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a b s t r a c t

An energy-based, phase field model is developed for the coupling of two incompressible,
immiscible complex fluid phases, in particular a nematic liquid crystal phase in a viscous
fluid phase. The model consists of a system of coupled nonlinear partial differential equa-
tions for conservation of mass and momentum, phase transport, and interfacial boundary
conditions. An efficient and easy-to-implement numerical scheme is developed and imple-
mented to extend two benchmark fluid mechanical problems to incorporate a liquid crystal
phase: filament breakup under the influence of capillary force and the gravity-driven, drip-
ping faucet. We explore how the distortional elasticity and nematic anchoring at the liquid
crystal-air interface modify the capillary instability in both problems. For sufficiently weak
distortional elasticity, the effects are perturbative of viscous fluid experiments and simula-
tions. However, above a Frank elasticity threshold, the model predicts a transition to the
beads-on-a-string phenomenon associated with polymeric fluid filaments.

Published by Elsevier Inc.

1. Introduction

Complex fluids require some description of internal microstructure to accurately predict and understand their behavior,
cf. [29] and references therein. Complex fluids abound in Nature as well as in synthetic and engineered materials where the
microstructure can be manipulated by flow and deformation to produce useful mechanical, chemical, optical or thermal
properties. Often, complex fluids reside next to or are immersed in another fluid phase. The modeling of complex fluid mix-
tures in free surface flows presents a new level of complexity, where the simulation of complex constitutive laws for fluid
microstructure is coupled to free surfaces between fluid phases that undergo topological changes and singularities. In this
paper, we are specifically interested in binary mixtures of incompressible, immiscible fluid components where one phase
is a nematic liquid crystal and the other phase is a viscous fluid.

0021-9991/$ - see front matter Published by Elsevier Inc.
http://dx.doi.org/10.1016/j.jcp.2012.10.042

⇑ Corresponding author.
E-mail addresses: xfyang@math.sc.edu (X. Yang), forest@unc.edu (M. Gregory Forest), huiyuan@iscas.ac.cn (H. Li), liu@math.psu.edu (C. Liu),

shen@math.purdue.edu (J. Shen), qwang@math.sc.edu (Q. Wang), chenfl@ustc.edu.cn (F. Chen).

Journal of Computational Physics 236 (2013) 1–14

Contents lists available at SciVerse ScienceDirect

Journal of Computational Physics

journal homepage: www.elsevier .com/locate / jcp



Author's personal copy

In engineering applications, mixtures or composites of immiscible viscous fluid phases have been extensively explored, cf.
the now classical reviews by Rallison [46] and Stone [56], more recently the special issue of Lab on a Chip [1], and in
particular the review by Cristini and Tan [13] and references therein. A generic application is to use microfluidic devices
to tune drop size distributions. In these multi-phase processes, immiscible components are separated by free interfaces that
transport and deform depending on the initial data and flow processing conditions. The interfacial physics, material prop-
erties, and coupling to the relevant flow conditions determine the dynamics of each fluid phase and any interfacial singular-
ities [23].

Here we focus on a close cousin of the above two-phase viscous fluid experiments where liquid crystal (LC) domains (fil-
aments, droplets) are dispersed in an immiscible fluid phase (viscous for this study), and then driven through topological
transitions (drop pinch-off). We are specifically interested in the coupling between capillary and gravity forces in liquid crys-
tal filaments immersed in a viscous fluid phase, and the subsequent breakup of the LC filament. The shear rupture of LC drop-
lets immersed in a viscous fluid, the analog of the topic reviewed by Rallison [46], was previously studied by the authors
using a phase field model [63] that is generalized here as discussed in Section 2.

The modeling of a LC filament in a viscous fluid is also a close cousin to the classical problem of viscous fluid filament
breakup in air and the Rayleigh instability, its generalization to viscoelastic (complex) fluid filaments in air, and replacement
of the ambient air with another viscous or complex fluid phase. The disparities, experimentally and numerically, between
viscous filament dynamics in air and viscoelastic or complex fluid filament dynamics in air, are well documented in the lit-
erature, cf. [6,49] and references therein. One of the most striking viscoelastic filament phenomena is the so-called ’’beads-
on-a-string’’ (BOAS) morphology that forms during breakup, which has been numerically explored primarily with one-
dimensional ad hoc asymptotic models (cf. [6,49] and references therein), with the notable exception of the axisymmetric
three-dimensional simulations of viscoelastic inkjet printing by Morrison and Harlen [40].

Complex fluid models usually expand the Navier–Stokes equation by introducing an extra stress (beyond the viscous
stress and pressure) as a functional of the microstructure, and then there is a separate transport equation specific to the
microstructure. There are choices to be made as to what level of detail is required to resolve the microstructure. In this paper,
we use a simplified Leslie-Ericksen continuum director theory to describe the orientation of liquid crystal molecules and the
coupling between the LC microstructure and hydrodynamics [30,18,7].

For the two-phase liquid crystal and viscous fluid system, the interfacial domain between the immiscible liquid crystal
and viscous fluid phases must be modeled. Numerical approaches to simulate free surfaces between phases can be divided
into interface tracking versus interface capturing methods. The primary distinction between these two numerical ap-
proaches lies in whether the mesh evolves with the interface or the interface evolves through and without regard to the
mesh. Typical interface tracking techniques include boundary integral methods [25,59], front tracking [20,58], and the im-
mersed boundary method [45], whereas interface capturing methods include volume-of-fluid (VOF) methods [24,28], the
level-set method [44,3], lattice Boltzmann and lattice gas methods [47,10,41,60,48,2], and the diffuse interface (equivalently,
phase field) approach [39,38,4] in which the interface is spread into a finite transition layer where the two fluids mix to a
certain degree, governed by a prescribed mixing energy. The length scale defined by the transition layer is normally smaller
than the length scale of resolution in the bulk fluid domain. The leading order description of the transition layer in terms of
the length scale ratio between the transition layer and the bulk is the sharp interface limit. In this regard, the diffuse inter-
face description of the interfacial problem is more detailed and, if modeled correctly, can include more detailed interfacial
physics than sharp interfaces with a prescribed surface tension.

The governing equations in the phase field model arise from a standard energetic variational procedure including the
Hamilton least action principle (for reversible processes) and the Onsager maximum dissipation principle (for irreversible
processes) [42,43,8,22,4,39]. For liquid crystals, energy potentials are well studied for near equilibrium conditions and have
been coupled to hydrodynamics in the past.

In this paper, we explore an immiscible liquid crystal phase (initially a filament) immersed in a viscous fluid, and simulate
the dynamics during the formation of interfacial singularities (in terms of thin threads connecting beads which pinch-off into
drops). We derive a phase-field model that couples with the free boundary between phases, hydrodynamics of the mixture,
and the orientational field of the LC microstructure. The model extends our previous results [64,63] in that (i) the new model
satisfies an energy dissipation law; and (ii) the Cahn–Hilliard transport equation for the phase variable is replaced by an
Allen–Cahn transport equation with a Lagrange multiplier to conserve mass. The second feature reduces computational
complexity from the Cahn–Hilliard equation arising from higher order spatial derivatives. This choice is shown to produce
a more robust and better resolved interface for these interfacial problems. In this new numerical scheme, we combine
several effective numerical approaches which have proven efficient for the phase transport equations coupled with the
Navier–Stokes equations, namely, stabilized schemes (cf. [62,55,54,53]) for the phase transport equations and projection-
type schemes [21] for the Navier–Stokes equations. We simulate 3-D, axisymmetric LC filament stretching and pinch-off into
drops under the influence of surface tension and gravity. The code is first benchmarked on viscous fluid filaments and then
used to study LC filaments. In the numerical experiments on LC filaments, the role of distortional elasticity and the anchoring
strength in facilitating or retarding the interfacial singularity formation is conducted. In the regime of strong distortional
elasticity, satellite droplets connected by thin threads are shown, which resembles the beads-on-the-string phenomenon
observed in liquid filaments of flexible polymer solutions under capillary forces. The mechanisms leading to this phenom-
enon in LCs are distortional elasticity and surface anchoring rather than chain stretching, recoiling and relaxation in flexible
polymer solutions.
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The remainder of the paper is organized as follows. In Section 2, we derive the phase field model for the two phase com-
plex fluid system and establish the energy dissipation law following a variational method. In Section 3, we develop the
numerical method for the phase field model system, employing several techniques which are particularly suitable for the
interfacial problem studied. In Section 4, we present numerical results for two benchmark problems: singularity formation
in cylindrical filaments of liquid crystals subject to capillary forces and drop pinch-off in liquid crystal filament flows under
the influence of gravity.

2. The phase field formulation of two-phase complex fluids

We consider a mixture of two immiscible, incompressible fluids with densities q1; q2 and viscosities m1, m2, respectively.
To distinguish distinct fluid phases, a dynamical phase field variable or labeling function / is introduced:

/ðx; tÞ ¼
1 fluid1
�1 fluid2:

�
ð2:1Þ

In the phase field description of binary fluids, the phase field or labeling function is required to be differentiable so that a thin
smooth transition layer of thickness e connects the two pure fluid phases. The ‘‘interface’’ is simply declared as the zero level
set of the labeling function, Ct ¼ fx : /ðx; tÞ ¼ 0g, whereas in the pure phases the phase field function typically has constant
values þ1;�1, respectively. In order to force the value of the phase variable to be �1 within the pure phases, we employ a
Ginzburg–Landau double-well potential: Fð/Þ ¼ 1

4e2 ð/2 � 1Þ2, where � is a parameter proportional to the thickness of the
interface. The mixing energy functional is given by

Emix ¼
Z

X
Wmixð/;r/Þdx ¼

Z
X

k
1
2
jr/j2 þ Fð/Þ

� �
dx; ð2:2Þ

which represents the competition between the hydrophilic and hydrophobic properties of the two fluids, where
Wmix ¼ kð12 jr/j2 þ Fð/ÞÞ is the mixing energy density, and k parametrizes the magnitude of mixing energy that also incor-
porates the surface tension.

We consider the binary fluid of liquid crystals and viscous fluids and use / ¼ 1 to denote the nematic liquid crystal phase.
For the nematic liquid crystal phase, we use the standard Oseen–Frank distortional energy density for the bulk free energy
[17,30,18],

WbulkðdÞ ¼
1
2

K1ðr � dÞ2 þ
1
2

K2ðd � r � dÞ2 þ 1
2

K3ðd�r� dÞ2; ð2:3Þ

where the unit vector d represents the average orientation of liquid crystal molecules and K1;K2;K3 are elastic constants for
the three canonical distortional modes: splay, twist and bend. For simplicity, we suppress the anisotropic distortional elastic
modes by assuming K1 ¼ K2 ¼ K3 ¼ K. Then, the Oseen–Frank energy density reduces to the Dirichlet functional K

2 jrdj2

modulo the null-Lagrangian term which is determined by the boundary anchoring of the director [11,14,33,12]. Moreover,
rather than imposing a norm 1 constraint directly on d, we introduce a penalty term of the Ginzburg–Landau type
GðdÞ ¼ 1

4g2 ðjdj2 � 1Þ2 to regularize the distortional energy in the cores of topological defects [18,31–34], where g is a penal-
ization parameter that is proportional to the size of the defect core (or zone). This regularization allows the free energy to be
finite at the defect core, extending the classical Ericksen-Leslie model to handle liquid crystal flows where defects are created
and annihilated in time and space. Then, the regularized elastic bulk energy density is given by

Wbulkðd;rdÞ ¼ K
jrdj2

2
þ GðdÞ

 !
: ð2:4Þ

At the interface between liquid crystal and another material phase, liquid crystals prefer some orientation known as the easy
(anchoring) direction. There are two types of most commonly used anchoring conditions: planar (or parallel) anchoring,
where all directions in the plane of the interface are easy directions, and homeotropic (or normal) anchoring, where the easy
direction is the normal to the interface [27,14,26,66,64]. The anchoring condition can be modeled using a surface free energy
functional called the anchoring energy. We proposed an anchoring energy density that can accommodate both the parallel
and homeotropic anchoring as follows

Wanchð/;r/;d;rdÞ ¼
A
2 jd � r/j2; parallel;
A
2 ðjdj

2jr/j2 � jd � r/j2Þ; homeotropic;

(
ð2:5Þ

where A ¼ AðxÞ parametrizes the strength of the anchoring energy. We obtain the total energy of the hydrodynamic system
as a sum of the kinetic energy Ekin, the mixing energy Emix, the bulk energy Ebulk, and the anchoring energy Eanch [64,19,65]:

Etot ¼ Ekin þ Emix þ
1þ /

2

� �2

Ebulk þ Eanch ¼
Z

X

1
2
qjuj2 þWmixð/;r/Þ þ 1þ /

2

� �2

Wbulk þWanch

 !
dx; ð2:6Þ

X. Yang et al. / Journal of Computational Physics 236 (2013) 1–14 3



Author's personal copy

where q is the density, u is the fluid velocity field, the factor ð1þ/
2 Þ

2 represents the volume fraction of the nematic liquid crys-
tal component, which vanishes in the viscous liquid phase (/ ¼ �1). In general, for a nematic liquid, the viscous stress is
anisotropic and depends on the LC orientation. For simplicity, we use a viscous stress rvis ¼ m ruþðruÞT

2

� �
in both components

where m ¼ m1/þ ð1� /Þm2 is the viscosity for the mixture. If one assumes a generalized Fick’s law that the mass flux be pro-
portional to the gradient of the chemical potential [9,36,35], we derive the following governing system of equations:

/t þ ðu � rÞ/ ¼ �M1
dEtot

d/
; ð2:7Þ

dt þ ðu � rÞd�W � d ¼ �M2
dEtot

dd
; ð2:8Þ

qðut þ ðu � rÞuÞ þ rp ¼ r � ðrvis þ re
mix þ re

bulk þ re
anch þ re

asymÞ; ð2:9Þ

r � u ¼ 0; ð2:10Þ

where p is the hydrostatic pressure, M�1
1 is the relaxation parameter for the phase function, M�1

2 is the relaxation parameter
of the liquid crystal, re

mix, re
bulk, re

anch are the corresponding elastic stress tensors derived from each energy components by
the least action principle, respectively [8,33–35,5], and re

asym ¼ 1
2 ð

dEtot
dd d� d dEtot

dd Þ is the asymmetric elastic stress correspond-
ing to the invariant time derivative in d, where W is the vorticity tensor. The variational derivative dEtot

d/ can be taken in H�1,
leading to the (conserved) Cahn–Hilliard phase transport equation,

/t þ ðu � rÞ/ ¼ �M1Dl; ð2:11Þ

l ¼ kðD/� f ð/ÞÞ � K
1þ /

2

� �
jrdj2

2
þ GðdÞ

 !
� Ar � ððr/ � dÞdÞ; ð2:12Þ

with the boundary conditions @n/j@X ¼ 0 and @nD/j@X ¼ 0 where f ð/Þ ¼ F 0ð/Þ and n is the outward normal direction. In this
case, M1 is called the mobility parameter. Alternatively, taking the variational derivative in L2, we obtain the Allen–Cahn
phase transport equation

/t þ ðu � rÞ/ ¼ M1l; ð2:13Þ

with the boundary condition @n/j@X ¼ 0. We note that the Allen–Cahn equation does not conserve the total volume. So, to
conserve the volume of the liquid crystal phase in the mixture, we have to augment the energy functional by a Lagrangian
term proportional to

R
/dx.

In this paper, we adopt the Allen–Cahn model for simplicity. We remark that all the analytical and numerical work can be
generalized to the Cahn–Hilliard model without additional difficulties (cf. [55,54,53]). In general, the liquid crystal compo-
nent and the host viscous fluid matrix do not have the same density and viscosity, but for this paper we assume there are no
contrasts, q1 ¼ q2 and m1 ¼ m2 ¼ m. The resulting system of equations is summarized as follows:

/t þ ðu � rÞ/ ¼ M1kðD/� f ð/ÞÞ �M1K
1þ /

2

� �
jrdj2

2
þ GðdÞ

 !
�M1AA/; ð2:14Þ

dt þ ðu � rÞd�W � d ¼ M2K r � 1þ /
2

� �2

rd� 1þ /
2

� �2

gðdÞ
 !

�M2AAd; ð2:15Þ

ut þ ðu � rÞu� mDuþrpþr � ðkr/�r/þ K
1þ /

2

� �2

rd�rd ð2:16Þ

�K
2
r � 1þ /

2

� �2

rd� d� d�r � 1þ /
2

� �2

rd

 !
þ AAuÞ ¼ 0; ð2:17Þ

r � u ¼ 0; ð2:18Þ

uj@X ¼ 0; @n/j@X ¼ 0; @ndj@X ¼ 0: ð2:19Þ

where

A/ ¼
r � ððr/ � dÞdÞ; parallel;

r � ðjdj2r/� ðr/ � dÞdÞ; homeotropic;

(
ð2:20Þ
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Ad ¼
ðd � r/Þr/; parallel;
ðr/ � r/Þd� ðd � r/Þr/; homeotropic;

�
ð2:21Þ

Au ¼
ðd � r/Þd�r/; parallel;
ððd � dÞr/� ðd � r/ÞdÞ � r/; homeotropic;

�
ð2:22Þ

gðdÞ ¼ G0ðdÞ.
We solve the system of equations in a regular computational domain. The velocity boundary condition is no-slip; for the

phase variable / and the liquid crystal orientational director d, we assume the volume flux and director flux vanishes at solid
walls leading to the Neumann boundary condition for / and d [62,35,64,52]. The boundary conditions for these hydrody-
namical variables can be either periodic or physical, whereas here we adopt physical boundary conditions.

It can be readily established that the total energy of the system (3.1)–(3.5) is dissipative. Specifically, if we take the inner
product of (3.1) with dEtot

d/ (3.2) with dEtot
dd , and (3.4) with u, and then sum up all the equalities, we obtain the energy dissipation

law as follows

@tEtot ¼ �
Z

X
mjruj2 þM1

dEtot

d/

����
����
2

þM2
dEtot

dd

����
����

2
 !

dx: ð2:23Þ

Then, one can prove the existence and uniqueness of the weak solution with certain smoothness by a standard Galerkin pro-
cedure [16].

We remark that a similar but simplified model system has been used previously [64,19,65,63]. However, several nonlin-
ear coupling terms are omitted for simplicity in those studies so that the energy dissipation law (2.23) was not established.

3. Nondimensionalization

We introduce a characteristic length and time scale L and t0, respectively, to nondimensionalize space and time variable,
~x ¼ x

L, ~t ¼ t
t0

, respectively. The dimensionless velocity is then defined by ~u ¼ ut0
h and the pressure by ~p ¼ pt2

0

L2q
. By definition, /

and d are dimensionless variables already. The dimensionless governing system of equations is summarized as follows

/t þ ðu � rÞ/ ¼
~M1

Ca
ðD/� ~f ð/ÞÞ �

~M1

Er
1þ /

2

� �
jrdj2

2
þ ~GðdÞ

 !
� ~M1

~AA/; ð3:1Þ

dt þ ðu � rÞd�W � d ¼
~M2

Er
r � 1þ /

2

� �2

rd� 1þ /
2

� �2

~gðdÞ
 !

� ~M2
~AAd; ð3:2Þ

½ut þ ðu � rÞu� �
1
Re

Duþrpþ 1
Re
r � 1

Ca
r/�r/þ 1

Er
1þ /

2

� �2

rd�rd

  
ð3:3Þ

þ1
2
r � 1þ /

2

� �2

rd� d� d�r � 1þ /
2

� �2

rd

 !!
þ ~AAu

!
¼ 0; ð3:4Þ

r � u ¼ 0; ð3:5Þ

uj@X ¼ 0; @n/j@X ¼ 0; @ndj@X ¼ 0; ð3:6Þ

where the dimensionless groups are,

Re ¼ L2q
mt0

; Er ¼ L2m
Kt0

; ~A ¼ At0

mL2 ; Ca ¼ L2m
kt0

;

~M1 ¼ M1m; ~M2 ¼ M2m;

~e ¼ e
L
; ~F ¼ 4

ð~eÞ2
ð1� /2Þ2; ~f ¼ ~F 0;

~g ¼ g
L
; ~GðdÞ ¼ 1

4~g2 ðkdk
2 � 1Þ2; ~g ¼ ~G0:

ð3:7Þ

Re is the Reynolds number, Er is the Ericksen number, Ca is the capillary number, ~A; ~M1 and ~M2 are the dimensionless ana-
logs of M1;M2;A. To simplify the notation, we will drop all tildes from here on.
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4. Numerical method

The purpose of this section is to develop an efficient numerical scheme for the coupled nonlinear system (3.1)–(3.5). Since
we are primarily concerned with a spectral discretization, our guiding principle here is to design a simple, yet efficient and
accurate numerical scheme by avoiding, as much as possible, solving problems with non-constant coefficients at each time
step. Due to the complexity of the system, only first-order time discretization will be presented in detail, but a second-order
version can also be designed (cf. [62,55]). We shall describe our approach for the phase equation, director field equation, and
Navier–Stokes equations respectively before we describe the complete time discretization scheme for (3.1)–(3.6).

4.1. A stabilized time discretization scheme for the phase equation

Let us consider the Allen–Cahn equation with Lagrange multiplier to enforce the conservation of volume for each phase.
Following [62,61,55,54,53], we use the stabilized semi-implicit scheme as follows.

1
dt
þ S1M1k

e2

� �
ð/nþ1 � /nÞ þ ðun � rÞ/n ¼ M1

Ca
ðD/nþ1 � f ð/nÞÞ �M1

Er
Kn

/ �M1AAn
/ þM1n

nþ1; ð4:1Þ

@/nþ1

@n
j@X ¼ 0; ð4:2Þ

Z
X

/nþ1dx ¼
Z

X
/ndx; ð4:3Þ

where Kn
/ ¼ ð1þ/n

2 Þ
2 jrdn j2

2 þ GðdnÞ
� �

, An
/ is the explicit treatment of the anchoring term and nn is the Lagrange multiplier. In

fact, from (4.3) we find

nnþ1 ¼ 1
jXj

Z
X

1
Ca

f ð/nÞ þ 1
Er

Kn
/ þ AAn

/

� �
dx: ð4:4Þ

We recall that f ð/Þ ¼ /ð/2�1Þ
e2 , so the explicit treatment of this term usually leads to a severe restriction on the time step dt

when e� 1. Thus we introduce in (4.1) an extra dissipative ‘‘stabilizer’’ term which is of order S1dt
e2 , to improve stability while

preserving simplicity of implementation.1 The stabilizer allows us to treat the nonlinear term explicitly without time step con-
straints as shown in [62,61,55,54,53].

4.2. A stabilized time discretization scheme for the director field equation

To avoid solving a nonlinear equation at each time step while allowing reasonable time steps, we adopt the same strategy
as above and propose the following stabilized semi-discrete numerical algorithm:

1
dt
þ S2M2K

g2

� �
ðdnþ1 � dnÞ þ ðun � rÞdn �Wn � dn ¼ M2

Er
ðDdnþ1 � DdnÞ þM2

Er
r � 1þ /n

2

� �2

rdn

�M2

Er
1þ /n

2

� �2

gðdnÞ �M2AAn
d; ð4:5Þ

@dnþ1

@n

�����
@X

¼ 0; ð4:6Þ

where An
d is the explicit treatment of the anchoring term. We add another stabilizing term (associated with S2) to balance

the explicit treatment of the term gð�Þ.

4.3. A pressure-correction scheme for the Navier–Stokes equation

In order to decouple the computation of the pressure from velocity, a projection scheme (see, for instance, a recent review
in [21]) is used for the Navier–Stokes equation. We use the first-order pressure correction scheme while treating the non-
linear terms explicitly. The scheme is given as follows.

~unþ1 � un

dt
þ ðun � rÞun � 1

Re
D~unþ1 þrpn þ 1

Re
r � 1

Ca
Jn

/ þSn þ 1
Er

Kn
d þ AAn

u

� �
¼ 0; ð4:7Þ

1 It is the same order as the error introduced by the explicit treatment of f ð/Þ. We refer to [54] for a more detailed discussion.
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~unþ1j@X ¼ 0; ð4:8Þ

and

unþ1 � ~unþ1

dt
þrðpnþ1 � pnÞ ¼ 0; ð4:9Þ

r � unþ1 ¼ 0; ð4:10Þ

n � unþ1j@X ¼ 0; ð4:11Þ

where Jn
/, Sn, Kn

d and An
u are stress terms treated explicitly.

4.4. The complete time discretization for the coupled system

We next describe the complete first-order scheme for (3.4), (3.6). Given ðun; pn;/n;dnÞ, we update ðunþ1; pnþ1;/nþ1;dnþ1Þ as
follows:

	 (i) update /nþ1 from (4.1)–(4.3);
	 (ii) update dnþ1 from (4.5) and (4.6);
	 (iii) update ~unþ1 from (4.7) and (4.8), then update unþ1, pnþ1 from (4.9)–(4.11).

Remark 1. We have introduced in (4.1) and (4.5) extra dissipative terms of order S1
dt
e2 and S2

dt
g2, respectively, to improve sta-

bility while preserving simplicity of implementation. The parameters S1 and S2 are proportional to the amount of artificial
dissipation added in the numerical scheme. Larger S1 and S2 will lead to a more stable but less accurate scheme. Extensive
numerical experiments indicate that the choice of S1 ¼ S2 ¼ 2 in Cartesian coordinates and S1 ¼ S2 ¼ 5 in cylindrical coordi-
nates provides a good balance between stability and accuracy.

4.5. Spatial discretization

We emphasize that the scheme described above leads to, at each time step, a sequence of Helmhlotz equations, which can
be discretized with any proper spatial discretization, in particular FFT solvers. In numerical simulations, after we pre-assign
the interfacial width e, the grid resolution is decided to ensure resolution for the interfacial width, and the time step is set to
obtain the desirable accuracy (i.e., the time step is small enough to get convergence.) Since we plan to simulate drop forma-
tion and pinch-off in a cylindrical axisymmetric domain, we use the Legendre–Galerkin method (cf. [50,51]). For more details
on the Legendre–Galerkin method for solving the vector (for the velocity and director) and scalar (for the pressure and phase
function) Helmholtz equation in a cylindrical axisymmetric geometry, we refer to [37,62].

5. Numerical simulations

We now present simulation results on numerical benchmarks related to filament breakup and drop formation, and then
we extend the simulations to anisotropic viscoelasticity (i.e., a liquid crystal phase). Our phase field formulation and numer-
ical algorithms generalize the classical problem of two-phase immiscible viscous fluids, in that we can pass to the two phase
Newtonian fluid limit by setting 1

Er ¼ A ¼ 0 in system (3.4), (3.6). Thus we have the capability to numerically explore the com-
petition between capillary forces, gravity, nematic distortional elasticity, and LC interfacial anchoring in filament thinning,
drop pinch-off and drop deformation behavior. In this paper, we will only sample this competition to illustrate the modeling
and numerical advances, deferring a complete phase diagram of filament and drop phenomena to a sequel.

In simulations, the computational domain is a cylinder of radius of R and height H ¼ 6R with R ¼ 1. We impose axisym-
metry so the computational domain is a ‘‘rectangle’’ in ðr; zÞ space: X ¼ fðr; zÞ : r 2 ð0;RÞ; z 2 ð0;6RÞg. We fix Re ¼ 1, Ca ¼ 10,
and fix the following model and numerical parameters:

M1 ¼ 0:01; M2 ¼ 0:0001; e ¼ 0:01; g ¼ 0:03; dt ¼ 0:0001: ð5:1Þ

The initial velocity is set to zero. We have taken special effort to ensure that numerical solutions are well resolved in space
(512� 512 grid points) and time with a sufficiently small time step.

5.1. Dynamics of viscous and nematic liquid crystal filaments

We first simulate the evolution of the Rayleigh instability for a viscous cylindrical filament of radius R0 ¼ 0:18R and
height H0 ¼ 6R centered around the axis of a cylinder of radius R and height H ¼ 6R. The rest of the cylinder is filled with
an immiscible ambient fluid (see the first plot in Fig. 5.1) of the same viscosity and density. We superimpose a small pertur-
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bation (of amplitude h0 and wavenumber xm ¼ mp
H ) to the cylindrical filament by initializing the zero level set of the labeling

function, /0, as follows.

/0ðr; zÞ ¼ � tanh
r2

ðR0 þ h0cosðxmzÞÞ2
� 1

 !
R2

0

e

 !
; ð5:2Þ

d0ðr; zÞ ¼ ðdr
0;d

z
0Þ ¼ 0;

1þ /0

2

� �2
 !

: ð5:3Þ

In the above initial data, we set h ¼ 0:1;xm ¼ mp
H where m labels the discrete wave number. For fully nonlinear simulations,

we seed the fastest growing discrete wavenumber mode in the initial data. Fig. 5.2 show the comparisons of zero level sets
(the filament ’’interface’’) of the phase field function f/ ¼ 0g from snapshots at t ¼ 0 and t ¼ 1 for m ¼ 4;6;8, for the viscous
limit of our model (2.14), i.e., 1

Er ¼ A ¼ 0.

Fig. 5.1. The initial filament interface and director field: /ðt ¼ 0Þ ¼ 0, dðt ¼ 0Þ.
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Fig. 5.2. The contours lines of f/ ¼ 0g for different wave numbers.
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We first show the classical dynamics of a purely viscous fluid filament, simulated with 1
Er ¼ A ¼ 0; and then compare the

viscous results with a LC filament with varying strength of Frank elasticity, first without interfacial anchoring energy (A ¼ 0)
and later with weak anchoring that biases tangential interfacial orientation.

Viscous filament dynamics ( 1
Er ¼ A ¼ 0): Fig. 5.3. The imposed perturbation grows, creating thin ‘‘necks’’, which continue to

thin. At t ¼ 5, four beads have formed, connected by thin threads that continue to thin and then rupture before t ¼ 6; note
the drops consume all fluid from the thin filaments. It is noteworthy that the satellite drop radii are uniform, owing to vis-
cous fluid dynamics and the symmetry of the imposed perturbation. This simulation captures the onset and nonlinear sat-
uration of the classical Rayleigh instability [15] (sufficiently long wavelength capillary waves grow in amplitude, leading to
pinch-off at the nodes of the waveform).

‘‘Weakly elastic’’ liquid crystal filament dynamics with zero interfacial anchoring energy: Fig. 5.4. We change only the Frank
elastic constant from zero to K ¼ 10�13 Newtons (typical of nematic liquid crystals) and select observational timescale
t0 ¼ 1s, lengthscale L ¼ 10�3m, and kinematic viscosity m ¼ 10�3Pa:s, or equivalently, Ericksen number Er ¼ L2m

Kt0
¼ 104. We re-

tain zero anchoring energy, A ¼ 0, and the other parameters from Fig. 5.3. Since the bulk elastic constant is very small, the
dynamics of the liquid crystal filament is perturbative of the viscous filament simulation.

Liquid crystal filament dynamics with stronger Frank elasticity and zero interfacial anchoring energy: Fig. 5.5. We now in-
crease Frank elasticity by lowering the Ericksen number to Er ¼ 100, keeping zero anchoring energy, A ¼ 0. This simulation
focuses on the coupling of elastic distortions to the hydrodynamics of the Rayleigh instability, isolated from the equally
important role of anchoring energy at the filament-ambient interface. The model predicts a significant influence, with sec-

Fig. 5.3. Viscous filament dynamics: The onset and saturation of the Rayleigh instability for a viscous filament in a viscous ambient fluid of the same density
and viscosity. Snapshots are presented at t ¼ 2, 3, 4, 5, 6, 7.

Fig. 5.4. Liquid crystal filament dynamics with weak Frank elasticity, Er ¼ 104, and zero anchoring energy, A ¼ 0. Frank elasticity modifications to the
viscous filament dynamics. Snapshots at t ¼ 2, 3, 4, 5, 6, 7 with identical parameters to Fig. 5.3 except nonzero Er.

Fig. 5.5. Liquid crystal filament dynamics with increased Frank elasticity, Er ¼ 100, relative to Fig. 5.4, and zero anchoring energy, A ¼ 0. Snapshots are
presented at t ¼ 1, 2, 3, 3.7, 3.9, 4.
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ondary satellite drop formation within the thin filament connecting the primary satellite drops instead of the fluid in the
filaments draining back into the primary satellite drops.

Liquid crystal filament dynamics with yet stronger Frank elasticity, Er ¼ 1, and zero anchoring energy A = 0: Fig. 5.6. We am-
plify Frank elastic energy (by lowering the Ericksen number to Er ¼ 1), while continuing to suppress anchoring energy, A ¼ 0.

Fig. 5.6. Liquid crystal filament dynamics with increased Frank elasticity, Er ¼ 1, relative to Er ¼ 100 of Fig. 5.5, and zero anchoring energy, A ¼ 0.
Snapshots are shown at t ¼ 1, 2, 2.6, 3, 3.2, 3.5, 4.

Fig. 5.7. Liquid crystal filament dynamics with increased Frank elasticity, Er ¼ 1=3, relative to Er ¼ 1 of Fig. 5.6, and zero anchoring energy, A ¼ 0. Snapshots
are taken at t ¼ 1, 1.5, 1.6, 1.8, 1.9, 2.3.

Fig. 5.8. LC filament evolution prior to satellite formation with surface anchoring energy values A ¼ 0, 3, 15, 30 and Ericksen numbers Er ¼ 100, 1, 1/3. A
snapshot comparison of LC filament evolution. From left to right, the snapshots are taken at t ¼ 3:7, 4, 4, 4 in the first row, t ¼ 3:2, 3.5, 6.4, 8.4 in the second
row, t ¼ 1:8, 2.2, 3, 3.4 in the third row.
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The beads-on-a-string phenomenon persists with the most noticeable effect that the secondary satellite drops contain more
fluid volume. One is led to wonder how close we can tune the primary and secondary drop radii by further raising Frank
elastic energy, explored in the next simulation.

Liquid crystal filament dynamics with more enhanced Frank elasticity, Er ¼ 1=3, and zero anchoring energy A ¼ 0: Fig. 5.7.
Here we find the previous scenarios for Er ¼ 100 and Er ¼ 1 do not persist; instead, a tertiary instability arises in the threads
between the primary and secondary satellite drops. These results combine to suggest that the competition between gravity,
capillarity and nematic (Frank) elastic stress can lead to polydisperse droplet streaming from a single filament, without noisy
input from the ambient. Of course, these predictions are void of the important effects of nematic surface anchoring typical of
most LC interfaces, which we explore next.

Liquid crystal filament dynamics with variable Frank elasticity and variable interfacial anchoring energy: Fig. 5.8. As a final
illustration of the model predictions, we incorporate LC surface anchoring energy to three of the simulations above, varying
the anchoring strength parameter from A ¼ 0 to A ¼ 3, 15, 30 for Er ¼ 100, 1, 1/3. Fig. 5.8 shows selected snapshots for each
of the nine new simulations along side a comparable snapshot with A ¼ 0. These results do not lend themselves to a defin-
itive phase diagram, but certain local trends are evident within the table of snapshots. The physical implications of these
snapshots, including polydispersity of satellite drop formation and the role of defects in these filament and droplet morphol-
ogies, will be pursued in a sequel.

5.2. The leaking nematic liquid crystal faucet

In the section, we consider a nematic liquid crystal drop under the influence of gravity, falling from a nozzle with an initial
spherical shape (Fig. 5.9a) and and director field d (Fig. 5.9b). The boundary conditions for u;/, and d are adopted from the
previous section, with zero velocity at the mouth of the ‘‘nozzle’’. The initial profiles of the phase field function / and director
field d are given, respectively, by:

/0ðr; zÞ ¼ tanh
R2

0 � r2 � ðz� H � 0:6Þ2

e

 !
; ð5:4Þ

Fig. 5.9. Initial profiles of the zero level set of the labeling function f/ ¼ 0g and the director field d.

Fig. 5.10. Snapshots of a viscous dripping faucet simulation at t ¼ 1, 2, 3, 3.4, 5, 5.4, 6.
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d0ðr; zÞ ¼ 0;
1þ /0

2

� �2
 !

: ð5:5Þ

The director field is initially given uniform alignment in the direction of gravity.
We consider the case where the density difference of the liquid crystal drop and ambient fluid is small so that we can use

the Boussinesq approximation [35,62] to derive the momentum balance equation for a mixture with small density variation.
The momentum equation is given by

q0ðut þ ðu � rÞuÞ ¼ �rpþr � rþ fgtyez; ð5:6Þ

where ez ¼ ð0;0;1ÞT , fgty ¼ �ðð1þ /Þðq1 � q0Þ þ ð1� /Þðq2 � q0ÞÞg0, g0 is the gravity acceleration. In dimensionless form, it is

ðut þ ðu � rÞuÞ ¼ �rpþr � r� ð1þ /Þ q1

q0
� 1

� �
þ ð1� /Þ q2

q0
� 1

� �� �
1
Fr

� 	
ez ð5:7Þ

where Fr ¼ 1
g0

is the Froude number. We set q1
q0
¼ 0:5, q2

q0
¼ 1:5, and 1

Fr ¼ 10.
We compare nematic liquid crystal and viscous dripping faucets. For simplicity, we only consider Frank elastic energy and

suppress anchoring energy for the purposes of this paper.
The viscous falling droplet benchmark, Fig. 5.10. When the drop is sufficiently massive, gravity overcomes surface tension

and the drop begins to droop. The classical scenario unfolds (Fig. 5.10): necking, formation of a drop at the tip, a thin filament
forms between the elongated fluid attached to the faucet and the emerging satellite drop, and the thread breaks leading to
drop pinch-off. If the original mass is sufficiently large that the remaining fluid attached to the faucet does not recoil under
surface tension, then the above scenario repeats itself until the faucet fluid mass can no longer fall. These viscous simulations
are qualitatively consistent with experimental results in [57] (Fig. 5.11).

Frank elasticity effects on the dripping faucet, Fig. 5.12 To illustrate the model and numerical algorithm, we simulate the
leaking liquid crystal faucet with an Ericksen number Er ¼ 1 and suppressed anchoring energy (Fig. 5.12). The Frank elastic
stress leads to formation of a persistent, long thread connecting the nematic LC mass at the faucet and the LC drop that forms
at the leading edge of the falling fluid mass. Furthermore, the thread does not break in the timescales shown here, and a
smaller satellite drop forms instead that starts to look similar to the filament stretching scenarios reported above. Again,
a more complete inquiry into the details of the nematic LC physics and different scenarios possible by varying both the Frank
elastic energy and anchoring energy is deferred to a sequel.

Fig. 5.12. Snapshots of the leaking liquid crystal faucet into a viscous, slightly less dense, fluid, at t ¼ 4, 6, 8, 9, 9.6, 10, 10.2, 10.4, 10.6 with Ericksen number
Er ¼ 1 and anchoring energy strength A ¼ 0.

Fig. 5.11. Qualitative comparison between the experimental benchmark [57] of two-phase viscous fluids (50% glyercol in water) and our Fig. 5.10 results for
the viscous dripping faucet at t ¼ 3:4, 5.
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6. Concluding remarks

In this paper, we derive an energetic phase-field model for two-phase complex fluids with one liquid crystal phase and
another viscous fluid phase. The continuum model obeys an energy dissipation law, which yields a conditionally stable, accu-
rate, and relatively easy to implement, numerical scheme. In particular, we developed a stable semi-implicit time-marching
scheme coupled with a Legendre–Galerkin discretization in space for the fully coupled system. With this numerical scheme,
we conduct two benchmark numerical experiments for interfacial fluid flows. The first simulation probes the onset and non-
linear dynamics of a weakly perturbed liquid crystal filament in an ambient viscous fluid of the same density and viscosity.
The second simulation is of the leaky liquid crystal faucet into a slightly less dense viscous fluid. The model and code admit a
viscous two-phase fluid limit, which is simulated first to compare with classical results both numerical and experimental.
We then explore the coupling of Frank elastic energy to gravity and capillary forces for both benchmark problems, and
for the filament stretching problem we likewise explore the effects of tangential interfacial anchoring energy at the LC-vis-
cous fluid interface. Further investigations into liquid crystal physics and phase diagrams of droplet polydispersity, as well as
schemes for higher density and viscosity contrasts, are deferred to future studies.
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