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Abstract. We propose a new method to construct high-order, linear, positivity/bound pre-
serving and unconditionally energy stable schemes for general dissipative systems whose solutions
are positivity/bound preserving. The method is based on applying a new scalar auxiliary variable
approach to the transformed system with a suitable function transform. The resulting schemes enjoy
remarkable properties such as being positivity/bound preserving and unconditionally energy stable
and able to achieve high-order and with computational complexity similar to a semi-implicit scheme.
We apply this approach to Keller--Segel and Poisson--Nernst--Planck equations and construct efficient
numerical schemes which, in addition to being positivity/bound preserving and energy dissipative,
also conserve mass. Ample numerical results are presented to validate our theoretical claims.
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1. Introduction. Many problems in sciences and engineering require their so-
lutions to be positive or remain in a prescribed range, such as density, concentration,
height, population, etc. Oftentimes, violation of the positivity or bound preserving
in their numerical solutions renders the corresponding discrete problems ill posed,
although the original problems are well posed. For these types of problems, it is of
critical importance for the numerical schemes to be positivity or bound preserving. A
particular class of such problems is the Wasserstein gradient flows which are gradient
flows over spaces of probability distributions according to the topology defined by
the Wasserstein metric [22, 29]. Important examples of Wasserstein gradient flows
include the Poisson--Nernst--Planck (PNP) equations [27, 10] and Keller--Segel equa-
tions [23, 18]. For these problems, in addition to positivity or bound preserving, it
is also important for the numerical schemes to obey a discrete energy law. Many at-
tempts have been made over the years in developing numerical schemes for the PNP
and Keller--Segel equations.

For the PNP equations, a quite complicated entropy-based scheme with regular-
ized free energy is constructed in [28] along with rigorous numerical analyses for a
set of finite-element approximations; a mass-conservative finite difference scheme is
constructed in [14]; a arbitrary-order energy dissipative schemes are constructed using
a a discontinuous Galerkin method for one-dimensional PNP systems [24]; and most
recently a fully discrete positivity preserving and energy-dissipative finite difference
scheme was developed in [20]. On the other hand, There exist a large number of nu-
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BOUND/POSITIVITY PRESERVING SCHEMES A1833

merical works for the PNP equations in the electric and medical engineering literature;
see, for example, [16, 26, 19] and the references therein.

For the Keller--Segel equations and related models, a finite volume scheme is de-
veloped with convergence proof in [13]; a second-order positivity preserving central-
upwind scheme is constructed in [6] (see also [12, 11]); finite volume methods for
a Keller--Segel system are considered with discrete energy dissipation and error es-
timates in [37]; and a positivity preserving and asymptotic preserving method is
constructed for a reformulated Keller--Segel system in [25] [37, 7]. We refer to the
aforementioned papers and the references therein for more details on existing numer-
ical schemes for Keller--Segel equations.

Some of these numerical schemes preserve positivity and/or some form of energy
dissipation under certain conditions and specific spatial discretization. Oftentimes one
needs to solve nonlinear systems at each time step. Very recently, an interesting ap-
proach was proposed to construct unconditionally energy stable and positivity/bound
preserving for Keller--Segel equations in [31] and for PNP equations in [32]. How-
ever, these schemes require solving, at each time step, a nonlinear system which is
a unique minimizer of a strictly convex functional. The question we would like to
address in this paper is, For PDEs which preserve positivity or bound and satisfy an
energy dissipation law, how do we construct numerical schemes which are linear, pos-
itivity/bound preserving, and unconditionally energy stable for any consistent spatial
discretization?

The recently proposed scalar auxiliary variable (SAV) approach [33, 34] is a pow-
erful tool to design unconditionally energy stable, linear schemes to a large class of
gradient flows and has been applied successfully to many challenging problems. How-
ever, it does not have a mechanism to preserve bounds or positivity. On the other
hand, a common strategy to enforce solutions to preserve bounds or positivity is to use
a suitable function transform. A drawback of this approach is that the transformed
equation becomes very complicated so that it is very difficult to construct efficient
and energy stable schemes for the transformed equation.

In this work, we propose a new class of bound/positivity preserving and en-
ergy stable schemes by combining the SAV approach and the function transform
approach:

\bullet make a suitable function transform to ensure positivity or bound preserving;
\bullet use a recently proposed SAV approach [21] to design linear and uncondition-
ally energy stable schemes for the transformed equation.

Our new schemes will enjoy the following remarkable properties:
\bullet they can be used with high-order semi-implicit (i.e., IMEX) schemes;
\bullet they are positivity or bound preserving;
\bullet they are unconditionally energy dissipative;
\bullet they require solving only one set (instead of two in the original SAV approach)
decoupled linear equations with constant coefficients at each time step, so
the coding and computational complexity are similar to that of semi-implicit
schemes;

\bullet for problems with mass conservation as in PNP and KS equations, they also
conserve mass.

The rest of the paper is organized as follows. In section 2, we describe our
approach for a general semilinear or quasi-linear dissipative system. In section 3, we
construct new schemes for the PNP equations, followed by the schemes for Keller--
Segel equations in section 4. In section 5, we present numerical examples to validate
our schemes. Some concluding remarks are given in section 6.
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A1834 FUKENG HUANG AND JIE SHEN

2. Bound/positivity preserving schemes through transform and SAV
approaches. In order to clearly describe our idea, we consider a semilinear or quasi-
linear parabolic system in the form

\partial u

\partial t
 - \Delta u+ g(u) = 0(2.1)

with either periodic or homogeneous Neumann boundary condition, where g(u) is a
nonlinear function. The following discussions are still valid if we replace  - \Delta in (2.1)
with more general or higher-order linear elliptic operators.

We assume that the above system satisfies a dissipation law in the form

(2.2)
dE(u)

dt
=  - 

\bigl( 
\scrG u, u

\bigr) 
,

where E(u) is a typical energy functional given by

(2.3) E[u] =

\int 
\Omega 

\biggl( 
1

2
\scrL u \cdot u+ F (u)

\biggr) 
dx := E0(u) + E1(u),

\scrG is a nonnegative operator, and \scrL is a self-adjoint, linear, nonnegative operator. We
also assume that E[u] is bounded from below, and without loss of generality, we can
assume E[u] > 0 \forall u.

Note that the above framework includes, as special cases, the L2 gradient flows
for which g(u) = F \prime (u) where F (u) is a given nonlinear function, L =  - \Delta , and
(\scrG u, u) = ( - \Delta u+ g(u), - \Delta u+ g(u)).

Solutions of (2.1) are often bound/positivity preserving. It is desirable, and
sometimes necessary such as in the case of PNP and Keller--Segel equations, for the
numerical solutions to be also bound/positivity preserving. While it is possible to
construct some fully discrete numerical methods which preserve the bounds/positivity
using finite differences or piecewise linear finite elements for a class of (2.1) satisfying
a maximum principle, it is in general very difficult to construct higher-order finite
elements or spectral methods which preserve bounds/positivity as well as energy dis-
sipation.

While the SAV approach [34] provided a powerful approach to design numerical
schemes which preserve energy dissipation, it does not have a mechanism to preserve
bounds or positivity. A common strategy to enforce solutions to preserve bounds or
positivity is to use a suitable function transform. More precisely, given a prescribed
range interval I which could be open, closed, or half open, we can construct an
invertible mapping T : \BbbR \rightarrow I and make the function transform u = T (v) in (2.1),
leading to

\partial v

\partial t
 - \Delta v  - T \prime \prime (v)

T \prime (v)
| \nabla v| 2 + 1

T \prime (v)
g(T (v)) = 0(2.4)

with either periodic or homogeneous Neumann boundary condition, since \partial u
\partial n = T \prime (v) \partial v\partial n .

After we solve v from the above, we get u = T (v) whose range is included in I. Two
typical cases are

\bullet I = (a, b)---a suitable choice is T (v) = b - a
2 tanh(v) + b+a

2 so that the range
of u = T (v) is still in I;

\bullet I = (0,\infty )---a suitable choice is T (v) = exp(v/M), where M is a tunable
parameter to prevent T (v) from increasing too fast, so that u = T (v) is
always positive.
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BOUND/POSITIVITY PRESERVING SCHEMES A1835

The main difficulty with this transformed approach is that the transformed equation
(2.4) is much more complicated than (2.1), and it is difficult to design efficient and
energy dissipative schemes. Fortunately, the recently proposed SAV approach [21] can
provide a satisfactory solution as we show below.

As in the usual SAV approach, we introduce a SAV to enforce energy dissipation
(2.2). More precisely, we set r(t) =

\int 
\Omega 
F (u)dx+C0 with C0 \geq E[u0] and expand (2.4)

with (2.2) as

\partial v

\partial t
 - \Delta v  - T \prime \prime (v)

T \prime (v)
| \nabla v| 2 + 1

T \prime (v)
g(T (v)) = 0,(2.5a)

u = T (v),(2.5b)

dE0(u)

dt
+
dr

dt
=  - E0(u) + r(t)

E(u)+C0

\bigl( 
\scrG u, u

\bigr) 
,(2.5c)

with r(0) =
\int 
\Omega 
F (u(x, 0))dx+C0; it is clear that the above system is equivalent to

(2.4) with (2.2). However, discretizing the above will allow us to easily construct
schemes which are energy dissipative, in addition to bound/positivity prerserving,
which is built into the system. We construct below kth order backward difference
formula (BDF) Adams--Bashforth SAV schemes for (2.5) in a uniform setting: treat
the linear term \Delta v implicitly and use Adams--Bashforth extrapolation to deal with
all nonlinear terms.

More precisely, given rn and (uj , vj) for j = n, . . . , n - k+1, we find (vn+1, un+1,
rn+1, \xi n+1) such that

\alpha kv
n+1  - Ak(v

n)

\delta t
 - \Delta vn+1(2.6)

=
T \prime \prime (Bk(v

n))

T \prime (Bk(vn))
| \nabla Bk(v

n)| 2  - 1

T \prime (Bk(vn))
g(Bk(u

n)),

\=un+1 = T (vn+1),(2.7)

1

\delta t

\Bigl( 1
2

\int 
\Omega 

(\scrL \=un+1 \cdot \=un+1  - \scrL \=un \cdot \=un)dx+ rn+1  - rn
\Bigr) 

(2.8)

=  - 
1
2

\int 
\Omega 
\scrL \=un+1 \cdot \=un+1dx+ rn+1

E[\=un+1]+C0

\bigl( 
\scrG \=un+1, \=un+1

\bigr) 
,

\xi n+1 =

\int 
\Omega 

1
2\scrL \=un+1 \cdot \=un+1dx+ rn+1

E[\=un+1]+C0
,(2.9)

un+1 = \eta n+1
k \=un+1 with \eta n+1

k = 1 - (1 - \xi n+1)Ik , Ik =

\Biggl\{ 
k + 1 if k is odd,

k if k is even,
(2.10)

where the constant \alpha k and operators Ak, Bk are defined by
first-order scheme,

(2.11) \alpha 1 = 1, A1(v
n) = vn, B1(h

n) = hn;

second-order scheme,

(2.12) \alpha 2 =
3

2
, A2(v

n) = 2vn  - 1

2
vn - 1, B2(h

n) = 2hn  - hn - 1;

third-order scheme,

(2.13) \alpha 3 =
11

6
, A3(v

n) = 3vn - 3

2
vn - 1+

1

3
vn - 2, B3(h

n) = 3hn - 3hn - 1+hn - 2;
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A1836 FUKENG HUANG AND JIE SHEN

fourth-order scheme,

\alpha 4 =
25

12
, A4(v

n) = 4vn  - 3vn - 1 +
4

3
vn - 2  - 1

4
vn - 3,(2.14)

B4(h
n) = 4hn  - 6hn - 1 + 4hn - 2  - hn - 3.

The formulae for k = 5 and k = 6 can be derived similarly.
Several remarks are in order:
\bullet Since we assume T is invertible, T \prime (v) \not = 0 so the above scheme is well defined.
The range of the approximate solution \=un+1 = T (vn+1) is obviously included
in I.

\bullet (2.6) is a kth-order approximation to (2.5a) with kth-order BDF for the linear
terms and kth-order Adams--Bashforth extrapolation for the nonlinear terms.
Hence, vn+1 is a kth-order approximation to v(tn+1).

\bullet (2.8) is a first-order approximation to (2.5c). Hence, rn+1 is a first-order
approximation to E1(u(\cdot , tn+1)) which implies that \xi n+1 is a first-order ap-
proximation to 1. Hence, \eta n+1

k = 1 + O(\delta t)Ik which implies that both \=un+1

and un+1 are kth-order approximation of u(tn+1).
\bullet The above scheme can be efficiently implemented as follows:

-- determine vn+1 from (2.6);
-- set \=un+1 = T (vn+1);
-- with \=un+1 known, determine rn+1 explicitly from (2.8), and compute
\xi n+1 from (2.9);

-- update un+1 using (2.10), goto the next step.
The main cost is to solve vn+1 from (2.6) which is a linear equation with
constant coefficients.

The above scheme looks similar to the scheme in [21], but there are some subtle
differences, particularly in the choice of \eta n+1

k . As we show below, this choice allows
us to obtain a uniform bound on (\scrL un, un), which in turn will play a crucial role in
the error analysis as in [30].

Theorem 1. Without loss of generality, we assume ab \leq 0 if I = (a, b). Assume
ui with range in I, vi = T - 1(ui), and ri for i = 0, 1, . . . , k  - 1. The scheme (2.6)--
(2.10) admits a unique solution satisfying the following properties unconditionally:

1. Positivity or bound preserving: i.e., the range of \=un+1 and un+1 is in I.
2. Unconditionally energy dissipative with a modified energy defined by \=En =\int 

\Omega 
1
2\scrL \=un \cdot \=undx+ rn: More precisely, if \=En \geq 0, we have \=En+1 \geq 0 and

(2.15) \=En+1  - \=En \leq  - \delta t
\=En+1

E[\=un+1]+C0

\bigl( 
\scrG \=un+1, \=un+1

\bigr) 
\leq 0.

3. Furthermore, if E1(u) =
\int 
\Omega 
F (u)dx is bounded from below, then for the kth-

order schemes, there exists constant Mk such that

(2.16) (\scrL un, un)1/2 \leq Mk \forall n.

Proof. By construction, the scheme is obviously positivity or bound preserving
for \=un+1.

We derive from (2.8) that

\=En+1 = \=En/
\bigl( 
1 +

\delta t

E[\=un+1]+C0
(\scrG \=un+1, \=un+1)

\bigr) 
.
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BOUND/POSITIVITY PRESERVING SCHEMES A1837

Hence, if \=En \geq 0, we have \=En+1 \geq 0, and (2.15) follows directly from (2.8). It follows
from (2.9), (2.15), and C0 \geq E[u0], E[\=un+1] > 0 that

(2.17) 0 < \xi n+1 \leq E[u0] + C0

E[\=un+1] + C0
< 2,

which together with (2.10) implies

(2.18) 0 < (1 - \xi n+1)Ik < 1, 0 < \eta n+1
k < 1.

Hence, the range of un+1 is also in I as un+1 = \eta n+1
k \=un+1 for I = (0,\infty ) or I = (a, b)

with ab \leq 0.
If E1(u) =

\int 
\Omega 
F (u)dx is bounded from below, without loss of generality, we

assume E1(u) > 1. Denote M := \=E[u(\cdot , 0)]; then (2.15) implies \=En \leq M \forall n. Now, it
follows from (2.9) and the assumption of E1(u) > 1 that

(2.19) | \xi n+1| =
\=En+1

E[\=un+1] + C0
\leq 2M

(\scrL \=un+1, \=un+1) + 2
.

Since \eta n+1
k = 1  - (1  - \xi n+1)Ik , there exists a polynomial Pk of degree Ik  - 1 and a

constant Mk > 0 such that

(2.20) | \eta n+1
k | = | \xi n+1Pk(\xi 

n+1)| \leq Mk

(\scrL \=un+1, \=un+1) + 2
.

Therefore, by the fact
\surd 
A \leq A+ 2\forall A \geq 0, we have

(2.21) (\scrL un+1, un+1)1/2 = \eta n+1
k (\scrL \=un+1, \=un+1)1/2 \leq Mk.

The above scheme can be directly applied to bound/positivity preserving L2 gra-
dient flows, including in particular the Allen--Cahn equation. In the following two
sections, we shall extend the approach presented in this section to construct posi-
tivity preserving and energy stable schemes for PNP and Keller--Segel equations for
which it is essential to preserve positivity.

Remark 1. We emphasize that both \=un+1 and un+1 are kth-order approximation
to u(\cdot , tn+1).

We only considered the time discretization in this section. However, it is clear
from the proof of the above theorem that, as long as the spatial approximations of
\scrG and \scrL are still positive definite, the results of Theorem 1 also hold for the fully
discrete schemes.

3. Positivity preserving schemes for the PNP equation. We consider in
this section the PNP equation which describes the dynamics of N species of charged
particles driven by Brownian motion and electric field (cf. [2, 15, 9] and the references
therein). To simplify the presentation, we will focus on the two-component system
(N = 2). The schemes can be easily extended to more general PNP system with N
components.

3.1. PNP equation. We consider a two-component PNP system in the follow-
ing form:

\partial c1
\partial t

= D1\nabla \cdot (\nabla c1 + \chi 1z1c1\nabla \phi ),(3.1a)

\partial c2
\partial t

= D2\nabla \cdot (\nabla c2 + \chi 1z2c2\nabla \phi ),(3.1b)

 - \Delta \phi = \chi 2(z1c1 + z2c2),(3.1c)
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A1838 FUKENG HUANG AND JIE SHEN

in an open bounded domain \Omega \subset \BbbR d (d = 1, 2, 3) and supplemented with either a
periodic boundary condition or no flux boundary conditions

(3.2)
\partial ci
\partial \vec{}n

| \partial \Omega = 0, i = 1, 2;
\partial \phi 

\partial \vec{}n
| \partial \Omega = 0.

It is also possible to use the Dirichlet boundary condition \phi | \partial \Omega = 0 or a Robin type
boundary condition (\alpha \phi + \beta \partial \phi 

\partial \vec{}n )| \partial \Omega = 0.
In the above, the unknown are ci, the density of the ith species, and \phi , the internal

electric potential, Di > 0 is the diffusion constant of the ith species (i = 1, 2), zi are
the valence constant, and \chi 1, \chi 2 are dimensionless parameters. To make the formulas
below more concise, in the following we fix z1 = 1, z2 =  - 1, and \chi 1 = \chi 2 = 1.

Using the identity \nabla \psi = \psi \nabla log\psi , we can rewrite (3.1) as a Wasserstein gradient
flow

\partial c1
\partial t

= D1\nabla \cdot (c1\nabla log c1 + c1\nabla \phi ),(3.3a)

\partial c2
\partial t

= D2\nabla \cdot (c2\nabla log c2  - c2\nabla \phi ),(3.3b)

 - \Delta \phi = c1  - c2,(3.3c)

with the free energy

(3.4) E(c1, c2, \phi ) =

\int 
\Omega 

c1(log c1  - 1) + c2(log c2  - 1) +
1

2
| \nabla \phi | 2dx.

Indeed, taking the inner product of (3.3a) with log c1+\phi and of (3.3b) with log c2 - \phi ,
summing them up along with ( - \Delta \partial t\phi = \partial t(c1 - c2), \phi ), we obtain the following energy
law:

(3.5)
dE(c1, c2, \phi )

dt
=  - 

\int 
\Omega 

\bigl( 
D1 c1| \nabla (log c1 + \phi )| 2 +D2 c2| \nabla (log c2  - \phi )| 2

\bigr) 
dx.

Note that the form of the free energy, as well as the well-posedness of (3.3), requires
c1, c2 > 0. Therefore, it is of critical importance that numerical schemes for the PNP
system preserve positivity.

On the other hand, we also derive from (3.3) and (3.2) that

(3.6)
d

dt

\int 
\Omega 

cidx = 0, i = 1, 2,

i.e., the mass for each component is conserved.

3.2. Positivity preserving SAV schemes. As explained in section 2, we can
preserve the positivity using suitable function transforms. Since only c1, c2 are pos-
itivity preserving, we only make function transform for c1, c2. More precisely, we
introduce two new functions p1 and p2 through

(3.7) ci = T (pi) := exp(pi), i = 1, 2,

which implies in particular ci > 0, i = 1, 2.
Substituting (3.7) into (3.3a)--(3.3b), we obtain

\partial p1
\partial t

= D1(\Delta p1 + | \nabla p1| 2 +\nabla p1 \cdot \nabla \phi +\Delta \phi ),(3.8a)

\partial p2
\partial t

= D2(\Delta p2 + | \nabla p2| 2  - \nabla p1 \cdot \nabla \phi  - \Delta \phi ).(3.8b)
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BOUND/POSITIVITY PRESERVING SCHEMES A1839

Note that for this transform, we have T \prime (pi) = T \prime \prime (pi) = T (pi), so the transformed
equations are not too complicated.

Next we split the free energy E(c1, c2, \phi ) into the sum of E0(\phi ) := 1
2 (\nabla \phi ,\nabla \phi )

and E1(c1, c2) :=
\int 
\Omega 
c1(log c1  - 1) + c2(log c2  - 1)dx. It is clear that E1(c1, c2) is

convex and bounded from below in the admissible set \scrD := \{ (c1, c2) : c1, c2 > 0\} , so
we assume that for some C0 > 0,

(3.9) E1(c1, c2) \geq  - C0 + 1,

and define a SAV r(t) = E1(c1, c2) + C0 > 1. Then, the total free energy E and its
time derivative can be rewritten as

E(c1, c2, \phi ) =
1

2
(\nabla \phi ,\nabla \phi ) + r(t) = E0(\phi ) + r(t),(3.10a)

dE

dt
=
dE0

dt
+ rt.(3.10b)

Denoting \mu 1 = log c1 + \phi , \mu 2 = log c2  - \phi , we can reformulate (3.3) and (3.5) as

\partial p1
\partial t

= D1(\Delta p1 + | \nabla p1| 2 +\nabla p1 \cdot \nabla \phi +\Delta \phi ),(3.11a)

\partial p2
\partial t

= D2(\Delta p2 + | \nabla p2| 2  - \nabla p2 \cdot \nabla \phi  - \Delta \phi ),(3.11b)

c1 = exp(p1), c2 = exp(p2),(3.11c)

 - \Delta \phi = c1  - c2,(3.11d)

dE0

dt
+ rt =  - E0(\phi ) + r(t)

E(c1, c2, \phi ) + C0

\int 
\Omega 

\bigl( 
D1 c1| \nabla \mu 1| 2 +D2 c2| \nabla \mu 2| 2

\bigr) 
dx.(3.11e)

We remark that since the above system is equivalent to the original system (3.3), the
masses of ci are still conserved, but that of pi are not.

We now construct kth-order SAV schemes (1 \leq k \leq 6) for the above system in a
uniform setting.

Given (cji , p
j
i , \phi 

j , rj , \xi j), i = 1, 2, j = n, n - 1, . . . , n - k + 1, such that\int 
\Omega 

cjidx =

\int 
\Omega 

c0i dx, i = 1, 2, j = n, n - 1, . . . , n - k + 1,(3.12)

we determine (cn+1
i , pn+1

i , \lambda n+1
i ), i = 1, 2, and (\phi n+1, rn+1, \xi n+1) as follows:

\alpha kp
n+1
i  - Ak(p

n
i )

\delta t
 - Di\Delta p

n+1
i = gi(Bk(p

n
i ), Bk(\phi 

n)), i = 1, 2,(3.13)

\=cn+1
i = exp(pn+1

i ), i = 1, 2,(3.14)

\lambda n+1
i

\int 
\Omega 

\alpha k\=c
n+1
i dx - 

\int 
\Omega 

Ak(c
n
i )dx = 0, i = 1, 2,(3.15)

cn+1
i = \lambda n+1

i \=cn+1
i , i = 1, 2,(3.16)

 - \Delta \=\phi n+1 = cn+1
1  - cn+1

2 ,(3.17)

1

\delta t

\bigl( 
E0(\=\phi 

n+1) - E0(\=\phi 
n) + rn+1  - rn

\bigr) 
=  - E0(\=\phi 

n+1) + rn+1

E(cn+1
1 , cn+1

2 , \=\phi n+1) + C0

\int 
\Omega 

\bigl( 
D1 c

n+1
1 | \nabla \mu n+1

1 | 2 +D2 c
n+1
2 | \nabla \mu n+1

2 | 2
\bigr) 
dx,(3.18)
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A1840 FUKENG HUANG AND JIE SHEN

\xi n+1 =
E0(\=\phi 

n+1) + rn+1

E(cn+1
1 , cn+1

2 , \=\phi n+1) + C0

,(3.19)

\phi n+1 = \eta n+1
k

\=\phi n+1 with \eta n+1
k = 1 - (1 - \xi n+1)k,(3.20)

together with homogeneous Neumann boundary conditions

(3.21)
\partial pn+1

i

\partial \vec{}n
| \partial \Omega = 0, i = 1, 2;

\partial \phi n+1

\partial \vec{}n
| \partial \Omega = 0,

where \mu n+1
1 = log cn+1

1 + \=\phi n+1, \mu n+1
2 = log cn+1

2  - \=\phi n+1, \alpha k, Ak and Bk are the same
as in the last section, and

g1(p1, \phi ) = D1(| \nabla p1| 2 +\nabla p1 \cdot \nabla \phi +\Delta \phi ),

g2(p2, \phi ) = D1(| \nabla p2| 2  - \nabla p2 \cdot \nabla \phi  - \Delta \phi ).

Similar to the last section, we have the following remarks:
\bullet Clearly, (3.13) is a kth-order semi-implicit scheme for (3.11a)--(3.11b). We

then derive from (3.14)--(3.17) that \lambda n+1
i is kth-order approximation to 1,

cn+1
i and \=\phi n+1 are kth-order approximations to ci(tn+1) and \phi (tn+1).

\bullet (3.18) is a first-order approximation to (3.11e), so rn+1 is a first-order ap-
proximation to E1(c

n+1
1 , cn+1

2 ) and \xi n+1 = 1 + O(\delta t) which implies that
\eta n+1
k = 1 + O(\delta tk). Therefore, \phi n+1 is also a kth-order approximation of
\phi (tn+1).

\bullet The scheme (3.13)--(3.20) can be efficiently implemented by the following
steps:
1. solve pn+1

i from (3.13);
2. compute \=cn+1

1 , \=cn+1
2 from (3.14) and compute \lambda n+1

i explicitly from (3.15);
3. update cn+1

1 , cn+1
2 from (3.16) and solve \=\phi from (3.17);

4. compute rn+1 explicitly from (3.18) and then obtain \xi n+1 from (3.19);
5. update \phi n+1 from (3.20), goto next step.

The main computational cost is to solve the linear equations with constant
coefficients in (3.13) and (3.17).

We have the following results.

Theorem 2. Given cji > 0, pji = log cji , \phi 
j, and rj such that

\int 
\Omega 
cjidx =

\int 
\Omega 
c0i dx

for i = 1, 2 and j = n, n - 1, . . . , n - k+1. The scheme (3.13)--(3.20) admits a unique
solution satisfying the following properties unconditionally:

1. Positivity preserving: cn+1
1 , cn+1

2 > 0.
2. Mass conserving:

\int 
\Omega 
cn+1
i dx =

\int 
\Omega 
c0i dx for i = 1, 2.

3. Unconditionally energy dissipative with a modified energy defined by \=En =
E0(\=\phi 

n) + rn: More precisely, if \=En \geq 0, we have \=En+1 \geq 0, \xi n+1 \geq 0 and
(3.22)

\=En+1  - \=En =  - \xi n+1

\int 
\Omega 

\bigl( 
D1 c

n+1
1 | \nabla \mu n+1

1 | 2 +D2 c
n+1
2 | \nabla \mu n+1

2 | 2
\bigr) 
dx \leq 0.

4. There exists constant Mk such that

(3.23)
\sqrt{} 
E0[\phi n] \leq Mk \forall n.

Proof. From (3.14), we obviously have \=cn+1
1 , \=cn+1

2 > 0.
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BOUND/POSITIVITY PRESERVING SCHEMES A1841

We derive from the assumption that
\int 
\Omega 
cjidx =

\int 
\Omega 
c0i dx for i = 1, 2 and j =

n, n - 1, . . . , n - k + 1, and the definition of coefficients \alpha k and Ak in section 2 that\int 
\Omega 

Ak(c
n
i )dx = \alpha k

\int 
\Omega 

c0i dx.

It then follows from (3.12) and (3.15) that

(3.24) \alpha k\lambda 
n+1
i

\int 
\Omega 

\=cn+1
i dx = \alpha k

\int 
\Omega 

c0i dx,

which, along with \=cn+1
i > 0, implies that \lambda n+1

i > 0. Hence, we have cn+1
1 , cn+1

2 > 0,
and we derive from the above and (3.16) that

\int 
\Omega 
cn+1
i dx =

\int 
\Omega 
c0i dx for i = 1, 2.

It follows from (3.18) that

(3.25) E0(\=\phi 
n+1) + rn+1 =

E0(\=\phi 
n) + rn

1 + \delta t
\int 
\Omega 

\bigl( 
D1 cn+1

1 | \nabla \mu n+1
1 | 2+D2 cn+1

2 | \nabla \mu n+1
2 | 2

\bigr) 
dx

E(cn+1
1 ,cn+1

2 ,\=\phi n+1)+C0

\geq 0.

Therefore, we derive from (3.19) that \xi n+1 \geq 0, which, together with (3.18), implies
(3.22).

Denote M := \=E0; then (3.22) implies \=En \leq M \forall n. It follows from (3.18) and
(3.9) that

(3.26) | \xi n+1| =
\=En+1

E(c1n+1, c2n+1, \=\phi n+1) + C0
\leq M

E0(\=\phi n+1) + 1
.

Since \eta n+1
k = 1  - (1  - \xi n+1)k, there exists a polynomial Pk - 1 of degree k  - 1 and a

constant Mk > 0 such that

(3.27) | \eta n+1
k | = | \xi n+1Pk - 1(\xi 

n+1)| \leq Mk

E0(\=\phi n+1) + 1
.

Therefore, by the fact that
\surd 
A \leq A+ 1\forall A \geq 0, we derive\sqrt{} 

E0[\phi n+1] = | \eta n+1
k | 

\sqrt{} 
E0[ \=\phi n+1] \leq Mk.

Remark 2. We emphasize that both \=cn+1
i (resp., \=\phi n+1

i ) and cn+1
i (resp., \phi n+1)

are kth-order approximation to ci(\cdot , tn+1) (resp., \phi (\cdot , tn+1)), i = 1, 2.
Obviously, the positivity of ci will be preserved with any spatial approximation

of the schemes (3.13)--(3.20).
It is clear from the proof of the above theorem that the mass conservation and

the energy dissipation (3.22) still hold for any fully discrete schemes.

4. Bound preserving schemes for Keller--Segel equations. We first intro-
duce the Keller--Segel equations, followed by the construction of bound preserving
schemes for one particular case of the Keller--Segel equations whose solution is bound
preserving.

4.1. Keller--Segel equations. To fix the idea, we consider the following Keller--
Segel system with only one organism and one chemoattractant in a bounded domain
\Omega :
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A1842 FUKENG HUANG AND JIE SHEN

\partial u

\partial t
= D

\bigl( 
\gamma \Delta u - \chi \nabla \cdot (\eta (u)\nabla \phi )

\bigr) 
,(4.1a)

\tau 
\partial \phi 

\partial t
= \mu \Delta \phi  - \alpha \phi + \chi u,(4.1b)

with either periodic boundary conditions or no-flux boundary conditions on u and the
Neumann boundary conditions on \phi ,

(4.2) \gamma 
\partial u

\partial \vec{}n
 - \chi \eta (u)

\partial \phi 

\partial \vec{}n
= 0,

\partial \phi 

\partial \vec{}n
= 0 on \partial \Omega .

Here, the unknown are u, the concentration of the organism, and \phi , the concentration
of the chemoattractant. The parameters D, \gamma , \chi , \tau , \mu , \alpha are all positive. The function
\eta (u) \geq 0 describes the concentration-dependent mobility. It is a smooth function with
\eta (0) = 0.

The model is a parabolic-parabolic system when \tau > 0 and a parabolic-elliptic
system when \tau = 0.

The system (4.1) with (4.2) can be interpreted as a gradient flow about (u, \phi ).
To this end, we choose f(u) such that f \prime \prime (u) = 1/\eta (u), and define the free energy

(4.3) E[u, \phi ] =

\int 
\Omega 

\Bigl( 
\gamma f(u) - \chi u\phi +

\mu 

2
| \nabla \phi | 2 + \alpha 

2
\phi 2

\Bigr) 
dx.

Then writing \Delta u = \nabla \cdot 
\bigl( 

1
f \prime \prime (u)\nabla f

\prime (u)
\bigr) 
, we can rewrite (4.1) as

\partial u

\partial t
= D\nabla \cdot 

\biggl( 
1

f \prime \prime (u)
\nabla (\gamma f \prime (u) - \chi \phi )

\biggr) 
= D\nabla \cdot 

\biggl( 
1

f \prime \prime (u)
\nabla \delta E

\delta u

\biggr) 
,(4.4a)

\tau 
\partial \phi 

\partial t
= \mu \Delta \phi  - \alpha \phi + \chi u =  - \delta E

\delta \phi 
.(4.4b)

Taking the inner products of (4.4a) with \delta E
\delta u , and of (2.5) with \partial \phi 

\partial t , and summing up
the results, we obtain the energy dissipation law:

(4.5)
dE[u(t), \phi (t)]

dt
=  - 

\int 
\Omega 

\Biggl[ 
D

1

f \prime \prime (u)

\biggl( 
\nabla \delta E

\delta u

\biggr) 2

+ \tau 

\biggl( 
\partial \phi 

\partial t

\biggr) 2
\Biggr] 
dx.

We now consider several typical choices of \eta (u) and the corresponding function
f(u).

(i) The classical Keller--Segel system: \eta (u) = u. We can choose f(u) = u log u - u
with the domain of definition (0,+\infty ). In this case, it is known that its
solution can blow up in finite time if the initial mass is large enough [3, 4, 5].

(ii) Keller--Segel system with a bounded mobility: A typical choice [35, 36] is
\eta (u) = u

1+\kappa u (\kappa > 0). In this case, we can choose f(u) = u log u - u+ \kappa u2/2
with the domain of definition (0,+\infty ).

(iii) Keller--Segel system with a saturation concentration: \eta (u) = u(1  - u/M),
where M > 0 is the saturation concentration, and the mobility tends to
zero when it is near saturation [8, 17]. In this case, we can choose f(u) =
u log u+ (M  - u) log(1 - u/M) with the domain of definition (0,M).

Hence, the solution of the Keller--Segel system is positivity preserving in cases (i) and
(ii) and bound preserving in case (iii). Furthermore, we observe from (4.1) that

(4.6)
d

dt

\int 
\Omega 

udx = 0.
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BOUND/POSITIVITY PRESERVING SCHEMES A1843

To simplify the presentation, we shall only consider the third case where the
solution is bound preserving. For the first- and second-order cases, the solution is
positivity preserving, so one can construct positivity preserving schemes for these two
cases similarly by replacing the mapping below with Y (v) = exp(v) as in the last
section.

4.2. Bound preserving SAV schemes. We set \eta (u) = u(1 - u/M) and f(u) =
u log u+ (M  - u) log(1 - u/M), and split E[u, \phi ] into two parts as follows:
(4.7)

E[u, \phi ] =

\int 
\Omega 

\Bigl( 
\gamma f(u) - \chi u\phi +

\alpha 

4
\phi 2

\Bigr) 
dx+

\int 
\Omega 

\Bigl( \mu 
2
| \nabla \phi | 2 + \alpha 

4
\phi 2

\Bigr) 
dx = E1[u, \phi ] + E0[\phi ].

Note that f(u) = u log u + (M  - u) log(1  - u/M) implies that u \in (0,M). Along
with \alpha > 0 and f is strictly convex, it is easy to see that E1 is bounded from below.
Hence, there exists C0 > 0 such that

(4.8) E1[u, \phi ] \geq  - C0 + 1.

Due to the form of f(u), it is necessary that the range of numerical solutions is
also in (0,M). To this end, we consider the transform

(4.9) u = T (v) :=
M

2
tanh(v) +

M

2
.

As tanh(x) \in ( - 1, 1)\forall x \in ( - \infty ,+\infty ), then for v \in ( - \infty ,+\infty ), we have u \in (0,M).
Since \phi is not bound preserving, we do not need to transform \phi .

Substituting (4.9) into (4.1a), we obtain the equation for v

(4.10)
\partial v

\partial t
= D\gamma \Delta v +D\gamma 

tanh\prime \prime (v)

tanh\prime (v)
| \nabla v| 2  - 2D\chi 

M tanh\prime (v)
\nabla \cdot 

\bigl( 
\eta (u)\nabla \phi 

\bigr) 
.

Noting that tanh\prime (x) = 1 - tanh2(x), we know tanh\prime (v) \not = 0 and (4.10) is well defined.
We introduce r(t) = E1(u, \phi ) + C0 \geq 1. Then, we have

E[u, \phi ] =
\mu 

2

\bigl( 
\phi , - \Delta \phi 

\bigr) 
\Omega 
+
\alpha 

4

\bigl( 
\phi , \phi 

\bigr) 
\Omega 
+ r = E0(\phi ) + r,(4.11a)

d

dt
E[u, \phi ] = \mu 

\bigl( 
\phi t, - \Delta \phi 

\bigr) 
\Omega 
+
\alpha 

2

\bigl( 
\phi t, \phi 

\bigr) 
\Omega 
+ rt =

dE0(\phi )

dt
+ rt.(4.11b)

We can reformulate (4.1) and (4.5) as

\partial v

\partial t
= D\gamma \Delta v +

\biggl( 
D\gamma 

tanh\prime \prime (v)

tanh\prime (v)
| \nabla v| 2  - 2D\chi 

M tanh\prime (v)
\nabla \cdot (\eta (u)\nabla \phi )

\biggr) 
,(4.12a)

u =
M

2
tanh(v) +

M

2
,(4.12b)

\tau 
\partial \phi 

\partial t
= \mu \Delta \phi  - \alpha \phi + \chi u,(4.12c)

dE0(\phi )

dt
+ rt =  - E0(\phi ) + r(t)

E(u, \phi ) + C0

\int 
\Omega 

\Biggl[ 
D

1

f \prime \prime (u)

\biggl( 
\nabla \delta E

\delta u

\biggr) 2

+ \tau 

\biggl( 
\partial \phi 

\partial t

\biggr) 2
\Biggr] 
dx.(4.12d)

We now construct kth-order schemes for (4.12) in a uniform setting.
Given (vi, ui, \phi i, ri), i = n, n - 1, . . . , n - k + 1, we find (vn+1, un+1, \phi n+1, rn+1)

as follows:
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A1844 FUKENG HUANG AND JIE SHEN

\alpha kv
n+1  - Ak(v

n)

\delta t
 - D\gamma \Delta vn+1 = g(Bk(v

n), Bk(u
n), Bk(\phi 

n)),(4.13)

\=un+1 =
M

2
tanh(vn+1) +

M

2
,(4.14)

\lambda n+1

\int 
\Omega 

\alpha k\=u
n+1dx - 

\int 
\Omega 

Ak(u
n)dx = 0,(4.15)

un+1 = \lambda n+1\=un+1,(4.16)

\tau 
\alpha k

\=\phi n+1  - Ak(\=\phi 
n)

\delta t
= \mu \Delta \=\phi n+1  - \alpha \=\phi n+1 + \chi un+1,(4.17)

1

\delta t

\Bigl( 
E0(\=\phi 

n+1) - E0(\=\phi 
n) + rn+1  - rn

\Bigr) 
=  - E0(\=\phi 

n+1) + rn+1

E[\=un+1, \=\phi n+1] + C0
(4.18)

\times 
\int 
\Omega 

\Biggl[ 
D

f \prime \prime (\=un+1)

\biggl( 
\nabla \delta E

\delta u
(\=un+1)

\biggr) 2

+ \tau 

\biggl( \=\phi n+1  - \=\phi n

\delta t

\biggr) 2
\Biggr] 
dx,

\xi n+1 =
E0(\=\phi 

n+1) + rn+1

E[\=un+1, \=\phi n+1] + C0
,(4.19)

\phi n+1 = \eta n+1
k

\=\phi n+1 with \eta n+1
k = 1 - (1 - \xi n+1)k,(4.20)

where the constant \alpha k and operators Ak, Bk are defined in section 2, and

(4.21) g(u, v, \phi ) = D\gamma 
tanh\prime \prime (v)

tanh\prime (v)
| \nabla v| 2  - 2D\chi 

M tanh\prime (v)
\nabla \cdot (\eta (u)\nabla \phi ).

Essential properties of the above schemes are as follows:
\bullet (4.13) and (4.17) are kth-order semi-implicit schemes for (4.12a) and (4.12c),
(4.15) is a kth-order approximation to (4.6), which imply that vn+1, \lambda n+1,
un+1, \=\phi n+1 are kth-order approximations to v(tn+1), 1, u(tn+1), \phi (tn+1).

\bullet (4.18) is a first-order approximation to (4.12d), which implies that rn+1 is
a first-order approximation to r(tn+1). Then, (4.19) implies that \xi n+1 =
1 + O(\delta t), which in turn implies \eta n+1

k = 1 + O(\delta t)k and \phi n+1 is a kth-order
approximation to \phi (tn+1).

\bullet The above scheme can be efficiently implemented as follows:
1. solve vn+1 from (4.13);
2. compute \=un+1 from (4.14) and compute \lambda n+1 explicitly from (4.15);
3. update un+1 from (4.16);
4. with un+1 known, solve \=\phi n+1 from (4.17);
5. with \=un+1, \=\phi n+1 known, determine rn+1 explicitly from (4.18);
6. compute \xi n+1 from (4.19) and update \phi n+1 from (4.20), goto the next

step.
We have the following results.

Theorem 3. Assume ui, \phi i, vi, and ri such that

(4.22)

\int 
\Omega 

uidx =

\int 
\Omega 

u0dx, i = n, n - 1, . . . , n - k + 1.

Then, the scheme (4.13)--(4.20) admits a unique solution satisfying the following prop-
erties unconditionally:

1. Bound preserving for \=un+1: i.e., the range of \=un+1 is in (0,M).
2. Mass conservation: i.e.,

\int 
\Omega 
un+1dx =

\int 
\Omega 
u0dx.
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BOUND/POSITIVITY PRESERVING SCHEMES A1845

3. Unconditionally energy dissipative with a modified energy defined by \=En =
E0(\=\phi 

n+1)+rn: More precisely, if \=En \geq 0, we have \=En+1 \geq 0, \xi n+1 \geq 0, and
(4.23)

\=En+1  - \=En =  - \xi n+1

\int 
\Omega 

\Biggl[ 
1

f \prime \prime (\=un+1)

\biggl( 
\nabla \delta E

\delta u
(\=un+1)

\biggr) 2

+ \tau 

\biggl( \=\phi n+1  - \=\phi n

\delta t

\biggr) 2
\Biggr] 
dx \leq 0.

4. There exists constant Mk, such that

(4.24)
\sqrt{} 
E0[\phi n] =

\sqrt{} \int 
\Omega 

\Bigl( \mu 
2
| \nabla \phi n| 2 + \alpha 

4
(\phi n)2

\Bigr) 
dx \leq Mk \forall n.

Proof. The proof is essentially the same as that of Theorem 2. For the readers'
convenience, we still carry it out below.

We derive from (4.14) that the range of \=un+1 is in (0,M).
Noting the definition of coefficients \alpha k and Ak in section 2, it follows from (4.22)

and (4.15) that

(4.25) \alpha k\lambda 
n+1

\int 
\Omega 

\=un+1dx = \alpha k

\int 
\Omega 

u0dx,

which implies \lambda n+1 > 0, and consequently un+1 > 0. Furthermore, along with (4.16),
it also implies

\int 
\Omega 
un+1dx =

\int 
\Omega 
u0dx.

It follows from (4.18) that

E0(\=\phi 
n+1) + rn+1 =

E0(\=\phi 
n) + rn

1 +
\delta t

\int 
\Omega 
[ D

f\prime \prime (\=un+1)

\bigl( 
\nabla \delta E

\delta u (\=un+1)
\bigr) 2

+\tau 
\bigl( 

\=\phi n+1 - \=\phi n

\delta t

\bigr) 2
]dx

E(\=un+1,\=\phi n+1)+C0

\geq 0.

Therefore, we derive from (4.19) that \xi n+1 \geq 0, which, together with (4.18), implies
the energy dissipation.

Denote M := \=E0; then ((4.23)) implies \=En \leq M \forall n. Now, it follows from (4.19)
and (4.8) that

(4.26) | \xi n+1| =
\=En+1

E(\=un+1, \=\phi n+1) + C0
\leq M

E0(\=\phi n+1) + 1
.

Since \eta n+1
k = 1  - (1  - \xi n+1)k, there exists a polynomial Pk - 1 of degree k  - 1 and a

constant Mk > 0 such that

(4.27) | \eta n+1
k | = | \xi n+1Pk - 1(\xi 

n+1)| \leq Mk

E0(\=\phi n+1) + 1
.

Therefore, by the fact that
\surd 
A \leq A+ 1\forall A \geq 0, we obtain\sqrt{} 

E0[\phi n+1] = | \eta n+1
k | 

\sqrt{} 
E0[ \=\phi n+1] \leq Mk.

We only consider the semidiscretization in time in this paper. As for full dis-
cretizations, we have the following remarks.

Remark 3. We emphasize that both \=un+1 (resp., \=\phi n+1
i ) and un+1 (resp., \phi n+1)

are kth-order approximations to u(\cdot , tn+1) (resp., \phi (\cdot , tn+1)). While only the range of
\=un+1 is guaranteed in (0,M), the range of un+1 is in (0,M +O(\delta tk)).
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A1846 FUKENG HUANG AND JIE SHEN

The positivity of \=un+1 and un+1 will be preserved with any spatial approximation
of the schemes (4.13)--(4.20).

It is also clear from the proof of the above theorem that the mass conservation
and the energy dissipation ((4.23)) still hold for any fully discrete schemes.

One can easily extend these schemes to deal with Keller--Segel equations with
multiple organisms. We leave the details to the interested reader.

5. Numerical examples. In this section, we provide some numerical examples
to validate our numerical schemes.

5.1. Allen--Cahn equation with a singular potential. We first use the
schemes presented in section 2 to solve the Allen--Cahn equation with a singular
potential. In all examples for the Allen--Cahn equation, we consider problems with
periodic boundary conditions and use a Fourier-spectral method to discretize in space.

Example 1. We consider the Allen--Cahn equation [1]

(5.1) \partial tu =  - \delta E
\delta u

= \varepsilon 2\Delta u+ \lambda u - ln(1 + u) + ln(1 - u),

where \varepsilon > 0, \lambda > 0, and

(5.2) E(u) =

\int 
\Omega 

\biggl( 
\varepsilon 2

2
| \nabla \phi | 2  - \lambda 

2
u2 + (1 + \phi ) ln(1 + u) + (1 - u) ln(1 - u)

\biggr) 
dx

is the free energy with a singular potential. The well-posedness of the above equation
requires that u \in ( - 1, 1).

We use the transformation u = tanh(v) in the scheme (2.6)--(2.10).
We first test the accuracy with the following exact solution and the corresponding

external forcing f :

u(x, y, t) =
\bigl( 
exp( - sin2(\pi x)) - exp( - sin2(\pi y))

\bigr) 
sin(t),

f = \partial tu+
\delta E

\delta u
.

The parameters are chosen as \varepsilon = 0.1, \lambda = 3 and the computational domain is
(0, 2) \times (0, 2). A fourier-spectral method with 96 \times 96 modes is used for special
discretization. We plot in Figure 1(a) the errors of the first- and second-order schemes
at tn = 1 and in Figure 1(b) the errors of the third- and fourth-order schemes at tn = 1.
Expected convergence rates are observed for all cases.

Next, we consider the spinodal decomposition of a homogeneous mixture into
two coexisting phases governed by the Allen--Cahn equation. The parameters are
chosen as \varepsilon = 0.005, \lambda = 3 and the computational domain is (0, 1)\times (0, 1). The time
step is set to \delta t = 0.001. A fourier-spectral method with 256 \times 256 modes is used
for space discretization. The initial condition is chosen as a random variable with
uniform distribution in [ - 0.05, 0.05]. We plot the evolution of energy, the evolution
of maxu, minu, and four snapshots in Figure 2.

5.2. Two-component PNP system. We present here numerical results of us-
ing the scheme (3.13)--(3.20) to solve the two-component PNP system (3.1).
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BOUND/POSITIVITY PRESERVING SCHEMES A1847

(a) BDF1 and BDF2 for Allen-Cahn (b) BDF3 and BDF4 for Allen-Cahn

Fig. 1. (Example 1.) Accuracy test for the Allen-Cahn equation using the new SAV/BDFk
schemes (k = 1, 2, 3, 4).

(a) T = 0 (b) T = 10 (c) T = 50

(d) T = 100 (e) evolution of origina energy (f) evolution of umax and
umin

Fig. 2. Example 1. Spinodal decomposition by the Allen--Cahn equation. The simulation is
obtained with \delta t = 0.001 using the scheme (2.6)--(2.10).

Example 2. We test accuracy by considering the two-component PNP system
(3.3), i.e., we fix z1 = 1, z2 =  - 1, and \chi 1 = \chi 2 = 1 in (3.1). We first consider the
following manufactured exact solutions in \Omega = ( - 0.5, 0.5)\times ( - 0.5, 0.5) with suitable
external forcing:

c1(x, y, t) = 1.1 + sin(\pi x) sin(\pi y) sin(t),(5.3a)

c2(x, y, t) = 1.1 - sin(\pi x) sin(\pi y) sin(t),(5.3b)

\phi (x, y, t) =
1

\pi 2
sin(\pi x) sin(\pi y) sin(t).(5.3c)

In this example, we use the Legendre spectral-Galerkin method and (Nx, Ny) =
(40, 40). Other parameters are D1 = D2 = 1. Defining the L2-error at tn as
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A1848 FUKENG HUANG AND JIE SHEN

(a) BDF1 and BDF2 for PNP with known exact
solution

(b) BDF3 and BDF4 for PNP with known exact
solution

(c) BDF1 and BDF2 for PNP with unknown ex-
act solution

(d) BDF3 and BDF4 for PNP with unknown ex-
act solution

Fig. 3. Example 2. Accuracy test for PNP equation using the SAV/BDFk schemes (k = 1, 2, 3, 4).

\sqrt{} 
\| cn1  - c1(tn)\| 2 + \| cn2  - c2(tn)\| 2, we plot in Figure 3(a) the errors of the first- and

second-order schemes at tn = 1 and in Figure 3(b) the errors of the third- and fourth-
order schemes at tn = 10. Expected convergence rates are observed for all cases.

Next, we test the accuracy in the computational domain \Omega = (0, 2\pi ) \times (0, 2\pi )
with periodic boundary condition and the initial conditions are given by

c1(x, y, 0) = 1.1 + sin(x) cos(y),(5.4a)

c2(x, y, 0) = 1.1 - sin(x) cos(y).(5.4b)

In this example, we use a Fourier-spectral method to discretize in space and (Nx, Ny) =
(128, 128). Other parameters are D1 = D2 = 1. We generate the reference solution
by the fourth-order scheme with \delta t = 0.0001. Defining the L2-error at tn as above, we
plot in Figure 3(c) the errors of the first- and second-order schemes at tn = 0.1 and in
Figure 3(d) the errors of the third- and fourth-order schemes at tn = 0.1. Expected
convergence rates are observed for all cases.

Example 3. In this example, we test the so-called Gouy--Chapman model [14],
which is used to describe the evolution of the distributions of the ions.
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BOUND/POSITIVITY PRESERVING SCHEMES A1849

We consider the PNP system (3.1) in ( - 1, 1) with the following parameters: D1 =
D2 = 1, z1 = 1, z2 =  - 1, and \chi 1 = 3.1, \chi 2 = 125.4. The boundary conditions for ci
and \phi are given as

(5.5) \partial xci + zi\chi 1ci\partial x\phi = 0, i = 1, 2,

(5.6) \alpha \phi (t, - 1) - \beta \phi x(t, - 1) = f - 1, \alpha \phi (t, 1) + \beta \phi x(t, 1) = f1, t \geq 0,

with \alpha = 1, \beta = 4.63 \times 10 - 5, f - 1 = 1, and f1 =  - 1. For space discretization, we
use the Legendre spectral-Galerkin method. We set \delta t = 0.001 and use 80 nodes in
space. The initial condition on ci are ci(x, 0) = 1, i = 1, 2,\forall  - 1 \leq x \leq 1. The profiles
of c1, c2, and \phi at different times are plotted in Figure 4 and are consistent with
the results in [14]. In Figure 4(d), we also plot the mass evolution of ci and pi with
ci = exp(pi), i = 1, 2. We can see the masses of ci are well conserved, but those of pi
are not.

5.3. Keller--Segel equations. In this subsection, we present numerical results
of using scheme (4.13)--(4.20) to solve the Keller--Segel equations (4.1).

Example 4. We test the accuracy of the scheme. First consider the one-species
parabolic-elliptic (\tau = 0) Keller--Segel equations (4.1) in \Omega = ( - 0.5, 0.5)\times ( - 0.5, 0.5)
with external forcing such that the exact solutions are given by

(a) c1 (b) c2

(c) \phi (d) mass evolution

Fig. 4. Example 3. Gouy--Chapman model: profiles of c1, c2, and \phi .
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A1850 FUKENG HUANG AND JIE SHEN

u(x, y, t) = sin(\pi x) sin(\pi y) sin(t) + 1.1,(5.7a)

\phi (x, y, t) =
1

2\pi 2 + 1
sin(\pi x) sin(\pi y) sin(t) + 1.1.(5.7b)

Other parameters are D = \gamma = \mu = \alpha = \chi = 1, M = 5. We use the Legendre
spectral-Galerkin method and (Nx, Ny) = (40, 40) in space. Defining the L2-error as\sqrt{} 

\| un  - u(tn)\| 2 + \| \phi n  - \phi (tn)\| 2, we plot in Figure 5(a) the errors at tn = 1 for the
first- and second-order schemes and in Figure 5(b) the errors at tn = 10 for the third-
and fourth-order schemes.

Next, we test the accuracy in \Omega = (0, 2\pi ) \times (0, 2\pi ) with periodic boundary con-
dition and the initial conditions are given by

(5.8) u(x, y, 0) = sin(x) sin(y) + 1.1.

In this example, we use a Fourier-spectral method to discretize in space and (Nx, Ny) =
(128, 128). Other parameters are D = \gamma = \mu = \alpha = \chi = 1, M = 3. We generate the
reference solution by the fourth-order scheme with \delta t = 0.0001. Defining the L2-error
as above, we plot in Figure 5(c) the errors at tn = 0.1 for the first- and second-order
schemes and in Figure 5(d) the errors at tn = 0.1 for the third- and fourth-order

(a) BDF1 and BDF2 for Keller-Segel with known
exact solution

(b) BDF3 and BDF4 for Keller-Segel with known
exact solution

(c) BDF1 and BDF2 for Keller-Segel with un-
known exact solution

(d) BDF3 and BDF4 for Keller-Segel with un-
known exact solution

Fig. 5. Example 4. Accuracy test for Keller--Segel equations using the SAV/BDFk (4.13)--(4.20)
(k = 1, 2, 3, 4).
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BOUND/POSITIVITY PRESERVING SCHEMES A1851

schemes. As in the Allen--Cahn case and the PNP case, the expected convergence
rates are observed for all cases.

Example 5. In this example, we consider the one-species parabolic-elliptic (\tau = 0)
Keller--Segel equations with the initial condition

(5.9) u(x, y, 0) = 4 exp

\biggl( 
 - (x - L/2)2 + (y  - L/2)2

4

\biggr) 
such that the total mass is large enough that chemotaxis happens, in (0, 2\pi )\times (0, 2\pi )
with the homogeneous Neumann boundary conditions. We use the Legendre spectral-
Galerkin method with (Nx, Ny) = (64, 64) nodes to discretize in space, and the second-
order scheme with time step \delta t = 0.001. The parameters are chosen asD = \gamma = \mu = 1,
\chi = 1, M = 100, \alpha = 0.1, and L = 2\pi .

We carry out simulation until the system reaches steady state at t = 8. Several
snapshots of concentration at different times are shown in Figure 6, where we plot
the snapshots by using smaller time steps and more nodes in the right-hand side, and
evolutions of max u, mass of u, mass of v and energy are shown in Figure 7. These
results agree well with those in [31] computed with a nonlinear scheme. In particular,
the energy is dissipative at all time, and the mass of u is conserved up to machine
accuracy.

Example 6. We consider the one-species parabolic-elliptic system with an initial
condition with two bulges, given by
(5.10)

u(x, y, 0) = 2 exp

\biggl( 
 - (x - 3L/8)2 + (y  - 3L/8)2

4

\biggr) 
+ 2 exp

\biggl( 
 - (x - 5L/8)2 + (y  - 5L/8)2

4

\biggr) 
with L = 4\pi . We take M = 50 while all other settings are the same as in Example 5.
We use the third-order scheme, and plot the evolution of energy, maximum concentra-
tion, and four snapshots of u in Figure 8. We observe that the energy is dissipative at
all times, and the maximum of u increases while the support of u shrinks to maintain
the mass conservation.

Example 7. In this example, we consider the parabolic-elliptic Keller--Segel sys-
tem with two species:

\partial u1
\partial t

= D1

\bigl( 
\gamma 1\Delta u1  - \chi 1\nabla \cdot (\eta 1(u1)\nabla \phi )

\bigr) 
,(5.11a)

\partial u2
\partial t

= D2

\bigl( 
\gamma 2\Delta u2  - \chi 2\nabla \cdot (\eta 2(u2)\nabla \phi )

\bigr) 
,(5.11b)

0 = \mu \Delta \phi  - \alpha \phi + \chi 1u1 + \chi 2u2,(5.11c)

with the initial conditions

(5.12) u1(x, y, 0) = u2(x, y, 0) = \phi (x, y, 0) = 4 exp
\bigl( 
 - (x - L/2)2 + (y  - L/2)2

4

\bigr) 
.

The parameters are chosen as D1 = D2 = \gamma 1 = \gamma 2 = \mu = \chi 1 = 1, \alpha = 0.1 with
all other settings the same as in Example 5. We use the first-order scheme for this
example. The results with two different chemotactic sensitivities with \chi 2 = 0.1 and
\chi 2 = 0.01 are plotted in Figures 9 and 10, respectively.

In both cases, we observe accumulation for u1, while for u2, it diffuses first and
then accumulates in the case \chi 2 = 0.1, and it keeps diffusing in the case \chi 2 = 0.01.
These results are consistent with the results in [31].
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(a) T=0 (b) T=0

(c) T=1 (d) T=1

(e) T=2 (f) T=2

(g) T=8 (h) T=8

Fig. 6. Example 5. Simulation of Keller--Segel equations with chemotaxis.
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BOUND/POSITIVITY PRESERVING SCHEMES A1853

(a) max u evolution (b) energy evolution (c) mass evolution

Fig. 7. Example 5. Simulation of Keller--Segel equations with chemotaxis.

(a) Max u evolution (b) Energy evolution

(c) t=0.1 (d) t=2

(e) t=6 (f) t=18

Fig. 8. Example 6. Simulation of Keller--Segel equations with initial condition ((5.10)).
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(a) u1 (b) u2

(c) \phi (d) energy evolution

(e) max u1 evolution (f) max u2 evolution

Fig. 9. Example 7. Simulation with \chi 2 = 0.1.

6. Concluding remarks. For PDEs whose solutions are required to be positive
or in a prescribed range, it is of critical importance to construct numerical schemes
which are positivity or bound preserving. If the PDEs are also energy dissipative
and/or mass conservative, it is important that the numerical schemes be energy dis-
sipative and/or mass conservative at the discrete level.

In this paper, we proposed a new approach to construct linear, positivity/bound
preserving, and unconditionally energy stable schemes for general dissipative systems
whose solutions are positivity/bound preserving. The essential ideas of this new
approach are (i) to first make a function transform so that the solution will always be
positivity/bound preserving, and (ii) apply a new SAV approach presented in [21] to
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(a) u1 (b) u2

(c) \phi (d) energy evolution

(e) max u1 evolution (f) max u2 evolution

Fig. 10. Example 7. Simulation with \chi 2 = 0.01.

the transformed system and the original energy dissipation law to construct efficient
and accurate time discretization schemes.

The resulting schemes enjoy remarkable properties such as being positivity/bound
preserving and unconditionally energy stable and able to achieve high-order and with
computational complexity similar to a semi-implicit scheme. We applied this approach
to an Allen--Cahn equation with a singular potential and to Keller--Segel and PNP
equations which can be classified as Wasserstein gradient flows with an additional
property of mass conservation.

While we only discussed semidiscretization in time in this paper, we pointed out
that the energy dissipation, positivity or bound preserving, and mass conservation
can all be naturally carried over to consistent full discretizations.
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