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STABILITY AND ERROR ANALYSIS OF A SECOND-ORDER
CONSISTENT SPLITTING SCHEME FOR THE NAVIER-STOKES
EQUATIONS*
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Abstract. We present in this paper a new second-order consistent splitting scheme for the
Navier—Stokes equations with no-slip boundary conditions based on (i) the Taylor expansions at
time t" 15 which offer better stability than the usual expansion at time t"*1, and (ii) the generalized
scalar auxiliary variable (GSAV) approach which allows us to treat the nonlinear term explicitly
while maintaining unconditional stability. We prove rigorously its unconditional stability in a strong
norm for the time dependent Stokes equations by using a clever energy argument. Using this strong
stability result combined with a weak stability offered by the GSAV approach, we are able to establish,
for the first time, a global-in-time optimal error estimate in two dimensions and a local-in-time error
estimate in three dimensions for a second-order consistent method for the Navier—Stokes equations.
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1. Introduction. We consider in this paper the construction and error analysis
of a second-order consistent splitting scheme for the following Navier—Stokes equa-
tions:

(1.1a) %—?—l—u-Vu—uAu—&—Vp:f,
(1.1b) V-u=0,

with suitable initial conditions in a rectangular domain Q C R? (d = 2,3) and no-slip
boundary condition u =0 on 92, and where f is an external force.

Due to its importance in applications and in analysis, there is an enormous
amount of work devoted to the numerical approximation of the Navier—Stokes equa-
tions. These numerical methods can be roughly classified into two categories: cou-
pled approach with a mixed formulation [1, 4, 5, 15, 22] and decoupled approach
which includes projection type methods (including the pressure-correction and the
velocity-correction methods) [2, 8, 9, 10, 11, 14, 20, 21, 24, 26, 30, 31], and the con-
sistent splitting method [6, 13, 28, 32] (see also the gauge method [3, 19]). We refer
the reader to [7] for a review on the decoupled approach, and we would like to point
out that the projection type schemes suffer from a splitting error which prevents
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them from achieving full-order accuracy in strong norms, while the consistent split-
ting schemes do not lose accuracy.

Despite being used frequently in practice, the stability and error analysis of consis-
tent splitting schemes is far from satisfactory. Guermond and Shen [6] (resp., Johnston
and Liu [13]) established a stability result for the semidiscrete first-order consistent
splitting scheme for the time dependent Stokes equations with no-slip boundary con-
ditions (resp., with periodic-nonperiodic boundary conditions in a periodic channel).
A series of work was carried out by Liu, Liu and Pego [16, 17] for the first-order ver-
sion of the consistent splitting scheme for the nonlinear Navier—Stokes equations and
established local-in-time stability and error estimates. Unfortunately, it appears that
these techniques cannot be extended to the second-order case.

We recall that the second-order consistent splitting scheme for (1.1) introduced
in [6] (see also [13]) reads as follows:

(1.2)
1
557 (3u" T = A"+ u T —p AW V(2" = p" ) = 29" — " ufon =0,
(1.3) (Vp" T V) = ("™ —vV x Vxu"!,Vq) Vge H'(Q),

where g = f — u - Vu. However, it has been an open problem since its inception
whether the above second-order consistent splitting scheme is unconditionally stable.
The main difficulty is caused by the second-order extrapolation of the pressure term.
This is reminiscent of the third-order pressure-correction scheme [25] in which the
second-order explicit extrapolation of the pressure also prevents us from establishing
its unconditionally stability. Therefore, new ideas are needed for dealing with the
second-order consistent splitting scheme.

Note that the usual backward differentiation formula (BDF) and Adams—
Bashforth extrapolation, including those used in (1.2), are based on the Taylor expan-
sions at time ¢"*!. But this leads to apparently insurmountable difficulty in dealing
with the pressure extrapolation. In order to overcome this essential difficulty, it ap-
pears that we have to design a new scheme which possesses the same advantages as
the scheme (1.2)—(1.3) while allowing us to establish unconditional stability. This
leads us to consider a more general BDF formula where the Taylor expansions are
performed at time ¢"** with k being an undetermined parameter. It turns out that
as k increases, the stability region increases at the expense of increased truncation
errors, and with a proper choice of k, the extra stability afforded by the new scheme
will allow us to establish unconditional stability.

The main purpose of this paper is to construct a new second-order consistent
splitting scheme for the Navier—Stokes equations with no-slip boundary conditions, to
prove rigorously its unconditional stability, and to carry out an error analysis. Our
main contributions include the following:

e We construct a new second-order consistent splitting scheme based on the
Taylor expansion at time t"T® which offers better stability than the usual
scheme (1.2)—(1.3), and establish rigorously unconditional stability (in a strong
norm [2(H?)NI*(H')) by using a clever energy argument for the time de-
pendent Stokes equations.

e For the Navier—Stokes equations, We employ the generalized scalar auxiliary
variable (GSAV) approach which allows us to treat the nonlinear term ex-
plicitly while maintaining unconditional stability (in a weaker norm [2(H')N
1°°(L?)).
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e We establish a global-in-time optimal error estimate in two dimensions (2D)
and a local-in-time error estimate in three dimensions (3D) for the Navier—
Stokes equations.
To the best of our knowledge, this is the first rigorous stability and error analysis for
any second-order consistent splitting scheme for the Navier—Stokes equations. The
new idea (constructing a scheme with Taylor expansion at time ¢"**) introduced in
this paper could be used to construct schemes with better stability in other situa-
tions, in particular, to explore the construction of higher-order unconditional stable
consistent splitting schemes for the Navier—Stokes equations.

The rest of the paper is organized as follows. In the next section, we provide some
preliminaries to be used in what follows. In section 3, we construct a new consistent
splitting scheme for the time dependent Stokes equations and prove its unconditional
stability in a strong norm. Then, in section 4, we couple the second-order consistent
splitting scheme with a GSAV approach for the Navier—Stokes equations, and prove
its unconditional stability in a weaker norm. In section 5, we present detailed error
analysis. In the final section, we provide a numerical example to validate the accuracy
of our scheme, and conclude with a few remarks.

2. Preliminaries. We first introduce some notation. We denote by (-,-) and
| - || the inner product and the norm in L?(£2), and denote

H={veL?*(Q):V-v=0}, V={veH}(Q):V -v=0}

Let V' be a Banach space; we shall also use the standard notation LP(0,7;V) and
C([0,T];V). To simplify the notation, we often omit the spatial dependence for the
exact solution w, i.e., u(z,t) is often denoted by wu(t). We shall use boldface letters
to denote vectors and vector spaces, and use C' to denote a generic positive constant
independent of the discretization parameters.

Next, we define the trilinear form b(-,-,-) by

b(u,v,w)= / (u-V)v-wde.
Q
In particular, we have

b(u,v,w) = —b(u, w,v) YucH,v,we HyQ),
which implies
(2.1) b(u,v,v)=0 YucH,vec H)(N).
Using the Holder inequality and the Sobolev inequality, we have [29]

1/2
(2.2) b, v,w) < o Va2 [[ul 2oy Vol 2wl d=2;

1/2 1/2
(2.3) b(u, v, w) < cl|ulli o[l *[lv]3/*|w], d=3.

We also frequently use the following inequalities [29]:

el [o]ls s,
cllull2[o]lo[w]:.

(2.4) b(u,v,w) < { clullo ol [w]o,  d<4,
cllul1 [[o]}2 [ ll.
ellulolfo]lzlwl:.
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We will frequently use the following two discrete versions of the Gronwall lemma.

LEMMA 1 (discrete Gronwall lemma 1 [27]). Let y*, h*, g*, f* be four nonnega-
tive sequences satisfying

T/8t
y +6t2h’“<B+5tZ yE+ %) with 6t gF <M Y0<n<T/dt.
k=0 k=0 k=0

We assume 6t g* <1 for all k and let o = maxg<p<7/5¢(1 — Stg®)~1. Then

y" 40t h* <exp(oM) <B+6t2fk> Vn < T/dt.

k=1 k=0

LEMMA 2 (discrete Gronwall lemma 2 [23]). Let ay, by, ¢y, and d,, be four non-
negative sequences satisfying

m m—1 m—1
am+Tan§TZandn—&—Tch—l—szl,
n=1 n=0 n=0

where C and T are two positive constants. Then

m m—1 m—1
am+Tan§exp (TZdn> (Tch—i—C’) ,m>1.
n=0 n=0

n=1
We also recall the following lemma [18] which will be used to prove local error
estimates in the three-dimensional case.

LEMMA 3. Let ®:(0,00) — (0,00) be continuous and increasing, and let M > 0.
Given Ty such that 0 < T, < [7 dz/®(z), there exists C\ > 0 independent of 5t > 0
with the following property. Suppose that quantities z,, w, >0 satisfy

n—1 n—1
Zn + Z otwy, < yp =M + Z(St@(zk) Vn < n.,
k=0 k=0

with n,ot <T,. Then y,, <Ci.

In order to establish an unconditional stability result for (3.5)—(3.6), we need the
following result about the Stokes pressure introduced in [16]. For any u € H?(Q,RY),
the Stokes pressure p; = Ps(u) is defined as

(2.5) Vps(u) = (AP — PA)u

where P is the Leray-Helmholtz projection operator onto divergence-free fields with
zero normal component, providing the Helmholtz decomposition u = Pu+ V¢, where

(2.6) (Pu,Vq) = (u—V¢,Vq) =0 Vge H'(Q).
Then it is proved in [16] that the following lemma holds.

LEMMA 4. Let Q C RV (N >2) be a connected bounded domain with C® boundary.
Then for any € > 0, there exists C > 0 such that for all vector fields uw € H? N
H(QRY),

(2.7) /Q|(AP—PA)u|2§ (;ﬂ)/ﬂAmMc/ﬂqu.
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3. A provable unconditionally stable second-order consistent splitting
scheme for the time dependent Stokes problem. We shall first present a more
general second-order BDF scheme based on the Taylor expansion at time t"** and
show that its stability region increases with k, and then apply it with £ = 5 to
construct an unconditionally stable second-order consistent splitting scheme for the
time dependent Stokes problem.

3.1. A more general second-order BDF scheme. Denote t" = ndt; then it
follows from the Taylor expansion at time ¢"** that

(3.1)
CEAOET) RGN OR DO _ gy oty I g gmsyaz o or

and

(32 ko) - (k- Do) = o(er) - D gz o)

Hence, for the test equation ¢, = \¢, by performing the Taylor expansions at t"1%, a
more general second-order BDF method can be written as

(2k + 1)+ — ko™ + (2k — 1)gpn 1
20t

Note that with & = 1, it reduces to the usual second-order BDF scheme. It is well

known that the usual second-order BDF method (with Taylor expansion at t"*1) is A-

stable. In order to study the stability region for k # 1, we set ¢ =+™ and z = At in

(3.3) to obtain its characteristic polynomial

(3.4) (2k + 1 —2k2)y* 4+ (2(k — 1)z — 4k)y + (2k — 1) = 0.

Then the region of absolute stability of method (3.3) is the set of all z € C such that
(3.4) holds for all |y| < 1. In Figure 1, we plot the stability regions of the general
BDF2 type method (3.3) for k =1,3,5. We observe that the general BDF2 method

is still A-stable for k£ > 1, and more importantly, the stability region increases as we
increase k, at the expense of slightly increased truncation error.

(3:3) = Ako" ™ — (k= 1)9").

3.2. A new second-order consistent splitting scheme for the time de-
pendent Stokes problem. We now apply the general second-order BDF formula
(3.3) to the time dependent Stokes problem. More precisely, for any positive integer
k, a general second-order BDF type scheme with explicit treatment of the pressure
for the time dependent Stokes equation is as follows:

(3.5) ﬁ((% F 1t — bt 4 (26 — Dun ) — vARum — (k- 1"

+V((k+1)p™ —kp" 1) =0,
(3.6) (Vp" T, Vq) = —v(V x V xu"1 Vq) VYge HY(Q),

One can easily check that the above is a second-order approximation to the time
dependent Stokes equation at time t"T* thanks to (3.1)-(3.2) and the fact that
k(k+1
(k+ D)p(t") — kp(t" 1) = p(t"TF) — %p”(t""‘k)éﬁ + O(5t%).

We observe that with k=1, it reduces to the usual second-order consistent splitting
scheme (1.2)—(1.3) (in the absence of f and a nonlinear term).

Copyright (C) by STAM. Unauthorized reproduction of this article is prohibited.
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F1c. 1. The pink parts show the region of absolute stability of the general BDF2 type method
with Taylor expansion at n+k, k=1,3,5. (Color figure available online.)

THEOREM 5. Assuming u' is computed by using the first-order consistent splitting
scheme [6], then the scheme (3.5)—(3.6) with k = 5 is unconditionally stable in the
sense that

3.7) IVu™ M2 46t A2 46t Y| V(6p™ —5p")[P < C,
=0 1=0

where C is a constant independent of the time step dt and n.

Proof. Lemma 4 played an important role in the stability and error analysis for
the first-order scheme [16, 17]. However, it appears not possible to extend the analysis
to the usual second-order scheme with £ =1 in (4.1a). More refined analysis below
shows that this is due to the fact that the ratio between the coefficients of p"~! and
p", kiﬂ, is too small, and by increasing k to 5, we will be able to establish the desired
stability result.

Taking the inner product of (3.5) with —A((k+ 1)u"*! — ku™), we deal with the
three terms as follows:

(3.8)
(—vAku"™ — (k= Du"), - A((k + Du™t' — ku™))

—v (%A((k + Du Tt — ku”) + %Au"*l,A((k + Dutt - ku"))
=v (%A((k + Du™ — ku™), A((k + Du™ — ku”)> + %(Au"“, Ayt
= (Au Ak — ™)

e | R P

=V

+ 5 (1w P — [ Au|? + A" - At ?).
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For the pressure term,

(V( + 1)p" — kp™ 1), A((k + Du™1 — kur))
(39) 1 n n— v n n

< o V(0 1P = k") + LA+ Dt — k) .

A key step is to deal with the first term in the above using Lemma 4. We recall from
[16] that

(3.10) (Vps(u),Vq)=—(V x V xu,Vq),
and it follows from (3.6) that
(3.11)

(V((k+1)p" —kp"™1),Vq) = —v(V x V x ((k+1)u” —ku"""),Vq) Vge H'(Q).
Taking ¢ = (k + 1)p™ — kp"~! in (3.11) and in (3.10), we find from (3.10) with u =
(k+1)u™ — ku™"! that
(3.12) IV((k+1)p" = kp" )| < vl Vps((k + Du” — ku" ).

Now, we can use (3.12) and (2.7) to bound the first term as follows:

(3.13)
1 n n— v n n—
SV e+ 1p" = )P < 2 Vs ((k + u” — )

<v (le + 5) ||A((k + ]_)'u,n _ kun—l)HQ + CV”V((k n ]_)u" B kun—l)”Q.

We observe from (3.8)—(3.13) that to ensure stability, we need

k-1 1_1

14 —_— >
(3:14) K 2711 °
which implies that k > 4.

It remains to deal with the last term:
1

(3.15) 557 ((2k 4+ Du™t —dku™ + (2k — Du™ 1 —A((k + D)u™ ! — ku™)).
A key step is to split the above in telescoping terms. To this end, we fix k=5. With
a clever maneuvering, one can verify that the following equality holds:

(3.16)
(11w —20u" + 9u” "', —A(6u" T — 5u™))
= (V(11lu™ —20u™ 4 9u" 1), V(5u™ ! — 4u™))
+ (V11w —20u™ 4+ 9u™ 1), V(u" T — u™))

9‘/510vu" 1 V90

2
5 \V4 u”

1 n n
= 15 (Va2 = [1Vu ) +

2
79\2@ Vu" — —\/? Vu" !

V90 V90

90
+ TVU"H -V IOVu" + TVun_l

13 9 9
+ ?Hv(un—&-l _ un)HQ _ 5||V(un _ un—l)H2 + 5”V(un—',-l —2um + un—1)||2_
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Note that the above can be derived by assuming a desired form and then using the
method of undetermined coefficients to find a set of suitable coefficients. Summing
up 26t((3.8) 4+ (3.9) + (3.13)) and (3.16), after dropping some unnecessary terms, we
find

Lém Vau - —\/297) Vu™

i n+1]12 _ nj 2
v = v )+

2
9v10_ , Vv90_ ,_,
Vu

- 5 - Vu
G LT
8vét n 2 206t 12
N R

< AV <i +€> ||A(6’u,n — 5fu,n71)||2 + 20Ut Hv(6un . 5un71)||2

+ vt || A(6u" T — 5u”)H2 :

Now, we can choose € = % and take the sum of n from 1 to m < % —1on (3.17) to
obtain

Va2 + 46t Y [ AumTH2 < Cwit Y [ V(6u” — 5u™)||* + Cr

n=1 n=1
m

<Cwdt Y ||Vu™|® + Ciy,

n=0

where C7 is a constant depending on [|[Vul||?, |[Vul!||?, and 6t||Aut||?. Since u! is
computed by using the first-order consistent scheme, it is easy to see that ||[Vu!|?
and §t|[Au!||? can be bounded by ||[Vu®||?. Hence, Cy; only depends on u®. We can
then obtain the desired bound on the velocity by applying Lemma 2 to the above.
Finally the bound on the pressure can be derived from (3.13). |

4. The BDF2-SAV schemes and stability results. In this section, we con-
struct second-order GSAV schemes for the Navier—Stokes equation with no-slip bound-
ary conditions based on the general BDF2 type formulas, the GSAV approach for gen-
eral dissipative systems [12], and the consistent splitting schemes [6], and establish a
weak stability result.

4.1. A general form of BDF2-GSAYV schemes. In order to apply the GSAV
approach, we introduce an SAV, r(t) = E(u(t)) + C, with E(u(t)) = 3[lu(t)|?, C >0,
and the condition on C' is stated in Theorem 6 below. Then by combining the GSAV
approach for general dissipative systems in [12] and the consistent splitting schemes
in [6], using (3.1) and (3.2), we construct the general form of second-order schemes
for (1.1) as

(4.1a)

2%+ 1)@t —dkan+(2k—1)a"—!

(2k+1)u 2; +( u VA (k=1 @) A" - VA"V = fr
(4.1b)

(Vp" 1, Vg) = (£ — @t vart! — vV x V x @™t V),

Copyright (©) by STAM. Unauthorized reproduction of this article is prohibited.
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,rn+1 —_pn ,r.n+l

(41C) ot = E(,an-i—l)+C_1(_V|‘van+l‘|2+(fn+1;'an+l))7

(4.1d) entl = L_ gt =1 - (1 ently?
E(u"t)+C’ ’

(4.1e) wt = prtigntt

where 4" = (k+ 1)u" — ku™~! and p" = (k + 1)p" — kp" L.

2. A weak stability result.
THEOREM 6. Let || f(-,t)|| <Cy Vt€[0,T], and let u™ ', u ! be the solution of
the scheme (4.1). For all 6t > 0, we choose C' > max{25t202 20%,1}. Then, given
™ >0, we have r"t1 >0, "t >0, and there exists a constant MT > 0 depending
only on T such that

n . T
(4.2) oty Va2, lu |, e <My Wit 1< 5
j=0

Proof. The main part of the proof essentially follows the proof of Theorem 1 in
[32]. For the reader’s convenience, we provide the proof here. By the assumptions on
f and C, we find

’5t(f”“7u”“) S s e 1

wy | B@IEC T TE@I R far e R 2
Tt | et et
B@ ) +C|= B@ ) +C ~ Fa TR+ T 2

Then, given 7™ > 0, it follows from (4.1c) and (4.3) that

—nt12 nt+l —nt1y\ L
,r,n+1 — Tn 1 4 (StVUV'U/ ||7 _ 5t(.f_ U 7) > O
E@@"th)+C  E(@t)+C

Next, taking the sum of (4.1c) for n from 0 to m, using again (4.3), we obtain

(4.4)

pmtl 7V5tzgj+1“vuj+1”2Jr(stZngrl fj-‘rl fj+1)

7=0

<70 +5tz ]+1 +C(f]+l w’tt)

J+1 J+1
<0 "'&Z ||f jﬂ1||u+ C||ry+1

1 ot -
0 m-+1
+ 57‘ + 5 Z rd.
7=0
Applying the discrete Gronwall lemma 2 to the above, we obtain
(4.6) ™ <2exp(T)r? :=Cpr® Vm +1<T/6t,

which, along with C' > 1, implies that

rrtl 20710

4.7 | = - .
( ) |£ | E(ﬁnJrl) +C ~ H,an+1||2 +2

Copyright (C) by STAM. Unauthorized reproduction of this article is prohibited.
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Since n" Tt =1 — (1 — "2 we have n" T = ¢"F1(2 — ¢"+1). Then, we derive from
inequality (4.7) that with My :=2C77°(2 4+ 2C7rr%) > 2C077°]2 — "1 > 0 we have

M
n+1l| _ |¢n+1 9_ n+ly| < e

which, along with w"*! =n"Tla"+1 implies

My

n+12 _ ( n+1\2| Zn+l 2< et
o = 7 < (e

2
) Jam ) < M2,

where we use (A+2)? > A for any A >0 and A= ||[a""!||? in the case above. Finally,
combining (4.3), (4.5), and (4.6), we have

vot Yy Va2 =0 — g5y G (I el
=0 =0
(48) o " St mo
m i J+1
<r +r + 5 Zr
7=0
<1+ Cr+TCr).

To simplify the notation, we can adjust the positive constant My such that Mp >
r(1+ Cr + TCr), and hence (4.2) is proved. 0

Several remarks are in order:

e The above weak stability is established independent of the first step in (4.1a).
However, combining this weak stability for the nonlinear Navier—Stokes equa-
tions and the strong stability established in Theorem 5 with k£ = 5 for the
linear Stokes problem will allow us to obtain an optimal error estimates.

e The main computational cost (4.1a) is to solve a sequence of Poisson type
equations in (4.1a)—(4.1b), and it can be efficiently implemented as follows:

(i) Compute u"*! and p"*! from (4.1a) and (4.1b);
(i) With @"*! known, determine r"*! explicitly from (4.1c);
(iii) Compute £"*! and 5™ from (4.1d);
(iv) Update u™*! from (4.1e), goto the next step.

5. Error analysis. In this section, we carry out the error analysis for the second-
order schemes (4.1) with k =5. To simplify the presentation, we take v =1 in (4.1),
since the stability results were already proved in the previous sections for any v > 0.
We shall first carry out a detailed global-in-time error analysis in 2D, followed by
pointing out necessary modifications needed to obtain a local-in-time error estimate
in 3D.

5.1. Error analysis in 2D. With k=5 and v =1, we carry out below the error
analysis for the second-order scheme (4.1). Now, (4.1a) becomes

1@t — 20a™ + 9an— _—

(5.1) o5 — AGE" —da™) +a" - Va4 Vpt = f1,

where 4" = 6u” — 5u”~! and p" = 6p™ — 5p"~ 1. We denote

t"=mndt, s"=r"—r(t"), e =u" —u(,t"), e =u"—u(,t"), e =p" —p(-,t").
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THEOREM 7. Let d=2,T >0, ug € VN Hg, and w be the solution of (1.1),
and suppose w1, u" T and p"*! are computed by the scheme (4.1) with k=5. We
assume the condztwns in Theorem 6 hold, and

(5.2)
ou 9%u Pu 0%p
— eIL?0,T;HY), —= e€L*0,T;H?, —€L?0,T;L%, —¢cL*0,T;H'
5 €L, ), e €LOTHY), 5 € L7(0,T; L%, 526 (0, ).
Then for n+1<T/ét wzth6t<1+202,we have

n+1 . . )
(5.3) Ve 2+ || Ve T2+ 6t > (| A + [|[Ael|® + || Vep|?) < Cot,

i=0

where the constants Coy and C are dependent on T, Q, and the exact solution w, but
are independent of Jt.

Proof. As we focus on the error analysis for the semidiscrete scheme, we assume
fi=f (t) for all 4, and w', u', p! are computed with proper initialization procedure
such that (5.3) holds.

The main task is to prove by induction

(5.4) |1 —¢<Cydt Vi<T/ét,

where the constant Cy > 1 will be defined in the induction process below. In the
following, we shall use C' to denote a positive constant independent of Cy,dt, which
can change from one step to another, and we use € > 0 to denote a constant which
can be arbitrarily small.

Under the assumption, (5.4) certainly holds for i =0. Now suppose we have

(5.5) 11— €& < Cyét Vi<n;
we shall prove below
(5.6) 1€ < oot

for the same constant Cj.
Step 1: Bounds for ||V@*| and ||Vu?|| for alli <n. Under the assumption
(5.5), if we choose ¢t small enough such that

1
(5.7) 5t§m1n{20g,1},
we have
(5.8) 1<1 ! <|§|<1+—<2 Vi<n
2 2C, 2Cy
and
1

ot ot
(5.9) 1_7<‘1|<1+5<2 Vi <n.

5 S
Then it follows from the above and (4.2) that

(5.10) 5ty _|Iva'|?, |a'] <2Mp  Vi<n.
=0
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~ Consider (5.1) at step i +1 <n and take the inner product with — A% where
@'t = 6! — 5a’. For the first term on the left-hand side, it follows from (3.16)
that

(11a™" —20u’ 4+ 9a' !, —Aa't)

1 —id1(2 —i||2 W10 _; V90
2
- 9mvai— mva"—l
(5.11) 5 9
V90 V90

2
; . V90 13 ; ,
Va'tt —V/90va' + TvaH + ?HV(W“ —at)|?

2

9 ; ; 9 ; ; ;
e L R TS I
For the second term, taking k=75 in (3.8), we have

(_ A( ,ai-i-l _ 4ai)7_A,&i+1)

(5.12) 4 L 1 —i —i _j —q
=zlaa HE zlAw P+ (A — At ” + |Aw - Aw]?).

For the term with @' - V&', noting that u’ = nia’ and |n:] < 2, making use of (2.2),
we have
(a' - va', aatt) <4l (@ val, A
~ G~ ~inl/2 ~q
< cf| vl ||| @12 @l | At
<Ce)|val|Plla’||la]z + e[| aa™?
< Cle)Mz|Va'||* +el|Aa’|? + ef| Aa™ |2,

(5.13)

where we use the elliptic regularity estimate ||@‘||3 < C||A@||? in the last inequality
above.
For the term with p*, we have

(5.14) (Vp', —Awth) < ||Vl aa‘T).

In order to estimate ||[Vp||, we follow the same process as in [16], first rewriting
(4.1b) as

(5.15) (Vp',Vq) = (f' —u'-Va',Vq) + (Vps(u'),Vq) Vi<n,

where p;(u?) is the Stokes pressure associated with 4’ and hence

(516)  (V§,Vq)=(F —6a'-Vai +5a~" Vai~!, V) + (Vpa (@), Vq),
where fz =6f" —5f""!. Now, taking ¢ = p’, we have

(5.17) IVp| <[If —6a’ Va' +5a " Va' | + || Vpy(a')|.
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In the case d =2, it follows from the Sobolev inequality and the elliptic regularity
estimate that

17— 6w - va +5at - Va2

<3517+ 108l - | 4 75 TP

<3F12+ Clla Va2 wa s + Clla Va2 va,
<3712 + Ce)ME(|Va* + | Vai[4) + (| aal])® + | aai= %),

(5.18)

where we used the following inequality (cf. section 4 in [16]):
lu - Va2 < [lu” |24 ]| Ve |2 < Cllu” [V [P V]|, d=2.
As a result, by making use of Lemma 4, we can estimate (5.14) as
(Vi —Aa+) < [Aa Y| (IF —6u’ - Vai + 5" Vai | + | Vps(a)])
<CE)|f —6u-Va +5a" - Va2 +e|Aait!?
1 » 1, .
+ 5 [Vps(@)|? + S A2

(5.19) ’ 242 22 i (|4 i—114
Cle) (I 1+ Mz(IVa(|* + [Va'=H")
+e(laa’|® + A H® + [|AaT?)

1 : q 1, ...
+(3+5) 1aaIP + CcEITEP + glaa P

4 2 2

Finally, for the right-hand side of (5.1), we have
(5.20) (F°,—aa"™) <CE)IF ) +ellaa™ 2

Now, combining (5.11)—(5.20) and dropping some unnecessary terms, we obtain

(5.21)
2
1 ; ; 9\/ 90 . 9v/10
T (I7a = Ve )+ | 2R vat %w W0y V0
1 _ g i 85t . 205t .
N T e e e P

+5t(IIAul+1H2*HAﬁ”II )
< Cle)Mpot([Va'| + [ va'|* + [ Va'—|") + (; —i—s) Stl| Awl|[? + 6t Awi T2
+ 268t (AT ? + AP + | AT + |Aw'T P + O(e)st | va'|?
Cle)ot(| £ 12+ I1F11).

Now, we can choose € small enough, such that

8§ 1 2
(5.22) 5>§+€+1+45 and 5>4€.
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For example, we can choose € = Wlo’ then take the sum on (5.21) for ¢ from 1 to m—1
with m <n and drop some unnecessary terms:

Iva™| +aty | aa’|?

=0
< CM%athl |Val|* + Cdtmz:l |Va?|?
(5.23) P =0
+Cot S (IF17 + 1F71%) + Mo
. o1
<CM7st Y |Val|[*+Cot Y Vel + CTCF + My Ym<n,
=0 i=0

where M is a constant dependent only on the initial data and where we used || f(+,¢)]| <
Cy for all t € [0,T). Next, noting that 6t 57", " || Va'||? < 2My from (5.10), we can
make use of Lemma 2 on (5.23) and obtain

(5.24)  [[Va™[]* + 6t Y |Aw(]* < exp(2CM§)(2C My + CTCF + My)  Ym <n.
=0

Since u’ =n'u’ and |n’| > 1 for all i <n, we also have

(5.25) 51§Z |Au’||* < dexp (20M3) (2CMp + CTCF + My) Vm<n.
i=0
Step 2: Estimates for ||[Ve”T!||. From (5.1) and (4.1b), we can write the
error equation for @'t! and p't! as

(5.26)
11e"! — 20&’ +9e' — 25tA(5e — 4e’) + 25t(a' - Va' —a(t') - Va(t')) + 26t Vel
=26tP' + 26tQ° + R' + 265",

where &), = 6el, —be, ™!, a(t') = 6u(t') — 5u(t*"'), and P’, Q', R* S* are given by

P =Vp(t'°) = V(6p(t") — bp(t™"))
ti+5 t'i+5

(527) i 82p i—1 82])
:6/ﬁ_ (t —S)Vﬁ(s)ds—B/ﬁﬂ (77— )V L (s)ds,

Q' = —Au(t5) + A(5u(t™) — du(t))

(528) i g p P A
:_5/ti+1 (#+1 — ) w(s)ds+4/t (# ) AT (s)ds,

i

R = —11u(t'™Y) 4 20u(t?) — Qu(t' 1) 4 26ta, (t11°)
11 t11+5 ) 83u t11+5 4 83u
_ i+1 2Y ¥ _ i 20" U
(5.29) =2 ) (t 5)" 5 (s)ds — 10 /t (=) g (s)ds
o Pu

i—1

9 i-1_ 20U
+ 2/t (t s) T (s)ds,
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and
St =t . Vau(t™D) —a(t)) - Va(th)
(5.30) _ u(ti+5) ) v(u(ti+5) _ ,&(tz)) _ ('&,(ﬂ) _ u(ti+5)) . Vﬁ(tl)

Take the inner product with —A&"™ on (5.26) with &'t = 6&'*! — 5&’. For the first
two terms on the left-hand side, same as (5.11) and (5.12), we have

(11e"*! —20e" + 9&' ', —Ae' )

1 . . 9v10_ 0,
_ L wee - v + | 20 - Y0gs
10 5 2
2
VIO VI
(5.31) — |5 Ve -5 Ve
2
_ _ _ 1 . .
+ 7\/2970Vé1+1 —\/90ve' + —@Vé“ + ;HV(éZ“ —e")?
9 —1 —i—1 2 9 —1+1 —1 —3—1 2
—§||V(e —e +§HV(€ —2e' +e' )
and
(5.32)
(—20tA(5e™t! —4e'), —Ae't!)

ot ; 20t . . , . ‘
= S0 et + 2 AT 4 st(aeT 2 ~ Ae? + Aet — Ael?).

For the nonlinear term on the left-hand side of (5.26), we rewrite it as
(5.33)
a'-Va' —at)) - Vat) =a' - va' —a(th) - Va' +alt) - va' —att) - Va(t?)
=& -va' +at) ve'
where &' = 6e’ — 5e’~!. Therefore, it follows from (2.4) that
(@' - va' —a(t') - Va(t'), -Aet!)
= (&' -Va',—Ae™) + (a(t) - ve',— A&t
< O|[ve'|[[la’ || e + Clla(t) 2/ Ve || ae™ |
<CEIVEPAw(? + Cle)llat)3IVe'|* + e ae™ 2.

(5.34)

Noting that u' = n'a’, [1 — 9’| < C36t* for all i < n, and ||[Va'| is bounded above
from (5.24), we can estimate &" as

(5.35) |Ve'||? = |Va' — Va' + Ve ||> < CCqat +2||Ve'||.
For the term with é;, we have

(5.36) (Véi, —A&™) < Ve[| A&

To estimate ||[Vé, ||, same as in the last step, we make use of the Stokes pressure.

First, from (4.1b), the error equation for ef, can be rewritten as

(5.37) (Vel,Vq) = (u(t’) - Vu(t') —a’ - Vu', Vp) + (Vp,(e'), Vq),
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and hence,

(5.38)
(Vél,Vq) = (6u(t) - Vu(t') —6u’ - Va' —bu(t'") - Vu(t' ') +5u' " - Va'~", Vp)
+(Vps(€"),Vq),

where p4(é%) is the Stokes pressure associated with é'. We let ¢ = é;, and obtain
Vel < [16u(t’) - Vu(t') — 6u’ - Va'|| + [|5u(t'™") - Vau(t'™)
(5.39) —5u'"t - Va4 | Vps (&)
As in (5.33), we first rewrite
(5.40) 6u(t’) - Vu(t') — 6u’ - Va' = —6e' - Va' — 6u(t') - Ve';
then it follows from the Sobolev inequality and the elliptic regularity estimate that
(541)  [|6u(t’) - Vu(t') - 6a’ - V@' < O|[Ve'|*|Aa | + Cllu(t) 3] Ve
and, similarly,
5w(t'™) - Vu(t™') —5a'~' Va2
(5.42) <CO[ve P Aw T + Cllut =3 ve *.

Now, combining (5.36)—(5.42) and making use of Lemma 4 for Stokes pressure, we
can bound the term with é; as

(5.43)
(Vél, —A&t)
< AT ([6u() - Vu(t') — 6u - Va'| + [suth) - Vu( ) — bai - vai )
+ (A& Vs ()|
< Ce)(I6u(t’) - Vu(t) — 6a' - Va'|? + [5u(t 1) - Va =) — 5ai~t - vai~!|?)
, 1 ’ 1 ;
A + S [V, () + 5 |AEH 2
<Cle)|Ve'P(laa|? + [lu(t)]3) + C@E)IVeHP([Aa’* + [lut)]3)

1 ; 1 . .
+ <€ + 2) |A&? + (4 + ;) |AEY||2 + C(e)|| Ve >
For the right-hand side of (5.26), (5.27)—-(5.29) imply
(5.44)
, . , , 9% 1P ,
(P —2&) <OE) P IP+e 0 P <Oe)o [ VTR dsrellagt |2
and, similarly,
, . E 920 || ,
(545 (Q,—A&T) < C(e)ot / A )| ds+ellaet e,
ti
(5.46)
. . C(&) . e B ll? .
(R',—Ae&th) < 5 | RY||* +edt]|Ae % < 0(8)&4/ Fr ds+edt|| AetT |2
ti—1

Copyright (©) by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 10/18/23 to 103.220.79.174 . Redistribution subject to SIAM license or copyright; see https.//epubs.siam.org/terms-privacy

2424 FUKENG HUANG AND JIE SHEN

For the term with S°, it follows from (2.4) that

(5.47)
(57, = A&™!) < Cllu(t5) |V (w(t+7) — a()) || A& |
+ Clla(t) ]|V (w(E2) - a(t))]| A& |
< CE) (a3 + @) 31V (w(t7) — a(t))|* + =l|ae |

ti+5 62

<ot [ IVEE s+l ag

Now, combining (5.31)—(5.47) and dropping some unnecessary terms, we obtain

(5.48)
2
%<||Vé"“u2—||veiu2>+ Pvern - ve| - | Yve

25t
— ||ae an

i & i i 80t \ i
SIV(E — &) - J|v(e - e + 2 ag +
ot (Jae P - ae )
. . ) . 1 .
< CRIVE P (IAG P + [a()I} +1)+ ( + Dot|ac [P + (5 +2) oA

Cle)at| Ve' P (| Aw'(|* + [lu(t)I3) + C(e )<5t||Véi*1IIF"(IIMLHII2 +uH]3)

+C(5)5t4/t1+0 (H 8t§( 5) H vZ% 0 2) ds

ti—1 atz
Next, we can choose € small enough such that % >e+1+ % + ¢ and take the sum
on (5.48) for ¢ from 1 to n. Under the assumption (5.2) on the exact solution, we can
obtain the following after dropping some unnecessary terms:

2
+ H at2 H ot3

+ OO (AT + [a(t)]3)-

(5.49)
n+1
Vet ? +6t )y || ae|? <Cf5tZIIVeZII (l1A@ || + [Ju(t)]3)

1=0 =0

+ CCyot> > (|Aa? + [[a(t)]3)
=0
+CotY | VEP(|AG || + [la(t)||3 + 1) + CTst*.
=0

Finally, note from (5.24), (5.25), and assumptions on the exact solution that

(5.50) 5tZIIAulH2 5752 1AGH 2, [la()|3, [lut)]3 < Cy

for some positive constant C7, which is independent of Cy and dt. Then applying the
Gronwall lemma 2 on (5.49), we have

n+1
(5.51) [|[Ve" Y2 + 5t2 |A&||? < C6t* exp(2CC ) (CyCy +T) < Codt* (Ca + 1),
=0
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where we denote Cs := max{C'exp(2CC1)C1, Cexp(2CC1)T'} to simplify the notation
below. Under the condition (5.7) on §t, we can get a bound for ||[Va"|%:

(5.52) Va2 < Cut*(Ch +1) + Oy <205 + Cy = Cs.

Step 3: Estimate for |1 — ¢™T!|. It follows from (4.1c) that the equation for
the errors can be written as
+1 _ i +1Y(2 r i+1Y(12
41—t ot (IVu )P - IVl

(5.53)
(P77 - (P ) ) 4T

6 Tz'-&-l
t —_— e =
+ (E(ul“) +C

where T" is given as
pitl

(5.54) T =r(t") —r(") + otry (') = / (s —t")r(s)ds.
tt
Taking the sum of (5.53) for i from 0 to n, and noting that s° =0, we have
=iy (IFuE ) - e V@
E(ut!) +C

(5.55) =0 o
+(5tz ( — +C(fi+17ai+1>_(f(ti+1 tH_l > +ZTZ.

We can bound the terms on the right-hand side of (5.55) as follows. Recall that

= 1 _
r(t)=E(u(t,z))+C= 5/ u?(t,x)dx + C.
Q
By direct calculation, we have
(5.56) ru= [ (u o+ v
Q

then from (5.54) we have

tn+1 tn+1

G st [ lruolds <08t [ (I + e lllueo)])ds

Next,

,ri+1

E( Z+1)+C
7,.z+1

_E(ai+1)+(7‘+ E(@*)+C

[Vt h)* - Iva'

(5.58) pitl

< ”vu(tiJrl) 2

[IFu(E )2~ [vart
= le + Wé

For Wi, it follows from E(u)+ C > 1 for all w and Theorem 6 that

(5.59)

) ,r,i+1
terl) 7,+1 7,.i+1 ,r,i+1
‘E (D] +C  Elu(t+)] Jrc’+ ’ Eu(t*t)]+C E(@t)+C

(|E[u<tl“>] — B(@ )|+ [s741).
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For Wi, it follows from (5.52), E(u)+ C > 1 for all u, and Theorem 6 that

Wi <C|[|[Va' ™ |? — [Vu()|?|
(5.60) <CIVatt = Vu (Ve ™ + [[Va)])
< CCy||Vety.
On the other hand,
T.i-‘rl
B@ )+ 0
<), () \1 -

i+1

(fi+1,ﬁi+1) _ (f(ti+1),u(ti+l))‘
Ti+1
(5.61) E(a*1) +C’

,
E(@*h)+C
= Wi+ Wj.

- (P ) = (£, ()|

For Wi, as for (5.59), we have

(5.62) Wi < C(1Bfu(t™)] - B@ )| +1s1]).
For W}, since we assume fi= f(#%) for all i, we have

(563) Wi < CF | a - u(e ) < Cllett.
On the other hand,

(5.64)
1

[Blu(t™)] = B@ )] < 5 (lu(e )|+ |a ) Ju(e+) - a7 < e,

Now, combining (5.51) and (5.55)—(5.64), we arrive at

T’H_l

n+1 +1y\(12
|s \gétZHWu(t i —W

i= 0

IV (@ )|

(fi+1,ﬁi+1)— (f(ti+1 tz+1 ‘_,'_Zu-n

E(@ ) +C

T
<05t2\sl+1| + OO Y IV 4.0t [ ()P + o)) it

10 =0

< c&Z s 4+ CC31/Co(CE +1)5t% + C6t.

=0

Applying the discrete Gronwall lemma 1 to the above inequality with §t < 20,

obtain
|s" T < Cexp((1 — C6t) ™' T)6t (CS, [Co(Cg +1)6t + 1)
< C4ét (031 [Co(C§ +1)6t + 1) ,

(5.65)

we
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where C} is independent of Cy and §t and can be defined as
(5.66) Cy:= Cmax{exp(2T),2}.

Then §t < % can be guaranteed by

1
5.67 0t < —.
(5:67) o
Hence, noting (5.59), (5.64), (5.65), and (5.51), we have

1= < C(|Blu™ )] - B@™)| +[s" )
<C(le™ ) +s"*)

(5.68) <Ot ( Co(CE4+1)0t + C,y <03\/02(o§ +1)0t + 1))
< Cs6t (M&H— 1) :

where the constant Cj is independent of Cy and §t. Without loss of generality, we
assume Cy > max{Cy, 1} to simplify the proof below.
As a result of (5.68), |1 —&" 1| < Cydt if we define Cp such that

(5.69) Cs <\/1+C§5t+1> < Cy,

and the above can be satisfied if we choose Cy = 2C5 and 6t < —L

ity
(5.70) Cs <\/1 + C36t + 1) < C5[(1+C§)dt + 1] < 2C5 = Co.
To summarize, under the condition
5.71 < ——
(5.71) T 14203

we have |1 —£" 1| < Cyét. Note that with Cs > max{Cy, 1}, (5.71) also implies (5.67).
The induction process for (5.4) is complete.

Finally, besides (5.51), we want to show ||[Ve™ |2, 6t Y277 || Ae?||? < Cot?.

We derive from (4.1e) and (5.52) that

(5.72) V(=@ |2 < "t = 1P Var Tt ? < gt - 120,
On the other hand, we derive from (5.4) that

(5.73) "t — 1| < C3ot2,

Then it follows from (5.51), (5.72), and (5.73) that

”ven+1”2 < 2||Vén+1||2 +2HV(U”+1 _ ﬁn-‘rl)”?

5.74
(5.74) < 205(Cy 41)6t* + 2C5C4 5t

holds under the condition §t < Similarly, we have

1
1+202°

(5.75) |Ae™ 2 <2 AP + 2| A — a2 vi<n;
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then (5.51) and (5.73) imply

n+1
(5.76) 5ty | Ae’|? < Cott
i=0
Error estimate for the pressure. Letting g = e in (5.37), in the same manner as in

(5.41), and making use of Lemma 4, we have
IVep I < 2f|u(t’) - Vu(t') —a’ - Va'|* + 2| Vps(e) |

< C|VE (AT + [uE)|) + |A& + Ve,
Now, take the sum on (5.77); then (5.50) and (5.51) together imply

(5.77)

n+1
(5.78) 5ty " |Vep|? < Cot.
i=0
The proof is complete. ]

5.2. Error analysis in 3D. We observe that in the above proof for the two-
dimensional case, only (5.13) and (5.18) are not valid in 3D. As a result, we can only
get a local-in-time version for (5.24) and (5.25).

THEOREM 8. Letd=3, ug € VN H2, and u be the solution of (1.1), and suppose
a" Tt unt ) and p"t are computed by the scheme (4.1) with k=15. We assume the
conditions in Theorem 6 hold, and

(5.79)
ou 2 ’u 2 2 Pu 2 2 *p 2 1
EEL(OTH) WEL(OTH) FEL(OTL) WEL(OTH)

Then, there exists T, >0 such that for 0 <T <T., n+1<T/dt with ot < we

have

1+202 ’

n+1
(5.80) Ve > + Ve 2 + 6t > (|Ae'|* + [[Ae||” + [ Ve, ||*) < Cot?,

i=0
where the constants Cy and C are dependent on T, Q and the exact solution w, but
are independent of Jt.

Proof. The proof follows essentially the same procedure as the proof for Theo-
rem 7. However, since (2.2) is not valid when d = 3, we have to deal with (5.13) and
(5.18) in another way. To simplify the presentation, we shall only point out below
how to deal with (5.13) and (5.18) to obtain a local version of (5.24) and (5.25) in
Step 1 in the proof of Theorem 7.

In Step 1, it follows from (2.3) that (5.13) becomes

(& Vi, Aa) <4\ @ v Aw)| < o v Va2 e
(5.81) Cle)|Va' |’ Aw']| + e Aa'
CEIVEl® +ellaw|” + <l aa' 7,

and in the case d = 3, it follows from the Sobolev inequality and the elliptic regularity
estimate that

1~ 6u' - Va4 5a Va2

<3| 7|2 + 108 @’ - Vai|? + 75t - vai|?

<3IF + CIva Vel + CIva P va

<3IF 12+ CEUIVE® + Vo) + e aw | + [ Aa ).

(5.82)
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As a result, combining other estimates obtained in Step 1 in the proof of Theorem
7, (5.23) becomes

(5.83)
m ) m—1 ) m—1 )
IVa™|®+6tY_|Awl><Cot > [Va'|*+Cot Y [|Va'|? + CTCF + My Ym <n,
=0 =0 =0

where My >0 and Cy are the same as in Theorem 7. Now, if we define ® as ®(z) =
23 + x and let

oo
(5.84) 0<T, < / dz/®(z),
CTC2+Mo

then Lemma 3 implies that there exists C, > 0 independent of §¢t and Cjy such that

. a™||% + 6t AR|2<C, Ym<n<=2.
(5.85) [Va™|* + ;H u'||*<C mns

Since u’ =n'u’ and |n’| > 1 for all i <n, we also have

5.86 5t Au'|* <20, Ym<n<—.
(5.56) D oau <20, vmsns

Now, with (5.85) and (5.86) holding true, we can then prove (5.80) by following
the same procedures as in Steps 2 and 3 in the proof of Theorem 7. 0

6. Numerical validation and concluding remarks. We first provide a nu-
merical example to verify the convergence rate of our numerical scheme, followed by
some concluding remarks.

6.1. Numerical results. Ezample 1. In the first example, we validate the con-
vergence order of the new schemes. Consider the Navier—Stokes equations (1.1) in
Q=(-1,1) x (—1,1) with no-slip boundary condition. The exact solutions are given
as

wi(z,y,t) = sin(27y) sin? (mz) sin(t);
uy(x,y,t) = sin(2mz) sin? (7y) sin(t);
p(z,y,t) = cos(ma) sin(my) sin(t).
We set v =1 in (1.1a) and use the Spectral-Galerkin [27] method with 64 x 64 modes
in space so that the spatial discretization error is negligible compared with the time
discretization error. In Figure 2, we plot the convergence rate of the L? error for
the velocity error,, and the L? error for the pressure error, at T =1 by using the
second-order scheme (4.1) with k =5. We can observe the expected convergence rates.
In the second example, we aim to show the advantages of the new schemes with
k=5 over the usual BDF2 (with k =1) and investigate the effect of the GSAV.
Ezample 2. Consider the Navier—Stokes equations (1.1) in Q@ = (—1,1) x (—1,1)
with no-slip boundary condition. The initial condition is given as

wy(2.9.0) = (1+2)(1 — x)tanh(p(y + 0.5)), y <0,
B (14 2)(1 — 2) tanh(p(0.5 — y)), y >0,

uz(x,y,0) = dsin(rx).
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L%-error

10 10°
ot

Fic. 2. Convergence test of the second-order scheme for the Navier—Stokes equations.

047
————— k=1,0t=2x10 %, noGSAV
0.2 [Tk T8 52w 10 csav
k=5,8t=5x10", GSAV
0 .
0 0.5 1 1.5
t
(a) Energy evolution
1 —
Il
05/
0
0.5
-1 fe S =
-1 -0.5 0 0.5 1

(c) k =1, with GSAV

0.5

-1 -0.5 0

0.5 1

(b) k=1, no GSAV

(d)k = 5, with GSAV

F1G. 3. Energy evolution and snapshots at time T = 0.88. All three snapshots are generated
with 6t =2 x 1073.
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Fic. 4. Snapshots of the vorticity contours at different times. Top: T = 0,0.3,0.6. Bottom:
T =0.9,1.2,1.5. The data are obtained by choosing k=75, §t =2 x 1073,

Note that this initial condition is not divergence free, but its divergence will quickly
approach zero in a few steps. We fix f =0, » =0.002 in (1.1), and other parameters in
the initial condition are chosen as p =100, § =0.5. We use the spectral-Galerkin [27]
method with 256 x 256 modes in space. In Figure 3, we plot the energy evolution of
the system by choosing different & and ¢ and the snapshots of the vorticity contours
at time T'=0.88, at which time the numerical solutions from the BDF2 scheme with
k =1 are no longer correct. From Figure 3, we observe that with a large time step
5t =2 x 1073, the usual BDF2 scheme (with k = 1) without GSAV is unstable, and
with the GSAV, the numerical solution is wrong although it does not blow up. On
the other hand, within the same §t = 2 x 1072, the new scheme (with k = 5) leads
to a correct numerical solution which is the same as that obtained by using a smaller
time step 6t = 5 x 10~%. In Figure 4, we plot some snapshots of the vorticity contours,
which are generated by choosing k=5 and 6t =2 x 1073,

6.2. Concluding remarks. We presented in this paper a new second-order
consistent splitting scheme for the Navier—Stokes equations with no-slip boundary
conditions based on (i) the Taylor expansions at time t"*® which offer better stability
than the usual expansion at time ¢"*1, and (ii) the generalized scalar auxiliary vari-
able (GSAV) approach which allows us to treat the nonlinear term explicitly while
maintaining unconditional stability. Thanks to the extra stability afforded by the new
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scheme, we were able to establish its unconditional stability for the time dependent
Stokes equations by using a clever energy argument. For the Navier—Stokes equations,
we first established a weaker stability result using the GSAV approach. Then, by us-
ing the strong stability result for the linear equations and the weaker stability result
for the nonlinear equations, we established error estimates in the strong norm which
is global-in-time in 2D and a local-in-time in 3D for the Navier—Stokes equations.

To the best of our knowledge, this is the first rigorous stability and error analy-
sis for any second-order consistent splitting scheme for the Navier—-Stokes equations.
The new idea (constructing scheme with Taylor expansion at time t"**) introduced
in this paper opened up a new avenue in construct schemes with better stability
for other problems. We are currently investigating the possibility of constructing
higher-order unconditional stable consistent splitting schemes for the Navier—Stokes
equations.
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