (4.19) with the help of (2.7), (2.9), and
(4.12):

(4.20)
(A([u(tq+1) — Bi(u9)] - Vu(t9)), A& + TkAé‘}v)
< Cllu(t™) = Br(u?) |l [lut®™)|2] — Ael™ + mpded |
< C@)ut™™) = Be(u?)[Flu( )13 +cl| — A&k + mAed |
< Ce)lu(t™™) = Bp(u(t) |3 + C ()| Bi(e) |3 [lu(™ )3

+e|| - Aé‘}v“ + A& ||?

tQ+1 k
_; _10%u
<Ot ||Zb [ = G sl + e Buen
+ 25\|Aeq“||2 + 2¢|| A&l ||?
t‘H'l 8k )
< 0(5)5,5%4/ [ atk( s)ITds + C(e)[|Bu(e?)|T + 22| A&l |* + 2¢| Ae 1%,

where b; are some fixed and bounded constants determined by the truncation error.
For example, in the case k = 3, we have

tat1

3 Pu 3 3 Bu
Ba(u() ~ (e = =5 [ =P GE s [0 g

e+l

tat1

1 u
- q—2 2
2 /tq,z (t $) g 4

For the other terms in the right-hand side of (4.19), we have

(4.21)
|(A(BL) - Vi) - Buu(), - Ak + ek )|
< OBy () 1 u(t*) — By(u(t))|l2]| - Ak + el |
< CENBUWIRIGE™) = Bu(u()IE + 2] - Ack + naek

tatl k
< C(s)at%*l/ O"u

¥ ds + 2| AL |2 + 2¢]| A% |2
tat+l—k

(s)
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Since d = 2, we can use (2.7) to obtain

(4.22)

’( (Bi(e?) - VBi(e?)), —Ael + TkAeN)‘

< C||Bx(e)y"*|| B2 Bi(e?) |5 (| Bi (€)1 — A&k + mAed]|

< C||Br(e?)|1]|Br(e?)]2|| — AeqH + TkAé}’VH (true in two and three dimensions)
C (@) || Bi(e?)[2|Be(e?)]3 + ¢ — Ael™ + moAed |2
C(e) || Br(eN)|3]Br(e9)|3 + 26| Al |2 + 2¢ | A&k ||,

Thanks to (2.9), we have

‘(A(Bk(u(tq)) L VB(e7), —Ae§ + TkAégv) ‘
< C||Bi(u(t) 2] Bi(e?) |l || — Ael™ + meAed ||
C()lIBr(u(t) 31 Br(e)l} +ell — A&k + meAed |
C(e)||Br(e)|| + 2| Aed||* + 2¢ ]| A |12

(4.23)

On the other hand, we derive from (4.6) and (4.4) that
] — 1] < 28C 6t + 2*CENTET™ vg <
Noting that u%, = nlaf,, we can estimate ||By(e?)||] by

(4.24)
IBr(eN} = || Br(uy — ay) + Bi(ey) + Bu(ef)|?
< CO2k5t?k 4 COFFN*C=m) 1 C||BL(EY)|? + O|lu(t?)|2, N*—2™,

Combining (4.16)—(4.24) and dropping some unnecessary terms, we arrive at

(4.25)
k . .
Z gij(vé(]]\}'+1+z_kyvé(]1\[+l+] k Z i ( Ve q+i—k Veqﬂ k)
i,j=1 i,j=1

+ 6t (5 - 105) 1AL |2

<ot (15 102 ) 18642 + O3t Bulel )1 + CleIsHlBued ) Buleh)

¢at1 2
+ C(e)ot?* / <‘ > ds
tatl—k

+C(e)CER St (L + || Bi(e)|I3) + 8tC(e) CF N*FE=™) (1 + || Bi(e?)13)
+6tC () [u(t)[I7, N7 (1 + | Be(eD)[13)-

Fu, |I° [[0*u
ar @], Hatm(s)

Since 7 < 1, we can choose ¢ small enough such that

2 1— 2
(4.26) %— 106 > % 4106 + %,
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and then taking the sum of (4.25) on ¢ from k — 1 to n, noting that G = (g;;) is a
symmetric positive definite matrix with minimum eigenvalue \g, we obtain

(4.27)
n+1

B otv(l — 72
Acll Vet + Otv{d = 7i)) Z:HAQNH2
k - Stv(l — 72 n+1
< Y gp(VeptttTr vepttt Tl 4 Otv{d = 7ic) ZHAGNH2

ij=1

< €t 3Nk 1B + 1)

2k
o [ (|

+ C(CEENRE=m) . N2=2m) (T +oty ||Bk(eq)||§> :

q=0

L
N

2 n
) ds + C3" <T oty ||Bk(eq)§>>

q=0

Noting that (4.11) and (4.12) imply 6t >0, || Bx (e9)||3 < Cp= for some constant Cpy2
depends only on the exact solution u. Applying the discrete Gronwall Lemma 4.2 to
(4.27), we obtain

n+1
et 117 + 0t llekl3
q=0
T k 2 k+1 2
1o} 0
(4.28) < Cexp (Cz + 1))5t2k/0 <‘ W’:(s) Hmlg-q-qlll(s) ) ds

+ CGXp (CHZ + 1))(6t2k00 + C N2k(2 m) + N2 2m)(T+ CHz)
< C1(1 4 C20)5t2k 4 Oy (CFFN2RE=m) 4 N2=2m),

where C1 is independent of §t, Cy, Cpp and can be defined as
(4.29)

T
Cy := Cexp(Cyz + 1) max (/ <‘
0

Therefore, (4.28) implies

Fu, |I° [|0*u
ar ], Hatm(s)

2
) dS, 1, T+CH2> .
n+1

4.30 ez, ot el |12 < C1(1 + C2F)ot?k 4 Oy (CEEN2RE=m) 4 N2-2m),
N
q=0

Since €7 = &%, + ef;, it follows from the triangle inequality that

(4.31) H —n+1||1 < 01(1 4 Cgk)(StQk + Cl(C%kNQk(Q_m) 4 N2—2m) + CNQ(l—m)
and
n+1
(4.32) ot > [le?]3 < Cr(1+ CF¥)ot?* + Cy(CRFNZHE=™) 4 N272m) 4 V2R,
q=0
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Combining (4.12), (4.31), and (4.32), we find that, under the condition (4.7) and
m > 3, we have

n+1
laft g, 5ty lad s

(4.33)
S Cl ( Co

<4C, +C = C.

Step 3: Estimate for |1 — £, Tt follows from (3.14b) that the equation for {s/}
can be written as

_ _ 2
92k k+2)02k2) + Cy(CRF2~ O™ 1 1) 4 C

ratt
(4.34) sIT — s = St (|| Au(t?H)[]? - WHAUQHH ) + Ty Vg < n,
N
where T, is the truncation error
tat+l
(4.35) T, = r(19) — r(197Y) + tr, (t7H)) = / (5 — t9)res(5)ds.
taq

Taking the sum of (4.34) for ¢ from 0 to n, and noting that s = 0, we have

n q+1
4.36 s"T = 5ty Au(tatiyz - "~ AalE ) + S
(4.30) §j<|| (I = o A 2 j

q=0 N

We bound the right-hand side of (4.36) as follows. By direct calculatlon, we have
(4.37) ry = / (V)2 + YVt )da;
Q

then from (4.35), we have

tat+1 tat+1
T, < Cét/ |ree|ds < C5t/ (||utH% + Hutt”f)ds Vg < n.
td ta
By the triangular inequality,
(4.38)
q+1
|Au(Ert |2 - —— | A
E@y ) +1
g+1 q+1
< [Au(tr )| 1= |+ || Au() 2 — Ay
E@iy " )+1| E@y " )+1
= Ki’ + qu.
It follows from (4.12) and Theorem 3.2 that
(4.39)
ratl
E(uy ) +1
_c ’l"(tq+1) B rd+1 L ra+1 ratl
Elut)]+1  Elu(tt)]+1

Eut )] +1  Baif’)+1
< C([Blut™")] - E@{™)| + [s7]) Vg < n,
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and it follows from (4.12) and Theorem 3.2 that
K3 < CllIAag | — | Au()|?]
(4.40) < OllAag™ — Au(™)|(|AG| + | Au()])
< Cllaay ™ | Ae™ | + Ol Aet™ | Vg < n.

We derive from the definition of E(u) that
(4.41) |E(u (t‘”l)) — E(ay™)
(||Vu(tq+1)|| +IVag DIV - vag| < ¢ vert!.
It follows from (4.32), (4.33), and the Cauchy—Schwarz inequality that
&Z | aagllaes | < (6t ) | Aa %5t Yo Aer )
(4.42) q=0 q=0
< C\/ CL(1 + C2F)5t2k 1 Oy (2 N2K(2=m) 4 N2-2m) | N2(2-m),

Now, we are ready to estimate s"*!. Combining the estimates obtained above, (4.36)
leads to

ra+1

q+1y\(12
T

||qu+1

n
|s" | < otw Z

q=0

3

< Cor Y 4 Cor Y e o + Oy A et

q=0 q=0 q=0
g+l

L Cot / (laaell2 + lfaee2)ds
0

(4.43)

< C\/Cl<1+cgk)6t2k+Cl(clglkN2k(2—'m) +N2—27n)+N2(2—m)

+Cot Y |7+ Cot.

q=0

Finally, applying Lemma 4.1 on (4.43) with 0t < %7 we obtain the following estimate
for sntl:

(4.44)
|s" T < Cexp((1 —6tC)™1h)

(\/Cl CQk t2k+Cl(C%kN2k(2—m)+N2—2m)+N2(2—nL)+5t>

< Oy <\/Cl(1 + CgF)ot?k + Cy (CEEN2KR=m) 4 N2-2m) 4 N2(2=m) 4 6t)

< CQ(Stk\/ Cl(l + Cgk) + Cy \/OI(C%kNﬂc(Q—m) + N2_2m) + N2(2-m) 4 Cy0t,

where Oy := Cexp(2) is independent of 6¢ and Cy. Then 0t < 55 can be guaranteed
by

1
44 ot < —
(4.45) <&
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Thanks to (4.30), (4.39), (4.41), (4.44), and m > 3, we have

(4.46)
|1 - £n+1| < C(|E[u(tn+l)] _ E(ﬁnJrl)' + |Sn+1|)
<co(|ve | + |s" )

< C\/Cl(1+cgk)6t2k+Cl(C%kN2k(2_m) +N2—2m)+CN2(1—m)

1+ Co3t*\JC1(1+ C3F) + o\ /O (CFFN2HE-m) - N2-2m) - N22-m) 4 Ot
< Cst (. 1+ C3rstE " + 1) + C3N?*T" <\/Cﬁ’“N<4*2m>(k*1) +N-2+ 1) ;

where the constant C'5 is independent of Cy, Cyy , dt, and N. Without loss of generality,
we assume C3 > max{C7,Cs, 1} to simplify the proof below.
For the cases k = 2,3,4,5, we choose Cy = 2C3 and §t < ﬁ to obtain
0

(4.47) C3 (\/1 + C3Rsth 4 1) < C3[(14 CHYot + 1] < 2C3 = Cy,

and since m > 3, we can choose Cyy = 3C3 and N > C{-‘i + 1 to obtain

(4.48)  Cs <\/cﬁkjv<4—2m>(k—1> L+ N2 4 1) < C3[CEN?*™ 4 2] < 3C3 = Cyp.

For the case k = 1, since n{'™ = 1 — (1 — ¢"*1)2, we choose Cy = 2C3 and
ot < 02 so that

1+
Cs <\/1 + C6t + 1) < C3[(1+ C3)dt +1] < 203 = Cy,

and since m > 3, we choose Cp; = 3C3 and N > C% + 1 to obtain

(4.49) Cs <\/Cl‘%[N(4—2m> + N—2 4 1) < C3[CEN?*™™ 4 2] < 303 = Cyy.

To summarize, combining the above with (4.46), we derive from (4.46) that
|1 — &Y < Cydt + CpNZ™

under the conditions

1
(4.50) 5t < o N >2FF2Ck+t 11 1<k <5,
0

Note that the above implies (4.7), and with C3 > max{C},Cs,1}, it also implies
(4.45). The induction process for (4.3) is complete.
We derive from (3.14d) and (4.33) that

(4.51) lui™ = @y < I = 1P eyt < T - 120

and

1 gatl +1 +1
5t2||uq v ||2<5tZ|nq — 17 [lag 3

(4.52) < max nf* ~ 1] 5tZ||uq+1H2

< max [p{t! — 1|QC.
q

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 05/22/22 to 128.210.107.25 . Redistribution subject to SIAM license or copyright; see https.//epubs.siam.org/terms-privacy

HIGH-ORDER SCHEMES AND ERROR ANALYSIS FOR NSEs 2947

On the other hand, we derive from (4.3) that

(4.53a) Ip?tt — 1| < 2202612 + 22CEN?™) Vg <n, k=1,

(4.53b) It 1) < 2RCkstE 4 2RCENFET™ yg<n, k=23,4,5.
Therefore, we derive from (4.31), (4.32), (4.51), (4.52), (4.53) and the triangle in-
equality that

le™FHIE < fle™ T + [luy™ — ay 1T

and

e 3 < &3 + [luf™ —af 13 Vo <n,
under the condition (4.50) on 6t and N. The proof is now complete since we already
proved (4.31) and (4.32). ad

Using exactly the same procedure as above without the spatial discretization, we
can prove the following result for the semidiscrete schemes (3.6).

COROLLARY 1. Let d = 2, wg € V. N HZ, and u be the solution of (1.1). We
assume that ' and u® (i = 1,...,k — 1) are computed with a proper initialization
procedure such that for (i =1,... k—1),

1@ = w(t)l, u' = ult)]: = O(t");
la" = u(ti)llz, u’ - u(t:)]2 = O@t?),

Let u™! and w™* be computed with the kth-order scheme (3.6) (1 <k <5), and

i=1,2,3,4,5.

=1 (1= T =1 - (1R (k= 2,3,4,5).

Then for any T >0, and n+1 < T/dt and 5t < o, we have

T
—n tn 2 no__ tn < C(St2k
[a" —u(, )7, " —u( )7 <

and

&leuq“ (473, 6t2||uq“ w(- 472 < Ok,
q=0

where the constants Cy and C are dependent on T, Q, the k x k matriz G = (gi;) in
Lemma 4.3, and the exact solution u but are independent of dt.

4.3. Error analysis for the velocity in three dimensions. In the three-
dimensional case, it is no longer possible to obtain the global estimates (4.9), (4.10),
and (4.11) as in the two-dimensional case. Instead, we shall derive local estimates
in analogy to the local existence of strong solution for the three-dimensional Navier—
Stokes equations.

THEOREM 4.6. Let d = 3, ug € V. N H" with m > 3. We assume that (1.1)

admits a unique strong solution w in C([0, T} H})NL*(0,T; H?). We assume (4.1)

as in Theorem 2 and let u"+1

(3.14) (1 <k <5), and

and u"+1 be computed using the kth-order scheme

77?4_1 17(17§-n+1)2’ 7]]?+1 =1- (17§n+1)k (k:27374a5)
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Then, there exists Ty > 0 such that for 0 < T < Ty, n+1 < T/6t, and 6t <
L, N > 2802CE+ 11 we have

@50l - uC R g - u( ) < GO+ N
and
4 55 5t2 Huq—H tq+1 H2 (Stz ||uq+l tq+1)||2 < 05t2k + CN2(2 m)

where the constants Co, Cri, C are dependent on T, Q, the k x k matriz G = (g;5) in
Lemma 4.3, and the exact solution w but are independent of 6t and N.

Proof. The proof follows essentially the same procedure as the proof for Theorem
4.5. However, since we only have the weak version of the stability in Theorem 3.2 and
(2.7) is not valid when d = 3, we can only get a local version of (4.9) and (4.10). To
simplify the presentation, we shall only point out below the main differences with the
proof for Theorem 4.5.

With ug € H}" and the existence of a unique strong solution w in C([0, T}; H}) N
L?(0,T; HY), regularity results in [42, 13] imply that (4.2) is also valid in the three—
dlmensmnal case.

In Step 1, we still assume (4.4) holds and choose 6t and N satisfy (4.7). Letting

vy = —Au" + 7 Aw” in (3.14a), it follows from Lemma 4.3 that
(4.56)
Z i ( vuq+1+z k7vﬁ§1v+l+j k Z i ( Vu?\,ﬂ k vuq+J k)
i,5=1 i,j=1

2

Zé vai el s Aadtt?

= 5w(Au§V+1, mAud) + 5t(A((Br(ul) - V)Br(u%)), —Aul" + pAad).
We now bound the right-hand side of (4.56). Note that (4.7) implies

Stk—1 NE@-m)+1
>§|UZ|§1+ 1 + 1 <2Vq<n.

1 Stk—1 NE@2-m)+1
Z<c1—
2 < ( 4 * 4
First, we have

VTk

(4.57) |otv(Aadtt, e Aad)| <6t7HAuq+1H2+5t |Aad |2

Next, it follows from (2.8) that
(A ((Br(uk) - V)Br(uk)), —Aul™ + n.Aag))|
< C||Br(ud) [ Be(Vul) 12l — Aud™ + meAad |
(4.58) < CIIBk(uN)II 1B (i) 1?11 Be ()Y %) — Aad™ + meAad |

C ()| Br(ul) 5 11Br(ui)l2 + el — Ay + mpAud|?
C ()| Br(ul)lIS + el Br(ud)[I3 + 2¢ | Aad | + 2¢ | Aad |12

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 05/22/22 to 128.210.107.25 . Redistribution subject to SIAM license or copyright; see https.//epubs.siam.org/terms-privacy

HIGH-ORDER SCHEMES AND ERROR ANALYSIS FOR NSEs 2949

Now, combining (4.56)—(4.58) and noting that u% = nja%,, we find after dropping
some unnecessary terms that

q+1+i—k —q+1+j k q+i—k q+ji—k
E gi;(Va¥ ,Val e E gi; (Vad " F vasitiTr
3,j=1 1,j=1

v _
(4.50) +ot (5 —2¢) laag|?

VUTk

< ot (55 +2¢) AL + <0t Be(u) 3 + C@)ot| B(us) f

VT _ _ _
< ot (75 + 22) | Aa |2 + 220t B (@) [ + 2°C ()3t Bu(a ).
Taking the sum of (4.59) for ¢ from k—1 to n—1, noting that G = (g;;) is a symmetric
positive definite matrix with the minimum eigenvalue Ag and 7, < 1, we can choose
€ small enough such that

N otv(l
Allay |If + Z Az |
—n+i—k —n+j—k 6tl/ 2
< Z 9i;(Vu ,Va )+ ZHAU’N”
ij=1
n—1
<oty ud$ + Mo,
q=0
where My > 0 is a constant only depending on u?,.. .,'&’fv, gij- 1f we define ¢ as

#(x) = 25 and let

(4.60) 0<T, < h dz/o(2),
Mo

then Lemma 4.4 implies that there exist C, > 0 independent of §t such that

(4.61) @y |lf + 6t > |Aag|® < C. Vn < T./6t.
q=0

With (4.61) holding true, we can then prove (4.54) and (4.55) by following the same
procedures in Steps 2 and 3 in the proof of Theorem 4.5. 0
Similarly, we can prove the following result for the semidiscrete scheme (3.6).

COROLLARY 2. Let d = 3, ugp € V. N H}* with m > 3. We assume that (1.1)
admits a unique strong solution w in C(]0,T); Hl) NL*(0,T; HY). We assume (4.1)
as in Theorem 2, and let "' and u™t! be computed using the kth-order schemes
(3.6), and

Mt =11 -2 gt =1 - (1 - YR (K =2,3,4,5).

Then, there exists T, > 0 such that for 0 < T < Ty, n+ 1 < T/t, and 6t <
W’ N > 284208 41, we have

1@ = ul, ), lu” —ul, )] < Cot*
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and

5TtZ||uq+1 (ot I, 5t§:lluq+1 u(- |3 < o,
q=0

where T is defined in (4.60), the constants Cy, Cr, C are dependent on T, §2, the
k x k matriz G = (g;5) in Lemma 4.3, and the exact solution w but are independent

of ot.

4.4. Error analysis for the pressure. With the established error estimates
for the velocity u, the error estimate for the pressure p can be derived directly from

(3.7) or (3.15).
We denote

GZN = p?\/ - HNp(7tn)7 eZH = HNp(vtn) _p('vtn)7 and BZ = EZN + BZH'

THEOREM 4.7. Under the same assumptions as in Theorems 4.5 and 4.6, we have

Cot?F + CN?0=m) v < T/t d=2
n+1 . n+1y\(12 = 9 9
(4'62) Hp p( N )” = { C(StZk + CNQ(l—m) Yn < T*/(St, d= 3,

and
(4.63)
Cot*F 4 CN?C=m) yn < T/6t,  d =2
nt+l n+1 2 < - ’ ;
6t2 IV =P < { O T N S 1 e

where p?,“ is computed from (3.15), T, is defined in (4.60), and C is a constant
independent of 6t and N.

Proof. From (3.15), we can write the error equation for p"+1
(4.64)
(VegH,VvN) = (u?\}H . Vu?vH —u(tth) - Vu(t?), Voy) Yon € Sy, Vg+1 < n.
To prove (4.62), we set vy = A~ 16[%1 in (4.64) to obtain
e et 12 = (uf™ - Vg™ - w(ert], a7 deryt)
4.65
= (Tw(ert) = wg - Gulerth), Aredt).

We can bound the right-hand side of (4.65) by using (2.9), the stability result Theorem
3.2, and error analysis for the velocity, namely, we can obtain

(4.66)
‘(u;z\?—l Viud - u(tq-s-l)]’A—%eZEl)‘ < O(e) s 2] le |2 —|—€||Veq+1||2
< C(e)(6t%F + N2y 4 gl ed L2
and
(4.67)
‘_([u(tqﬂ) —ul) - Va1, A ZGZ#)‘ < C(@)||u(E |2 |l |2 + e[| Vel t

< O(e)(8t* + N1~ feleg i1
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Combining (4.65)—(4.67) with ¢ = 1 we obtain
(4.68) e25H? < Cot*F + CN?U™) g <.
To prove (4.63), we set vy = e N in (4.64) to obtain

Ve 2 = (uf - Viug —u(erh)], vert!)
4.69
( ) . ([u(thrl) o uqul] . vu(thrl) Vqurl)

N ’ pN |*

Again, we can bound the right-hand side of (4.69) in a similar fashion as in (4.66)-
(4.67), namely, we can obtain

gy (o8 T =L V) | < COI e + I Vg1
< Ot 3+ el Vel

and

(4.71)

\—( (1) ] V() Vel )| < O (e e 7 + 2| Vel

< C(e)(6t*F + N2~y 4 ¢ Vel T2,
Combining (4.69)—(4.71) with € = 1, we obtain
472 Vel P < Clle?™ |3 + Cot*F + CN?Um) g <.
( 2 q

Taking the sum of (4.25) for ¢ from 0 to n and multiplying d¢ on both sides, we arrive
at

(4.73) 5ty Vel P < cot > [let 3 + Cot*F + oNZTm),
q=0
Now, with the estimates on ||€"||3 in Theorem 4.5 or Theorem 4.6, (4.73) leads to
(4.74) 5ty | Velit|]? < Cot*F 4 NPT,
q=0
Finally, we can obtain (4.62) and (4.63) from (4.68), (4.74), and
||Vegn||2 < ON21-m),
Similarly, we can derive the following results for the semidiscrete scheme (3.6).

COROLLARY 3. Under the same assumptions as in Corollaries 1 and 2, we have

C5t% Yn < T/5t,  d=2
n+l L 4nt1y)2 = ) 9
™ = p( I < { OOt vn < T,/0t,  d=3,

and

Cot?k yn < T /ot d=2
g+1 n+1V))12 < = ) ’
3t E IV (p ST < { Cot2F ¥n < T./6t, d=3,

where p" 1 is computed from (3.7), T, is defined in (4.60), and C is a constant
independent of dt.
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5. Concluding remarks. We considered numerical approximations of the in-
compressible Navier—Stokes equations with periodic boundary conditions for which the
pressure can be explicitly eliminated, allowing us to construct very efficient IMEX type
schemes using Fourier—Galerkin approximation in space. Our high-order semidiscrete-
in-time and fully discrete IMEX schemes are based on an SAV approach which enables
us to derive uniform bounds for the numerical solution without any restriction on time
step size. We also take advantage of an additional energy dissipation law (2.6), which
is valid only for the two-dimensional Navier—Stokes equations with periodic boundary
conditions, leading to a uniform bound in H'-norm, instead of the usual L?-norm.
By using these uniform bounds and a delicate induction process, we derived global
error estimates in [°°(0,T; H) N 12(0,T; H?) in the two-dimensional case as well as
local error estimates in (°°(0,7; H') N 1?(0,T; H?) in the three-dimensional case for
our semidiscrete-in-time and fully discrete IMEX schemes up to fifth-order. We also
validated our schemes with manufactured exact solutions and with the double shear
layer problem. Our numerical results for the double shear layer problem indicate that
the SAV approach can effectively prevent the numerical solution from blowing up and
that higher-order schemes are preferable for flows with complex structures such as the
double shear layer problem with thin layers.

To the best of our knowledge, our numerical schemes are the first uncondition-
ally stable high-order IMEX type schemes for Navier—Stokes equations without any
restriction on time step size, and our error estimates are the first for any IMEX type
scheme for the Navier—Stokes equations in the three-dimensional case.

While the stability results can be extended to similar schemes for the Navier—
Stokes equations with nonperiodic boundary conditions, it is nontrivial to carry out
the corresponding error analysis, which will be left as a subject of future endeavors.
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