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ABSTRACT. A new set of modified Legendre rational functions
which are mutually orthogonal in L2(0,+∞) is introduced. Var-
ious projection and interpolation results using the modified Le-
gendre rational functions are established. These results form the
mathematical foundation of related spectral and pseudospectral
methods for solving partial differential equations on the half line.
A spectral scheme using the modified Legendre rational functions
for the Korteweg-de Vries equation on the half line is investi-
gated. The numerical solution of the scheme is shown to possess
the essential conservation properties satisfied by the solution of
the Korteweg-de Vries equation. The spectral convergence of the
proposed scheme is established.

1. INTRODUCTION

How to accurately and efficiently solve partial differential equations in unbounded
domains is a very important subject since many problems arising in science and
engineering are set in unbounded domains, yet it is also a very difficult subject
since the unboundedness of the domain introduce considerable theoretical and
practical challenges which are not present in bounded domains.

While spectral approximations for partial differential equations (PDEs) in
bounded domains have achieved great success and popularity in recent years (see
e.g. [12, 7, 2]), spectral approximations for PDEs in unbounded domains have
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only received limited attention. Recently, a number of different spectral methods
have been proposed for problems in unbounded domains: a first approach is to use
spectral approximations associated with existing orthogonal systems such as the
Laguerre or Hermite polynomials/functions, see, e.g., Maday, Pernaud-Thomas
and Vandeven [26], Funaro and Kavian [11], Guo [15, 16], Guo and Shen [19],
and Shen [27]; a second approach is to use a suitable mapping to reformulate
the original problems in unbounded domains to singular/degenerate problems in
bounded domains, and then use a suitable Jacobi approximation to treat the sin-
gular/degenerate problems [14, 17, 18]; another class of spectral methods is based
on rational approximations, for example, Christov [8] and Boyd [4, 5] proposed
some spectral methods on infinite intervals by using certain mutually orthogonal
system of rational functions.

Recently, Guo, Shen, and Wang [20] proposed and analyzed a set of Legendre
rational functions which are mutually orthogonal in L2

χ(0,∞) with a non-uniform
weight function

χ(x) = (x + 1)−2.

However, the non-uniform weight χ(x)may introduce serious difficulties in anal-
ysis and implementation for PDEs with global conservation properties. In partic-
ular, the numerical solutions based on a weighted formulation may not preserve
these conservation properties satisfied. For example, the solutions of some im-
portant nonlinear differential equations, such as the system of conservation laws,
the non-parabolic dissipative systems, the Schödinger equation, the Dirac equa-
tion, and the Korteweg-de Vries equation possess certain conservation properties
which are essential in the theoretical analysis of these equations. Therefore, it
is important that the numerical solutions satisfy as many conservation properties
as possible. However, the numerical solutions based on a weighted formulations
usually will not satisfy any of these conservation properties.

In this paper, we introduce a new set of modified Legendre rational functions
which are mutually orthogonal with the uniform weight χ(x) ≡ 1, and so the
numerical solutions possess the essential conservation properties satisfied by the
solutions of original problems. In the next section, we introduce the new set of
orthogonal rational functions induced by the Legendre polynomials, and derive
some of its basic properties. In Section 3, we study several orthogonal projection
operators and derive optimal approximation results associated with them. Since
we are interested in the approximation of Korteweg-de Vries equation that involves
a third-order derivative operator, additional projection operators are needed and
very delicate analyses using special recursively defined operators are introduced.
In Section 4, we study the interpolation operators based on the Gauss and Gauss-
Radau quadratures. In Section 5, we take the Korteweg-de Vries equation on
the half line as an example to show how the modified Legendre rational spectral
method would work for nonlinear problems with essential conservation proper-
ties. A modified Legendre rational spectral scheme is proposed and analyzed. We
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would like to emphasize that it seems impossible to derive a convergence result if
the usual Legendre rational spectral method in [20] is used for approximating the
Korteweg-de Vries equation.

2. MODIFIED LEGENDRE RATIONAL FUNCTIONS

Let us denote Λ = {x | 0 < x <∞}. For 1 ≤ p ≤ ∞, let

Lp(Λ) = {v | v is measurable on Λ, and ‖v‖Lp <∞},

where

‖v‖Lp =


(∫

Λ |v(x)|p dx
)1/p

, 1 ≤ p <∞,

ess supx∈Λ |v(x)|, p = ∞.

We denote in particular ‖v‖∞ = ‖v‖L∞(Λ).
Let (u,v) and ‖v‖ be respectively the inner product and the norm of the

space L2(Λ), i.e.,

(u,v) =
∫
Λu(x)v(x)dx, ‖v‖ = (v, v)1/2.

For any non-negative integerm, we set

Hm(Λ) = {v | ∂kxv = dkvdxk ∈ L2(Λ), 0 ≤ k ≤m
}
,

equipped with the inner product, the semi-norm, and the norm as follows:

(u,v)m,χ =
m∑
k=0

(∂kxu, ∂
k
kv), |v|m,χ = ‖∂mx v‖, ‖v‖m,χ = (v, v)1/2m,χ.

For any real number r > 0, we define the space Hr(Λ) with the norm ‖v‖r by
space interpolation as in Adams [1].

We denote by L`(x) the Legendre polynomial of degree `, which is the eigen-
function of the singular Sturm-Liouville problem

∂x((1− x2)∂xv(x))+ λv(x) = 0,(2.1)

with the corresponding eigenvalues λ` = `(` + 1), ` = 0, 1, 2, . . . . They satisfy
the recurrence relations

L`+1(x) =
2` + 1
` + 1

xL`(x)−
`

` + 1
L`−1(x), ` ≥ 1,(2.2)

(2` + 1)L`(x) = ∂xL`+1(x)− ∂xL`−1(x), ` ≥ 1.(2.3)



184 BEN-YU GUO & JIE SHEN

We also have the following identities:∣∣∣∣∣∣∣
L`(1) = 1,

∂xL`(1) =
1
2
`(` + 1),

L`(−1) = (−1)`,

∂xL`(−1) = (−1)`+1 1
2
`(` + 1).

(2.4)

We define the modified Legendre rational functions of degree ` by

R`(x) =
√

2
x + 1

L`
(
x − 1
x + 1

)
, ` = 0,1,2, . . . ,

By (2.1), R`(x) are the eigenfunctions of the singular Sturm-Liouville problem

(x + 1)∂x(x(∂x((x + 1)v(x)))+ λv(x) = 0, x ∈ Λ,(2.5)

with the corresponding eigenvalues λ` = `(` + 1), ` = 0, 1, 2, . . . . Due to (2.2)
and (2.3), they satisfy the recurrence relations

R`+1(x) =
2` + 1
` + 1

x − 1
x + 1

R`(x)−
`

` + 1
R`−1(x), ` > 1,(2.6)

2(2` + 1)R`(x) = (x + 1)2(∂xR`+1(x)− ∂xR`−1(x))(2.7)

+ (x + 1)(R`+1(x)− R`−1(x)).

Furthermore,

lim
x→∞(x + 1)R`(x) =

√
2, lim

x→∞x∂x((x + 1)R`(x)) = 0,(2.8)

By the orthogonality of the Legendre polynomials,∫
Λ R`(x)Rm(x)dx =

(
` + 1

2

)−1

δ`,m,(2.9)

where δ`,m is the Kronecker function. Thus the modified Legendre rational ex-
pansion of a function v ∈ L2(Λ) is

v(x) =
∞∑
`=0

v̂`R`(x), with v̂` =
(
` + 1

2

)∫
Λ v(x)R`(x)dx.

Let R1
`(x) = ∂x((x + 1)R`(x)) and ω1(x) = x. By virtue of (2.5), (2.8), and

integration by parts,∫
Λ R1

`(x)R
1
m(x)ω1(x)dx = `(` + 1)

(
` + 1

2

)−1

δ`,m.(2.10)
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Hence, {R1
`} form a set of orthogonal rational functions in L2

ω1
(Λ).

We end this section with an inverse inequality for the modified Legendre ra-
tional functions. Let N be any positive integer, and

RN = span {R0, R1, . . . , RN}.

Hereafter, c denotes a generic positive constant, independent of any function and
N.

Theorem 2.1. For any ϕ ∈ RN and r ≥ 0,

|ϕ|r ≤ cN2r‖(x + 1)−rϕ‖.

Proof. Let Λ̃ = (−1,1). Then, x = (1+y)/(1−y) maps y ∈ Λ̃ to x ∈ Λ.
For any ϕ ∈ RN , we set ψ(y) = ϕ((1 + y)/(1− y)). Obviously, we can write
ψ(y) = 1

2(1 − y)ψN(y) with some function ψN ∈ PN , where PN is the set of
all polynomials of degree at most N. By direct computation, we have

‖∂xϕ‖2 = 1
2

∫
Λ̃(∂yψ(y))2(1−y)2 dy,(2.11)

and

∂yψ(y) =
1
2
(1−y)∂yψN(y)−

1
2
ψN(y).(2.12)

Let χ(α,β)(y) = (1−y)α(1+y)β, α, β > −1. By Theorem 2.2 in Guo [17],

‖∂yη‖χ(α,β) ≤ cN2‖η‖χ(α,β) , ∀η ∈ PN.(2.13)

The above with (2.11) and (2.12) leads to

‖∂xϕ‖2 ≤ c
∫
Λ̃(∂yψN(y))2(1−y)4 dy + c

∫
Λ̃(ψN(y))2(1−y)2 dy

≤ cN4
∫
Λ̃(ψN(y))2(1−y)2 dy = cN4

∫
Λ̃(ψ(y))2 dy

= cN4‖(x + 1)−1ϕ‖2.

Repeating the above procedure, we obtain the result for any non-negative integer
r . Using a standard technique of space interpolation, we obtain the result for
positive non-integer r . ❐

3. PROJECTIONS USING MODIFIED LEGENDRE RATIONAL FUNCTIONS

In this section, we study several projection operators on the half line based on the
modified Legendre rational functions.
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The L2(Λ)-orthogonal projection PN : L2(Λ)→RN is a mapping such that

(PNv − v,ϕ) = 0, ∀ϕ ∈ RN.

We introduce below a sequence of recursively defined Hilbert spaces, which play
an essential role in the analysis of spectral methods based on the modified Legendre
rational functions.

For any non-negative integer r , we define

HrA0
(Λ) = {v | v is measurable on Λ, and ‖v‖r ,A0 <∞},

with the norm

‖v‖r ,A0 =
( r∑
k=0

‖(x + 1)r/2+k∂kxv‖2
)1/2

.

For any positive integers r , q such that r ≥ q ≥ 1, we define

HrAq(Λ) = {v | v is measurable on Λ, and ‖v‖r ,Aq < ∞},

with the norm

‖v‖r ,Aq = ‖(x + 1)∂x((x + 1)v))‖r−1,Aq−1 .

For any real positive r such that r ≥ q, the space HrAq(A) is defined by space
interpolation. Let A be the Sturm-Liouville operator in (2.5), namely

Av(x) = −(x + 1)∂x(x∂x((x + 1)v(x))).

We can verify by induction that for any non-negative integerm,

Amv(x) =
2m∑
k=1

(x + 1)m+kpk(x)∂kxv(x),(3.1)

where pk(x) are some rational functions which are bounded uniformly on the
whole interval Λ. Hence, Am is a continuous mapping from H2m

A0
(Λ) to L2(Λ).

Theorem 3.1. For any v ∈ HrA0
(Λ) and r ≥ 0,

‖PNv − v‖ ≤ cN−r‖v‖r ,A0 .

Proof. We first assume that r = 2m. By virtue of (2.5), (2.9), and integration
by parts,
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v̂` =
2` + 1

2`(` + 1)

∫
Λ v(x)A,R`(x)dx

= 2` + 1
2`(` + 1)

∫
Λ x∂x((x + 1)v(x))∂x((x + 1)R`(x))dx

= − 2` + 1
2`(` + 1)

∫
Λ(x + 1)∂x(x∂x((x + 1)v(x)))R`(x)dx

= 2` + 1
2`(` + 1)

∫
ΛAv(x)R`(x)dx

...

= 2` + 1
2`m(` + 1)m

∫
ΛAmv(x)R`(x)dx,

Therefore, we derive from the above and the definition of HrA0
(Λ) that

‖PNv − v‖2 =
∞∑

`=N+1

v̂2
`‖R`‖2 ≤ cN−4m

∞∑
`=N+1


∫
ΛAmv(x)R` (x)dx

‖R`‖2


2

‖R`‖2

≤ cN−4m‖Amv‖2 ≤ cN−2r∥∥v∥∥2
r ,A0
.

Next, let r = 2m+ 1. By (2.5) and integration by parts, we have

v̂` =
2` + 1

2`m(` + 1)m

∫
ΛAmv(x)R`(x)dx

= − 2` + 1
2`m+1(` + 1)m+1

∫
Λ(x + 1)Amv(x)∂x(xR1

`(x))dx

= 2` + 1
2`m+1(` + 1)m+1

∫
Λ ∂x((x + 1)Amv(x))R1

`(x)ω1(x)dx.

Thanks to (2.9), (2.10), and (3.1),

‖PNv − v‖2

=
∞∑

`=N+1

2` + 1
2(`(` + 1))2m+2

(∫
Λ ∂x((x + 1)Amv(x))R1

`(x)ω1(x)dx
)2

≤ cN−2(2m+1)
∞∑

`=N+1

∫Λ ∂x((x + 1)Amv(x))R1
`(x)ω1(x)dx∥∥R1

`

∥∥2
ω1

2 ∥∥R1
`

∥∥2
ω1

≤ cN−2(2m+1)∥∥∂x((x + 1)Amv)
∥∥2
ω1
≤ cN−2r∥∥v∥∥2

r ,A0
.
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The proof is complete. ❐

We now consider the Hm(Λ)-orthogonal projection PmN : Hm(Λ) → RN ,
which is defined by

(PmN v − v,ϕ)m = 0, ∀ϕ ∈ RN.
Theorem 3.2. For any v ∈ HrAm(Λ) and 0 ≤m ≤ r ,

‖PmN v − v‖m ≤ cNm−r‖v‖r ,Am.
Proof. We shall prove the result by induction on m. Clearly, Theorem 3.1

implies the desired result for m = 0. Now, we assume that the conclusion is true
for PkN , 0 ≤ k ≤m− 1. Given v ∈ HrAm(Λ), we introduce

u(x) =
∫ x

0
(z + 1)∂z((z + 1)v(z))dz.(3.2)

Then ∂xu(x) = (x + 1)∂x((x + 1)v(x)), and

v(x) = 1
x + 1

(∫ x
0
(z + 1)−1∂zu(z)dz + v(0)

)
.(3.3)

We also introduce

ϕ(x) = 1
x + 1

(∫ x
0
(z + 1)−1Pm−1

N−1 ∂zu(z)dz + v(0)
)
.(3.4)

By the definition of Pm−1
N , there exists a polynomial qN−1 ∈ PN−1 such that

Pm−1
N−1 ∂zu(z) = 1/(z + 1)qN−1((z − 1)/(z + 1)). Therefore,

ϕ(x) = 1
x + 1

(∫ x
0
(z + 1)−2qN−1

(
z − 1
z + 1

)
dz + v(0)

)

= 1
2(x + 1)

(∫ (x−1)/(x+1)

−1
qN−1(y)dy + 2v(0)

)
,

which implies that ϕ ∈ RN . By the Hardy inequality [22], (3.2)-(3.4), and the
assumption of the induction, we have

‖ϕ − v‖2 ≤
∫∞

0

(
1
x

∫ x
0
(z + 1)−1(Pm−1

N−1 ∂zu(z)− ∂zu(z))dz
)2

dx(3.5)

≤ 4
∫∞

0
(x + 1)−2(Pm−1

N−1 ∂xu(x)− ∂xu(x))2 dx

≤ 4‖Pm−1
N−1 ∂xu− ∂xu‖2 ≤ cN2m−2r∥∥∂xu∥∥2

r−1,Am−1

= cN2m−2r∥∥(x + 1)∂x((x + 1)v)
∥∥2
r−1,Am−1

= cN2m−2r‖v‖r ,Am.
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On the other hand,

(3.6) ∂xϕ(x)− ∂xv(x) = 1
(x + 1)2

(Pm−1
N−1 ∂xu(x)− ∂xu(x))

− 1
(x + 1)2

∫ x
0
(z + 1)−1(Pm−1

N−1 ∂zu(z)− ∂zu(z))dz.

By an induction argument, we can derive from (3.6) that for 1 ≤ k ≤m,

∂kxϕ(x)− ∂kxv(x) = Fk(x)+Gk(x),

where

Fk(x) =
k−1∑
j=0

dj(x + 1)−k+j−1∂jx(Pm−1
N−1 ∂xu(x)− ∂xu(x)),

Gk(x) = (−1)kk!(x + 1)−k−1
∫ x

0
(z + 1)−1(Pm−1

N−1 ∂zu(z)− ∂zu(z))dz,

with dj being some constants independent of N and u. Thus, by a similar argu-
ment as in (3.5), we can show that for 1 ≤ k ≤m,

‖Fk‖ ≤ c‖Pm−1
N−1 ∂xu− ∂xu‖k−1 ≤ cN2m−2r∥∥∂xu∥∥2

r−1,Am−1
= cN2m−2r∥∥v∥∥2

r ,Am.

Similarly, we have

‖Gk‖ ≤ cN2m−2r∥∥v∥∥2
r ,Am.

Hence,

‖PmN v − v‖m ≤ ‖ϕ − v‖m ≤ cNm−r‖v‖r ,Am.

The proof is complete. ❐

When we apply the modified Legendre rational approximation to numeri-
cal solutions of differential equations with boundary conditions, we need to use
orthogonal projections with built-in boundary conditions. To this end, let

Hm0 (Λ) = {v | v ∈ Hm(Λ) and ∂kxv(0) = 0, for 0 ≤ k ≤m− 1},

and Rm,0N = RN ∩Hm0 (Λ). We denote in particular R0
N = R1,0

N .
We define the orthogonal projection Pm,0N : Hm0 (Λ) →Rm,0N by

(Pm,0N v − v,ϕ)m = 0, ∀ϕ ∈ Rm,0N .
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Theorem 3.3. For any v ∈ HrAm(Λ)∩Hm0 (Λ) and 0 ≤m ≤ r ,

‖Pm,0N v − v‖m ≤ cNm−r‖v‖r ,Am,

Proof. We define u(x) as in (3.2), and set

ϕ(x) = 1
x + 1

∫ x
0
(z + 1)−1Pm−1,0

N−1 ∂zu(z)dz.

Clearly, ϕ ∈ Rm,0N . The desired result follows from the same argument as in the
proof of Theorem 3.2. ❐

In order to analyze the modified Legendre rational approximation for the
Korteweg-de Vries equation (see Section 5), we need another orthogonal pro-
jection. Let H̃m0 (Λ) = Hm(Λ) ∩ H1

0(Λ). We define the orthogonal projection
P̃m,0N : H̃m0 (Λ)→R0

N by

(P̃m,0N v − v,ϕ)m = 0, ∀ϕ ∈ R0
N.

Theorem 3.4. For any v ∈ HrAm(Λ)∩ H̃m0 (Λ) and 0 ≤m ≤ r ,

‖P̃m,0N v − v‖m ≤ cNm−r‖v‖r ,Am.

Proof. Again we define u(x) as in (3.2), and

ϕ(x) = 1
x + 1

∫ x
0
(z + 1)−1P̃m−1,0

N−1 ∂zu(z)dz ∈ R0
N.

Then, the result can be established in the same manner as in the proof of Theorem
3.2. ❐

We will need another special projection operator in the analysis of modified
Legendre rational interpolations. To this end, we set

H1
Â0
(Λ) = {v | v is measurable on Λ, and ‖v‖r ,Â0

<∞},

with

‖v‖1,Â0
= (‖(x + 1)3/2∂xv‖2 + ‖v‖2)1/2,

and

HrB(Λ) = {v | v is measurable on Λ, and ‖v‖r ,B <∞},
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with

‖v‖r ,B = ‖(x + 1)∂x((x + 1)2v)‖r−1,A0 .

Now, we define the H1
Â0

-orthogonal projection P̂1
N : H1

Â0
(Λ) →RN by

∫
Λ ∂x(P̂1

Nv(x)− v(x))∂xϕ(x)(x + 1)3 dx

+
∫
Λ(P̂1

Nv(x)− v(x))ϕ(x)dx = 0, ∀ϕ ∈ RN.

Theorem 3.5. For any v ∈ HrB(Λ) and r ≥ 1,

‖P̂1
Nu− v‖1,Â0

≤ cN1−r‖v‖r ,B.

Proof. Let us denote

u(x) =
∫ x

0
(z + 1)3/2∂z((z + 1)2v(z))dz.

Then, we have

∂xu(x) = (x + 1)3/2∂x((x + 1)2v(x)),

and

v(x) = (x + 1)−2
(∫ x

0
(z + 1)−3/2∂zu(z)dz + v(0)

)
.

Setting

ϕ(x) = (x + 1)−2
(∫ x

0
(z + 1)−1PN−2((z + 1)−1/2∂zu(z))dz + v(0)

)
,

then, by the definition of PN−2, there exists a polynomial qN−2 ∈ PN−2 such that

ϕ(x) = 1
2(x + 1)2

(∫ (x−1)/(x+1)

−1
qN−2(z)dz + 2v(0)

)
.

Using the identity 1/(x + 1) = − 1
2((x − 1)/(x + 1)− 1), we find that ϕ ∈ RN .

Furthermore, by an argument as in the proof of Theorem 3.2 and the Hardy
inequality, we have

‖ϕ − v‖2 ≤
∫∞

0

1
x4

(∫ x
0
(z + 1)−1(PN−2((z + 1)−1/2∂zu(z))

− (z + 1)−1/2∂zu(z)
)
dz
)2
dx ≤
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≤ 4
3

∫∞
0
(x + 1)−4(PN−2((x + 1)−1/2∂xu(x))− (x + 1)−1/2∂xu(x))2 dx

≤ 4
3
‖PN−1((x + 1)−1/2∂xu)− (x + 1)−1/2∂xu‖2

≤ cN2−2r∥∥(x + 1)−1/2∂xu
∥∥2
r−1,A0

= cN2−2r‖(x + 1)∂x((x + 1)2v)‖r−1,A0 ≤ cN2−2r‖v‖r ,B.

Next, we write

∂xϕ(x)− ∂xv(x) = F(x)+G(x),

with

F(x) = 1
(x + 1)3

(
PN−2

(
(x + 1)−1/2∂xu(x)

)− (x + 1)−1/2∂xu(x)
)
,

G(x) = − 2
(x + 1)3

∫ x
0
(z + 1)−1(PN−2

(
(z + 1)−1/2∂zu(z)

)
− (z + 1)−1/2∂zu(z)

)
dz.

It can be shown that

‖(x + 1)3/2F‖2 ≤ ‖PN−2((x + 1)−1/2∂xu)− (x + 1)−1/2∂xu‖2

≤ cN2−2r∥∥(x + 1)−1/2∂xu
∥∥2
r−1,A0

≤ cN2−2r∥∥v∥∥2
r ,B.

Similarly,

‖(x + 1)3/2G‖2 ≤ c
∫∞

0

1
x3

(∫ x
0
(z + 1)−1(PN−2((z + 1)−1/2∂zu(z))

− (z + 1)−1/2∂zu(z))dz)2
)
dx

≤ cN2−2r∥∥v∥∥2
r ,B.

Therefore,∥∥P̂1
Nv − v

∥∥2
1,Â0
≤
∥∥ϕ − v∥∥2

1,Â0
≤ ‖(x + 1)3/2(F +G)‖2 + ‖ϕ − v‖2

≤ cN2−2r∥∥v∥∥2
r ,B. ❐

Finally, when we use the modified Legendre rational spectral method for non-
linear problems, we may need to estimate the upper-bounds of various orthogonal
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projections. In particular, the following result will be used in Section 5.

Theorem 3.6. Let 0 ≤ µ < m − 1
2 , with a positive integer m. Then, for any

v ∈ HmAm(Λ),
‖PmN v‖µ,∞ ≤ c‖v‖m,Am.

For any v ∈ HmAm(Λ)∩Hm0 (Λ),
‖Pm,0N v‖µ,∞ ≤ c‖v‖m,Am.

Proof. Let d =m− µ > 1
2 . By embedding theory and Theorem 3.3,

‖PmN v‖µ,∞ ≤ ‖v‖µ,∞ + ‖PmN v − v‖µ,∞
≤ ‖v‖µ+d + c‖PmN v − v‖µ+d
≤ ‖v‖µ+d + c‖v‖m,Am ≤ c‖v‖m,Am.

The second result can be proved similarly. ❐

4. INTERPOLATIONS USING MODIFIED LEGENDRE RATIONAL
FUNCTIONS

We first consider the modified Legendre-Gauss rational interpolation. Let
{ζN,j}j=0,...,N be the N + 1 distinct roots of RN+1(x). Indeed, we have

ζN,j = (1+σN,j)(1− σN,j)−1,(4.1)

where σN,j are the roots of LN+1(x). We denote

ωN,j = 1
2
ρN,j(ζN,j + 1)2, 0 ≤ j ≤ N,(4.2)

where ρN,j are the weights of the Legendre-Gauss quadrature,

ρN,j = 2
(1− σ 2

N,j)(∂xLN+1(σN,j))2
, 0 ≤ j ≤ N,

By virtue of (15.3.10) in Szegö [28], we have

ρN,j ∼
2π
N + 1

(1− σ 2
N,j)

1/2.(4.3)

Thanks to the above and (4.2), we have

ωN,j ∼
2π
N + 1

ζ1/2
N,j(ζN,j + 1).(4.4)
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We now introduce the discrete inner product and the discrete norm associated
with {ζN,j}j=0,...,N .

(u,v)N =
N∑
j=0

u(ζN,j)v(ζN,j)ωN,j, ‖v‖N = (v, v)1/2N .

Let y = (x − 1)/(x + 1), Λ̃ = (−1,1), and PN be the set of all polynomials of
degree at most N. For any ϕ ∈ RN and ψ ∈ RN+1, we can write

ϕ(x) = 1
x + 1

qN
(
x − 1
x + 1

)
, ψ(x) = 1

x + 1
qN+1

(
x − 1
x + 1

)
,

with qN ∈ PN and qN+1 ∈ PN+1. By the property of the Legendre-Gauss quadra-
ture and (4.2), we have

(4.5) (ϕ,ψ) =
∫
Λ

1
(x + 1)2

qN
(
x − 1
x + 1

)
qN+1

(
x − 1
x + 1

)
dx

= 1
2

∫
Λ̃ qN(y)qN+1(y)dy =

1
2

N∑
j=0

qN(σN,j)qN+1(σN,j)ρj

=
N∑
j=0

ϕ(ζN,j)ψ(ζN,j)ωN,j = (ϕ,ψ)N, ∀ϕ ∈ RN, ψ ∈ RN+1.

In particular, we have

‖ϕ‖N = ‖ϕ‖, ∀ϕ ∈ RN.(4.6)

For any v ∈ C(Λ), the modified Legendre-Gauss rational interpolation oper-
ator INv ∈ RN is defined by

INv(ζN,j) = v(ζN,j), 0 ≤ j ≤ N,

or equivalently

(INv − v,ϕ)N = 0, ∀ϕ ∈ RN.

The following theorem is related to the stability of the interpolation.

Theorem 4.1. For any v ∈ H1
Â0
(Λ),

‖INv‖ ≤ c(‖v‖ +N−1‖(x + 1)3/2∂xv‖).
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Proof. By (4.4) and (4.6),

‖INv‖2 =
∥∥INv∥∥2

N =
N∑
j=0

v2(ζN,j)ωN,j ≤ cN−1
N∑
j=0

v2(ζN,j)ζ
1/2
N,j(ζN,j + 1).

Let x = (1 + y)/(1 − y), y = cosϑ, and v̂(ϑ) = v((1 + cosϑ)/(1 − cosϑ)).
Then

‖INv‖2 ≤ CN−1
N∑
j=0

v̂2(ϑN,j)(1+ cosϑN,j)1/2(1− cosϑN,j)−3/2.

According to (4.1) and Theorem 8.9.1 in Szegö [28],

ϑN,j = 1
N + 1

(jπ +O(1)), 0 ≤ j ≤ N,(4.7)

where O(1) is bounded uniformly for all 0 ≤ j ≤ N. Now let a0 = O(1)/(N+1)
and a1 = (Nπ + O(1))/(N + 1). Then, we have ϑN,j ∈ Kj ⊂ [a0, a1], where
the size of Kj is of the order 1/(N + 1). Consequently,

‖INv‖2 ≤ cN−1
N∑
j=0

sup
ϑ∈Kj

|v̂(ϑ)λ(ϑ)|2, with λ(ϑ) =
√

cosϑ/2
sin3 ϑ/2

.

We recall the following inequality (see (13.7) in Bernardi and Maday [2]):

‖f‖L∞(a,b) ≤ c
(

1√
b − a‖f‖L2(a,b) +

√
b − a‖∂xf‖L2(a,b)

)
,(4.8)

for all f ∈ H1(a, b). Using the above inequality on each of the interval Kj , we
find that

‖INv‖2 ≤
N∑
j=0

(∥∥v̂λ∥∥2
L2(Kj) +N−2∥∥∂ϑ(v̂λ)∥∥2

L2(Kj)
)

≤ c(∥∥v̂λ∥∥2
L2(0,π) +N−2∥∥∂ϑ(v̂λ)∥∥2

L2(a0,a1)
)

≤ c(∥∥v̂λ∥∥2
L2(0,π) +N−2∥∥λ∂ϑv̂∥∥2

L2(0,π) +N−2‖v̂∂ϑλ‖L2(0,π)
)
.

Using the identity

∂ϑλ(ϑ) = −1
4
λ(ϑ)

(
cos−1 ϑ

2
sin
ϑ
2
+ 3 cos

ϑ
2

sin−1 ϑ
2

)
,
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we derive that

|∂ϑλ(ϑ)| ≤ cN|λ(ϑ)|.

Moreover,

dϑ
dx
= dϑ
dy

dy
dx

=
(
dy
dϑ

)−1 dy
dx

= −2
(x + 1)2

sin−1 ϑ

= −1
2
(1−y)2 sin−1 ϑ = −2 sin4 ϑ

2
sin−1 ϑ = −λ−2(ϑ).

Therefore,

‖INv‖2 ≤ c(∥∥v̂λ∥∥2
L2(0,π) +N−2‖λ∂ϑv̂

∥∥
L2(0,π)

)
≤ c(‖v‖2 +N−2‖(x + 1)3/2∂xv‖2). ❐

Theorem 4.2. For any v ∈ HrB(Λ) with r ≥ 1 and 0 ≤ ν ≤ 1,

‖INv − v‖ν ≤ cN2ν+1−r‖v‖r ,B.

Proof. Since IN(P̂1
Nv) coincides with P̂1

Nv, we derive from Theorems 3.5 and
4.1 that

‖INv − P̂1
Nv‖ ≤ c(‖P̂1

Nv − v‖ +N−1‖(x + 1)3/2∂x(P̂1
Nv − v)‖)

≤ c‖P̂1
Nv − v‖1,Â0

≤ cN1−r‖v‖r ,B.

Using Theorem 3.5 again yields

‖INv − v‖ ≤ ‖P̂1
Nv − v‖ + ‖INv − P̂1

Nv‖ ≤ cN1−r‖v‖r ,B.

Furthermore, by virtue of Theorems 2.1 and 3.5,

|INv − v|1 ≤ |P̂1
Nv − v|1 + |IN(v − P̂1

Nv)|1
≤ c‖P̂1

Nv − v‖1,Â0
+ cN2‖(x + 1)−1IN(v − P̂1

Nv)‖
≤ cN1−r‖v‖r ,B + cN2‖INv − P̂1

Nv‖ ≤ cN3−r‖v‖r ,B.

The desired result for 0 < ν < 1 follows from space interpolation. ❐

We now turn to the modified Gauss-Radau rational interpolation. We denote
by {ζ̂N,j}j=0,...,N the N + 1 distinct roots of RN(x)+ RN+1(x). Indeed, we have

ζ̂N,j = (1+ σ̂N,j)(1− σ̂N,j)−1,(4.9)
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where σ̂N,j are the roots of LN(x) + LN+1(x) in descending order. In particular,
ζ̂N,N = 0. We denote

ω̂N,j = 1
2
ρ̂N,j(ζ̂N,j + 1)2, 0 ≤ j ≤ N,(4.10)

where ρ̂N,j are the weights of the Legendre-Gauss quadrature,

ρ̂N,j = 1
(N + 1)2

1− σ̂N,j
(LN(σ̂N,j))2

, 0 ≤ j ≤ N − 1,

ρ̂N,N =
2

(N + 1)2
.

Thanks to (15.3.10) in Szegö [28], we have

ρ̂N,j ∼ 2π
N + 1

(1− σ̂ 2
N,j)

1/2, 0 ≤ j ≤ N − 1,(4.11)

which implies that

ω̂N,j ∼
4π
N + 1

ζ̂1/2
N,j(ζ̂N,j + 1), 0 ≤ j ≤ N − 1.(4.12)

We now introduce the discrete product and the discrete norm associated to
{ζ̂N,j}j=0,...,N .

(u,v)N,∼ =
N∑
j=0

u(ζ̂µj)v(ζ̂µj)ω̂N,j, ‖v‖N,∼ = (v, v)1/2N,∼.

Similar to (4.5), we can prove that

(ϕ,ψ) = (ϕ,ψ)N,∼, ‖ϕ‖ = ‖ϕ‖N,∼, ∀ϕ, ψ ∈ RN.(4.13)

For any v ∈ C(Λ̄), the modified Legendre-Gauss-Radau rational interpolation
operator ÎNv ∈ RN is defined by

ÎNv(ζ̂N,j) = v(ζ̂N,j), 0 ≤ j ≤ N,

or equivalently

(ÎNv−v, ϕ)N,∼ = 0, ∀ϕ ∈ RN.

Theorem 4.3. For any v ∈ H1
Â0
(Λ),

‖ÎNv‖ ≤ c(‖v‖ +N−1‖(x + 1)3/2∂xv‖).
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Proof. Thanks to (4.11)-(4.13), we have

‖ÎNv‖2 =
∥∥ÎNv∥∥2

N,∼ =
N∑
j=0

v2(ζ̂N,j)ω̂N,j(4.14)

≤ CN−1
N−1∑
j=0

v2(ζ̂N,j)ζ̂
1/2
N,j(1+ ζ̂N,j)+ (N + 1)−2v2(0).

By the trace theorem, we have |v(0)| ≤ c‖v‖1. Let y , ϑ, and v̂(ϑ) be the same
as in the proof of Theorem 4.1. Then

‖ÎNv‖2 ≤ CN−1
N−1∑
j=0

v̂2(ϑ̂N,j)(1+ cos ϑ̂N,j)1/2(1− cos ϑ̂N,j)−3/2 + CN−2∥∥v∥∥−2
1 .

According to (4.9), Theorem 8.9.1 in Szegö [28], and the relation between σN,j
and σ̂N,j , we also have

ϑ̂N,j = 1
N
(jπ +O(1)), 0 ≤ j ≤ N − 1.

Then the result follows from an argument as in the late part of the proof of The-
orem 4.1. ❐

Theorem 4.4. For any v ∈ HrB(Λ) with r ≥ 1 and 0 ≤ ν ≤ 1,

‖ÎNv − v‖ν ≤ cN2ν+1−r‖v‖r ,B.

Proof. This result can be proved by using the same argument as for Theorem
4.2, with IN replaced by ÎN . ❐

5. APPROXIMATION OF THE KORTEWEG-DE VRIES EQUATION USING
THE MODIFIED LEGENDRE RATIONAL FUNCTIONS

The main advantage of using the modified Legendre rational functions is that they
are orthogonal in L2(Λ). If we consider elliptic equations or parabolic equations,
we may use, for example, the usual Legendre rational approximation by Guo,
Shen, and Wang [20]. However, for some important nonlinear differential equa-
tions with essential conservation properties, the non-uniform weight for the usual
Legendre rational functions may destroy these conservation properties. Hence, the
usual Legendre rational functions are not suitable for these type of equations. In
this section, we take the Korteweg-de Vries equation as an example to show how
to deal with such problems by using the modified Legendre rational functions.
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There exists a large body of literature concerning the Cauchy problem of
Korteweg-de Vries equation, see, e.g., Zabursky and Kruskal [31], Lax [25], and
Bullough and Caudrey [6], see also Temam [29] for an analysis of the problem
using parabolic regularization, and Eden, Foias, Nicolaenko and Temam [10] for
a discussion on the long-term behavior of the problem.

In most existing numerical work on Korteweg-de Vries equation, finite differ-
ence or finite element methods were used, for example, Kuo and Wu [24], and
Kuo and Sanz Serna [23] first proved the convergences of some semi-discrete and
fully discrete schemes on the whole line, and Bona, Dougalis and Karakashian
[3] proved some higher-order convergence results for an implicit Runge-Kutta
Galerkin finite element scheme for the Korteweg-de Vries equation with periodic
boundary conditions. However, there are very few results for the initial boundary
value problem of the Korteweg-de Vries equation on the half line, which is the
subject of this section. The Korteweg-de Vries equation on the half line is phys-
ically relevant in situations such as water waves in a narrow and shallow stream
coming from a large water reservoir or waves originated by a wave maker.

The Korteweg-de Vries equation on the half line is as follows:

∂tU(x, t)+ U(x, t)∂xU(x, t)+ ∂3
xU(x, t) = f(x, t),

x ∈ Λ, 0 < t ≤ T,
U(0, t) = g(t), 0 ≤ t ≤ T,(5.1)

lim
x→∞U(x, t) = lim

x→∞ ∂xU(x, t) = 0, 0 ≤ t ≤ T,
U(x,0) = U0(x), x ∈ Λ.

Chu, Xiang and Baransky [9], and Guo and Weideman [21] discovered the pos-
sibility of producing solitary waves with suitable boundary values at x = 0. Guo
[13] also proved the convergence of the finite difference scheme for (5.1) used in
Guo and Weideman [21]. We now present a modified Legendre rational approxi-
mation for this problem.

Without loss of generality, we take g(t) ≡ 0. Then the weak form of (5.1) is
to find U(x, t) ∈ H̃2

0(Λ) for all 0 ≤ t ≤ T , such that

(∂tU(t), v)− 1
2(U

2(t), ∂xv)− (∂2
xU(t), ∂xv) = (f (t), v),

∀v ∈ H̃2
0(Λ),(5.2)

U(0) = U0.

The well-posedness of (5.2) can be established as in Ton [30]. Moreover, by the
skew symmetry of the operators ∂x and ∂3

x , the solution of (5.2) possesses certain
conservation properties. For instance, if f ≡ 0, then,

‖U(t)‖ = ‖U0‖, ∀t ∈ (0, T].(5.3)
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Now let uN(x, t) be the numerical solution of (5.2), defined as follows.
For any t ∈ (0, T], find uN(x, t) ∈ R0

N such that

(∂tuN(t),ϕ)− 1
2(u

2
N(t), ∂xϕ)− (∂2

xuN(t), ∂xϕ)

= (f (t),ϕ), ∀ϕ ∈ R0
N,(5.4)

uN(0) = PNU0.

Take ϕ = uN(t) in (5.4), we find that for f ≡ 0,

‖uN(t)‖ = ‖uN(0)‖, ∀t ∈ (0, T].(5.5)

Therefore, the modified Legendre rational approximation are well suited for nu-
merical approximation of the Korteweg-de Vries equation. Indeed, we have the
following result concerning the convergence and error estimate for (5.2).

Theorem 5.1. If for r ≥ 3, U ∈ L∞(0, T ;W 1,∞(Λ))∩H1(0, T ;HrA3
(Λ)) and

U0 ∈ HrA3
(Λ), then we have

‖U −uN‖ ≤ C3(U)N3−r , ∀t ∈ (0, T],

where C3(U) is a positive constant depending only on the norms of U and U0 in the
spaces mentioned above.

Proof. Let UN = P̃3,0
N U . We derive from (5.2) that

(
∂tUN(t),ϕ

)− 1
2(U

2
N(t), ∂xϕ)−

(
∂2
xUN(t), ∂xϕ

)
+

3∑
j=1

Gj(t,ϕ) = (f (t),ϕ), ∀ϕ ∈ R0
N,(5.6)

UN(0) = P̃3,0
N U0,

where

G1(t,ϕ) =
(
∂tU(t)−∂tUN(t), ϕ

)
,

G2(t,ϕ) = − 1
2

(
U2(t)−U2

N(t), ∂xϕ
)
,

G3(t,ϕ) = −
(
∂2
xU(t)−∂2

xUN(t), ∂xϕ
)
.

Let ŨN = uN − UN . Subtracting (5.6) from (5.4) yields
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(∂tŨN(t),ϕ)− 1
2(Ũ

2
N(t), ∂xϕ)− (∂2

xŨN(t), ∂xϕ)

=
4∑
j=1

Gj(t,ϕ), ∀ϕ ∈ R0
N,(5.7)

ŨN(0) = PNU0 − P̃3,0
N U0,

where G4(t,ϕ) = (UN(t)ŨN(t), ∂xϕ).
Take ϕ = ŨN in (5.7). It can be shown that

(Ũ2
N(t), ∂xŨN(t)) = 0, (∂2

xŨN(t), ∂xŨN(t)) = −(∂xUN(0))2.

Therefore,

d
dt
‖ŨN(t)‖2 ≤ 2

4∑
j=1

|Gj(t, ŨN(t))|.(5.8)

Now, we estimate the terms at the right side of (5.8). Firstly, by Theorem 3.4,

|G1(t, ŨN(t))| ≤ ‖ŨN(t)‖2 + cN6−2r∥∥∂tU(t)∥∥2
r ,A3
.

Next, by Theorems 3.4 and 3.6,

|G2(t, ŨN(t))| = |(U(t)∂xU(t)−UN(t)∂xUN(t), ŨN(t))|
≤ ‖ŨN(t)‖2 + ‖(U(t)− UN(t))∂xU(t)‖2

+ ‖UN(t)(∂xU(t)− ∂xUN(t))‖2

≤ ‖ŨN(t)‖2 + c
∥∥U(t)∥∥2

1,∞‖U(t)− UN(t)‖2

+ c
∥∥UN(t)∥∥2

∞
∣∣U(t)−UN(t)∣∣2

1

≤ ‖ŨN(t)‖2 + cN6−2r (∥∥U(t)∥∥2
1,∞ +

∥∥U(t)∥∥2
3,A3

)∥∥U(t)∥∥2
r ,A3
.

Using Theorem 3.4 again yields

|G3(t, ŨN(t))| = |(∂3
xU(t)− ∂3

xUN(t), ŨN(t))|
≤ ‖ŨN(t)‖2 + cN6−2r∥∥U(t)∥∥2

r ,A3
.

By integration by parts and Theorem 3.6,

|G4(t, ŨN(t))| = 1
2 |(∂xUN(t), Ũ2

N(t))| ≤ ‖UN(t)‖1,∞‖Ũ2
N(t)‖2

≤ c‖U(t)‖3,A3‖ŨN(t)‖2.
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In addition, Theorems 3.1 and 3.4 lead to

‖UN(0)‖2 ≤ ‖U0 − PNU0‖2 + ‖U0 − P̃3,0
N U0‖2 ≤ cN6−2r∥∥U0

∥∥2
r ,A3
.

Substituting the previous estimates into (5.8) and integrating the result with
respect to t, we obtain that

‖ŨN(t)‖2 ≤ C1(U)
∫ t

0
‖ŨN(s)‖2 ds + C2(U)N6−2r ,

where C1(U) is a positive constant depending only on ‖U‖L∞(0,T ;H3
A3
(Λ)∩W 1,∞(Λ)),

and C2(U) is a positive constant depending only on ‖U‖H1(0,T ;HrA3
(Λ)) and

‖U0‖HrA3
(Λ). The desired result then follows from the Gronwall inequality and

Theorem 3.4. ❐

6. CONCLUDING REMARKS

We introduced a new set of modified Legendre rational functions which are mu-
tually orthogonal in L2(0,+∞), and studied various projection operators and in-
terpolation operators associated with them. These resulted form the mathematical
foundation of approximations, by using the modified Legendre rational functions
for partial differential equations on the half line. These new rational functions are
particularly suitable for approximations of PDEs with essential global conservation
properties. As an example, we proposed a spectral scheme using the modified Le-
gendre rational functions for the Korteweg-de Vries equation on the half line. We
showed that the numerical solution of the scheme possesses the essential conserva-
tion properties satisfied by the exact solution of the Korteweg-de Vries equation,
and consequently, we were able to prove that the scheme convergences with spec-
tral accuracy. It is noted that we were not able to obtain this type of results using
the usual Legendre rational functions.

REFERENCES

[1] R.A. ADAMS, Sobolev Spaces, Academic Press, New York, 1975.
[2] C. BERNARDI & Y. MADAY, Spectral method, In: Handbook of Numerical Analysis, Volume 5

(Part 2) (P.G. Ciarlet & L.L. Lions, eds), North-Holland, 1997.
[3] J.L. BONA, V.A. DOUGALIS & O.A. KARAKASHIAN, Conservative, high-order numerical

schemes for the generalized Korteweg-de Vries equation, Philos. Trans. Roy. Soc. London Ser. A.
Volume 351 1695 (1995), 107-164.

[4] J.P. BOYD, Orthogonal rational functions on a semi-infinite interval, J. Comput. Phys. 70 (1987),
63-88.

[5] , Spectral methods using rational basis functions on an infinite interval, J. Comput. Phys.
69 (1987), 112-142.

[6] R.K. BULLOUGH & P.J. CAUDREY, The soliton and its history, In: Solitons (R.K. Bullough &
P.J. Caudrey, eds), Springer-Verlag, 1980.

[7] C. CANUTO, M.Y. HUSSAINI, A. QUARTERONI & T.A. ZANG, Spectral Methods in Fluid
Dynamics, Springer-Verlag, 1987.



On Spectral Approximations using Modified Legendre Rational Function 203

[8] C.I. CHRISTOV, A complete orthogonal system of functions in `2(−∞,∞) space, SIAM J. Appl.
Math. 42 (1982), 1337-1344.

[9] C.K. CHU, L.W. XIANG & Y. BARANSKY, Solitary waves induced by boundary motion, CPAM
36 (1983), 495-504.

[10] A. EDEN, C. FOIAS, B. NICOLAENKO & R. TEMAM, Exponential attractors for dissipative
evolution equations, Masson, Paris, 1994.

[11] D. FUNARO & O. KAVIAN, Approximation of some diffusion evolution equations in unbounded
domains by Hermite function, Math. Comp. 57 (1990), 597-619.

[12] D. GOTTLIEB AND S.A. ORSZAG, Numerical Analysis of Spectral Methods: Theory and Appli-
cations, SIAM-CBMS, Philadelphia, 1977.

[13] BEN-YU GUO, Numerical solution of an initial-boundary value problem of the Korteweg-de Vries
equation, Acta Math. Sci. 5 (1985), 377-348.

[14] , Gegenbauer approximation and its applications to differential equations on the whole line,
J. Math. Anal. Appl. 226 (1998), 180-206.

[15] , Spectral methods and their applications, World Scientific Publishing Co. Inc., River Edge,
NJ, 1998.

[16] , Error estimation of Hermite spectral method for nonlinear partial differential equations,
Math. Comp. 68 (1999), 1067-1078.

[17] , Jacobi approximations in certain Hilbert spaces and their applications to singular differential
equations, J. Math. Anal. Appl. 243 (2000), 373-408.

[18] , Jacobi spectral approximation and its applications to differential equations on the half line,
J. Comput. Math. 18 (2000), 95-112.

[19] BEN-YU GUO & JIE SHEN, Laguerre-Galerkin method for nonlinear partial differential equations
on a semi-infinite interval, Numer. Math. 86 (2000), 635-654.

[20] BEN-YU GUO, JIE SHEN & ZHONG-QING WANG, A rational approximation and its applica-
tions to differential equations on the half line, J. Sci. Comput. 15 (2000), 117-147.

[21] BEN-YU GUO & J.C. WEIDEMAN, Solitary solution of an initial-boundary value problem of
the Korteweg-de Vries equation, In: Proc. Inter. Conference on Nonlinear Mechanics (C.W. Zang,
Z.H. Guo & K.Y. Yeh, eds.), Scientific Press, Beijing, 1985.

[22] G. HARDY, J.E. LITTLEWOOD & G. POLYA, Inequalities, Cambridge University Press, Cam-
bridge, 1952.

[23] PEN-YU KUO & J.M. SANZ SERNA, Convergence of methods for the numerical solution of
Korteweg-de Vries equation, IMA J. Numer. Anal. 1 (1981), 215-221.

[24] PEN-YU KUO & HUA-MO WU, Numerical solution of K.d.V. equation, J. Math. Anal. Appl. 81
(1981), 334-345.

[25] P.D. LAX, Almost periodic solutions of the K.d.V. equation, SIAM Review 18 (1976), 351-375.
[26] Y. MADAY, B. PERNAUD-THOMAS & H. VANDEVEN, Reappraisal of Laguerre type spectral

methods, La Recherche Aerospatiale 6 (1985), 13-35.
[27] JIE SHEN, Stable and efficient spectral methods in unbounded domains using Laguerre functions,

SIAM J. Numer Anal. 38 (2000), 1113-1133.
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