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Abstract
We consider in this paper numerical approximation of a nonlinear fluid-structure interac-
tion (FSI) model with a fixed interface. We construct a new class of pressure-correction 
schemes for the FSI problem, and prove rigorously that they are unconditionally stable. 
These schemes are computationally very efficient, as they lead to, at each time step, a cou-
pled linear elliptic system for the velocity and displacement in the whole region and a dis-
crete Poisson equation in the fluid region.

Keywords Fluid-structure interaction · Pressure correction · Stability analysis

Mathematics subject classification: 74F10 · 76D05 · 65M12 · 35Q30

1 Introduction

Fluid-structure interaction (FSI) plays an important role in many scientific/engineering 
applications, e.g., design of engineering systems, blood flow in human arteries, etc. It has 
been extensively studied in recent years both analytically and computationally (cf. [6, 9, 
11, 18] and the references therein).

There are mainly three approaches, monolithic, partitioned and semi-implicit projec-
tion, for solving FSI problems numerically. The partitioned approach (cf., for instance, [2, 
4, 10, 24]) solves the fluid and structure dynamics separately with explicit interface condi-
tions. While each subproblem can be solved efficiently by existing algorithms, the explicit 
treatment of the interface condition may lead to instability in the presence of strong added-
mass effect [5] and requires very restrictive time step constraint. In contrast, the mono-
lithic approach (cf., for instance, [19, 20, 23]) simultaneously solves the fluid and structure 
dynamics coupled by the implicit interface conditions. This type of schemes usually have 
good stability properties, but at each time step, a nonlinear coupled system has to be solved 
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and, due to the presence of the pressure in the coupled system, it is usually difficult to 
design an effective iterative scheme to solve the nonlinear coupled system. On the other 
hand, the semi-implicit projection approach was first proposed in [12]. It decouples the 
computation of fluid velocity from that of the pressure and structure displacement by using 
a projection method. This method appears to have some computational advantage over the 
partitioned or monolithic approaches (cf., for instance, [1, 3, 12]).

In this paper, we shall construct a different class of semi-implicit projection schemes 
which decouple the computation of pressure from that of the velocity and structure dis-
placement. Our schemes will be computationally very efficient. More precisely, in the 
first step of our schemes, we solve a coupled, but elliptic, system for an intermediate fluid 
velocity and the structure displacement; then in the second step, we solve a Poisson equa-
tion for the fluid pressure and obtain the fluid velocity with a simple correction. Further-
more, we shall also prove rigorously that these schemes are unconditionally stable.

For fluid problems, an effective approach to decouple the computation of the pressure 
from that of the velocity is to use a projection-type method, originally proposed by Chorin 
and Temam in the late 1960s [7, 28]. A comprehensive review on various projection-type 
methods can be found in [14]. However, a main difficulty in the design of a projection 
method for the FSI problem is to assign a boundary condition for the pressure at the inter-
face. It is well known that a proper boundary condition for the pressure Poisson equation 
in a projection-type method, at the Dirichlet part of the boundary, is the homogeneous 
Neumann boundary condition. Indeed, most existing projection-type schemes for the FSI 
problem also use, explicitly or implicitly, the Neumann-type boundary condition for the 
pressure Poisson equation at the Dirichlet part of the boundary as well as at the interface. 
However, imposing a Neumann-type boundary condition for the pressure at the interface 
appears to affect, to a certain degree, the stability of the scheme, and we are not aware of 
any proof of unconditional stability for this type of projection schemes, only a conditional 
stability has been proved in [12] for a linear FSI problem. In a previous paper [17], the 
authors constructed an unconditionally stable scheme for a linear FSI problem. The aim of 
this paper is to extend it to a nonlinear FSI problem.

In [13], the authors proposed and analyzed pressure-correction schemes for 
Navier–Stokes equations with open boundary where the usual stress-free boundary con-
dition is applied. It is shown that the proper boundary condition at the open boundary is 
of Dirichlet type instead of Neumann type. Two schemes are constructed in [13], one is 
based on the standard pressure correction which leads to poor accuracy at the open bound-
ary, while the other is based on the rotational pressure correction and with a proper Dir-
ichlet boundary condition at the open boundary. It is shown in [13] that both the standard 
and rotational pressure-correction projection schemes, when applied to the time-dependent 
Stokes problem, are unconditionally stable, but the rotational version leads to much better 
accuracy. Since one of the matching interface conditions for the FSI problem is related to 
the stress, it makes sense to extend the approach in [13] for problems with open boundary 
to the FSI problem.

Besides the difficulty associated with the pressure boundary condition on the interface, 
another major difficulty is to prove the unconditional stability of the rotational pressure-cor-
rection scheme for the nonlinear FSI problem. The original stability proof of the rotational 
pressure-correction scheme in [15] was only valid for Stokes problems. An essential step of 
the proof was to take the “discrete time derivative” of the scheme. Unfortunately, this proof 
cannot be extended to the nonlinear case. In [8], the authors constructed an unconditionally 
stable rotational velocity-correction scheme for the Navier–Stokes equations. However, they 
only provided a stability proof for the linear Stokes equations, while showing numerically 
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that the scheme was unconditionally stable. In [25], the author proposed a Gauge–Uzawa 
approach for the rotational pressure-correction scheme of the Navier–Stokes equations, and 
proved that the scheme was unconditionally stable. We shall extend the approach in [25] for 
the Gauge–Uzawa scheme of the Navier-Stokes equations to the rotational pressure-correction 
schemes for the FSI problem.

To fix the idea, we consider in this paper a simple model of the FSI problem where the 
movement of the interface is assumed infinitesimal so the interface is treated as fixed. This 
nonlinear FSI problem captures many of the essential difficulties of the more general FSI 
problems with moving interface, and its well-posedness has been studied in [22].

The rest of the paper is organized as follows. In the next section, we describe the govern-
ing equations for our FSI model, formulate its weak form and the energy dissipation law. In 
Sect. 3, we construct a standard and rotational pressure-correction scheme for the FSI problem 
and prove their unconditional stability. Then, in Sect. 4, we describe a generic approach for 
spatial discretization as well as a Fourier–Legendre method for a special case of a periodic 
channel. We present some numerical results in Sect. 5 to validate our numerical schemes and 
to demonstrate their temporal accuracy. Some concluding remarks are given in Sect. 6.

2  Governing Equations

We consider the following model for interaction of a viscous fluid with an elastic body in 
a two- or three-dimensional bounded domain Ω , with the fluid region Ωf  , the solid region 
Ωs and the interface Γc, so we have Ω = Ωf ∪ Ωs ∪ Γc . We also denote Γf = �Ωf�Γc and 
Γs = �Ωs�Γc (cf. Fig.  1).

We assume that the interface undergoes infinitesimal displacements, i.e., Γc is fixed. The 
more complicated situation with moving interface will be considered in a forthcoming paper.

In the fluid region Ωf  , we have the Navier–Stokes equations: 

(2.1a)�f ut − div �(u) + (u ⋅ ∇)u + ∇p = �f f1 in Ωf × (0,T),

(2.1b)div u = 0 in Ωf × (0, T),

(2.1c)u = 0 on Γf × (0,T),

(2.1d)u|t=0 = u0 in Ωf ,

Fig. 1  Geometry discription for 
fluid-structure problem
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where u denotes the fluid velocity, p the fluid pressure, u0 is the given initial velocity, f1 is 
the given body force per unit mass, �(u) = �

2
(∇u + ∇uT) is the strain tensor, and �f  and � 

are the constant fluid density and viscosity.
In the solid region Ωs , we have the wave equation for linear elasticity: 

where w denotes the displacement of the solid, w0 and w1 are the given initial data, and 
�(w) is the elastic stress tensor, given by

f2 is the given loading force per unit mass, � and �2 are the Lamé constants, and �s is the 
constant solid density.

Across the fixed interface Γc between the fluid and solid, the velocity and the stress vector 
are required to be continuous, i.e.,

and

where � denotes the outward normal vector along Γc w.r.t. Ωs . For instance, if 
Γc = {(x, y)|y = 0} , then � = (0, 1).

For simplicity, we take in this paper �f = �s = 1 , f1 = f2 = 0 . We further take � = 1 and 
�2 = 0 which implies div �(w) = Δw , and the interface condition (2.4) reduces to

To derive a weak formulation for (2.1)–(2.2), we need to introduce some notations. Let us 
denote by Hk(Ω) and Hk

0
(Ω) (for k ≥ 0 ) the standard Sobolev spaces, equipped with the 

standard norm ‖ ⋅ ‖k,Ω . In particular, we denote L2(Ω) = H0(Ω) with the associated norm 
‖ ⋅ ‖ . We will use ��(Ωf ) to denote the vector-valued Sobolev spaces. We also denote

Then, a weak solution (u, p, w) for (2.1)–(2.2) will satisfy 

(2.2a)�swtt − div �(w) = �sf2 in Ωs × (0,T),

(2.2b)w = 0 on Γs × (0,T),

(2.2c)w(⋅, 0) = w0 in Ωs,

(2.2d)wt(⋅, 0) = w1 in Ωs,

�ij(w) = �

3∑
k=1

�kk(w) + 2�2�ij(w), �, �2 ≤ 0, with �kj(w) =
1

2
(�kwj + �jwk),

(2.3)wt = u on Γc × (0, T)

(2.4)�(w) ⋅ � = �(u) ⋅ � − p� −
1

2
(u ⋅ �)u on Γc × (0,T),

(2.5)
�w

��
= �

�u

��
− p� −

1

2
(u ⋅ �)u on Γc × (0, T).

H1
0,Γf

(Ωf ) = {v ∈ H1(Ωf ) ∶ v|Γf
= 0}, H1

0,Γs
(Ωs) = {v ∈ H1(Ωs) ∶ v|Γs

= 0}.

(2.6a)
(ut + (u ⋅ ∇)u,�)Ωf

+ (�∇u,∇�)Ωf
− (p, div�)Ωf

+
(
�
�u

��
− p ⋅ �,�

)
Γc

= 0, ∀� ∈ �
1
0,Γf

(Ωf ),

(2.6b)(div u, q)Ωf
= 0, ∀q ∈ L2(Ωf ),
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 with the interface conditions (2.3) and (2.5) on Γc .
Using (2.5), we can reformulate the above as 

 with u = wt on the interface Γc.
Setting � = u,� = wt in  (2.7a) and (2.7c), using the identity (note that � is the inward 

normal along Γc w.r.t. Ωf )

and summing up the two resultant equations, we obtain

or equivalently

where

is the total energy of the FSI system.
For the well-posedness of the system (2.7), we refer to [22].

3  Time Discretization

For FSI problems, it is very important to design numerical schemes which have good, pref-
erably unconditional, stability property. Usually, this is achieved by fully coupled, implicit 
schemes which require solving, at each time step, a coupled, nonlinear, saddle-point 
system.

We construct in this section time discretization schemes based on the standard and rota-
tional pressure-correction approach for (2.7). These schemes are unconditionally stable and 

(2.6c)(wtt,�)Ωs
+ (∇w,∇�)Ωs

−
(
�w

��
,�

)
Γc

= 0, ∀� ∈ �
1
0,Γs

(Ωs),

(2.7a)
(ut + (u ⋅ ∇)u,�)Ωf

+ (�∇u,∇�)Ωf
− (p, div�)Ωf

+
1

2
((u ⋅ �)u,�)Γc

+
(
�w

��
,�

)
Γc

= 0, ∀� ∈ �
1
0,Γf

(Ωf ),

(2.7b)(div u, q)Ωf
= 0, ∀q ∈ L2(Ωf ),

(2.7c)(wtt,�)Ωs
+ (∇w,∇�)Ωs

−
(
�w

�n
,�

)
Γc

= 0, ∀� ∈ �
1
0,Γs

(Ωs),

(2.8)((u ⋅ ∇)v, v)Ωf
= −

1

2
((u ⋅ �)v, v)�Ωf

if div u = 0,

1

2
�t‖u‖2Ωf

+ �‖∇u‖2
Ωf

+
1

2
�t‖wt‖2Ωf

+
1

2
�t‖∇w‖2Ωs

= 0,

(2.9)�t

�
‖u‖2

Ωf
+ ‖wt‖2Ωf

+ ‖∇w‖2
Ωs

�
= −2�‖∇u‖2

Ωf
≤ 0,

(2.10)‖u‖2
Ωf

+ ‖wt‖2Ωf
+ ‖∇w‖2

Ωs
∶= E(u,w,wt)
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lead to, at each time step, a coupled, linear elliptic system in Ω and a pressure Poisson equa-
tion in Ωf  , which can be efficiently solved by standard numerical methods. The stability analy-
sis for each scheme is carried out in this section.

3.1  Standard Pressure‑Correction Scheme

We first construct a first-order scheme for the FSI problem based on the standard pressure-
correction scheme for the Navier–Stokes problem with the open boundary condition [13]:

Step 1 Given (un, pn,wn) , compute ũn+1 ∈ �
1
0,Γf

(Ωf ) and wn+1 ∈ �
1
0,Γs

(Ωs) by solving 

This is a coupled, linear elliptic system for (ũn+1,wn+1) , with the coupling condition at the 
interface Γc . Hence, it can be efficiently solved, for example, by a standard domain decom-
position approach (cf., for instance, [26, 29]).

Step 2 Compute un+1 ∈ �
1(Ωf ) and pn+1 ∈ �

1(Ωf ) by solving 

 We observe that a Dirichlet boundary condition is imposed for pn+1 on the interface Γc , as 
opposed to the usual Neumann boundary condition in a pressure-correction formulation. 
This is due to the interface condition (2.5) which is similar to the open boundary condition 
considered in [13].

We denote �1
0,Γc

(Ωf ) = {q ∈ �
1(Ωf )�ℝ, q|Γc

= 0} . Then, the above system is equivalent 
to: Find (pn+1 − pn) ∈ �

1
0,Γc

(Ωf ) such that 

(3.1a)

(
ũn+1 − un

Δt
,𝜑

)

Ωf

+ (𝜇∇ũn+1,∇𝜑)Ωf
+

1

2
((un ⋅ �)ũn+1,𝜑)Γc

+ ((un ⋅ ∇)ũn+1,𝜑)Ωf
− (pn, div𝜑)Ωf

+

(
𝜕wn+1

𝜕�
,𝜑

)

Γc

= 0, ∀𝜑 ∈ �
1
0,Γf

(Ωf ),

(3.1b)ũn+1 =
wn+1 − wn

Δt
on Γc,

(3.1c)

(
wn+1 − 2wn + wn−1

Δt2
,�

)

Ωs

+ (∇wn+1,∇�)Ωs

−

(
�wn+1

��
,�

)

Γc

= 0, ∀� ∈ �
1
0,Γs

(Ωs).

(3.2a)un+1 − ũn+1

Δt
+ ∇(pn+1 − pn) = 0,

(3.2b)div un+1 = 0 in Ωf ,

(3.2c)un+1 ⋅ �|Γf
= 0 and pn+1|Γc

= pn|Γc
.

(3.3a)(∇(pn+1 − pn),∇q) = −
1

Δt
(∇ ⋅ ũn+1, q), ∀q ∈ �

1
0,Γc

(Ωf ),
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 Hence, we only have to solve a Poisson equation at this step.
For the above scheme, we have the following result:

Theorem 3.1 The scheme (3.1)–(3.3), with p0|Γc
= 0 , is unconditionally stable. More pre-

cisely, if we define the discrete energy

then we have, for all n ≥ 0,

Proof To simplify the notations, we define, for any sequence {uk} , the discrete time deriva-
tives �tun+1 ∶=

un+1−un

Δt
 and �2

tt
un+1 ∶=

�tu
n+1−�tu

n

Δt
=

un+1−2un+un−1

Δt2
.

Taking 𝜑 = 2ũn+1 in (3.1a), � = 2�tw
n+1 in (3.1c), and taking the inner product of (3.2a) 

with q = 2Δt∇pn , summing up the three relations, we obtain

Rewrite (3.2a) as

Taking the inner product with itself from both sides and integrating by parts, thanks to 
pk|Γc

= 0 for all k (due to p0|Γc
= 0 ), and ũn+1 ⋅ �|Γf

= 0 = un+1 ⋅ �|Γf
 , we obtain

Summing up (3.5) and (3.7), we obtain

(3.3b)un+1 = ũn+1 − Δt∇(pn+1 − pn).

(3.4)En = ‖un‖ + ‖�twn‖2 + ‖∇wn‖2 + (Δt)2‖∇pn‖2,

En+1 − En + ‖ũn+1 − un‖2 + 2𝜇Δt‖∇ũn+1‖2 + Δt2‖𝛿2
tt
wn+1‖2 + Δt2‖∇(𝛿twn+1)‖2 ≤ 0.

(3.5)

1

Δt
{‖ũn+1‖2 − ‖un‖2 + ‖ũn+1 − un‖2} + 2‖∇ũn+1‖2 − 2(pn, div ũn+1)Ωf

+
1

Δt
{‖𝛿twn+1‖2 − ‖𝛿twn‖2 + ‖𝛿twn+1 − 𝛿tw

n‖2}
+

1

Δt
{‖∇wn+1‖2 − ‖∇wn‖2 + Δt2‖∇𝛿twn+1‖2} = 0.

(3.6)
un+1√
Δt

+
√
Δt∇pn+1 =

ũn+1√
Δt

+
√
Δt∇pn.

(3.7)1

Δt
‖un+1‖2 + Δt‖∇pn+1‖2 = ‖ũn+1‖2

Δt
+ Δt‖∇pn‖2 − 2(pn, divũn+1)Ωf

.

1

Δt
{‖un+1‖2 − ‖un‖2 + ‖ũn+1 − un‖2} + 2‖∇ũn+1‖2

+
1

Δt
{‖𝛿twn+1‖2 − ‖𝛿twn‖2 + ‖𝛿twn+1 − 𝛿tw

n‖2}
+

1

Δt
{‖∇wn+1‖2 − ‖∇wn‖2 + Δt2‖∇𝛿twn+1‖2}

+ Δt{‖∇pn+1‖2 − ‖∇pn‖2} = 0,
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which implies the desired result.

We recall that due to the artificial Dirichlet boundary condition for the pressure in 
(3.2c), a higher-order discretization for the velocity will not increase the accuracy. Hence, 
to obtain a higher-order scheme, one needs to resort to the rotational pressure-correction 
(cf. [13]).

3.2  Rotational Pressure‑Correction Schemes

3.2.1  First‑Order Scheme

We start by constructing a first-order scheme.
Step 1 Given ( un , vn , wn , pn ), compute ũn+1 ∈ �

1
0,Γf

(Ωf ) and wn+1 ∈ �
1
0,Γs

(Ωs) by 
solving 

Step 2 Compute un+1 ∈ �
1(Ωf ) and pn+1 ∈ �

1(Ωf ) by solving 

where � ∈ (0,
2

d
) (with d being the space dimension) is a preselected parameter. We note 

that when � = 0 , the scheme reduces to the standard pressure-correction scheme.
We observe that the main difference of the rotational scheme (3.8)–(3.9) with the stand-

ard scheme (3.1)–(3.3) is the additional term 𝜆𝜇 div ũn+1 in (3.9a). This term replaces the 
artificial Dirichlet B.C. pn+1|Γc

= pn|Γc
 by an improved B.C. pn+1|Γc

= (pn − 𝜆𝜇divũn+1)|Γc
 . 

On the other hand, the numerical procedures for the two schemes are essentially identical.
The proof of unconditional stability for the rotational scheme is much more difficult. 

The original stability proof of the rotational pressure-correction scheme in [15] was carried 

(3.8a)

(
ũn+1 − un

Δt
,𝜑

)

Ωf

+ (𝜇∇ũn+1,∇𝜑)Ωf
+

1

2
((un ⋅ �)ũn+1,𝜑)Γc

+ ((un ⋅ ∇)ũn+1,𝜑)Ωf
− (pn, div𝜑)Ωf

+

(
𝜕wn+1

𝜕�
,𝜑

)

Γc

= 0, ∀𝜑 ∈ �
1
0,Γf

(Ωf ),

(3.8b)ũn+1 =
wn+1 − wn

Δt
on Γc,

(3.8c)

(
wn+1 − 2wn + wn−1

Δt2
,�

)

Ωs

+ (∇wn+1,∇�)Ωs

−

(
�wn+1

��
,�

)

Γc

= 0, ∀� ∈ �
1
0,Γs

(Ωs).

(3.9a)

un+1 − ũn+1

Δt
+ ∇(pn+1 − pn + 𝜆𝜇 div ũn+1) = 0 in Ωf

div un+1 = 0 in Ωf

un+1 ⋅ �|Γf
= 0 and pn+1|Γc

= (pn − 𝜆𝜇 div ũn+1)|Γc
,
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out only for Stokes problems, and an essential step of the proof was to take the “discrete 
time derivative” of the scheme. Unfortunately, this proof cannot be extended to the nonlin-
ear case. However, we can prove that the above rotational scheme is unconditionally stable 
using a similar procedure to that in the proof below for the second-order rotational scheme. 
We omit the details for the sake of brevity.

3.2.2  Second‑Order Scheme

We observe that it is not straightforward to construct a second-order version of (3.8)–(3.9) 
using the usual backward difference formula (BDF). Hence, we first introduce an addi-
tional variable v = wt and rewrite the FSI equations as 

 with the boundary condition 

 and the initial condition 

We can now construct a second-order rotational pressure-correction scheme as follows:
Step 1 Given ( un , wn , vn , pn ), compute ũn+1 ∈ �

1
0,Γf

(Ωf ) and vn+1,wn+1 ∈ �
1
0,Γs

(Ωs) by 
solving 

(3.10a)ut − �Δu + (u ⋅ ∇)u + ∇p = 0 in Ωf × (0,T),

(3.10b)div u = 0 in Ωf × (0,T),

(3.10c)vt − Δw = 0 in Ωs × (0,T),

(3.10d)wt − v = 0 in Ωs × (0, T),

(3.11a)u = 0 on Γf × (0,T),

(3.11b)w = 0 on Γs × (0, T),

(3.11c)u = v on Γc × (0, T),

(3.11d)
�w

��
= �

�u

��
− p� −

1

2
(u ⋅ �)u on Γc × (0, T),

(3.12a)u(⋅, 0) = u0 in Ωf ,

(3.12b)w(⋅, 0) = w0 in Ωs,

(3.12c)v(⋅, 0) = w1 in Ωs.

(3.13a)

(
3ũn+1 − 4un + un−1

2Δt
,𝜑

)

Ωf

+ (𝜇∇ũn+1,∇𝜑)Ωf
+

1

2

(((
2un − un−1

)
⋅ �

)
ũn+1,𝜑

)
Γc

+ ((2un − un−1) ⋅ ∇ũn+1,𝜑)Ωf
− (pn, div𝜑)Ωf

+

(
𝜕wn+1

𝜕�
,𝜑

)

Γc

= 0, ∀𝜑 ∈ �
1
0,Γf

(Ωf ),

(3.13b)ũn+1 = vn+1 on Γc,
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Step 2 Compute (un+1, pn+1) by solving 

 where � ∈ (0,
2

d
) is a preselected parameter.

Several remarks are in order:

• One observes that all the terms, except the pressure, are discretized with a second-
order BDF or Adams–Bashforth formula. We recall that a first-order treatment of 
the pressure term, coupled with second-order treatment for other terms, can lead to 
second-order accuracy for the velocity [14].

• It is clear that, at each time step, the numerical procedure for solving (3.13)–(3.14) 
is essentially the same as for the first-order scheme (3.1)–(3.3).

• In [25], the author proved the unconditional stability for a Gauge–Uzawa scheme of 
the Navier–Stokes equations. A useful idea in [25] is to introduce a sequence {qn} 
defined by 

 We shall also use this sequence in our stability proof below.

Theorem 3.2 The scheme (3.13)–(3.14), with p−1|Γc
= p0|Γc

= 0 , is unconditionally sta-
ble. More precisely, if we define the discrete energy as

then we have

Proof For any sequence {un, ũn} , we have

(3.13c)3wn+1 − 4wn + wn−1

2Δt
− vn+1 = 0 in Ωs,

(3.13d)

(
3vn+1 − 4vn + vn−1

2Δt
,�

)

Ωs

+ (∇wn+1,∇�)Ωs

−

(
�wn+1

��
,�

)

Γc

= 0, ∀� ∈ �
1
0,Γs

(Ωf ).

(3.14a)

3(un+1 − ũn+1)

2Δt
+ ∇(pn+1 − pn + 𝜆𝜇divũn+1) = 0 in Ωf ,

div un+1 = 0 in Ωf ,

un+1 ⋅ �|Γf
= 0 and pn+1|Γc

= (pn − 𝜆𝜇divũn+1)|Γc
,

(3.15)qn = 𝜆𝜇div ũn + qn−1 with q−1 = q0 = 0.

(3.16)
En+1 = ‖un+1‖2 + ‖2un+1 − un‖2 + ‖vn+1‖2 + ‖2vn+1 − vn‖2 + ‖∇wn+1‖2

+ ‖2∇wn+1 − ∇wn‖2 + 2Δt‖qn+1‖2 + 4Δt2

3
‖∇(pn+1 + qn+1)‖2,

En+1 + Δt4‖𝛿ttun+1‖2 + Δt4‖𝛿ttvn+1‖2 + Δt4‖𝛿ttwn+1‖2 + (2 − d𝜆)2Δt𝜇‖∇ũn+1‖2 ≤ En.
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Let In
1
(u) , In

2
(u) and In

3
(u) be the last three terms in the right-hand side. Using the algebraic 

identities

and

we find

Using the first equation in (3.14a), we have

Taking 𝜑 = 4Δtũn+1 in (3.13a), and using (2.8) and the above relation, we obtain

Taking � = 4Δtvn+1 in (3.13d), using (3.13b) and (3.13c), we find

where, by (3.20),

(3.17)

(
3ũn+1 − 4un + un−1

2Δt
, 4Δtũn+1

)

Ωf

= 2(3ũn+1 − 4un + un−1, ũn+1)Ωf

= 6(ũn+1 − un+1, ũn+1)Ωf
+ 2(3un+1 − 4un + un−1, ũn+1 − un+1)Ωf

+ 2(3un+1 − 4un + un−1, un+1)Ωf
.

(3.18)2(ak+1, ak+1 − ak) = |ak+1|2 − |ak|2 + |ak+1 − ak|2

(3.19)
2(ak+1, 3ak+1 − 4ak + ak−1)

= |ak+1|2 + |2ak+1 − ak|2 + |ak+1 − 2ak + ak−1|2 − |ak|2 − |2ak − ak−1|2,

(3.20)

In
1
(u) = 3‖ũn+1‖2 − 3‖un+1‖2 + 3‖ũn+1 − un+1‖2,

In
3
(u) = ‖un+1‖2 + ‖2un+1 − un‖2 + ‖un+1 − 2un + un−1‖2 − ‖un‖2 − ‖2un − un−1‖2.

In
2
(u) = −

4Δt

3
(3un+1 − 4un + un−1,∇(pn+1 − pn + 𝜆𝜇div ũn+1))Ωf

= 0.

(3.21)

In
1
(u) + In

3
(u) + 4Δt𝜇‖∇ũn+1‖2 − 4Δt(pn, div ũn+1)Ωf

+ 4Δt

�
𝜕wn+1

𝜕n
, ũn+1

�

Γc

= 0.

(3.22)In
3
(v) + Ĩn

3
(w) − 4Δt

(
𝜕wn+1

𝜕n
, ũn+1

)

Γc

= 0,

(3.23)

Ĩn
3
(w) = 2(∇(3wn+1 − 4wn + wn−1),∇wn+1)Ωf

= ‖∇wn+1‖2 + ‖2∇wn+1 − ∇wn‖2 + ‖∇wn+1 − 2∇wn + ∇wn−1‖2
− ‖∇wn‖2 − ‖2∇wn − ∇wn−1‖2.
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Using (3.15), we can rewrite (3.14a) as

Taking the inner product with itself from both sides of the above equation, integrating parts 
and using (3.15) and the fact that (pk + qk)|Γc

= ⋯ = (p0 + q0)|Γc
= 0 , we obtain

Multiplying the above by Δt and adding it to (3.21), we obtain

Thanks to (3.15), we have

where we have used the well-known Korn’s inequality ‖div ũn+1‖2 ≤ d‖∇ũn+1‖2 with 
d = 2 or 3 being the space dimension.

Finally, using the above inequality, (3.20) and (3.23) in (3.25), we find

which implies the desired result.

Remark 3.3 With the stability results established in this section, it is also possible to 
derive similar error estimates for these schemes as in [13].

√
3un+1√
Δt

+
2
√
Δt√
3

∇(2pn+1 + qn+1) =

√
3ũn+1√
Δt

+
2
√
Δt√
3

∇(pn + qn).

(3.24)

3

Δt
‖un+1‖2 + 4Δt

3
‖∇(pn+1 + qn+1)‖2 − 3‖ũn+1‖2

Δt
−

4Δt

3
‖∇(pn + qn)‖2

= −4(pn + qn, div ũn+1)Ωf
= −4(pn, div ũn+1)Ωf

−
4

𝜆𝜇
(qn, qn+1 − qn)Ωf

= −4(pn, div ũn+1)Ωf
+

2

𝜆𝜇
{‖qn‖2 − ‖qn+1‖2 + ‖qn+1 − qn‖2}.

(3.25)

0 = In
1
(u) + In

3
(u) + 4Δt𝜇‖∇ũn+1‖2 + In

3
(v) + In

3
(w) + 3‖un+1‖2

+
4Δt2

3
‖∇(pn+1 + qn+1)‖2 − 3‖ũn+1‖2 − 4Δt2

3
‖∇(pn + qn)‖2

−
2

𝜆𝜇
Δt{‖qn‖2 − ‖qn+1‖2 + ‖qn+1 − qn‖2}.

2

𝜆𝜇
‖qn+1 − qn‖2 = 2𝜆𝜇‖div ũn+1‖2 ≤ 2𝜆𝜇d‖∇ũn+1‖2,

En+1 − En

= −‖un+1 − 2un + un+1‖2 − ‖vn+1 − 2vn + vn+1‖2 − ‖∇(wn+1 − 2wn + wn+1)‖2
− 4Δt𝜇‖∇ũn+1‖2 + 2d𝜆Δt𝜇‖div ũn+1‖2

≤ −‖un+1 − 2un + un+1‖2 − ‖vn+1 − 2vn + vn+1‖2 − ‖∇(wn+1 − 2wn + wn+1)‖2
− (2 − d𝜆)2Δt𝜇‖∇ũn+1‖2,
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4  Galerkin‑Type Spatial Discretization and Implementation

We briefly describe a general procedure to implement the time discretization schemes con-
structed in the last section. Let �h ⊂ �

1
0,Γf

(Ωf ) , Mh ⊂ �
1(Ωf ) , M0

h
= {q ∈ Mh ∶ q|Γc

= 0} 
and �h ⊂ �

1
0,Γs

(Ωs) be some finite dimensional approximation spaces, with (�h,Mh) prefera-
bly satisfying the Babuska–Brezzi inf-sup condition. We also denote �h = �h + ∇M0

h
 . We 

note that one can generalize the stability proofs for the semi-discretized schemes in the last 
section to their full discretized versions using the above discrete settings; we refer to [14] for 
more detail in this regard.

To fix the idea, we take the scheme (3.8)–(3.9) as an example. The other schemes can be 
treated by using exactly the same procedure.

4.1  A General Setup

A Galerkin approximation of the scheme (3.8)–(3.9) is as follows:
Step 1 Let w̃n+1

h
= 𝛿tw

n+1
h

 . Then we look for (un+1
h

, w̃n+1
h

) ∈ �h ×�h such that 

where � =
1

Δt
, � = Δt , and

and

Define

(4.1a)

𝛼(ũn+1
h

,𝜑h)Ωf
+ (∇ũn+1

h
,∇𝜑h)Ωf

+ ((un
h
⋅ ∇)ũn+1

h
,𝜑h)Ωf

+
1

2
((un

h
⋅ �)ũn+1

h
,𝜑h)Γc

+ 𝛽

(
𝜕w̃n+1

h

𝜕�
,𝜑h

)

Γc

=< f n
h
,𝜑h >Ωf

, ∀𝜑h ∈ �h,

(4.1b)ũn+1
h

= w̃n+1
h

at Γc,

(4.1c)
𝛼(w̃n+1,𝜓h)Ωs + 𝛽(∇w̃n+1,∇𝜓h)Ωs

− 𝛽

(
𝜕w̃n+1

𝜕�
,𝜓h

)

Γc

=< gh,𝜓h >Ωs
, ∀𝜑h ∈ �h,

(4.2)< f n
h
,𝜑h >Ωf

∶= 𝛼(un
h
,𝜑h)Ωf

+ (pn
h
, div𝜑h)Ωf

−

(
𝜕wn

h

𝜕�
,𝜑h

)

Γc

,

(4.3)< gn
h
,𝜓h >Ωs

∶= 𝛼(w̃n
h
,𝜓n

h
)Ωs

− (∇wn
h
,∇𝜓h)Ωs

+

(
𝜕wn

h

𝜕�
,𝜓h

)

Γc

.

ûn+1
h

(�) =

{
ũn+1
h

(�), if � ∈ Ωf ,

w̃n+1
h

(�), if � ∈ Ωs;

𝛽(�) ∶=

{
1, if � ∈ Ωf ,

𝛽, if � ∈ Ωs;

b(u, v,𝜑) ∶=((u ⋅ ∇)ṽ,𝜑)Ωf
+
(
1

2
(u ⋅ �)ṽ,𝜑

)
Γc

;
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and

Then, we can rewrite (4.1) as: Find ûn+1
h

∈ �h such that

Thus, the equation (4.4) can be viewed as a two-domain approximation to a linear elliptic 
problem with the discontinuous coefficient 𝛽  . Note that from (4.1b), ûn+1

h
(�) is continuous 

at Γc . Hence, one can efficiently solve the coupled linear system using a standard domain 
decomposition approach. In particular, in the two-dimension case, one can form the Schur-
complement to solve the unknown at the interface first, and then solve for the velocity in 
the fluid region and displacement in the solid region separately (cf., for instance, [26, 29] 
and a simple example in the next subsection).

Step 2 Find �n+1
h

∈ M0
h
 such that

and compute un+1
h

∈ �h and pn+1
h

∈ Mh by

where Qh is an L2-projection operator onto Mh.
We note that (4.5) is just a discrete Poisson equation in Ωf  with the homogeneous Dir-

ichlet boundary condition on Γc , and (4.6) involves only a projection, so they can be effi-
ciently solved.

4.2  An Example with a Fourier–Legendre Approximation

As an example, we consider a two-dimensional periodic channel with Ωf = (0, 2�) × (0, 1) , 
Ωs = (0, 2�) × (−1, 0) , so Ω = (0, 2�) × (−1, 1) , Γf = {(x, y)| x ∈ (0, 2�), y = 1} , 
Γc = {(x, y)| x ∈ (0, 2�), y = 0} and Γs = {(x, y)| x ∈ (0, 2�), y = −1} . We denote �+ , �− , � 
by �+ = [0, 1] , �− = [−1, 0] and � = [−1, 1] . We assume that all functions are periodic in the 
x-direction.

Let h = (M,N), where M is the number of equally spaced points in the x-direction, and 
N + 1 is the number of Legendre–Gauss–Lobatto points in the y-direction of Ωf  and Ωs . 
For simplicity, we use the same number of points in the y-direction of Ωf  and Ωs . Let PN be 
the set of all polynomials of degree less than or equal to N. We set

�h =
{
ûh ∈ �

1(Ω) ∶ ûh|Ωf
∈ �h, ûh|Ωs

∈ �h

}
.

(4.4)
𝛼(ûn+1

h
,𝜙h) + (𝛽∇ûn+1

h
,∇𝜙h) + b(un

h
, ûn+1

h
,𝜙h)

=< f n
h
,𝜙h >Ωf

+ < gn
h
,𝜙h >Ωs

, ∀𝜙h ∈ �h.

(4.5)(∇𝜙n+1
h

,∇qh)Ωf
=

1

Δt
(ũn+1

h
,∇qh)Ωf

, ∀qh ∈ M0
h
;

(4.6)
un+1
h

= ũn+1
h

− Δt∇𝜙n+1
h

,

pn+1
h

= pn
h
+ 𝜙n+1

h
− 𝜆𝜇Qhdivũ

n+1
h

,
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For the sake of efficiency and to take full advantage of periodicity in the x-direction, we 
shall treat the nonlinear convective term in (4.1) explicitly. To this end, we modify (4.2) to

With this modification we expand all the functions in discrete Fourier series, e.g.,

The system (4.4) reduces to: For m = −M∕2,⋯ , 0, 1,⋯ ,M∕2 , find un+1
m

∈ �
0
N

 such that

where

Next we construct a set of basis functions for X0
N

.
We define, for i = 0, 1, ...,N − 2,

and the basis function at the interface is

(4.7)

Xh =

{
vh =

M∕2∑
k=−M∕2

vk(y)e
ikx with vk(⋅) ∈ PN , vk(1) = 0

}
, �h = Xh × Xh,

Wh =

{
wh =

M∕2∑
k=−M∕2

wk(y)e
ikx with wk(⋅) ∈ PN , wk(−1) = 0

}
, �h = Wh ×Wh,

Mh =

{
qh =

M∕2∑
k=−M∕2

qk(y)e
ikx with qk(⋅) ∈ PN−1

}
,

M0
h
= {qh ∈ Mh ∶ qh|y=0 = 0}, �h = �h + ∇M0

h
,

X0
N
= {v ∈ H1(I) ∶ v|

�+
, v|

�−
∈ PN , v(−1) = v(1) = 0}, �0

N
= X0

N
× X0

N
.

(4.8)< f n
h
,𝜑h >Ωf

∶= 𝛼(un
h
,𝜑h)Ωf

+ (pn
h
, div𝜑h)Ωf

−

(
𝜕wn

h

𝜕�
,𝜑h

)

Γc

− b(un
h
, un

h
,𝜑h).

(4.9)
(
ûn+1
h

, f n
h
, gn

h

)
=

M∕2∑
m=−M∕2

(
un+1
m

(y), f n
m
(y), gn

m
(y)

)
eimx.

(4.10)(𝛼mu
n+1
m

,𝜙)
�
+

(
𝛽
dun+1

m

dy
,
d𝜙

dy

)

�

= (f n
m
,𝜙)

�+
+ (gn

m
,𝜙)

�−
, ∀𝜙 ∈ �

0
N
,

�m =

{
� + m2, if y ∈ �

+,

� + �m2, if y ∈ �
−.

�̂�i(y) =

{
Lk(2y − 1) − Lk+2(2y − 1), if y ∈ �

+,

0, if y ∈ �
−;

�̂�N−1+i(y) =

{
0, if y ∈ �

+,

Lk(1 + 2y) − Lk+2(1 + 2y), if y ∈ �
−;

�̂�2N−2 =

{
1 − y, if y ∈ �

+,

1 + y, if y ∈ �
−.
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Then,

Then, writing

and taking 𝜑 = �̂�k in (4.10), we can derive the following linear system:

where ū1 = (ûn+1
m,0

, ûn+1
m,1

,⋯ , ûn+1
m,N−2

)T , ū2 = (ûn+1
m,N−1

, ûn+1
m,N

,⋯ , ûn+1
m,2N−3

)T and ū3 = un+1
m,2N−2

 , 
similarly for f̄1 , f̄2 and f̄3 ; Mij and Sij are block mass and stiffness matrices. We recall that 
Mii ( i = 1, 2 ) are penta-diagonal and Sii ( i = 1, 2 ) are diagonal (cf. [16, 27]). So the linear 
system can be easily solved by the Schur-complement approach, More precisely, solve first 
ū3 using a block Gaussian elimination, and then solve ū1 and ū2 separately.

It is clear that (4.5) will reduce to a sequence of one-dimensional problems in �+ which 
can be easily solved by a Legendre-spectral method.

5  Numerical Results

To examine the correctness and accuracy of the proposed numerical schemes, we consider 
the following non-homogeneous problem: 

with the boundary condition 

where Ωf = (0, 2�) × (0, 1) , Ωs = (0, 2�) × (−1, 0) with periodic boundary conditions in 
the x-direction.

We set the exact solution to be

(4.11)X0
N
= span

{
�̂�0, �̂�1,⋯ , �̂�2N−2

}
.

un+1
m

(y) =

2N−2∑
k=0

ûn+1
m,k

�̂�k(y), f̂
n
m,k

= (f n
m
, �̂�k)�+ + (gn

m
, �̂�k)�− ,

(4.12)
⎛⎜⎜⎝
𝛼

⎡⎢⎢⎣

M11 0 m13

0 M22 m23

mT
31

mT
32

m33

⎤⎥⎥⎦
+

⎡⎢⎢⎣

S11 0 s13
0 S22 s23
sT
31

sT
32

s33

⎤⎥⎥⎦

⎞⎟⎟⎠

⎡⎢⎢⎣

ū1
ū2
ū3

⎤⎥⎥⎦
=

⎡⎢⎢⎣

f̄1
f̄2
f̄3

⎤⎥⎥⎦
,

(5.1a)ut − Δu + (u ⋅ ∇)u + ∇p = f in Ωf × (0, T),

(5.1b)div u = 0 in Ωf × (0,T),

(5.1c)wtt − Δw = g in Ωs × (0, T),

(5.2a)u = 0 on Γf × (0,T),

(5.2b)w = 0 on Γs × (0, T),

(5.2c)u = wt on Γc × (0, T),

(5.2d)
�w

�n
=

�u

�n
− p� −

1

2
(u ⋅ �)u + h on Γc × (0, T),

(5.3)

u = (− sin(�t) cos(x) sin(y − 1), sin(�t) sin(x)(cos(y − 1) − 1)),

p = sin(�t) cos(x) cos(y),

w = (− cos(�t) cos(x) sin(y − 1),− cos(�t) sin(x)(cos(y + 1) − 1)).
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The functions f, g, h can then be computed accordingly.
We employ the Fourier–Legendre method presented in the last section and choose 

(M, N) large enough so that the errors are dominated by the time discretization. In the fol-
lowing examples, we choose � = 0.5 , which is a preselected parameter introduced in (3.9a) 
and (3.14a).

In Fig. 2, we plot the L2-errors for the pressure and for the velocity and displacement 
with the second-order standard and rotational pressure-correction schemes. We observe 
that the rotational scheme performs much better than the standard scheme.

In Fig. 3, we plot the convergence rate of the second-order rotational scheme. We con-
sider ending time T = 2 and vary the step size from Δt = 0.1 to Δt = 0.000 1 . We observe 
that the L2 errors for the fluid velocity, the structure displacement and the pressure all con-
verge at a rate close to 3  / 2. Due to the Dirichlet boundary condition used for the pres-
sure at the interface, the second-order rotational scheme does not achieve full second-order 
accuracy for the velocity. This is consistent with the error estimates derived and conver-
gence rates observed for Stokes equations with open boundary in [13].

Next, we examine the energy stability of our schemes by solving the homogeneous (with 
f, g and h being zero) FSI problem with the same initial conditions as in the last example. 
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Fig. 2  Δt = 0.01 , T=2; second-order scheme; top: standard; bottom: rotational
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We take the second-order rotational scheme as an example and plot in Fig. 4 the discrete 
energy for the cases with Δt = 0.01 and Δt = 0.05 . We observe that the discrete energy 
indeed decays monotonically.
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6  Conclusions

We constructed in this paper standard and rotational pressure correction schemes for 
the FSI problem with a fixed interface and proved rigorously that they are uncondition-
ally energy stable. These schemes are new and fundamentally different from existing 
schemes for the FSI problem. Besides the unconditional stability, they are also com-
putationally very efficient: at each time step, they lead to (i) a coupled linear elliptic 
system for the velocity and displacement, with the coupling condition at the interface 
between the fluid and solid regions, which can be efficiently solved by using a standard 
domain decomposition (with two domains) approach; and (ii) a discrete Poisson equa-
tion in the fluid region.

We validated these schemes by using a Fourier–Legendre spatial discretization for 
the FSI problem in a periodic channel. In particular, our numerical results indicate that 
the convergence rates of the second-order rotational scheme for the velocity, pressure 
and displacement in L2-norm are close to 3/2-order.

Although we only considered the FSI problem with fixed interface, we believe that the 
essential approaches used here in constructing our numerical schemes can be extended to 
the FSI problem with moving interface [21], which we plan to address in a future endeavor.
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