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 Jie Shen
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 Cheng-long Xu
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 Abstract

 Approximations using the generalized Laguerre polynomials are investigated in this
 paper. Error estimates for various orthogonal projections are established. These estimates
 generalize and improve previously published results on the Laguerre approximations. As
 an example of applications, a mixed Laguerre-Fourier spectral method for the Helmholtz
 equation in an exterior domain is analyzed and implemented. The proposed method enjoys
 optimal error estimates, and with suitable basis functions, leads to a sparse and symmetric
 linear system.

 Mathematics subject classification: 65N35, 33C45, 65N15.
 Key words : Generalized Laguerre polynomials, Exterior problems, Mixed Laguerre-Fourier
 spectral method.

 1. Introduction

 Many practical problems in science and engineering require solving partial differential equa-
 tions in exterior domains. Considerable progress has been made recently in using spectral
 methods for solving partial differential equations in unbounded domains. The first approach
 is based on the classical orthogonal systems in the unbounded domains, namely, the Hermite
 (cf. [7, 12, 10]) and Laguerre (cf. [16, 6, 17, 14, 18, 19, 20]) polynomials/functions. The second
 approach is to map the original problem in a unbounded domain to a singular problem in a
 bounded domain (cf. [8, 11, 13]). The third approach is based on rational approximations (cf.
 [3, 2, 5, 15, 9]). However, none of the methods mentioned above has yet been analyzed for
 multidimensional exterior problems.

 In this paper, we investigate the spectral approximation using generalized Laguerre poly-
 nomials which form a mutually orthogonal system in the weighted Sobolev space L^a (0, oo)
 with u>a(p) = paexp(-p). The orthogonal projection in L^a(0,oo) has been analyzed in [6].
 Other projection and interpolation operators for the special case a = 0 have been studied in
 [16, 17, 14, 20]. However, the usual weighted Sobolev spaces used in these papers are not the
 most appropriate. Here, we study the generalized Laguerre approximations in non- uniformly
 weighted spaces, i.e., with different weights for derivatives of different orders, and we obtain
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 114 B.Y. GUO, J. SHEN AND C.L. XU

 optimal results for several projection operators for all a > - 1. These new results enable us to
 study numerical approximations of a large class of problems in unbounded domains.
 As an example of applications, we consider the Helmholtz equation in the two dimensional

 exterior domain Í2 = {(p, 0) : p > 1, 6 G [0, 27t)}. We propose a mixed Laguerre-Fourier
 spectral method using Laguerre polynomials for the radial direction and Fourier series for the
 azimuthal direction. Thanks to the new results on generalized Laguerre approximations, we
 are able to prove optimal error estimates for the mixed Laguerre-Fourier method applied to the
 transformed equation. Furthermore, by choosing a set of suitable basis functions, we are also
 able to construct an efficient numerical algorithm in which the linear system is symmetric and
 sparse, and hence can be efficiently solved.
 The paper is organized as follows. In the next section, we present several basic approxi-

 mation results using generalized Laguerre polynomials. Then, we study the mixed Laguerre-
 Fourier approximation outside a disk in Section 3. We construct the mixed Laguerre-Fourier
 spectral scheme for a model problem, and prove its convergence in Section 4. In Section 5, we
 present implementation details and an illustrative numerical result. Some concluding remarks
 are presented in the final section.

 2. Generalized Laguerre Approximation

 2.1 Notations and preliminaries
 Let us first introduce some notations. Let A = {p|0<p<oo} and '{p) be a certain

 weight function in the usual sense. We define

 L^( A) = { v I v is measurable on A and ''v''L2 ^ < oo }

 with the following inner product and norm,

 («.«)x,A=/ J u(p)v(p)x(p)dp, IM|X)A = (v,v)£a. J A

 For simplicity, we denote by d^v the k-th derivative of v(p) with respect to p. For any non-
 negative integer ra, we define the weighted Sobolev space

 A) = {v I dkpv G L' (A), 0 < k < ra}

 equipped with the following inner product, semi- norm and norm

 (u,v)m,x, A" (dpU->dpV)x,^i = ''^p ^||x,A> ||m,x,A = (^, v)?ri,x,A '
 0 <k<m

 For any real r > 0, the space H^( A) and its norm |M|r,x,A are defined by space interpolation
 as in Adams [1]. In particular, we denote

 otfi(A) = {v I v € flļ(A) and v(0) = 0}.

 Let c oa(p) = pae~p. We denote in particular w(p) = u>o(p) = e-p- The generalized Laguerre
 polynomials of degree I are defined by

 4a)(p) = ļp-ae?dlp(pl+ae-»), I = 0, 1, 2, • • • , a > -1.

 They are eigenfunctions of the Sturm-Liouville problem

 dp(wa+i(p)dpv(p)) + Xoja(p)v{p) = 0, 0<p<oo, (2.1)
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 Generalized Laguerre Approximation 115

 with corresponding eigenvalues À / = /, and satisfy the recurrence relations

 4*V) = 4a+1)(p) - 4-tX)(p) = d^ip) - dpC^'(p), (2-2)

 d^ip) = = -p{ic'a'p) - ( I + a)c£' (p)). (2.3)
 The set of generalized Laguerre polynomials forms an orthogonal system in A), namely,

 (A<*] (h ,Lm r(°h )«„,a A = / T¡(a)' f°r I = m (2 ( Ą) j (A<*] (h ,Lm r(°h )«„,a A = ļ 0) for i^m ' (2 ( Ą) j
 where

 1,W = r"+; + ". (2.5)
 Hence, for any v G (A), we can write

 °o

 U(P) = S ôía)£|(a)(P) with ôía) = (2-6)
 /=0

 In order to describe our approximation results, for any integer r > 0, we define the non-
 uniformly weighted spaces -A£(A) as follows:

 A) = { v I v is measurable on A and |H|a£,a < oo}

 equipped with the following semi-norm and norm

 M aj, a = ||d>lk+„A, IMUJ.A = ^2 MA», A I
 'fc=0 /

 For any r > 0, we define the space A^(A) and its norm by space interpolation.
 Let N be any positive integer and Vn(A) be the set of all algebraic polynomials of degree

 at most N. We define the orthogonal projection PN,a: Lla(A)->VN(A)by

 (Pn, av - V, <f>)Uat A =0, V0 € Vn{ A).

 In the sequel, we denote by c a generic positive constant independent of any function and N.
 The following simple, but important, result generalizes and improves previously published

 results on the Laguerre approximations.
 Theorem 2.1. Let r be an integer and 0 < s < r. Then ,

 ||Piv,aV - f|Uj,A < cN^ Maj, a, Vv €

 Proof . We first consider the integer case. Since

 oo

 Pn,ccV(p) - v{p) = - ^ vl^C^ip),
 l=N+ 1

 we derive from (2.3) that for N > r - 1,

 oo

 d;(pN,av(p)-v(p)) = - Y,
 l=N+l
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 116 B.Y. GUO, J. SHEN AND C.L. XU

 Thus by (2.4),
 OO

 ||ô;(PJV,at;-t;)||»Œ+.iA= X>«(0))V-V- (2.7)
 l=N+ 1

 By the same argument,
 OO

 II^IIL+,,a = E(^a))2^-r)- (2.8)
 l=r

 A direct calculation gives
 7Ía+Â^ (I - rV

 = 7Ï

 7līr 7Ï (l~ S)- TT

 The combination of (2.7)-(2.9) leads to

 ''d'p(PN,av - v)|Ļ„+„a < cN^lldļvll^^A.

 Finally, the result for the non-integer s is proved by space interpolation.
 Remark 2.1. Funaro [6] obtained the same result as Theorem 2.1 for integer r > 0 and 5 = 0.
 Maday, Pernaud-Thomas and Vandeven [16] derived another upper bound for || Pn,c*v - v||u/a,A
 with a = 0. In fact, they defined the space

 Ko AA) = {" 6 KM) I A e tf;0(A)}

 equipped with the norm |H|r,u;o,/3,A = 11^(1 + P) * ||r,w0,A> and proved that for any real r > 0,

 ||-PřV,0V - v||«o,A ^ c7V"5||u||rita,0>/3)A,

 where ß is the largest integer for which ß < r + 1. Since ||v||r,u;o,/3,A ls n°t a semi- norm and the

 weights for all derivatives of v are the same, i.e., (1 + p) 2e-p, its application is cumbersome and

 may not lead to optimal error estimates for certain functions, e.g., those behaving like 0( - ) as

 p - y oo. However, the result in Theorem 2.1 is sharper and allow us to obtain optimal estimates
 for a large class of problems, in particular, for the exterior problems considered in Sections 3
 and 4 of this paper.
 Remark 2.2. Mastroianni and Monegato [17] also studied the generalized Laguerre approxi-
 mation. They defined the space

 ßa,A = { v € Lla(A) I |M|b;iA < OO I

 with the norm
 oo

 IHk,A = (E(/ + 1)r^(a))2)ł'
 1=0

 and proved that for any 0 < s < r,

 H-PjV.aU - *>||B1iA < CÍV~|M|Br_A. (2.10)

 By Lemma 2.3 of [17], for any integer r > 0, the norm |M|b£ is equivalent to the norm
 IMI^a a* Theorem 2.1 improves the result (2.10) in the sense that the approximation error
 only depends on the semi- norm ''drpv''UJoi+r.

 2.2 Other projection operators
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 Generalized Laguerre Approximation 117

 To carry out numerical analyses of the Laguerre spectral method for PDEs in unbounded do-
 mains, we need to consider other projection operators related to the PDEs under consideration.
 Let us denote

 Hua,u>ß( A) - { v I v is measurable on A and < 00} ,

 equipped with the norm

 Nil, A = (||0pV|£a>A + IMI«/», A) 2 •

 In particular, we set

 oHi^A) = {v£ A) I v(0) = 0} .
 We define the orthogonal projection Pj^iOCyß '• íf¿atü, (A) - Vn( A) by

 (dp(PN,a,ßV-v),dp<p)u)aJi+ (Pif1a,ßV-v,<t>)ut}A = 0, V<t>eVN( A). (2.11)

 We set oVn(A) = {v £ Vjv(A) | f (0) = 0} and define the orthogonal projection oP/v Q(A):
 0H¿a(A)-> o^Jv(A)by

 (dpioPk^v - v), dp4>)Uaļ a = °> V<¿ € o^jv(A). (2.12)

 In order to derive approximation results for these projections, we need several embedding
 inequalities.
 Lemma 2.1. Let - l<ß<a<ß + 2. We assume that there exists po such that v(po) = 0,
 Po > 0 for ß < 1 and po > 2y/ß(ß - 1) for ß > 1. Then, if dpv G L„a( A), we have

 IMIu^A < c||0pU||Wa)A.

 Proof Let Ai = (po^oo), A2 = (0,po) and

 IMU,a> = Uß{p)v2{p)dp}2 , j = 1,2.

 For any p G Ai,

 uß(p)v2{p) = J / ôe(w/j(0u2(0)dí J Po

 = 2 í u>p(t)v(t)dçv(Ç)d£ + ß í u>ß-i (Ov2(OdÇ~ [ Vß(Ov2(£)d£.
 J Po J Po J Po

 Letting p -> o o and using the Cauchy- Schwarz inequality, we obtain

 IMI«„,Al < ¿IMI«,, A! +2||ôpW||^,Al +^||f||^_1,Al-

 Thus, for any /?,

 IMI*„AI < 4||ôp«||^,Al + 2/?|M£,_1iAi. (2.13)
 If ß < 0, (2.13) implies that for ß < a,

 IMIi^.A! < 4||ôpv||^,Al < 4p^"a||ôpt;|£aiAl. (2.14)
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 118 B.Y. GUO, J. SHEN AND C.L. XU

 Otherwise, an integration by parts yields

 2/?lkll^_1)Al =4/? f pß-1e-»v(p)dpv(p)dp + 2ß(ß -l)''v''lß_2M. (2.15)
 J Ai

 Moreover, by the Cauchy-Schwarz inequality,

 Aß f pß-1e-pv(p)dpv(p)dp < 4^||ôpt>|| JļJ_1>Al + ß''v''lß_lM .
 J Ai

 Therefore, for 0 < ß < 1,

 2/?IMI«„_llAl < 8/?||V||^_1)Ai.

 The above inequality together with (2.13) implies that for 0 < ß < 1 and ß < a, we have

 IMI^M ^ 4IIöpvIIL,A1 +8/?II^II^_1,A1 <4(1 + 2/3po1)II^II!,(3,A1 {' ,91fiv } <A{l + 2ßpZl)(J30-a''dpv''la,Kl- {' ,91fiv }
 For ß > 1, we have

 0/a Pß~1e~pv(p)dpv(p)dp < -M-''dpv''l0tJil +2ß(ß- l)||w||^_a>Al.

 This inequality together with (2.15) leads to

 2ß'Hlß_lM < ''dPv''lßM + W - l)l|t€,_a,Al-

 We infer from the above and (2.13) that for ß > 1,

 IMITAI < 2^_ ^ ll^ll^,Al + W -

 If po > 2^ ß{ß - 1), then for 1 < ß < a,

 luip 11 h^-Ał <

 luip 11 h^-Ał - < , 2#*-" W -2) , <• ,217* >
 - (p20-4ß(ß- l))(/?-l)" p IL-Ai'

 Next, for any p G A2,

 rpo

 pP+1v2(p) = - / rpo 3í(^+1u2(í))dÇ
 y p
 rpo rpo

 = -2 £ß+1v(£)d(:v(£)d£ -(ß+1) / Ç0v2(Ç)dÇ.
 J p J p

 Letting p - > 0 and using the Cauchy-Schwarz inequality, we find that for ß > - 1,

 rPo 9 rpo /3 i 1 /*Po

 (ß + 1) Jo Pßv2(p)dp < pf3+2(dpv{p))2dp+ - pßv2(p)dp.
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 Generalized Laguerre Approximation 119

 Therefore

 fPo A rPo Appo

 Mlß,A2<jo Pßv2(p)dp< ^+1)2 Jo pP+2(dpv(p))2dp < (/?+ 1)2||^||^+2,a2-

 Accordingly, for a < ß + 2 and ß > - 1 ,

 AePo 2+ß-a

 Ml,*, * AePo Jhy "^"La, (2-18)
 The combination of (2.14), (2.16), (2.17) and (2.18) leads to the desired result.
 Lemma 2.2.

 (i) For any v G oHļUa(A) and a < 1,

 IMIÍLA < coc'v |î)ta>a,A

 2(2 - a)
 where ca - 4 for a < 0, and ca =

 1 - a

 (ii) For any v e oíf^A) H Ll_1{ A),

 NIÍ1.a<2(^ + I)(HÍ,„1,a + ||«||L1,A);

 (iii) For any v € H„a (A) PI Z^a_2 (A) and a > 1,

 IMIL.A < 2^Q_ ļ^blUa.A + 4a(a - 1)I|v|I«<,_2,A-

 (iv) For any v G A^q(A),

 llwa+ivlli~(A) < max(a + l,2)||u||^, IMIL+i.a < 2max(a + l,2)||v||^ .

 Proof Following the same argument as in the derivation of (2.13), we deduce that if v(0) = 0
 or a > 0, then

 lkllL,A<4||^||^,A + 2a|b||^_iA, (2.19)
 The result (i) for a < 0 follows (2.19) immediately. On the other hand, similar to (2.15),

 we have

 2aIMlL-i,A = 4a f Pa~1e~pv(p)dpv(p)dp + 2a(a - l)|Mßa_2,A. (2.20) Ja

 For 0 < a < 1, we derive by using the Cauchy- Schwarz inequality that

 4a f Pa~1e~pv(p)dpv(p)dp< -^-'v'lWoļA GL + 2a(l-a)''v''la^A. J A L GL

 Substituting the above and (2.20) into (2.19), we obtain the result (i) for 0 < a < 1.
 For a > 1, we have

 4a [ pa-1e-('v(p)dpv(p)dp < a 1 + 2a(a - l)|Mßa_2)A- Ja a 1

 Substituting the above and (2.20) into (2.19), we obtain the result (iii).
 Now, if v(0) = 0 and a = 1, an integration by parts leads to

 2|MIÜ,0,a = 4 [ e~Pv{p)dpv(p)dp < 2(V2 - l)||0pv|£ A + 2(^2 + 1) || v||2._ x ,A •
 Ja
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 120 B.Y. GUO, J. SHEN AND C.L. XU

 The above with (2.19) implies the result (ii).
 Finally, we derive from

 pa+1e~pv2(p) = [ dç (£a+1e-V(£)) Jo

 that p
 Wa+l (p)v2(p) + j^ p u>a+i(Ç)v2(Ç)d£

 = 2 [ wa+i(Ç)v(Ç)dt:v(Ç)dÇ + (a + I) [ u>a(Ç)v2(Ç)dÇ
 Jo Jo

 ~l Jo w«+i(Ov2(Od6 + 2||<VllL+1,A + (a + ^IMIiLa
 from which the result (iv) follows.

 The following embedding inequality is also useful.
 Lemma 2.3. If dpv G ( A) and v2(p)pa+1 -» 0 as p - > 0, then for a ^ -1,

 IMLa,A - 1)2 ''dpV''u>a+2,A'

 Proof By integration by parts and the Cauchy- Schwartz inequality,

 IMIÍLa = - TT h i í pa+1e~pv(p)dpv(p)dp+ - a -i- i f pa+1e~pv2(p)dp - h i ,/a a -i- i Jo

 - |a _ļ_ ļ| llvl|wa,A||Öpv||u;or+2,A>

 which implies the desired result.
 We now turn to the error estimates for various orthogonal approximations.

 Theorem 2.2. Let -l<ß<a<ß + 2 and integer r > 1. If v £ (A) and dpv G
 A£_1(A), then

 II PN,*,ßv - "111, o»«.,«,, A < cNk^'dPvÌAl-'k-

 Proof By the definition (2.11) and the projection theorem, we have

 II PN,<x,ßv - vlku^u^.A < ''<P - v''1%Ua,UßA, V<¿ € VN(A).

 We now take p
 <t>(p) = f p PN-l,adçv(Ç)dÇ + A

 Jo

 where À is chosen in such a way that <ļ)(po) = v(po )> and Po 1S the same as in Lemma 2.1. Then,
 by Lemma 2.1 and Theorem 2.1 with 5 = 0, we assert that for any integer r > 1,

 110 - v''l,u>a,u,ß,A < c'(/> - v ' l,u;Q ,A = c''PN-iļ0ldpV ~ dpV

 < cN^''drpv'ĻQ+r_1A = cN^ 'dpv'Ar-i A.

 Theorem 2.3. If v G L%,a( A), dpv G A1a~1(A) and v(0) = 0, then for integer r > 1,

 ''dp(oPN,av - u)L„,a < cN^ldpvl^-i^.

 If in addition , 'a' < 1, then

 Ilo Pk,av - ulll,«a,A < cN^'dpv'Ar-i h.

This content downloaded from 128.210.107.27 on Thu, 23 Jan 2020 19:48:41 UTC
All use subject to https://about.jstor.org/terms



 Generalized Laguerre Approximation 121

 Proof. By the definition (2.12), for any (j) G o^iv(A),

 ''dp(oPN,av - v)lliL,A = (dp(oPNcv - v),dp(<f> - v))WaA
 < ''9p(oPn,ccv - v)''u,a,A''dp(4> - u)L„,A-

 fp
 Taking 4>(p) = / PN-i,adçv(Ç)dÇ G o^v(A) in the above and using an argument similar to

 Jo
 the proof of the last theorem lead to the first desired result.

 If in addition 'a' < 1, then the second result follows from Lemma 2.2.

 3. Mixed Laguerre- Fourier Approximation for Exterior Domains

 In this section, we investigate the Laguerre-Fourier approximation for exterior problems. To
 this end, we need several results related to the Laplace operator in the polar coordinates. Let
 us consider first an auxiliary projection related to the generalized Laguerre approximation with
 a - 2 and ß = 0.

 Let uj(p) = u>o(p) = e~p and rļ(p) = (p + l)2e~p. We define the orthogonal projection
 olljy : 0ifi(A) o^iv(A) by

 (olljvV - v,4>)lļVļA = o, V<ļ>€ oVn(A).

 For simplicity, we denote Aq(A) by ^4r(A) in the sequel.
 Lemma 3.1. For any v G A) fi Ar(A) with v(0) = 0 and integer r > 2,

 ||0njvV - v||l,T7,A < cN^^lvlAr-^.

 Proof. By the projection theorem,

 lloll^v - vlli.^A < ''<t> - v||l,»ř,A, V0 6o^Af(A).

 Let

 <t>{p) = [ PN-l,2,o(diV(0)di- Jo

 Clearly <j> G o^v(A). Thus, it suffices to estimate ''</> - v||i,t7,a. In other words, we only need to
 estimate ''dp((f> - *)IU, A and ''(¡> - v||u;fc,A for fc = 0, 2. In fact, a direct calculation reveals that

 ''dp{<l>-v)''Uk,A = ''Pk-i,2,odpV-dpv'ĻktA> k = 0,2. (3.1)

 Thanks to Lemma 2.2 with a = 2 and Theorem 2.2 with a = 2 and ß = 0, we have

 WW - tOI&.A +11 W - V)''1,A < C(l W - ")IILa + WW - V)H',a)

 = c|| dp{4> - v)||?iU,2iW)A = c''P^_12fidpV - dpV ||i)U,2,u,,a ^3'2^
 < ciV2-||^||2r A = cN*-r'v''rA.

 Next, thanks to Lemma 2.2 with a = 0, we get

 110 - «Iß, a < 4|| dp{<P - t,)||i>A < cN^'v |2A,)A. (3.3)

 Finally, using (3.2), (3.3) and Lemma 2.2 with a = 2 yields

 110 - «IILa ^ 8WW - v)H'2,a + 8l^ - vWl, A ^ cN2~r'<'A-
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 122 B.Y. GUO, J. SHEN AND C.L. XU

 The proof is thus complete.
 Next, we derive an approximation result in the L°°(A)-norm. To this end, we need the

 following embedding inequality.

 Lemma 3.2. For any v E H^(A),

 ||(1 + p)e~2 v ||l=o(A) < 2|M|m,a.

 Proof. For any p E A, we have from integration by parts that

 (P2 + 2p)e~pv2(p) = f d£((£2 + 2£)e~V(£))<f£
 Jo

 = 2 ['e + 2 Oe-«v(OÔ€«(Ode + f'2-ť)e-*v2(t)dt
 Jß J o (3-4)

 < f (í2 + 2í)e"«(ô€t;(0)2de+ Í (% + 2)e~<v2(e)d( J Q J Q

 < I {p2 + 2p)e~p(dpv(p))2dp+ f (2/9 + 2)e~pv2(p)dp. J A J A

 By (2.3) of Xu and Guo [20],

 e~pv2(p) < 2 [ e~p(v2(p) + ( dpv(p))2)dp .
 J A

 Adding the above to (3.4) yields that

 (p+l)2e~pv2(p) = [ (p2 + 2p + 2)e~p(dpv(p))2dp+ Í (2p + 4)e~pv2(p)dp
 J A o J A

 - 4 IMII^A- o

 Combining Lemmas 3.1 and 3.2, we obtain the following result:
 Lemma 3.3. For any v E ^4r(A) and integer r >2,

 ||(p+ l)e~2(0n]vü - u)Hloo(a) < cA/'1_5ļl)ļAr>A.

 Since we will expand functions in the azimuthal direction by a Fourier series, we recall a basic
 result on the Fourier approximation in one-dimension. Let I = (0, 2n) and Hr(I) be the Sobolev
 space with norm || • ''rj and semi- norm | • 'rj. For any non- negative integer m, H™ (I) denotes
 the subspace of iï"m(/), consisting of all functions whose derivatives of order up to ra - 1 are
 periodic with the period 2ir. For any real r > 0, the space Hļ(I) is defined as in Adams [1]. In
 particular, L2(I) = Hp(I). Let M be any positive integer, and Vm(I) = span { elW ' 'l' < M] .
 We denote by Vm(/) the subset of Vm{I) consisting of all real- valued functions.

 As usual, the Lp(/)-orthogonal projection Pm • L2(I ) - » Vm(I) is defined by

 J(pmv(0) - v(e))4>(e)de - o, e vM(i).

 The next lemma can be found in Canuto, Hussaini, Quarteroni and Zang [4].
 Lemma 3.4. Let integer r > 0 and < r. Then for any v E HĻ(I),

 II Pmv - v''ß,i < cMM_r|v|rj/.
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 Generalized Laguerre Approximation 123

 We are now in position to study the mixed Laguerre-Fourier approximation.

 Let íí = Ax / and L^(Sl) be the weighted Sobolev space with the following inner product
 and norm,

 (u,v)x= f u(p,6)v(p,0)x(p)dpd6, ||v|| = (v,v)ļ.
 Jū

 The weighted Sobolev spaces iř£(íi) and its norm |M|r,x an<^ semi- norm 'v'ra are defined in
 the usual manner. In particular, we set

 0Hp<u,(ii) = { v e H„(Ū) I v(p, e + 2tt) = v(p, 6) and v(0, 9) = 0, for 6 e I, p € A} .

 Next, we define the non-isotropic space

 o V = { v I v is measurable on ii and ||v||i)77ļU, < 00}

 where

 Mm,w = {''dpv''l + ''dev''l)K |Mk^ = + IMI*)*-
 Let use denote

 = O^PN(^) ® VM(I).

 We define an orthogonal projector oPn,m: oHļ v u;(ū) - » V}v,m by

 (' dp(oPh,MV - V)^dP^)ri + ( de(oPN,Mv ~ V)^d^)w = °> V<^ € VN,M- (3-5)

 In order to describe the approximation results related to this projection operator, we introduce
 the non-isotropic space

 = Ar(A,Hļ(I)) n A2(A, H;(I)) nH^A,Hsp-'l)),

 equipped with the norm

 IM|ßr-a = ^||v||^(Ajíři(/)) + |MIa2(A,ÍJ"(/)) + ll^llí/i (A,iï"- 1 (/)))

 where the space Ar(A) and its norm are the same as in (3.1).
 Theorem 3.1. For any v e Br,s D o Hp<r) ul(Sl) and integers r > 2, s > 1, we have

 llu - oPN,Mv''^<" - c(^1_ž + M1_s) IMIb-.,.

 Proof. By the projection theorem,

 lv - O-PJV.M^IM," < lu - W> € VN>M(ty- (3.6)

 Let <j> = oĪī}v(Pa,/w). We use Lemmas 3.1 and 3.4 to deduce that

 ||öp(u - 0n3v(-PM-v))IU < II dpV - PM(dpv)''r, + II dp(PMv - oII^Pmu))!!,

 < cM1-s''dpv''L2{A¡H,-i{I)) + cAT1-5||Pmv|U'-(a,L2(/))
 i - (3-7)

 <cM s||öpv||L2(Aiiis-i(/)) + cN i 2 - |MU"-(a,.l2(/))

 < c(M1_s + Af1_S)||w||ßr,3.
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 Using Lemmas 3.1 and 3.4 again, we obtain that

 ||9e(v - oII]v(Pmv))L < lionův - dev'Ļ + ||oII]v(^(Pmw - öev))L

 < ||0II^det> - dev''v + - u))||,

 < ciV1- 5 ||déHUr(A,.L2(/)) + c''d0(PMv - v)IIa2(a,l2(/)) (3.8)

 < cN1~ī''dev''Ar(AļL2(i)) + cM1_s||v||>i2(A)ffS(/))

 < ciN1-^ +M1-s)''v''8^.

 The combination of (3.6)-(3.8) leads to

 lv - o-P/v.aHma- ^ c{Nl~ï + M1_ä)||v||Br-,s.

 Finally, by Lemma 2.2 with a = 0,

 ||v ~~ - C''dp(v ~ oPn,MV)W^ - C''dp(v ~ oPn,MV)''v
 < c'v - < c{Nl~ī + M1~s)''v''Br,s.

 4. Mixed Laguerre-Fourier Spectral Method for Exterior Problems

 In this section, we take a model problem as an example to show how to construct and
 analyze the mixed Laguerre-Fourier schemes for exterior problems.

 Let X = (#i,#2), 'x' = Vxì + x2 an<^ ^ - { x I M > !}• We consider the following model
 problem

 [ -AU + ßU = F, in ft,
 ' U(x)'oñ=9, lim - y I7(®) = 0, (4-1) Ļ I x I - y oo

 where ß is a positive constant, and F and g are given functions. For simplicity, we assume that
 0 = 0.

 Under the following polar transformation:

 xi = (p+ l)cos0, x2 = (p+ 1) sin#, Ū(p,0) = U(x i,x2), F(p,0) = F(x i,x2),

 the problem (4.1) becomes

 ' -^^((P+W)- ņīJ)īd2eŪ + l3Ū = F> iníí>
 ū(0, 0) = 0, Ū{p,e + 2n) = Ū(p,9), limū(p,0)=0, 9 e I. ^

 p- >00

 Since Problem (4.1) is well-posed in the standard functional space, it is not appropriate to
 consider (4.2) in a weighted Sobolev space with the Laguerre weight c o{p). Hence, we use the
 following change of variables

 u(p,0) = (p+ 1)-M't7(p,0), f{p,0) = (p+ l)M'F(p,0),

 to transform (4.2) to

 -{p + l)2d2pu + (p2 - 1 )dpU - dļu + (ß(p + l)2 + ì + 'p - 'p2)u = f, in Ū,
 < i. (4-3)

 u(O,0) = O, u(p, 0 + 2tt) = u(p, 0), lim(p+l)2e 2pu(p,0) = 0, 0 G I.
 p - y oo
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 We now consider the existence and regularity of solutions for the problem (4.3). For this
 purpose, let us denote

 A(uyv) = i (p + l)2e~pdpudpvdpdO + [ e~pdoudovdpd6 Jū Jū

 + e~p ' ß{p + I)2 - 'p2 + 'p+2) uvdPdd •

 A weighted (with u(p) = e~p and rj(p) = (p + l)2e~p)) weak formulation of (4.3) is to find
 u G oHpiTļiU,(ū) such that

 A{u,v) = (y»uM Vu e 0 HļtViU)(Sl). (4.4)

 Lemma 4.1. For any u, v e oHp V^(Ū),

 A(v,v)> í (p+ l)2e~p(dpv(p,0))2dpd0 + [ e~p{dev(p, 0))2dpdO
 Jū Jū

 +(ß - ') [ {p + l)2e~pv2(p,Q)dpd6 + - f e~pv2(p, Q)dpdOi
 Jū 4 Jū

 and

 'A(u,v)' <

 Proof. Obviously

 1 2 1 1 ^ > ,x2 3 - P 2 H - pH - ^ > - (p + 1) ,x2 H - ,
 4 2 2 " 4 4

 which leads to the first result. The second result follows from Lemma 2.2 with a = 2.

 Theorem 4.1. If ß > | and (p+ l)-1/ G L^(íí), č/ien, admits a unique solution u(p, 0)
 with ||u||i,„^ < c||(p+ 1)_1/IU

 Proof. Due to ß > ^ and Lemma 4.1, A{u,v) is coercive on x
 Moreover, by the result (iii) of Lemma 2.2,

 ic/>)U,I < cídili, „,u,ii(p+ ìrviiu..

 Thus, the conclusion follows from the Lax-Milgram Lemma.
 Remark 4.1. The condition on / in Theorem 4.1 means (p+ I) 2 F G L^(iì), and equivalently
 F G L2(Ù).

 Next, we consider the mixed Laguerre- Fourier approximation for (4.4): find un,m G V/v,m
 such that

 A(uN,Mi<t>) = (/>0) ui W> G VN,M ' (4.5)

 The following result is a direct consequence of Lemmas 2.1 and 4.1, and the Lax-Milgram
 Lemma.

 Theorem 4.2. For ß > the problem (Ą.5) admits a unique solution Moreover,

 ''dpuN<M''ļ + ''deUN,MÌ'l + (ß - ą)''un,m''1 + < ||(p + 1)_1/|£ • (4.6)

 We now turn our attention to the error analysis.
 Theorem 4.3. Let ß > | and integers r > 2, s > 1. For u G Br,3(ťl), we have

 II dp(u - UNyM)''2rj + {ß - ą)''u - uNm''2tì + ''do(u - uN,M)''t ^ c(Nl~* + Ml~8)2 |M||r,a .
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 Proof. Let u*N M - q-P/v mu- We obtain from (3.5) and (4.4) that

 f (p + l)2e~pdpU*N Mdp<t>dpdO + f e~pdgu*N Mde<ļ>dpd9
 / Jū (4 7)

 + ļ e-" (ß{p / + l)2 - -Ap2 + 'p+') u<t>dpdO = j e-ofWpdd, V<1> € VNM.

 Now setting üjv,m = un,m ~ m an<^ subtracting (4.7) from (4.5), we obtain

 <t>) = G(u, u*NļM; </>), V</> e V}v,M (4.8)

 where

 G(u,u*n¡m'4>) = e~p (ß{p+ l)2 - ļp2 + 1^+0 ( u - u*N M)<t>dpde .
 By Lemma 2.2 with a = 2,

 ||ûjv,M||Î1 ^ C(||9pU7v,m||^ + I|ÛN,M||w)-

 Therefore, we deduce that for any á > 0,

 'G{u,u*NM'uNļM)' < 0{''dpūNtM''ļ + ||«m,n||2) + f (II dp(u - u*NM) ||2 + ||u - u*NM''l,).
 (4.9)

 Taking (¡) = ûtv,m in (4.8), we use (4.9), Lemma 4.1 and Theorem 3.1 to obtain that

 ||dpájv,M||rç + (ß - -)||^n,m||^ + ||90Í¿7v,m||w < c(iV1_ 2 + M1_s)2||u||^,s

 which completes the proof.
 Remark 4.2. The numerical solution of the original problem (4.1) is

 1 £.

 Un, m = (1 + p) 2 e- 2 un,m -

 Thanks to Theorem 4.3 and the fact that U = (1 + p)ie~ipu, we can obtain the following
 estimate:

 II u - unm''h1{ù) < cín1-* + M'-'MI + p)-htu''Br...
 Remark 4.3. It can be shown, by using a suitable transformation, that the results of Theorems
 4.1-4.3 are also valid for any ß > 0. However, how to extend the convergence result to the more
 interesting case, ß < 0, is still an open question. Nevertheless, the algorithm developed here
 can still be used to approximate the solution of (4.1) in the case of ß < 0.

 5. Implementation Details and Numerical Results

 Let us first describe in some details an efficient implementation for scheme (4.5). For

 simplicity, we denote c'°'p) by Ci(p) and set

 ipi(p) = Ci-i(p) - Ci(p), 1 <1 < N,

 and

 </>^(/9, 0) = ipi(p) cos m0, 1 < ¿ < N, 0 < ra < M.

 </>fm(p, 0) - ipi(p) s'mmO, 1 < ¿ < N, 1 < ra < M.
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 Since îpi(l) = 0, (film can be used as basis functions for V)vm • Hence, we can expand ujv,m as

 N / M M '

 UN,m(P,0) = ^2 [^2 uim<ł>lm(p,e) + ^2 Uìm<f>ìm(P^) I • / = 1 'm= 0 m= 1 /

 On the other hand, we write

 oo oo

 f(p,0) = EE (ftmci(p) cos + flm^iip) sinmfl).
 /=0 m=0

 We note that in actual computation, the Fourier-Laguerre Gauss-Radau quadrature should be
 used to approximate the values of {/£ n}.

 Let us denote

 z m = {(q,n) :q- 1, n - 0, 1,- •• ,M;q = 2,n = 1,2,*-- ,M}.

 Taking <¡>(p,0) - <1>kn(p,0) in (4.5) for (q, n) € Zm, we derive by using the orthogonality of the
 trigonometric functions that (4.5) is equivalent to the following 2 M + 1 linear systems:

 ^2 + 1fe~PdP1PidP1Pkdp + j ^ e~p(ß(p + l)2 + n2 - ip2 + ip + ^)ipiipkdpj uqln
 = Sfc,„, l<k<N,

 (5.1)
 Where 9k, u = fk-l,n - fk,n> l<k<N.

 Let us denote

 = (Ul,n.U2,n>-" >UN,n)T> 5n = (fl,n> 02, n> ' " * , 9n ,n)T '

 aik = j (p + l)2e~pdpì1)i{p)dpìì}k(p)dp, A = (aki)k, 1=1,2,- ,N,

 bik= / e~pipi(p)ipk(p)dp, B = (č>/ti)fc,/=i,2,- ,N,
 f

 Cik= / pe Pi¡)i{p)t¡!k{p)dp, c = (ckl)k, 1=1,2, -,n,

 dik = ļ p2e~p,>pi{p)ipk(p)dp, D = (dki)k,i=i,2,... ,n-

 Then, (5.1) becomes

 (A + (ß + n2 + -)B + (2/3 + -)C + (ß - - )D)x ® = <;£, (q, n) € Zm- (5.2)

 Using the orthogonality relations of Laguerre polynomials, one can easily derive that

 ' 6A:2 - 2fc + 1, l = k,
 _ I -4k2 +2k-l±(l-4k), l = k± 1,

 akl~' _ k2 - k + 1 ± (2k - 1), l = k± 2,
 0, otherwise,

 (2, l = k,
 Hi = s -1, I - k± 1,

 [ 0, otherwise,
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 Figure 5.1. Convergence rate for N = M2

 6k , I = k,
 _ -2(2k =b 1), l = kz bl,

 Ckl ~ _ | k ± l = k± 2,
 0, otherwise,

 ' 4(5/c2 + l), Z = fc,
 - (15k2 ± 15A: + 6), l = k± 1,

 dki = < 6(fc =b l)2, I = k d= 2,
 - (fc i 1)(& =b 2), I = k =b 3,
 0, ' otherwise. ' '

 Thus, the matrices in the linear system (5.2) are symmetric with five or seven non-zero diagonals.
 Hence, the system (5.2) can be efficiently solved. Note that an efficient algorithm based on the
 Laguerre functions was proposed in [18]. However, the corresponding linear system there,
 although sparse, was not symmetric. Hence, the algorithm presented here is advantageous in
 this regard.

 We now present an illustrative numerical result. We take the exact solution of (4.3) to be

 u(p,0) = ne~psinfl p+l.U

 and use the scheme (4.5) to obtain the numerical solution un,m- We set En,m - ''v> -
 un,m''li (n)* ^ can easily checked that ||i¿||#r,s is finite for any r,s > 0. Hence, Theo-
 rem 4.3 indicates that En^m converges to zero faster than any algebraic power.

 Note that Theorem 4.3 indicates that at least for smooth functions, a proper relation between
 N and M is: N ~ M2. In Figure 1, we plot the convergence rates of the scheme (4.5) with
 N = M2. The straight line in Figure 1 indicates that the error En,m behaves like exp(-cy/Ñ),
 i.e., it converges sub-geometrically.
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 6. Concluding Remarks

 In the first part of this paper, we studied the generalized Laguerre approximations and
 established error estimates in the non-uniformly weighted spaces for various orthogonal projec-
 tions. These estimates improve previously published results for the special case a = 0 and are
 valid for the generalized Laguerre approximations with a > - 1.

 In the second part, we proposed a mixed Laguerre-Fourier spectral method for the Helmholtz
 equation in a two dimensional exterior domain. We obtained sharp error estimates for the
 proposed method by transforming. the original system, which is not well-posed in the desired
 weighted Sobolev spaces, to a system which is well-posed in a suitable functional space. We
 have also constructed an efficient numerical algorithm and presented an illustrative numerical
 result.

 Note that in terms of numerical algorithm, the effect of the change of variable is equivalent to
 using an approximation by Laguerre functions as in [18]. However, to carry out the analysis for
 the approximation using Laguerre functions, one needs to develop corresponding approximation
 results which are beyond the scope of this paper.

 Although we only considered a simple model problem in this paper, but the results developed
 here will be useful for the numerical analysis of more complicated equations in fluid dynamics
 and electromagnetics.
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