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NONLINEAR GALERKIN METHOD

USING LEGENDRE POLYNOMIALS

Jie Shen† & Roger Temam‡

Abstract. A nonlinear Galerkin method using Legendre polynomials is

presented for solving linear elliptic and nonlinear dissipative evolution
equations. The essential idea is to decompose the approximation space
into a long-wavelength part and a short-wavelength part which are mu-

tually orthogonal with respect to the principal elliptic operator of the
equation.

1. Introduction. The exchange of energy between the long- and short-
wavelength components of a flow is an important aspect of nonlinear phe-
nomena. Although the short-wavelength component usually carries only a
small fraction of the total energy, its effect through the nonlinear interac-
tion with the long-wavelength component over a long time integration is
not negligible and sometimes essential (cf. [5], [4]). However, it is compu-
tationally inefficient to allocate as much computing resources to compute
the short-wavelength component of the flow carrying little energy as we
do with the long-wavelength component of the flow which carries most of
the energy. The nonlinear Galerkin method introduced in [8] was a first
attempt to address this issue from a computational point of view. It has
been applied to many different space discretizations (cf. [9], [2], [10])
and has proven to be computationally efficient (cf. [3], [7]).

We consider in this article the application of the nonlinear Galerkin
method to spectral discretizations using Legendre polynomials. Our ob-
jective is to derive simplified versions of the classical algorithms which
produce better conditioned systems and a reduction in computing time
without affecting the discretization error of the scheme under considera-
tion.
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We now describe the nonlinear Galerkin Method in an abstract setting.
Let H be a given Hilbert space with a scalar product (·, ·) and a norm ‖·‖.
We shall consider a class of nonlinear evolution equations of the form:

(1.1)
du

dt
+ νAu+ Cu+B(u) = f, t > 0,

with u(0) = u0. The operator A is a strictly positive linear unbounded
self-adjoint operator with domain D(A) dense in H. Hence, As (s ∈ R) is

well defined and we set V = D(A
1
2 ). B is a nonlinear operator such that

B(u) = B(u, u), where B(·, ·) is a bilinear form from V × V into V ′, C is
a linear operator from V into H and there exists c1 > 0 such that

((A+ C)v, v) ≥ c1‖v‖
2
V , ∀ v ∈ V.

The variational formulation for (1.1) is to find u(t) ∈ V such that

(1.2) (
du

dt
, v) + ν(Au, v) + (Cu, v) + (B(u), v) = (f, v), ∀ v ∈ V

with u(0) = u0. Let Vh, where h is the discretization parameter, be a
finite dimensional approximation of V . The classical Galerkin method for
(1.2) in Vh is to find uh(t) ∈ Vh such that

(1.3) (
duh

dt
, v) + ν(Auh, v) + (Cuh, v) + (B(uh), v) = (f, v), ∀ v ∈ Vh,

with uh(0) = u0h, where u0h is some projection of u0 in V onto Vh.
The nonlinear Galerkin method stems from the recently developed the-

ory on Inertial Manifolds and Approximate Inertial Manifolds. It is in-
tended to provide an approximate interaction law between the long- and
short-wavelength components. Essential to the method is a decomposition
of the space Vh = Yhc ⊕ Zh, where h < hc → 0, Yhc consists of the long-
wavelength elements and Zh consists of the short-wavelength elements.
With this decomposition, we can set uh = y + z for y ∈ Yhc and z ∈ Zh,
and rewrite (1.3) as follows:
Find y ∈ Yhc and z ∈ Zh such that ∀ v ∈ Yhc and w ∈ Zh,

(1.4)
d

dt
(y+ z, v)+ ν(A(y+ z), v)+ (C(y+ z), v)+ (B(y+ z), v) = (f, v),

(1.5)
d

dt
(y+z, w)+ν(A(y+z), w)+(C(y+z), w)+(B(y+z), w) = (f, w),
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together with y(0) = u0hc , z(0) = u0h − u0hc . Let us note that the short-
wavelength component z usually carries only a small part of the total
energy. Hence, some higher order (in z) terms can be dropped without
affecting the accuracy. If in addition the decomposition is L2-orthogonal,
i.e.

(A) (y, z) = 0, ∀y ∈ Yhc , z ∈ Zh,

we can then approximate the system (1.4)-(1.5) by the following nonlinear
Galerkin scheme:

Find y(t) ∈ Yhc , z(t) ∈ Zh such that ∀v ∈ Yhc , w ∈ Zh,

(1.6)
d

dt
(y, v) + ν(A(y + z), v) + (C(y + z), v) + (B(y + z), v) = (f, v),

(1.7) γ
d

dt
(z, w) + ν(A(y + z), w) + (C(y + z), w) + (B(y), w) = (f, w),

with y(0) = u0hc ; γ is either 1 or 0; z(0) = u0h − u0hc if γ = 1.

We use γ = 0 in case
dz

dt
is small compared to other terms.1 Otherwise

we take γ = 1.
Let us mention that the wavelet-like incremental unknowns method [2]

and the two-grid finite element method [10] provide decompositions which
are L2-orthogonal.

The above system can be interpreted in two different aspects:
(i) Equation (1.7) defines a short-wavelength correction z in terms of the

long-wavelength component y. Hence, (1.6)–(1.7) can be viewed as a
corrected Galerkin scheme in Yhc .

(ii) Since (1.6)–(1.7) was obtained by neglecting some small terms in (1.4)–
(1.5), we can also view (1.6)–(1.7) as a simplified Galerkin scheme in
Vh.
The first interpretation leads us to expect that (1.6)–(1.7) gives a better

approximation than the Galerkin scheme in Yhc , while the second inter-
pretation leads us to expect that (1.6)–(1.7) provides the same accuracy
as the Galerkin scheme in Vh.

The system (1.6)–(1.7) can be further simplified if the decomposition
is also A-orthogonal, i.e.

(B) (Ay, z) = 0, ∀y ∈ Yhc , z ∈ Zh.

1This fact is rigorously established for some special decompositions (cf. [4], [10]).
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In this case, we can approximate (1.4)–(1.5) by the following Nonlinear
Galerkin scheme:

Find y ∈ Yhc , z ∈ Zh such that ∀v ∈ Yhc , z ∈ Zh,

d

dt
(y, v)+ν(Ay, v) + (Cy, v) + (B(y + z), v) = (f, v),(1.8)

γ
d

dt
(z, w)+ν(Az,w) + (Cz,w) + (B(y), w) = (f, w),(1.9)

with y(0) = u0hc ; γ is either 1 or 0; z(0) = u0h − u0hc if γ = 1.
The above scheme is certainly computationally more efficient than the

scheme (1.6)–(1.7). The advantage of the nonlinear Galerkin scheme (1.8)–
(1.9) over the classical Galerkin scheme (1.3) is two-fold: Firstly, the
system (1.8)–(1.9) is greatly simplified compared to the Galerkin scheme
(1.3). Secondly, the system (1.8)–(1.9) significantly reduces the stiffness
of the system (1.3), since the stability or CFL (Courant-Friedrichs-Levy)
condition for a full or partially explicit time discretization scheme for
(1.6)–(1.7) only depends on the long-wavelength components (see for in-
stance [11], [14]). Consequently, larger time steps can be used to greatly
reduce the computing time, especially when one has to integrate over a
long time interval.

However, the only available decomposition satisfying both (A) and (B)
is based on the eigenfunctions of A. Unfortunately, this decomposition is
only practical for problems with periodic boundary conditions. In order
to apply scheme (1.8)–(1.9) to more general problems, we propose to con-
struct decompositions which are A-orthogonal and “nearly” L2-orthogonal
(in a sense to be specified later), and we shall show that with this type of
decompositions (1.8)–(1.9) is still as accurate as (1.3). In the next section,
we construct several decompositions of this type with respect to different
elliptic operators. Then in Section 3, we present an error estimate for the
nonlinear Galerkin scheme.

2. Long- and short-wavelength decompositions. The following no-
tations will be used hereafter. Let I = (−1, 1), and we denote by Hs(I),
Hs

0(I) the usual Sobolev spaces with the norm ‖·‖s. Let Ln(x) be the n
th-

order Legendre polynomial. We describe below our spectral discretization
with Legendre polynomials.

For any d ≥ 1 such that dm is an integer, we set

Sdm = span{L0(x), L1(x), . . . , Ldm(x)},

Vdm = {v ∈ Sdm : v(±1) = 0},

Wdm = {v ∈ Sdm : v(±1) = v′(±1) = 0}.
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Sdm, Vdm and Wdm are respectively finite dimensional approximations of
L2(I), H1

0 (I) and H
2
0 (I). We denote by πdm the orthogonal projector from

L2(I) onto Sdm.

2.1. 1-D case: decomposition of Vdm with respect to A = − d2

dx2 .

Let us write
φk(x) = Lk(x)− Lk+2(x).

It is an easy matter to verify that

(2.1) Vdm = span{φ0(x), φ1(x), · · · , φdm−2(x)}.

Furthermore, using properties of the Legendre polynomials, we can show
that

∫

I

φ′k(x)φ
′
j(x)dx = 0, ∀ k 6= j,(2.2)

∫

I

φk(x)φj(x)dx = 0, ∀ j 6= k − 2, k, k + 2.(2.3)

In analogy with the Fourier series, we consider a high (resp. low) order Le-
gendre polynomial as a short (resp. long) wavelength component. Hence,
a natural decomposition of Vdm is: Vdm = Vm ⊕ Zdm where

Zdm = span{φm−1(x), φm(x), · · · , φdm−2(x)}.

We observe immediately that (Ay, z) = 0, ∀ y ∈ Vm, z ∈ Zdm, and

(2.4) (y, z) = (y, (I − πm−2)z), ∀ y ∈ Vm, z ∈ Zdm.

In other words, Vm and Zdm are A-orthogonal and nearly L2-orthogonal.
We note that the scheme (1.8)–(1.9) can also be applied to a linear

steady problem. Let us consider for instance the second order linear steady
equation:

(2.5) αu− uxx = f in I; u(±1) = 0,

where α is a constant such that the operator αI−Dxx is positive in H1
0 (I).

The classical Galerkin approximation of (2.5) in Vdm is: Find udm ∈ Vdm
such that

(2.6) α(udm, v) + (u′dm, v
′) = (f, v), ∀ v ∈ Vdm.
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It can be easily shown [1] that

‖udm − u‖1 ≤ C(s)(dm)1−s‖f‖s−2, ∀ s ≥ 1.

The scheme (1.8)–(1.9) applied to (2.6) is:
Find ym ∈ Vm and zdm ∈ Zdm such that

(2.7) α(ym, v) + (ym
′, v′) = (f, v), ∀ v ∈ Vm,

(2.8) α(zdm, w) + (zdm
′, w′) = (f, w), ∀ w ∈ Zdm.

We note that ym+zdm = udm if and only if α = 0. However, we can prove
the following results.

Lemma 2.1.

‖ym + zdm − u‖1 ≤ C(s)
(

|α|m−1−s + (dm)1−s
)

‖f‖s−2, ∀ s ≥ 1.

Remark 2.1. We have approximately decomposed a large system (2.6)
into two small systems (2.7)–(2.8) with the same accuracy as long as
|α|ds−1 / m2. We note that relation (2.4) is of crucial importance for
this type of results.
A proof of Lemma 2.1 with α = 1 is given in [13]. However the same

proof carries over to the general case.

2.2. 1-D case: decomposition of Wdm with respect to A = d4

dx4 . Let
us denote

(2.9) ψk(x) = Lk(x)−
2(2k + 5)

2k + 7
Lk+2(x) +

2k + 3

2k + 7
Lk+4(x).

It is shown in [12] that

Wdm = span{ψ0(x), ψ1(x), · · · , ψdm−4(x)},

and

(2.10) (ψ′′i (x), ψ
′′
j (x)) = 0, ∀ i 6= j.

Hence a natural decomposition of Wdm is: Wdm =Wm ⊕ Z̃dm where

Z̃dm = span{φm−3(x), φm−2(x), · · · , φdm−4(x)}.
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Thanks to (2.9) and (2.10), we derive that (Ay, z) = 0 and

(2.11) (y, z) = (y, (I − πm−4)z), ∀ y ∈Wm, z ∈ Z̃dm.

Let us now apply the decomposition to the fourth order linear steady
equation:

(2.12) αu− βuxx + uxxxx = f in I, u(±1) = ux(±1) = 0,

where α and β are two constants such that αI −βDxx+Dxxxx is positive
in H2

0 (I). The Galerkin approximation of (2.12) in Wdm is:
Find udm ∈Wdm such that

(2.13) α(udm, v) + β(u′dm, v
′) + (u′′dm, v

′′) = (f, v), ∀ v ∈Wdm.

and it can be shown [1] that

‖udm − u‖2 ≤ C(s)(dm)2−s‖f‖s−4, ∀ s ≥ 2.

The scheme (1.8)–(1.9) applied to (2.12) is:

Find ym ∈Wm and zdm ∈ Z̃dm such that

(2.14) α(ym, v) + β(y′m, v
′) + (ym

′′, v′′) = (f, v), ∀ v ∈Wm,

(2.15) α(zdm, w) + β(z′dm, w
′) + (zdm

′′, w′′) = (f, w), ∀ w ∈ Z̃dm.

Equations (2.14)–(2.15) can be efficiently solved as indicated in [12]. The
following lemma indicates that (2.14)–(2.15) is as accurate as (2.13) if
|α|ds−2 / m4 and |β|ds−2 / m2.

Lemma 2.2.

‖u− ym − zdm‖2 ≤ C(s)(|α|m−2−s + |β|m−s + (dm)2−s)‖f‖s−2, ∀ s ≥ 2.

Sketch of the Proof. The proof is quite similar to the proof of Lemma
2.1 given in [13]. Let π2,0

dm be the orthogonal projector from H2
0 (I) onto

Wdm, i.e. ((u−π2,0
dmu)

′′, v′′) = 0 for all v ∈Wdm. It can be shown [1] that

(2.16) ‖u− π2,0
dmu‖µ ≤ C(s)(dm)µ−s‖u‖s, ∀ 0 ≤ µ ≤ 2, s ≥ 2.
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We derive from (2.12) that ∀ v ∈Wm, and w ∈ Z̃dm,

(2.17) α(u, v + w) + β(u′, v′ + w′) + ((π2,0
dmu)

′′, v′′ + w′′) = (f, v + w).

Let us denote ξ = π2,0
m u− ym and η = (π2,0

dm − π
2,0
m )u− zdm. We note that

η ∈ Z̃dm. Indeed, by definition of π2,0
m we find that

(π2,0
dmu− π

2,0
m u, v′′′′) = 0, ∀ v ∈Wm.

Since the map d4

dx4 : Wm → Sm−4 is surjective, we infer that (π2,0
dmu −

π2,0
m u, v) = 0, ∀ v ∈ Sm−4. Therefore, π

2,0
dmu− π

2,0
m u ∈ Z̃dm, which implies

that η ∈ Z̃dm.

Now subtracting (2.14) and (2.15) from (2.17), we obtain

∀ v ∈ Vm and w ∈ Zdm,

(2.18)
α(u−ym, v) + α(u− zdm, w) + β((u− ym)′, v′)

+ β((u− zdm)′, w′) + ((π2,0
dmu− ym − zdm)′′, (v + w)′′) = 0.

Since

α(u− ym, v) = α(u− π2,0
m u, v) + α(ξ, v),

α(u− zdm, w) = α(u− (π2,0
dm − π

2,0
m )u,w) + α(η, w),

β((u− ym)′, v′) = β((u− π2,0
m u)′, v′) + β(ξ′, v′),

β((u− zdm)′, w′) = β((u− (π2,0
dm − π

2,0
m )u)′, w′) + β(η′, w′),

setting v = ξ and w = η in (2.18), we find that

(2.19)

α(‖ξ‖2 + ‖η‖2) + β(|ξ|21 + |η|
2
1) + (|ξ|22 + |η|

2
2)

=− α(u− π2,0
m u, ξ)− α(u− (π2,0

dm − π
2,0
m )u, η)

− β((u− π2,0
m u)′, ξ′)− β((u− (π2,0

dm − π
2,0
m )u)′, η′),

where | · |i, (i = 1, 2) is the semi-norm defined by |v|i =
√

(Div,Div).

The Lemma can then be established by bounding properly the four
terms on the right-hand side, using various inequalities of the projection
operators πm and π2,0

m . ¤
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2.3. 2-D periodic-nonperiodic case. It is in general very difficult,
except in the pure periodic case, to construct a decomposition which is
A-orthogonal in a multi-dimensional domain other than using the imprac-
tical eigenfunctions. We shall make a first attempt to construct such a
decomposition for A = −∆ subject to the homogeneous Dirichlet bound-
ary condition in one direction and to the periodic boundary condition in
the other direction.

Let us write

Hn
p (0, 2π) =
{

v =

+∞
∑

k=−∞

ake
ikx : āj = a−j ;

+∞
∑

k=−∞

|k|l|ak| < +∞, ∀ l = 0, 1, · · · , n

}

,

Pdm =







v =
∑

|k|≤ dm
2

ake
ikx : āj = a−j







.

Let Ω = [0, 2π]× I and m = (m1,m2). We then set

H = H0
p (0, 2π)× L

2(I), V = H1
p (0, 2π)×H

1
0 (I),

Sdm = Pdm1
× Sdm2

, Vdm = Pdm1
× Vdm2

.

We denote by Πdm the orthogonal projector in H onto Sdm.
We are looking for a decomposition Vdm = Ym ⊕ Zdm which is A-

orthogonal and nearly L2-orthogonal. In general we can fix either Ym or
Zdm and try to find its complement in Vdm with the desired properties.
Since it is important that Zdm only contains high-mode elements, we set

Zdm =















v =
∑

m1
2
<|k|≤dm1, or

m2+1≤j≤dm2−2

akje
ikxφj(y) : ākj = a−kj















.

We note that in particular (I −Πm)z = z, ∀ z ∈ Zdm.
Thanks to (2.2) and (2.3), we observe immediately that for |k| ≤ m1

2
and 0 ≤ j ≤ m2 − 2, we have

(A(eikxφj(y)), w) = k2(eikxφj(y), w)− (eikxφ′′j (y), w) = 0, ∀ w ∈ Zdm,

where (·, ·) is the inner product in π2,0
m H. Therefore, eikxφj(y) ∈ Ym for

|k| ≤ m1

2 and 0 ≤ j ≤ m2 − 2.
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In order to obtain a complete basis for Ym, we only need to construct
γk,j(y) for 1 ≤ k ≤ m1

2 and j = m2 − 1,m2 such that

(A(eikxγk,j(y)), w) = 0, ∀ w ∈ Zdm,

{

1 ≤ k ≤ m1

2

j = m2 − 1,m2

.

In fact, the above condition reduces to:

(2.20)

k2

∫

I

γk,j(y)φl(y)dy +

∫

I

γ′k,j(y)φ
′
l(y)dy = 0,

l = m2 + 1, · · · , dm2 − 2,

{

1 ≤ k ≤ m1

2

j = m2 − 1,m2

.

These relations lead us to search γk,j(y) in the following form:

γk,j(y) = φj(y) +

dm2−2
∑

l=m2+1

γ
(k,j)
l φl(y),

{

1 ≤ k ≤ m1

2

j = m2 − 1,m2

.

Again, thanks to (2.2) and (2.3), for each pair (k, j), relations (2.20) be-
come a symmetric positive definite tridiagonal system which uniquely de-

termines {γ
(k,j)
l }l=m2+1,··· ,dm2−2.

To summarize, we write

γk,j(y) = φj(y), if j = 0, 1, · · · ,m2 − 2 or k = 0,

γ−k,j(y) = γk,j(y), if k = 1, · · · ,
m1

2
, and j = m2 − 1,m2.

Then setting

Ym =







v =

m1
2
∑

k=−
m1
2

m2
∑

j=0

akje
ikxγk,j(y) : ākj = a−kj







,

we have by construction Vdm = Ym ⊕Zdm and

(Ay, z) = 0, (y, z) = (y, (I −Πm)z), ∀ y ∈ Ym, z ∈ Zdm.
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Remark 2.2. We can apply in particular the above decomposition to the
Helmholtz equation: Find ym ∈ Ym, zdm ∈ Zdm such that

α(ym, v) + (∇ym,∇v) = (f, v), ∀ v ∈ Ym,

α(zm, w) + (∇zm,∇v) = (f, w), ∀ v ∈ Zdm.

As in the 1-D case, it can be shown that the above scheme is as accurate as
the Galerkin scheme in Vdm provided |α|ds−1 / m2

2, where s is the largest
number such that f ∈ Hs−2(Ω).
The procedure can be directly applied to construct a proper decomposi-

tion with respect to the biharmonic operator. However, the extension to the
two-dimensional case with Dirichlet boundary condition in both directions
is more involved and will be considered in a future work.

3. Error estimates for the nonlinear Galerkin method. Let us con-
sider the abstract nonlinear evolution equation (1.1). We set b(u, v, w) =
(B(u, v), w) and assume that the trilinear form b satisfies

(3.1) b(u, v, v) = 0, ∀ u, v ∈ V,

(3.2) b(u, v, w) ≤ C‖u‖V ‖v‖V ‖w‖, ∀ u, v, w ∈ V.

It is standard to show that the initial value problem (1.2) is well posed in
the following sense: for any u0 ∈ V and f ∈ L2(0, T ;H), there exists a
unique solution u of (1.2) such that u ∈ C([0, T ];V ).

We can perform error analyses for the nonlinear Galerkin method based
on all the decompositions presented in the last section. To fix the idea, we
shall restrict ourselves to the decomposition in Section 2.1. In other words,
we consider a 1-D problem with A = −Dxx, H = L2(I) and V = H1

0 (I).
A particular example is the 1-D Burgers’ equation, for which we set

C = 0, B(u) = uux, B(u, v) =
2

3
uvx +

1

3
vux.

One can readily check that the assumptions (3.1)–(3.2) are satisfied.
Using the notations in Section 2.1, the Galerkin approximation in Vdm

to (1.2) in the above case is:
Find udm ∈ Vdm such that ∀ v ∈ Vdm,

(3.3)
d

dt
(udm, v) + ν(u′dm, v

′) + (Cudm, v) + b(udm, udm, v) = (f, v),



12 J. SHEN & R. TEMAM

with udm(·, 0) = πdmu0(·).
We propose to approximate (3.3) by the following nonlinear Galerkin

scheme:
Find ym ∈ Vm and zdm ∈ Zdm such that ∀ v ∈ Vm and w ∈ Zdm,

(3.4)
d

dt
(ym, v)+ν(y

′
m, v

′)+(Cym, v)+b(ym+zdm, ym+zdm, v) = (f, v),

(3.5) γ
d

dt
(zdm, w)+ν(z

′
dm, w

′)+(Czdm, w)+b(ym+zdm, ym, w) = (f, w),

with ym(x, 0) = u0m(x); γ is either 1 or 0; zdm(x, 0) = u0dm(x)− u0m(x)
if γ = 1; u0m (resp. u0dm) is the projection of u0 in V onto Vm (resp.
Vdm).

We have the following error estimates for the above scheme.

Theorem 4.1. Under the assumptions (3.1), (3.2) and for m sufficiently
large, we have

(3.6)

(

∫ T

0

‖(u− ym − zdm)(ρ)‖21dρ)
1
2 ≤

K
(

(dm)1−s‖u‖L2(0,T ;Hs) + γ(dm)1−α‖ut‖L2(0,T ;Hα−2)

)

+K
(

m−s‖u‖L2(0,T ;Hs) + (1− γ)m1−α‖ut‖L2(0,T ;Hα−2)

)

,

where K is a constant independent of d and m.

Remark 3.1.

(a) The first two terms on the right hand side of the error estimate in (3.6)
are inherited from the classical Galerkin approximation (3.3), while the
last two terms are due to the nonlinear Galerkin treatment. We suggest
to use γ = 1 if f is time dependent and γ = 0 if f is time independent.
In the latter case, we can show (see [6]) that u is analytic in time with
value in V . Using Cauchy’s formula for analytic functions, we can prove
‖ut‖s ∼ ‖u‖s. Hence, by taking α = s + 2 in (3.6), the last term can
be absorbed into the first term. Therefore, in both cases we find that
as long as ds−1 / m, (3.4)–(3.5) is as accurate as the classical Galerkin
scheme (3.3) in Vdm.

(b) It is also possible to derive error estimates in L∞(0, T ;H1(Ω)) norm.
We shall not pursue in this direction since the main purpose of our
analysis is to determine a quantitative guideline for the proper choice
of d.
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(c) A proof of the Theorem in the special case C = 0 is given in [13]. The
case C 6= 0 can be proved similarly. Moreover, the same technique can
be used to obtain error estimates for nonlinear Galerkin schemes using
the decompositions in Sections 2.2 and 2.3.

(d) We note that compared to (1.9), there is an additional term b(zdm, ym, w)
in (3.5). This term is added due to a technical difficulty. It is believed
that the same results would hold without this additional term.
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aux Limites Elliptiques, Springer-Verlag, Paris, 1992.

2. M. CHEN and R. TEMAM, Nonlinear Galerkin Method in the Finite
Difference Case and Wavelet-like Incremental Unknowns, Numer.
Math. 64 (1993), 271–294 .

3. T. DUBOIS, F. JAUBERTEAU and R. TEMAM, Solution of the in-
compressible Navier-Stokes equations by the nonlinear Galerkin
method, J. Scient. Comput. 8 (1993), 167–194.

4. C. FOIAS, O. MANLEY and R. TEMAM, Modeling of the interaction
of small and large eddies in two dimensional turbulent flows, Math.
Model. and Num. Anal. 22 (1988).

5. C. FOIAS, G. R. SELL and R. TEMAM, Inertial manifolds for nonlinear
evolutionary equations, J. Diff. Eqn. 73 (1988), 308–353.

6. C. FOIAS and R. TEMAM, Some analytic and geometric properties of
the evolution Navier-Stokes equations, J. Math. Pure et Appl. 58

(1979), 339–368.

7. F. JAUBERTEAU, C. ROSIER and R. TEMAM, The nonlinear Galerkin
method in computational fluid dynamics, Appl. Numer. Math. 6
(1989/90), 361–370.

8. M. MARION and R. TEMAM, Nonlinear Galerkin Methods, SIAM J.
Numer. Anal. 26 (1989), 1139–1157.

9. , Nonlinear Galerkin Methods: the finite element case, Numer.
Math. 57 (1990 ), 205–226.

10. M. MARION and J. XU, Error estimates on a new nonlinear Galerkin
method based on two-grid finite elements, To appear in SIAM J.
Numer. Anal.

11. J. SHEN, Long time stability and convergence for fully discrete non-
linear Galerkin methods, Appl. Anal. 38 (1990), 201–229.



14 J. SHEN & R. TEMAM

12. , Efficient spectral-Galerkin method I. Direct solvers for second-
and fourth-order equations by using Legendre polynomials, SIAM
J. Sci. Comput. 15 (1994), 1489–1505.

13. J. SHEN and R. TEMAM, Nonlinear Galerkin methods using Cheby-
shev or Legendre polynomials I. One dimensional case, SIAM J.
Numer. Anal. 32 (1995), 215–234.

14. R. TEMAM, Stability analysis of the nonlinear Galerkin method,
Math. Comp. 57 (1991), 477–505.

†Department of Mathematics, Penn State University

E-mail address: shen j@math.psu.edu

‡The Institute for Scientific Computing and Applied Mathematics, Indi-

ana University


