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SUMMARY

In Gresho and Sani (Int. J. Numer. Methods Fluids 1987; 7:1111–1145; Incompressible Flow and
the Finite Element Method, vol. 2. Wiley: New York, 2000) was proposed an important hypothesis
regarding the pressure Poisson equation (PPE) for incompressible �ow: Stated there but not proven
was a so-called equivalence theorem (assertion) that stated=asserted that if the Navier–Stokes momen-
tum equation is solved simultaneously with the PPE whose boundary condition (BC) is the Neumann
condition obtained by applying the normal component of the momentum equation on the boundary on
which the normal component of velocity is speci�ed as a Dirichlet BC, the solution (u; p) would be
exactly the same as if the ‘primitive’ equations, in which the PPE plus Neumann BC is replaced by
the usual divergence-free constraint (∇ · u=0), were solved instead.
This issue is explored in su�cient detail in this paper so as to actually prove the theorem for at least

some situations. Additionally, like the original=primitive equations that require no BC for the pressure,
the new results establish the same thing when the PPE approach is employed. Copyright ? 2005 John
Wiley & Sons, Ltd.
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1. INTRODUCTION

One of the most misunderstood aspects of incompressible �ow has been the boundary
condition (BC), if any, for the pressure. While the pressure in an incompressible �ow has
long been recognized as the Lagrangian constraint variable that enforces the divergence-free
constraint [1], i.e. ∇ · u=0, and that the pressure Poisson equation (PPE) is a consequence
of the constraint within the domain, there has been a great deal of confusion as to the ap-
propriate BC for the PPE. In Reference [2], two versions of PPE are considered: one is the
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so-called consistent pressure Poisson equation (CPPE) where the term ��(∇ · u) is retained,
and the other is the simpli�ed pressure Poisson equation (SPPE) where this term is dropped.
It has been almost universally recognized that the BC for SPPE is related to the fact that
∇·u must vanish on the boundary if the solution and boundary are su�ciently smooth. How-
ever, the appropriate BC for the CPPE has been elusive and has taken various forms in the
literature that have mainly been obtained without a detailed analysis. It has been described
as a ‘primary di�culty’ in Reference [3], an ‘open question’ in Reference [4] while others
[2, 5, 6] have made more de�nitive statements by resorting to heuristic or semi-rigorous argu-
ments. The issue is an important one since oftentimes the continuity constraint is replaced by
the derived PPE to e�ect either an analytical, or more often, a numerical solution of the tran-
sient Navier–Stokes equations. For example, this is the case in numerical solutions employing
a projection or fractional step method.
A recent article by Rempfer [7] illustrates the confusion in the literature on the pressure BC

issue. In assessing the PPE with Neumann BC he states, ‘: : :the resulting set of di�erential
equations plus BCs represent an ill-posed problem’. This statement is proven herein to be
absolutely incorrect.
The purpose of this paper is to explore this issue in su�cient detail and rigor to actually

prove the theorem stated herein for at least some situations. In the course of the analysis,
the di�culties in assigning the proper BC to the pressure �eld will become apparent and
also some insight into the generation of seemingly good numerical simulations that utilize an
improper pressure BC will be obtained. One surprising result of this new analysis is that, like
the original=primitive equation approach that requires no BC for the pressure, the new results
show the same thing when the CPPE approach is employed!
In order to simplify the analysis, the incompressible Stokes equations will be considered.

The same conclusions hold for the Navier–Stokes equations but in general the analysis is
more restricted and technical. Consider the time dependent, incompressible Stokes equations
with Cauchy and Dirichlet data in a d-dimensional domain � with boundary � over the time
interval (0; T ):

@u
@t
+∇p− ��u = f in �× (0; T ) (1)

∇ · u = 0 in �× (0; T ) (2)

u = u0 in �× {0} (3)

u = u� on �× (0; T ) (4)

Here the external force f, the initial velocity �eld u0 and the velocity at the boundary u� are
given data. Here it is assumed that @u�=@t has the same smoothness required of f and that
∇ · u0 = 0.
If u� has zero �ux on each connected component of the boundary �i, i.e.

∫
�i
n · u�i =0,

and if it is in H 1=2(�)d, it can be extended into ũ� ∈H 1(�)d with ∇·u=0 and by changing u
into u− ũ�, we come to the case of zero Dirichlet BC. So we can assume that u� =0 without
loss of generality.
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The variational problem associated with (1)–(4) is to �nd u∈L2(0; T ;V ) satisfying (3) and
such that

∫
�×(0;T )

[
@u
@t

· v+ �∇u : ∇v− f · v
]
=0 ∀v∈V (5)

where A :B stands for �ijAijBij and

V =
{
v∈H 1

0 (�)
d;∇ · v=0} (6)

If f∈L2(0; T :H−1(�)d) and � is smooth, the problem has a unique solution and there is a
unique pressure p∈L2(�× (0; T ))=R (i.e. up to a constant) such that

∫
�×(0;T )

[
@u
@t

· v+ �∇u :∇v− p∇ · v− f · v
]
=0 ∀v∈L2 (

0; T ;H 1
0 (�)

d) (7)

and ∫
�
q∇ · u=0 ∀q∈L2(�) (8)

are in (0; T ). (Herein we employ (5).) Problem (7)–(8) can also be studied directly with the
same result.

Remark 1
If f∈L2(�×(0; T ))d and u0 ∈V , and � is smooth or if � is a convex polygon or polyhedron,
then in addition (see References [8, 9]) u∈L2(0; T ;H 2(�)d) and p∈L2(0; T ;H 1(�))=R.

2. CONSISTENT PRESSURE POISSON EQUATION FORMULATIONS

For numerical reasons, we would like to study the problem where the divergence equation is
replaced by an equation for the pressure, namely we consider the following CPPE formulation
(cf. References [2, 5]):

@u
@t
+∇p− ��u = f (9)

�p− �∇ · (�u) = ∇ · f (10)

u|t=0 = u0 (11)

u|� = 0 (12)

However, there were no rigorous mathematical analyses for this formulation and it was not
completely clear how (10) should be interpreted mathematically and implemented numerically.
The main purpose of this paper is to give a solid mathematical footing to this formulation,
which in turn will guide its proper discretization.
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2.1. A �rst weak formulation

We consider �rst the following weak formulation: with f∈L2(� × (0; T ))d and u0 ∈V , and
if � is smooth or if � is a convex polygon or polyhedron �nd u∈L2 (

0; T ;H 1
0 (�)

d
)
and

p∈L2(�× (0; T ))=R satisfying (11) and (12) such that
∫
�×(0;T )

[
@u
@t

· v+ �∇u :∇v− p∇ · v− f · v
]
=0 ∀v∈L2 (

0; T ;H 1
0 (�)

d) (13)

∫
�
[(p− �∇ · u)�q− q∇ · f] = 0 ∀q∈H 2

0 (�) (14)

a.e. in (0; T ).

Theorem 1
Problem (13)–(14) is equivalent to problem (7)–(8).

Proof
Note that all integrals are legitimate and so the formulation makes sense. Let us show �rst
that the solution of (7)–(8) is solution of (13)–(14). We only need to show that (14) is
satis�ed. For this we choose v=∇�, �∈H 2

0 (�) in (7). It becomes∫
�×(0;T )

[
@u
@t

· ∇�+ �∇u :∇∇�+∇p · ∇�− f · ∇�
]
=0 ∀�∈H 2

0 (�) (15)

The �rst term vanishes because of (2) after integration by parts. The second term is also zero
by (2) because �∇u :∇∇�= �[(∇ · u)�� − ∇ · (u��) +∇ · (∇∇� · u)]. The last two terms
are integrated by parts and (14) is found.
Let us show now that the solution of (13)–(14) is solution of (7)–(8). To do this, we use

(15) again but integrated by parts in the other direction. Then it is found that∫
�×(0;T )

[
@u
@t

· ∇�− (p− �∇ · u)��+ �∇ · f
]
=0 ∀�∈H 2

0 (�) (16)

Now by (14) and an integration by parts in the �rst term of (16) we �nd

@
@t

∫
�
(∇ · u)�=0 ∀�∈H 2

0 (�) (17)

which implies
∫
� (∇·u)q=const: a.e. in (0; T ). Finally, since it is zero at t=0, ∇·u=0.

Remark 2
It is probably possible to prove directly that (13)–(14) has a solution; however, it is simpler
to show, as we have done, that it has a solution because (7)–(8) has and any solution of one
is solution of the other, and that it has only one solution because if it had more than one,
then that would contradict the uniqueness of solution of (7)–(8).

Remark 3
If the term @tu is discretized by (un+1 − un)=�t and the scheme is made implicit (Euler or
Crank–Nicolson=trapezoid rule) the same proof works on the semi-discrete problem.
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2.2. An alternative weak formulation

We now present an alternative weak formulation of (9)–(12), which is more suitable for
numerical implementation. Let (·; ·) be the inner product of L2(�)d. We de�ne

X :=
{
(u; p) : u∈H 1

0 (�)
d; p∈L20(�);−��u+∇p∈L2(�)d} (18)

with the inner product

((u; p) ; (v; q))X =(∇u; ∇v) + (p; q) + (−��u+∇p;−��v+∇q) (19)

It is clear that

‖(u; p)‖X := (‖∇u‖2L2 + ‖p‖2L2 + ‖−��u+∇p‖2L2)1=2 (20)

is an induced norm in X. We �rst show that X is complete under the above norm, and
therefore, X is a Hilbert space. Indeed, Let (um; pm) be a Cauchy sequence in X. Thus,
um → u in H 1

0 (�)
d, pm → p in L20(�) and −��um + ∇pm → w in L2(�)d. On the other

hand, −��um → −��u in H−1(�)d (the dual of H 1
0 (�)

d) and ∇pm → ∇p in H−1(�)d and
therefore,

−��um +∇pm → −��u+∇p in H−1(�)d

Since the limit is unique, we derive that −��u+∇p=w. Hence we have (um; pm) → (u; p)
in X.

Remark 4
Note that

‖∇p‖H−1 6 ‖−��u+∇p‖H−1 + ‖−��u‖H−1

6C
(‖−��u+∇p‖L2 + � ‖u‖H 1

)

and ‖p‖L2 6 C ‖∇p‖H−1 (see Reference [10]). Hence,

‖|(u; p)|‖ := (‖∇u‖2L2 + ‖−��u+∇p‖2L2)1=2

is a norm of X equivalent to ‖(u; p)‖X
Thus, an alternative weak formulation for (9)–(12) is

For f∈L2(�× (0; T ))d and u0 ∈V , �nd (u; p)∈L2(0; T ;X ) such that

�
d
dt
(∇u; ∇v) + (−��u+∇p;−��v+∇q)= (f;−��v+∇q); ∀(v; q)∈X

u|t=0 = u0
(21)

Note that by taking v=0 in the above formulation, we �nd

(−��u+∇p; ∇q)= (f;∇q); ∀q∈H 1(�) (22)

which is a weak form of (10).

Theorem 2
Problem (7)–(8) is equivalent to problem (21).

Copyright ? 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2006; 50:673–682
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Proof
If u∈H 1

0 (�)
d and v∈H 1

0 (�)
d is such that there exists q∈L20(�) with (v; q)∈X , then

�(∇u;∇v) =−�〈u;�v〉= 〈u;−��v+∇q〉 − 〈u;∇q〉
= (u;−��v+∇q) + (∇ · u; q) (23)

Now if (u; p) is a solution of (7)–(8), then if f∈L2(�× (0; T )), then
@u
@t

∈L2(�; (0; T ))d; (u; p)∈X (24)

almost everywhere in (0; T ). Therefore, taking the inner product of

@u
@t

− ��u+∇p− f=0 (25)

with −��v+∇q for (v; q)∈X yields(
@u
@t
;−��v+∇q

)
+ (−��u+∇p;−��v+∇q)= (f;−��v+∇q) (26)

(The scalar products can be split because the three terms belong to L2(�) almost everywhere
in (0; T ).) But

(
@u
@t
;−��v+∇q

)
=
d
dt
(u;−��v+∇q)− d

dt
[(u;−��v+∇q) + (∇ · u; q)]

= �
d
dt
(∇u;∇v) (27)

since ∇ · u = 0. Therefore, (21) is recovered.
Conversely, if for any q∈L0(�) one chooses v∈H 1

0 (�)
d such that

−�v+∇q=0 (28)

i.e. (v; q)∈X , then
d
dt
(∇ · u; q)=0 (29)

since ∇ · u=0. Then
d
dt
(u; ��v+∇q) + (−��u+∇p;−��v+∇q)= (f;−��v+∇q) (30)

for ∀(v; q)∈X . But when (v; q) spans X , −��v+∇q spans all L2(�)d. Therefore,
if g ≡ ���

d
dt
(u; g) + (−��u+∇p; g)= (f; g) ∀g∈L2(�)d (31)
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or (
−��; �u

�t
− ��u+∇p− f

)
= 0

which leads to (7) and (8).

Remark 5
One may prove the existence and uniqueness of the solution for problem (21) directly. Indeed,
considering the following time-discretized backward Euler scheme (n¿ 0):

�
(

∇u
n+1 − un
�t

;∇v
)
+

(−��un+1 +∇pn+1;−��v+∇q)

=
(
fn+1;−��v+∇q) ; ∀(v; q)∈X (32)

By taking (v; q)= (un+1; pn+1) in (25), we have the following energy identity:

1
2�t

(∥∥∇un+1∥∥2L2 − ‖∇un‖2L2 +
∥∥∇ (

un+1 − un)∥∥2L2
)

+
∥∥−��un+1 +∇pn+1∥∥2L2 =

(
f;−��un+1 +∇pn+1) (33)

Hence, the existence and uniqueness of (un+1; pn+1) satisfying (32) is a direct consequence
of the Lax–Milgram Theorem. The corresponding result for the time-continuous problem can
be established by letting �t → 0. We leave the details to the interested readers.

Remark 6
The scheme (32) provides a stabilized formulation for the generalized Stokes problem (with
@u=@t replaced by �u in (1)), i.e. the inf–sup condition is satis�ed for any pair of velocity–
pressure approximation space such that (32) makes sense. Thus, (32) is very suitable in
practice for solving time-dependent Stokes (or Navier–Stokes) equations or generalized Stokes
equations. However, it cannot be applied to standard stationary Stokes or Navier–Stokes equa-
tions since it will not lead to a divergence-free solution.

3. DISCUSSION

In the above, we have focused on the consistent pressure Poisson formulation, i.e. (10). In
practice, the following simpli�ed pressure Poisson formulation (SPPE) has also been fre-
quently used:

@u
@t
+∇p− ��u = f (34)

�p = ∇ · f (35)

u|t = 0 = u0 (36)

Copyright ? 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2006; 50:673–682
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∇ · u|� = 0 (37)

u|� = 0 (38)

It can be easily shown that the above formulation is equivalent to (1)–(2), with or without
the term @u=@t. Note that the BC ∇ · u|� =0 is essential but is di�cult to implement in
practice (e.g. cf. the ‘in�uence matrix’ technique [5]).

Remark 7
This PPE problem helps to explain the so-called ‘PPE paradox’ in Reference [2, p. 500].

3.1. Pressure boundary conditions

Now the question of the pressure BC for the CPPE can be addressed rigorously. In particular,
is it

∇ · u|� =0 (39)

or (where n denotes the outward pointing normal on �)

@p
@n

∣∣∣∣
�
= (f + ��u) · n|� (40)

or another since these and other alternatives have been proposed in References [2, 3, 5, 11, 12].
The answer now is clear that none of these BC is necessary, contrary to the SPPE formulation
(34)–(38). (Both of the proofs presented above establish that a unique solution exists without
specifying any pressure BC; in particular, the formulation (9)–(12), shown to be equivalent
to (1)–(4), does not contain any pressure BC.)

Remark 8
In the more general case, using (4), the term −n · ∇(@u�=@t) must be added to the right-hand
side of (40).

We now focus on (39) and (40) which often appear in the literature; whether either or both
are satis�ed is simply a matter of the regularity of the solution. Such regularity would require
the boundary, the initial condition, and the forcing function to be su�ciently smooth (see,
e.g. Reference [11]). While some have argued that the Neumann-type BC (40) is naturally
contained in the basic continuum formulation, and imposing it in the continuum formulation
(9)–(12) may impose a regularity that is not possible and thus favour (39), it is clear from
our analysis that both will be satis�ed by a smooth enough solution. For example, that (40)
is satis�ed by a smooth enough solution follows directly from (22) by integration by parts.
Hence, either can preserve the divergence-free condition if the solution is smooth enough, and
in this case, the one used depends on which is more convenient for the solution technique
utilized. The overriding result is that a unique solution to (9)–(12) exists without imposing
any pressure BC. This general result was obtained herein by using both an ultra weak formu-
lation and a weak formulation, but it must remain valid for any solution; smoother solutions
can possess additional properties such as (39) or (40). Another interesting question that arises
is whether one can employ a di�erent Neumann condition, i.e. a di�erent right-hand side
in (40) such as, for example, zero or even an arbitrary Dirichlet condition. These conditions
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have been proposed=utilized in certain numerical solution techniques in the literature and have
yielded seemingly good results (see, for e.g. Reference [13]). Our analysis suggests that in
fact it is possible for a discrete solution to seem reasonable but in general a non-smooth
pressure �eld exhibiting a boundary layer would probably develop as the mesh is re�ned if,
for example, a pressure BC other than (39) or (40) is used.

3.2. Form of the pressure Poisson equation

In many numerical schemes for the transient Navier–Stokes equations, the governing equations
employ a PPE as the basis of the algorithm. For example, projection schemes or fractional
step schemes are such schemes [2, 7, 12, 13]. Then the question arises as to whether terms
such as ��(∇ · u) containing ∇ · u should be retained since ∇ · u=0 is included in the
original continuum formulation, and thus vanishes. However, in the formulation of numerical
algorithms for solving such problems, this question must be carefully addressed. Contrary to
some numerical schemes, it is shown here that it is essential to retain the term. Unless the
velocity is projected onto the space of divergence-free velocity �elds at each time step, the
solution of the SPPE scheme will not lead to a divergence-free velocity �eld and therefore
will not be a solution of the incompressible Navier–Stokes equations. This projection is built-
in to the CPPE form but not the SPPE form of the PPE. Thus, the SPPE formulation without
the BC ∇ · u|� =0 can lead to solutions which are not divergence free, i.e. do not represent
incompressible �ows [2]. Finally, it is noteworthy that the continuum formulation (9)–(12)
can be recast into the following form by setting q=p− �∇ · u:

@u
@t
+∇q+ �∇ ∧ ∇ ∧ u = f in �× (0; T ) (41)

�q = ∇ · f in �× (0; T ) (42)

u = u0 in �× {0} (43)

u = 0 on �× (0; T ) (44)

This formulation can also be shown to be equivalent to (7)–(8) by slightly modifying the
proofs presented above. It also has the property that the velocity is projected onto the space
of divergence-free velocity �elds at each time step and hence this formulation is a form that
is equivalent to the formulation employing the CPPE. Note again that for a smooth enough
solution, the solution will satisfy (39) and (40).

4. CONCLUDING REMARKS

In spite of what has been shown above, we (PMG and RLS) feel somewhat ‘obligated’ to
return brie�y to the issue of the Neumann BC, (40), for the PPE—especially in light of the
fact some do use this BC for the PPE—both at t=0 (to determine the initial pressure) and
for t ¿ 0 (to augment their analysis) (see Reference [11]).
We do this by simply verbally summarizing what was presented in detail in References

[2, 5], viz.: Whenever the discrete PPE is generated from a consistent (but low order, using
C0 approximations with �nite elements or low-order �nite di�erences) discretization of the
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NSE’s, (1) and (2), with BC (4), which requires (among other things) that the incompressibil-
ity constraint, (2), be applied on the boundary—as well of course inside the domain—the re-
sulting (so-called) CPPE, when examined closely at any boundary point, will always converge
(h→ 0) to (40). Thus, such a consistent approximation will actually enforce, discretely, both
(39) and (40).
Finally, we take this opportunity to correct an error in References [2, 5], where it is stated

that setting n · u= n · u� is equivalent to setting ∇ · u=0 on �. This is not true and now we
believe and assert that a very important aspect of incompressible �ow is the requirement that
∇ · u=0 in � + � and for all t ¿ 0. (Incompressibility is omnipotent!)

ACKNOWLEDGEMENTS

We are grateful to V. Girault for some important contributions. Additional useful input was provided
by D. Gri�ths, W. Henshaw, A. Peterson and A. Hindmarsh.

REFERENCES

1. Aris R. Vectors, Tensors and the Basic Equations of Fluid Mechanics. Prentice-Hall Inc.: Englewood Cli�s,
NJ, 1962.

2. Gresho PM, Sani RL. Incompressible Flow and the Finite Element Method, vol. 2. Wiley: New York, 2000.
3. Peyret R, Taylor TD. Computational Methods for Fluid Flow. Springer: New York, 1983.
4. Ferziger JH. Simulation of incompressible �ows. Journal of Computational Physics 1987; 69:1–48.
5. Gresho PM, Sani RL. On the pressure boundary conditions for the incompressible Navier–Stokes equations.
International Journal for Numerical Methods in Fluids 1987; 7:1111–1145.

6. Roache PJ. Computational Fluid Dynamics. Hermosa Publishers: Albuquerque, NM, 1999.
7. Rempfer D. Annual Review of Fluid Mechanics 2003; 35:229–265.
8. Ladyzhenskaya O. The Mathematical Theory of Viscous Incompressible Flow. Gordon and Breach: New York,
1969.

9. Lions JL. Problem�es aux Limites Non-homog�enes. Dunod: Paris, 1970.
10. Temam R. Navier–Stokes Equations. North-Holland: Amsterdam, 1977.
11. Heywood J, Rannacher R. Finite element approximations of the nonstationary Navier–Stokes problem.

1. Regularity of solutions and the second-order error estimates for spatial discretizations. SIAM Journal on
Numerical Analysis 1982; 19:275–311.

12. Moin P, Kim J. On the numerical solution of time-dependent viscous incompressible �ow involving solid
boundaries. Journal of Computational Physics 1980; 35:381–392.

13. Chorin AJ. A numerical method of solving incompressible viscous �ow problems. Journal of Computational
Physics 1967; 2:12–26.

Copyright ? 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2006; 50:673–682


