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An efficient and accurate numerical scheme is presented for the three-dimensional
Navier–Stokes equations in primitive variables in a cylinder. The scheme is based
on a spectral-Galerkin approximation for the space variables and a second-order
projection scheme for time. The new spectral-projection scheme is implemented to
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1. INTRODUCTION

There are many fundamental issues in fluid dynamics that can be effectively addressed by
the study of flows in cylindrical containers (e.g., symmetry breaking, transition to complex
dynamics). The attraction of such a flow geometry is that, although the system is fully three
dimensional, the invariance of the equations and boundary conditions to arbitrary rotations
in azimuth (the SO(2) symmetry) naturally provides a periodic direction (the azimuthal
direction, θ ) which can be efficiently exploited in the solution scheme.

In Lopez and Shen [13], we presented an efficient and accurate spectral scheme for
the axisymmetric Navier–Stokes equations in cylindrical geometries. There, due to the
imposed symmetry, the problem reduced to a set of two-dimensional partial differential
equations. In this paper, we do not impose any symmetry on the solutions, and generalize
the aforementioned solver to the fully three-dimensional case.
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Several distinct approaches have been formulated to solve the three-dimensional Navier–
Stokes equations in cylindrical geometries. Here, we restrict our attention to finite, enclosed
containers, and so the axial direction is not periodic. A popular approach is to use finite
difference or finite volume spatial discretization for such problems (e.g., [20, 26, 30]). The
pole singularity at the axis, however, requires special treatment; this may be a reformulation
of the governing equations or the use of staggered grid strategies and specifically tailored
derivatives at the axis. If a mapping on a curvilinear Cartesian-type grid is employed, the
symmetry of the system is destroyed, which can lead to qualitatively different dynamics.
The use of cylindrical polars within the finite difference/volume formulations leads to ex-
cessive grid clustering about r = 0, which leads to an ill-conditioned system with severe
time-step restrictions, and often ad hoc smoothing is employed. Finite difference/volume
methods are generally less accurate than spectral methods, and when used for large Reynolds
number flows in three dimensions, the required number of grid points becomes excessive
for a practical implementation. Tuckerman [29] introduced the influence matrix method,
within a pseudospectral Galerkin scheme, for cylindrical geometries with only one periodic
direction (θ ) that exactly enforced incompressibility. However, this proved to be impracti-
cal for three-dimensional Navier–Stokes at moderate Reynolds numbers due to excessive
memory requirements. Incompressibility may also be imposed by decomposing the velocity
into toroidal and poloidal potentials [14], and such a formulation has recently been imple-
mented for three-dimensional Navier–Stokes in an enclosed cylinder [22]. This method is
attractive because pressure is not explicit in the governing equations, but the order of the
equations is higher leading to poor conditioning, and there is coupling between the poten-
tials through the boundary conditions. A spectral element method has also been used for
this class of problems [2], although the simple cylindrical geometry does not require the
added sophistication of the method.

Here we present the formulation, and sample computations at moderate Reynolds num-
bers, of the generalization of the spectral-projection scheme in Lopez and Shen [13] to three
dimensions.

2. THREE-DIMENSIONAL NAVIER–STOKES EQUATIONS

IN CYLINDRICAL COORDINATES

We consider an incompressible flow confined in a cylinder (the flow between two con-
centric cylinders can be handled with a similar technique, and is in fact easier to deal
with because of the absence of the coordinate singularity), i.e., the domain in cylindrical
coordinates (r, θ, z) is

� = {0 ≤ r < R, 0 ≤ θ < 2π, 0 < z < H}.

The equations governing the flow are Navier–Stokes, together with initial and boundary
conditions. We denote the velocity vector and pressure, respectively, by u = (u, v, w)T and
p. Then, the Navier–Stokes equations in velocity-pressure formulation written in cylindrical
coordinates are

∂t u − 1

Re

(
∇2u − 1

r2
u + 2

r2
∂θv

)
+ ∂r p + advr = fr , (1)

∂tv − 1

Re

(
∇2v − 1

r2
v − 2

r2
∂θu

)
+ ∂θ p + advθ = fθ , (2)
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∂tw − 1

Re
∇2w + ∂z p + advz = fz, (3)

1

r
∂r (ru) + 1

r
∂θv + ∂zw = 0, (4)

where

∇2 = ∂2
r + 1

r
∂r + 1

r2
∂2
θ + ∂2

z (5)

is the Laplace operator in cylindrical coordinates,

advr = u∂r u + 1

r
v∂θu + w∂zu − 1

r
v2,

advθ = u∂rv + 1

r
v∂θv + w∂zv − 1

r
uv, (6)

advz = u∂rw + 1

r
v∂θw + w∂zw,

and ( fr , fθ , fz)
T is an externally imposed body force. The equations are to be completed

with admissible initial and boundary conditions.
Note that in addition to the nonlinear coupling, the velocity components (u, v) are also

coupled in the linear viscous terms in this case. Following Orszag and Patera [19], we
introduce a new set of complex functions

u+ = u + iv, u− = u − iv, (7)

where i is the unit imaginary number. Note that

u = 1

2
(u+ + u−), v = 1

2i
(u+ − u−). (8)

The Navier–Stokes equations (1)–(4) under the new unknown functions (u+, u−, w, p) are

∂t u+ − 1

Re

(
∇2 − 1

r2
+ 2i

r2
∂θ

)
u+ +

(
∂r + i

r
∂θ

)
p + adv+ = f+, (9)

∂t u− − 1

Re

(
∇2 − 1

r2
− 2i

r2
∂θ

)
u− +

(
∂r − i

r
∂θ

)
p + adv− = f−, (10)

wt − 1

Re
∇2w + ∂z p + advz = fz, (11)

(
∂r + 1

r

)
u+ + u−

2
+ 1

ir
∂θ

u+ − u−
2

+ ∂zw = 0, (12)

where we have denoted

adv± = advr ± iadvθ , pt f± = fr ± i fθ . (13)

Now, u+ and u− in the linear viscous terms in the formulation (9)–(12) are decoupled, just
as in the Cartesian case.
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2.1. Dimension Reduction

Since all the relevant functions are periodic in the azimuthal direction θ , we set

(u±, w, p) =
+∞∑

m=−∞
(u±,m, wm, pm)eimθ ,

(14)

(adv±, advz, f±, fz) =
+∞∑

m=−∞
(adv±,m, advz,m, f±,m, fz,m)eimθ .

By definition, we have ū+,−m = u−,m (where the overbar denotes complex conjugate) for
all m. Moreover, w and p are real functions so that w̄m = w−m and p̄m = p−m . Therefore,
we only have to compute u±,m, wm and pm for m ≥ 0. Furthermore, we have u+,0 = ū−,0.
Hence, for m = 0, we only need to compute �(u+,0) and �(u+,0), which are the real and
imaginary parts of u+,0, respectively.

Now, substituting the above expansions into (9)–(12) and collecting the terms for each
mode m, we find that (u±,m(r, z), wm(r, z), pm(r, z)) satisfy the following equations with
(r, z) ∈ D := {(r, z) : 0 ≤ r < R, 0 < z < H}:

(i) for m > 0:

(
∂t − 1

Re
∇2

m+1

)
u+,m + ∂−m,r pm + adv+,m = f+,m,

(
∂t − 1

Re
∇2

m−1

)
u−,m + ∂m,r pm + adv−,m = f−,m,

(15)(
∂t − 1

Re
∇2

m

)
wm + ∂z pm + advz,m = fz,m,

1

2
(∂m+1,r u+,m + ∂−m+1,r u−,m) + ∂zwm = 0,

(ii) for m = 0:

(
∂t − 1

Re
∇2

1

)
�(u+,0) + ∂r p0 + �(adv+,0) = �( f+,0),

(
∂t − 1

Re
∇2

1

)
�(u+,0) + �(adv+,0) = �( f+,0),

(16)(
∂t − 1

Re
∇2

0

)
w0 + ∂z p0 + advz,0 = fz,0,

∂1,r�(u+,0) + ∂zw0 = 0,

where

∇2
k = 1

r
∂r (r∂r ) − k2

r2
+ ∂2

z , and ∂k,r = ∂r + k

r
. (17)

The above equations are to be completed with the initial and boundary conditions stemming
from those of (1)–(4) and from suitable pole conditions to be described below.
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2.2. Pole Conditions

The polar transformation is singular at r = 0. Hence, for a function in Cartesian co-
ordinates U (x, y, z) to have certain regularity at the pole (i.e., x = y = 0), the function
u(r, θ, z) = U (r cos θ, r sin θ, z) in polar coordinates needs to satisfy corresponding pole
conditions at r = 0. Since we are interested in the approximation of the usual variational
formulation of the Navier–Stokes equations, we shall use the term essential pole conditions
to denote those which are necessary for the well-posedness of the variational formulation of
the Navier–Stokes equations. All other pole conditions, which will imply more regularity
of the solutions at the poles, are natural pole conditions; see [3, 23]. Just as the Neumann
boundary condition in a variational formulation should be treated naturally, i.e., built-in the
weak variational formulation, rather than imposed essentially, these natural pole conditions
should also be treated naturally with a suitable weak variational formulation, cf. (20)–(21).

Different aspects of appropriate pole conditions in the context of spectral methods have
been discussed by numerous authors, cf. [9, 17, 21, 29]. Our discussion below is focused
on determining the essential and natural pole conditions for the Navier–Stokes equations.
The essential pole conditions can be determined as follows.

To simplify the presentation, we introduce the following notation for m > 0 as

�m =




∇2
m+1, 0, 0

0, ∇2
m−1, 0

0, 0, ∇2
m


 , ∇m =




∂−m,r

∂m,r

∂z


 ,

um = (u+,m, u−,m, wm)T ,

∇m · um = 1

2
(∂m+1,r u+,m + ∂−m+1,r u−,m) + ∂zwm,

and rewrite (15) in vector form (m > 0) as

∂t um − 1

Re
�mum + ∇m pm = Nm(u, f),

(18)∇m · um = 0,

where Nm(u, f) represents the nonlinear and forcing terms in (15).
Similarly, let N0(u, f) represent the nonlinear and forcing terms in (16) and set

�0 =




∇2
1 , 0, 0

0, ∇2
1 , 0

0, 0, ∇2
0


 , ∇0 =




∂r

0
∂z


 ,

u0 = (�(u+,0), �(u+,0), w0)
T ,

∇0 · u0 = ∂1,r�(u+,0) + ∂zw0.

So, in vector form, (16) becomes

∂t u0 − 1

Re
�0u0 + ∇0 p0 = N0(u, f),

(19)
∇0 · u0 = 0.
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The bilinear form corresponding to −�m with m > 0, associated with the variational
formulation of (18), is

am(um, vm) := (r∂r u+,m, ∂rv+,m) + (m + 1)

(
1

r
u+,m, v+,m

)
+ (∂zu+,m, ∂zv+,m)

+ (r∂r u−,m, ∂rv−,m) + (m − 1)

(
1

r
u−,m, v−,m

)
+ (∂zu−,m, ∂zv−,m)

+ (r∂rwm, ∂rwm) + (∂zwm, ∂zwm), (20)

where ( f, g) := ∫ R
0 dr

∫ 2π

0 dθ
∫ H

0 f ḡ dz (R and H are the radius and the height of the
cylinder, respectively). The bilinear form am(um, vm) is simply the inner product of −�mum

with rvm (r is the Jacobian of the polar transform) after integrating by parts. Similarly, the
bilinear form corresponding to −�0, associated with the variational formulation of (19), is

a0(u0, v0) := (r∂r�(u+,0), ∂r�(v+,0)) +
(

1

r
�(u+,0), �(v+,0)

)
+ (∂z�(u+,0), ∂z�(v+,0))

+ (r∂r�(u+,0), ∂r�(v+,0)) +
(

1

r
�(u+,0), �(v+,0)

)

+ (∂z�(u+,0), ∂z�(v+,0)) + (r∂rw0, ∂rw0) + (∂zw0, ∂zw0). (21)

Thus, the essential pole conditions for um (and for the test function vm) are those which
ensure that all the integrals in the bilinear form am(um, vm) are finite. Specifically, on the
axis (r = 0), the following pole conditions are essential:

m > 1: u+,m = u−,m = wm = 0,

m = 1: u+,1 = w1 = 0,

m = 0: u+,0 = 0.

(22)

The essential pole condition for the pressure is determined by requiring the pressure to
be single-valued at the pole, i.e., ∂p

∂θ
|r=0 = 0, which implies that

pm |r=0 = 0, m �= 0. (23)

2.3. Regularity Conditions on the Axis

The essential pole conditions (22)–(23) will ensure the well-posedness of equations (15)–
(16) and the regularity (in the polar coordinates) of their solutions in appropriate weighted
Sobolev spaces; see [1] for related theoretical aspects. Thus, the essential pole conditions
are sufficient for the purpose of numerical approximations, as demonstrated in Shen [25] for
elliptic equations and in Lopez and Shen [13] for axisymmetric Navier–Stokes equations.
Nevertheless, these essential pole conditions will not ensure the smoothness of the solutions
at the pole in Cartesian coordinates. For the readers’ convenience, we present below a simple
derivation of regularity conditions on the axis.

The regularity conditions on the axis are a consequence of the singularity of the cylindrical
polar coordinates at r = 0: the value of any physical quantity at r = 0, θ ∈ [0, 2π) must be
unique. For the sake of simplicity of exposition, we shall drop the dependence on z in this
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section since it has no effect on the singularity at the axis. We write

u = u(r, θ)r̂ + v(r, θ)θ̂ + w(r, θ)k̂
(24)

= ux (x, y)î + uy(x, y)ĵ + uz(x, y)k̂,

where (î, ĵ, k̂) and (r̂, θ̂, k̂) are, respectively, the unit vectors in Cartesian and polar coor-
dinates. We recall that

r̂ = cos θ î + sin θ ĵ, θ̂ = −sin θ î + cos θ ĵ, (25)

and a simple computation leads to

u±(r, θ) = u(r, θ) ± iv(r, θ) = e∓iθ (ux (x, y) ± iuy(x, y)). (26)

Assuming analiticity of the function u in Cartesian coordinates, the regularity conditions
in polar coordinates are now derived.

Let us first consider the axial component of velocity, w. Introducing the complex variable
ζ = reiθ , we have x = (ζ + ζ̄ )/2, y = −i(ζ − ζ̄ )/2, and

w(r, θ) = uz(x, y) = uz((ζ + ζ̄ )/2, −i(ζ − ζ̄ )/2) = η(ζ, ζ̄ ).

Since uz(x, y) is analytic and the coordinate change (x, y) ↔ (ζ, ζ̄ ) is linear, the function
η(ζ, ζ̄ ) is analytic and can be expanded as a Taylor series:

η(ζ, ζ̄ ) =
+∞∑

p,q=0

ηp,qζ
p ζ̄ q .

Using the Taylor expansion of η(ζ, ζ̄ ) in the expression of wm(r), the mth Fourier mode of
w in (14), we get for m ≥ 0:

wm(r) = 1

2π

∫ 2π

0
η(ζ, ζ̄ )e−imθ dθ =

+∞∑
p,q=0

ηp,qr p+q 1

2π

∫ 2π

0
ei(p−q−m)θ dθ

=
+∞∑

p−q=m;p,q=0

ηp,qr p+q = rm
+∞∑
q=0

ηq+m,qr2q . (27)

This expression gives the regularity conditions for wm on the axis.
The corresponding conditions for u±,m can be obtained analogously. More precisely,

from (26), we can write

u±(r, θ) = e∓iθη±(ζ, ζ̄ ), (28)

where η±(ζ, ζ̄ ) are analytic functions with Taylor expansions

η±(ζ, ζ̄ ) =
+∞∑

p,q=0

η±,p,qζ
p ζ̄ q .
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The mth Fourier mode of u±(r, θ), expanded as shown in (14), can now be expressed as

u±,m(r) = 1

2π

∫ 2π

0
η±(ζ, ζ̄ )e−i(m±1)θ dθ

=
+∞∑

p−q=m±1;p,q=0

η±,p,qr p+q = rm±1
+∞∑
q=0

η±,q,m±1+qr2q . (29)

This expression gives the regularity conditions on the axis for u+,m with m ≥ 0 and u−,m

with m ≥ 1 (note that ū−,0 = u+,0).
The regularity conditions (27) and (29) can be imposed using expansions in appropriate

special functions; e.g., [4, 17]. For high m-values, these regularity conditions produce ill-
conditioned matrices, and are often imposed only for the first few values of m; e.g., see
[21].

The regularity conditions on the axis can be grouped into two parts. First, the factors rm

and rm±1 appearing in the expressions of u±,m (29) and wm (27) give, in addition to the
essential pole conditions (22), a set of natural pole conditions on the axis

∂k
r u+,m = 0, k = 1, . . . , m; m ≥ 1,

∂k
r u−,m = 0, k = 1, . . . , m − 2; m ≥ 3, (30)

∂k
r wm = 0, k = 1, . . . , m − 1; m ≥ 2.

Second, the dependence on r2 in u±,m and wm gives the following parity conditions on the
axis:

u±,m has the same parity as m + 1; wm has the same parity as m. (31)

Note that the pole condition ∂rw0|r=0 = 0 used in Lopez and Shen [13], and by others
for axisymmetric problems, is not a part of the natural pole conditions. Instead, it is a
consequence of the parity condition satisfied by w0.

In our approach, only the essential pole conditions (22) are imposed. This is the minimal
set of regularity conditions on the axis necessary for the well-posedness of the variational
formulation of the Navier–Stokes equations; see Bernardi et al. [1] for a complete theoretical
analysis.

3. DISCRETIZATION BY A SPECTRAL-PROJECTION SCHEME

We consider the Navier–Stokes equations (9)–(12) subject to an initial condition u|t=0 =
u0 and a Dirichlet boundary condition for velocity

u(t)|∂� = g(t)|∂�. (32)

Other admissible boundary conditions can be treated similarly.

3.1. Time Discretization: A Second-Order Projection Method

As in Lopez and Shen [13], the equations (18)–(19) with the pole conditions (22) and
the boundary conditions (32) are discretized in time by a second-order projection scheme.
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More precisely, we use an improved version of the second-order projection scheme, which
we shall refer to as the second-order projection scheme with divergence correction.

Let �1 = {r = 0 : 0 < z < H} and �2 = ∂D\�1. Using the identity

∇m · ∇m = 1

r
∂r (r∂r ) − m2

r2
+ ∂2

z = ∇2
m,

the second-order BDF (backward difference formula) projection scheme with divergence
correction is as follows:

In the first step, we solve for an intermediate velocity ũk+1
m (m ≥ 0) from

1

2δt

(
3ũk+1

m − 4uk
m + uk−1

m

) − 1

Re
�m ũk+1

m = −∇m pk
m − 2Nk

m + Nk−1
m , (33)

with the boundary conditions

ũk+1
m

∣∣
�2

= gk+1
m , (34)

and the essential pole conditions (22) on the axis �1:

m > 1: ũk+1
+,m = ũk+1

−,m = w̃k+1
m = 0,

m = 1: ũk+1
+,1 = w̃k+1

1 = 0,

m = 0: ũk+1
+,0 = 0.

(35)

In the above, N j
m = Nm(u, f)|t= j δt and g j

m is the mth Fourier mode of g|t= j δt .
In the second step,1 we solve for φk+1

m (m ≥ 0) from

−∇2
mφk+1

m = − 3

2δt
∇m · ũk+1

m , (36)

with the boundary conditions (cf. (23))

∂

∂n
φk+1

0

∣∣
∂D = 0; ∂

∂n
φk+1

m

∣∣
�2

= 0, φk+1
m

∣∣
�1

= 0 (m ≥ 1), (37)

where n is the outward normal. Then, we set

pk+1
m = φk+1

m + pk
m − 1

Re
∇m · ũk+1

m ,

(38)

uk+1
m = ũk+1

m − 2δt

3
∇mφk+1

m .

Thus, at each time step (t = (k + 1)δt, k = 0, 1, . . .) and for each nonnegative Fourier
mode m, we need to solve a Poison-type equation (33) for each of the velocity components
ũk+1

m , and a Poisson equation (36) for φk+1
m .

Note that the difference between the above scheme and the one used in Lopez and Shen
[13] is that in the second step, a divergence correction term is introduced (see the first

1 Note that there were some misprints in Lopez and Shen [13]; in fact, 1
2δt

in (2.3) and (2.4) should be 3
2δt

, and
accordingly, 2δt in (2.5) should be 2δt

3
.
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equation in (38)). The immediate consequence of this divergence correction term is that the
pressure approximation pk

m now satisfies a consistent Neumann boundary condition, instead
of the artificial homogeneous Neumann boundary condition in the absence of the divergence
correction term. While the scheme with divergence correction does not improve the formal
accuracy of the velocity, it does lead to substantially more accurate pressure approxima-
tions; see, for instance, Timmermans, Minev and Van De Vosse [28] and Guermond and
Shen [7].

3.2. Spatial Discretization: Spectral-Galerkin Methods

From the above projection scheme, we find that each member of (ũk
±,m, w̃k

m, φk
m), m ≥ 0

and k ≥ 1, denoted by a generic function v, satisfies a Poisson-type equation of the form

αv − ∇2
j v = h, in D, (39)

where α is a given nonnegative constant (α = 0 for φk
0), h is a given function, and j is

a nonnegative number ( j = 0 only for uk
−,1, w

k
0 and φk

0). This Poisson-type equation is
supplemented with one of the four boundary conditions as follows:

1. v|�2 = g, v|�1 = 0 (for all uk
±,m and wk

m, except uk
−,1 and wk

0).
2. v|�2 = g (for uk

−,1 and wk
0).

3. ∂v
∂n |∂D = 0 (for φk

0).
4. ∂

∂nφk+1
m |�2 = 0, φk+1

m |�1 = 0 for φk
m with m ≥ 1.

These Poisson-type equations are solved by using the fast spectral-Galerkin methods de-
veloped in Shen [23] and Shen [25]. For the readers’ convenience, we provide some details
below.

Since the nonhomogeneous Dirichlet boundary conditions can be easily lifted in a rect-
angular domain (see Shen, [23], for a detailed implementation procedure), we can assume,
for the sake of simplicity, that g = 0 in the above. In addition to the Sobolev space H 1(D)

and H 1
0 (D), we denote also

H 1
0∗(D) := {

u ∈ H 1(D) : u|�2 = 0
}
. (40)

Thus, the variational formulation for the Poisson-type equation, obtained by taking the inner
product of (39) with rw (where r is the Jacobian of the polar transformation) and integrating
by parts, with one of the three boundary conditions is: Find v ∈ X such that

α(rv, w) + (r∂rv, ∂rw) + k2

(
1

r
v, w

)
= (rh, w), ∀w ∈ X, (41)

where X = H 1
0 (D) for the first boundary condition; X = H 1

0∗(D) for the second; X = H 1(D)

for the third (for φk
0 , X = H 1(D)\R should be used to fix the free-constant in the pressure);

and (v, w) = ∫ R
0 dr

∫ H
0 vw dz.

Let us denote by PN the set of polynomials of degree less than or equal to N and
PN M = PN × PM . Let X N M ⊂ PN M be an appropriate approximation space for X . The
Legendre–Galerkin method for (41) is to find vN M in X N M such that

α(rvN M , w) + (r∂rvN M , ∂rw) + k2

(
1

r
vN M , w

)
= (r IN M h, w), ∀w ∈ X N M , (42)
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where IN M : C(D) → PN M is the polynomial interpolation operator based on the Gauss–
Lobatto points.

As demonstrated in Shen [23] and Shen [25], a suitable choice of basis functions for
X N M will lead to a sparse linear system which can be efficiently solved. More precisely, let
L j (x) be the j th degree Legendre polynomial, and set

φ j (x) = L j (x) − L j+2(x),

ψ j (x) = L j (x) + L j+1(x),

γ j (x) = L j (x) − j ( j + 1)

( j + 2)( j + 3)
L j+2(x), (43)

ξ j (x) = L j (x) + 2 j + 3

( j + 2)2
L j+1(x) +

(
2 j + 3

( j + 2)2
− 1

)
L j+2(x).

One can easily check by using the properties of Legendre polynomials that

φ j (±1) = 0; ψ j (−1) = 0; ∂xγ j (±1) = 0; ξ j (−1) = 0, ∂xξ j (1) = 0.

These functions are used as basis functions for X N M . Let (r̂ , ẑ) = ( 2r − R
R , 2z − H

H ) so that
(r, z) ∈D is mapped to (r̂ , ẑ) ∈ D̂ := (−1, 1)2. Then,

• for the first boundary condition, X N M = PN M ∩ H 1
0 (D) so that

X N M = {φi (r̂)φ j (ẑ) : i = 0, 1, . . . , N − 2, j = 0, 1, . . . , M − 2};

• for the second boundary condition, X N M = PN M ∩ H 1
0∗(D) so that

X N M = {ψi (r̂)φ j (ẑ) : i = 0, 1, . . . , N − 2, j = 0, 1, . . . , M − 2};

• for the third boundary condition, two options are available:
1. If the pressure is a physical quantity of interest, we should use

X N M = PN−2,M−2 = span{Li (r̂)L j (ẑ) : i = 0, 1, . . . , N − 2, j = 0, 1, . . . , M − 2}.

In this case, the inf–sup condition between the velocity and pressure approximation spaces
is verified so the pressure approximation will converge to the exact pressure.

2. If the pressure is not a physical quantity of interest (which is the case for the
application in this paper), we can set X N M = {v ∈ PN M : ∂v

∂n |∂D = 0}\R so that

X N M = {γi (r̂)γ j (ẑ) : i = 0, 1, . . . , N − 2, j = 0, 1, . . . , M − 2}\R.

In this case, the pressure approximation may contain spurious modes. However, it will not
affect the accuracy of the velocity approximation, and the resulting linear system can be
solved much more efficiently [23].

• For the fourth boundary condition, the treatment is similar to the third boundary
condition with γi (r̂) replaced by ξi (r̂).

One can check that, using these basis functions, the stiffness and mass matrices associated
with (42) are all sparse, and as demonstrated in Shen [23] and Shen [25], the resulting linear
systems can be solved efficiently by using a matrix decomposition method. We refer to
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Shen [23, 25] and Lopez and Shen [13] for more details on spectral-Galerkin algorithms
for these Poisson type equations.

We end this section with a number of remarks.
• The nonlinear terms are evaluated at the collocation points using the so-called transform

(i.e., pseudospectral) method; e.g., [4].
• The cost of solving each Poisson-type equation using the Legendre–Galerkin method

is O(N M min (N , M)) [23, 25]. If L Fourier modes are used in the azimuthal direction
and fast Fourier transforms (FFTs) are used, the total cost of the spectral-projection scheme
at each time step is of the order N M L min (N , M) log L . This operational count can be
further reduced to N M L log(N M L) by using the optimized Chebyshev–Legendre Galerkin
method in the (r, z) directions [24, 25]. Hence, with the same number of unknowns, the
cost of our spectral solvers are very competitive with those based on finite-difference or
finite-element discretizations, while offering much better resolution properties and accuracy.

• We refer to Lopez and Shen [13] for a discussion of the time-step constraint of this
spectral-projection scheme.

• The application of this spectral-projection scheme to flow between two concentric
cylinders is straightforward.

4. NUMERICAL RESULTS

Most test problems for convergence with the pole condition are restricted to (r, θ)-planes
and consist of linear scalar equations, e.g., finding roots of Bessel functions on the disk and
solving scalar Poison equations. The pole conditions for vector problems are different and
have not usually been treated. Our main motivation for developing the present scheme is
the solution of three-dimensional Navier–Stokes equations, and as such, the vector problem
is prevalent.

Having performed a typical test procedure, where one chooses an exact time-dependent
solution and uses the proposed scheme to approximate it, which has confirmed the over-
all correctness of the code, we now consider a physically relevant three-dimensional test
problem of the flow in a cylinder of height H and radius R, filled with an incompressible
fluid of kinematic viscosity ν, driven by the rotation of one endwall at � rad/s. This single
problem provides stringent tests of all aspects of our code. This problem has been widely
studied; see, e.g., [5, 6, 10–12, 27], mainly because of the existence over a wide range of the
governing parameters, Re = �R2/ν and � = H/R, of flow states with recirculation zones
in the central vortex, known as vortex breakdown bubbles. In spite of numerous numerical
and experimental studies, considerable controversy with fundamental aspects of this flow
continues, particulary with regard to symmetry breaking.

The boundary conditions on �2 for (u±,m, wm) for this problem are all zero except that
v0|z = 0 = r . Note that this boundary condition is discontinuous at the corner (r, z) = (R, 0).
This discontinuity is treated by using the procedure in Lopez and Shen [13], which produces
mesh independent approximations to the discontinuous boundary condition to within any
prescribed accuracy. All results presented below are obtained with 64 × 64 × 16 modes.

The axisymmetric version of the present code [13] has been instrumental in obtaining
detailed knowledge of the axisymmetric basic state. Recent developments, e.g., [2, 6, 15,
16], indicate that nonaxisymmetric bifurcations play an important role in extensive regions
of parameter space. The linear stability analysis of Gelfgat et al. [8] indicates that the
primary bifurcation is nonaxisymmetric in the ranges � < 1.6 and � > 2.8, and in these
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FIG. 1. Three-dimensional perspective of wp (isosurface close to the zero-level) for pure rotating wave
solutions corresponding to (Re, �) parameter values (2750, 1.58) for the m = 2 RW, (2800, 2.90) for m = 4 RW,
and (2150, 3.50) for m = 3 RW.

ranges, [8] have predicted primary bifurcations to rotating waves (RW) with azimuthal
wavenumber m = 2, 3, or 4. Figure 1 shows a three-dimensional perspective of isosurfaces
of the perturbation in the axial velocity, wp, (obtained by setting the m = 0 contribution
to w to zero), for these three RW states at parameter values (Re, �) = (2750, 1.58) for
the m = 2 RW, (2800, 3.00) for the m = 4 RW, and (2150, 3.50) for the m = 3 RW. These
figures show the interlaced spiral structures associated with the bifurcated modes. Contours
of wp for these three cases are also presented in Fig. 2, which clearly shows the symmetric
structure of these pure rotating waves. In these states, the spatial structure is stationary in
a frame rotating with the precession frequency. The parameter values where these various
RW states bifurcate, their azimuthal wavenumbers, and their precession frequencies are in
very good agreement with the prediction from linear stability analysis [8].

FIG. 2. Contours of wp at z = 0.8� for the pure rotating wave solutions shown in Fig. 1. Contour levels are
max(wp)(i/20)2, for i ∈ [−20, 20], solid (dashed) lines are positive (negative).
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FIG. 3. Three-dimensional isosurfaces, near the zero level, of wp for modulated rotating waves; (a) the
(m = 0, m = 5) MRW at Re = 3500 and � = 2.5, and (b) the (m = 0, m = 6) MRW at Re = 3700 and � = 2.5.

In the range 1.6 < � < 2.8, the primary bifurcation is to an axisymmetric time-periodic
flow (a limit cycle), which has been described in detail in a variety of axisymmetric studies
(e.g., [10, 11]). Secondary bifurcations give branches of solutions that break the SO(2)
symmetry, resulting in modulated rotating waves (MRW), which have a pure azimuthal
wavenumber dependency together with a time-periodic m = 0 component, of period T , so
that the pattern does not rotate rigidly, but changes with time. Since T and the precession
period Tp of the m = 6 component are not commensurate, the pattern never repeats in a fixed
reference frame, but is periodic in a frame, rotating with the precession period Tp (in this
particular case, Tp ≈ 4.2T ). Figure 3 shows a three-dimensional perspective of isosurfaces
of the perturbation to the axial velocity for MRW at (Re = 3500, � = 2.5) with m = 5
and at (Re = 3700, � = 2.5) with m = 6. Figure 4 comprises contours of the bifurcated
pattern of wp over one period (T = 28.0), for the (m = 0, m = 6) MRW at an axial level
z = 0.8�.

Secondary bifurcations with a more complicated azimuthal structure have also been
observed. For � = 3.0, the first bifurcation is to a RW with m = 4, and this RW undergoes
a secondary bifurcation (Naimark–Sacker) where a second frequency associated with the
m = 1 mode emerges. Figure 5 shows three-dimensional perspectives of the perturbation of
the axial velocity for the (m = 1, m = 4) MRW. Parts (a) and (b) display isosurfaces of the
m = 1 component; (a) has the isolevel at 10% of maximum, showing that all of the energy
associated with this component is concentrated about the axis and is responsible for the
precession of the vortex breakdown bubbles experimentally observed by Escudier [5]. Part
(c) of the figure is the m = 4 component of this MRW and has the same structure as the
pure m = 4 RW with � = 3.0 and lower Re = 2850, shown in Fig. 1; that RW is the solution
from which the MRW bifurcated via a Naimark–Sacker bifurcation. Part (d) is a snapshot
of the complete quasiperiodic MRW perturbation, showing the interplay of both m = 1 and
m = 4 azimuthal components; with MRW the spatial structure never repeats.

Figure 6 shows contours of the perturbation of the vertical velocity, wp, obtained by
setting the m = 0 component of w to zero. It clearly indicates how the two azimuthal
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FIG. 4. Contours of wp at z = 0.8� for the modulated rotating wave solution shown in Fig. 3(b), over one
period of the m = 0 component (T = 28.0). Contour levels are ± max(wp)(i/20)2, for i ∈ [1, 20], solid (dashed)
lines are positive (negative).

contributions m = 1 and m = 4 to the MRW are spatially separated. The m = 4 component
is a jet mode associated with the maximum azimuthal velocity, and the m = 1 component
is a core mode, located about the axis.

We use this MRW case, with the most complicated spatial structure incorporating the
m = 1 mode that via the nonlinear terms couples to all azimuthal modes, to test the spectral
convergence of the scheme. Figure 7 shows the kinetic energy associated with each azimuthal

FIG. 5. Three-dimensional perspectives of the perturbations of the axial velocity for a modulated rotating
wave solution corresponding to Re = 2950 and � = 3.0. Isosurfaces of the m = 1 mode, at (a) 10% of maximum
and (b) close to zero, (c) isosurface of the m = 4 mode close to zero, and (d) isosurface of the axial velocity
perturbation, wp , at 20% of maximum showing the interplay of both m = 1 and 4 modes.
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FIG. 6. Contours of (a) wp at z = 0.8� and (b) w at θ = 0, for the (m = 1, m = 4) MRW at Re = 2950 and
� = 3.0. Contour levels are max(w)(i/20)2 for i ∈ [−20, 20], solid (dashed) lines are positive (negative) levels.

mode, Em , for solutions with 64 Legendre modes in r and z, and L = 19, 27, 35, and 43
(i.e., 10, 14, 18, and 22 azimuthal modes), where

Em = 1

2

∫ H

0

∫ R

0

∫ 2π

0
um · ūmr dθ dr dz.

The figure clearly demonstrates the spectral convergence of the scheme, and that for this
problem, L = 19 captures the essence of the MRW, and increasing L beyond 27 results in
virtually no change in the solution.

FIG. 7. Variations in Em due to azimuthal resolution for the MRW case at Re = 2900, � = 3.0, using N =
M = 64 modes in r and z, and L as indicated in θ .
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In the test problem presented, a strong boundary layer develops at the rotating endwall, of
thickness that scales with Re−0.5. This boundary layer and the discontinuity of the boundary
conditions at the corner where the rotating bottom meets the stationary sidewall place
a significant demand on the spatial resolution in (r, z). These characteristics of the test
problem make finite difference/finite volume schemes impractical in three-dimensional
computations and have been resolved here using 64 spectral modes in both r and z.

5. CONCLUDING REMARKS

We have presented a fast and accurate spectral-projection scheme for solving the three-
dimensional Navier–Stokes equations in enclosed cylinders. We have successfully applied
this code to the flow inside a cylinder with a rotating bottom endwall, and have obtained
several bifurcated three-dimensional states, with complex spatial and temporal behavior, in
good agreement with experiments.

In this problem there exist three points in parameter space where the basic state first loses
stability as two pairs of complex conjugate eigenvalues simultaneously cross the imagi-
nary axis; these double Hopf points act as organizing centers of the subsequent nonlinear
dynamics [18]. The present code is playing a key role in unraveling the complicated dynam-
ics associated with these codimension-2 bifurcations [16], and the transition to complex
dynamics.
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