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The flow in a completely filled rotating cylinder driven by the counter-rotation of the
top endwall is investigated both numerically and experimentally. The basic state of
this system is steady and axisymmetric, but has a rich structure in the radial and axial
directions. The most striking feature, when the counter-rotation is sufficiently large,
is the separation of the Ekman layer on the top endwall, producing a free shear layer
that separates regions of flow with opposite senses of azimuthal velocity. This shear
layer is unstable to azimuthal disturbances and a supercritical symmetry-breaking
Hopf bifurcation to a rotating wave state results. For height-to-radius ratio of 0.5
and Reynolds number (based on cylinder radius and base rotation) of 1000, rotating
waves with azimuthal wavenumbers 4 and 5 co-exist and are stable over an extensive
range of the ratio of top to base rotation. Mixed modes and period doublings are
also found, and a bifurcation diagram is determined. The agreement between the
Navier–Stokes computations and the experimental measurements is excellent. The
simulations not only capture the qualitative features of the multiple states observed in
the laboratory, but also quantitatively replicate the parameter values over which they
are stable, and produce accurate precession frequencies of the various rotating waves.

1. Introduction
This paper describes a combined laboratory and theoretical/numerical study of

linear and nonlinear instability and wave selection in a rotating cylinder driven by a
differentially rotating lid. The laboratory experiments are used to identify regions of
parameter space where multiple states, hysteresis, secondary bifurcations and chaotic
dynamics arise. They also provide quantitative data that are used to validate a
three-dimensional numerical model of the flow. The computational simulations are
used to identify and describe the steady axisymmetric basic state, to characterize the
transitions from axisymmetric to three-dimensional wavy motions, and to clarify the
nature of the bifurcations that lead to periodic, quasi-periodic and chaotic states. The
simulations provide detailed diagnostics and enable tracking of stable and weakly
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unstable solution branches. Our joint laboratory/computational approach has allowed
us to construct a fairly complete picture of the nonlinear dynamics of a rotating shear
flow that contains a particularly rich and varied set of dynamics.

Internal shear layers appear in a number of rotating geophysical systems. Linear
barotropic instabilities that convert basic flow kinetic energy into eddy kinetic energy
are thought to be important for eddy and wave production in the atmosphere and
oceans (e.g. Fantini & Tung 1987; Toyoda et al. 1999; Paldor 1999). For example, in-
stability of the horizontally sheared zonal wind distribution in the tropics at planetary
wavenumber 3 and 4 may be responsible for the ‘two-day waves’ in the stratosphere
(Limpasuvan et al. 2000). Although linear theory has success in describing the initial
wave growth of perturbations in a number of settings, nonlinear effects are often
of great significance. Instabilities on a model intertropical convergence zone (ITCZ)
undergo nonlinear wave selection and eddy clustering (Ferreira & Schubert 1997).
Finite-amplitude perturbations may cause linearly stable ocean eddies to become
unstable (Hua 1988). The hurricane eyewall can take on a hexagonal or polygonal
shape that may be accounted for by nonlinear potential vorticity mixing following
barotropic instability of a circular vortex (Schubert et al. 1999). Wave interpretations
of Saturn’s Polar Hexagon have been offered (Allison, Godfrey & Beebe 1990), but
the sharp-cornered shape of the feature as observed by Voyager (Godfrey 1988) is
likely to be a result of nonlinearity. For these examples the Rossby number varies
from about 1/4 for Saturn’s polar jets to over 1 for the tropical situations cited here.
Our study of the fundamental nonlinear dynamics arising subsequent to barotropic
instability in a controlled rotating system with comparable Rossby number is in part
motivated by a desire to understand mechanisms that may be of potential significance
in these complex geophysical problems.

The system investigated in this paper displays dynamics similar to those observed
previously in related, but different, physical configurations. Rabaud & Couder (1983)
and Chomaz et al. (1988) present experimental visualizations and results of a two-
dimensional (i.e. no variation in the direction of the rotation axis) numerical calcu-
lation of the instabilities on an internal vertical shear layer driven by the differential
rotation of top and bottom concentric disks mounted in the endwalls of a circular slot.
The depth of the slot is small compared with its radius so that the Ekman layers fill
the entire vertical gap. Because of this small aspect ratio, two-dimensional simulations
are able to qualitatively capture some of the features observed experimentally, namely
the steady wave hysteresis and a subharmonic state. Quantitative comparisons were
poor, the order-one differences being attributed to errors in representing the basic
shear flow accurately in the numerical computations.

Hide & Titman (1967) and Früh & Read (1999) performed experiments on a
tall, low Rossby number system. In this case motions were driven by a vertically
symmetric arrangement of differentially rotating discs embedded in the endwalls. The
disc diameter was about half the cylinder diameter. In the rapidly rotating regime
a vertical Stewartson layer appears, locking in place over the small gap between
the embedded discs and the endwalls. This shear layer becomes unstable to a wave
with azimuthal wavenumber n. Regions of stable constant-amplitude rotating waves
with different but adjacent wavenumbers (e.g. n and n + 1) overlap in parameter
space, indicating the presence of multiple states. Flow visualizations suggested the
existence of a phase-locked state with wavenumbers 2 and 1, and LDV output hinted
at a quasi-periodic regime. Apart from qualitatively successful comparisons with
quasi-geostrophic linear instability theory, there has been no attempt to simulate
the supercritical states in these experiments. For the parameters of the Früh–Read
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Figure 1. Schematic of the flow geometry. The inset illustrates typical streamlines of a steady
axisymmetric flow determined by numerical simulation.

experiments this would be a daunting undertaking because of the high effective
Reynolds number (as large as 105), and the small Ekman number (of order 10−4).
The latter means that Ekman layers on the horizontal surfaces occupy 1% of the
height, and, especially if these boundary layers separate into the interior, the resolution
requirements render accurate three-dimensional simulation impractical.

It is not surprising that these systems, together with ours, show similar qualitative
dynamics. For example, the SO(2) symmetry and azimuthal wavenumber quantization
lead naturally to hysteresis, as has been seen in other systems with this symmetry
(e.g. Hart 1980, 1981). For the reasons suggested above, however, there has not yet
been a quantitatively accurate simulation of such a system that permits a detailed
investigation of the nature of the bifurcations associated with primary and secondary
instabilities. Thus we focus on a modest Reynolds number flow that exhibits all of the
previously observed qualitative nonlinear behaviour, along with some new features.

The basic geometry is shown in figure 1. It consists of a cylinder of radius R, closed
at the bottom, rotating at rate Ω, and containing a liquid of depth H and constant
viscosity ν. Motions are driven by a contact top lid that differentially rotates at rate
ωt (or which rotates in the inertial frame of reference at rate Ωt = Ω +ωt). There are
three non-dimensional parameters for this system, two of which are held fixed here:

Re = ΩR2/ν = 1000,

Λ = H/R = 0.5,

S = −Ωt/Ω = −(1 + ωt/Ω).
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In the present paper we consider the retrograde driving situation with ωt < −Ω,
so that S is positive. In this situation there is radial inflow along the upper driving
surface in a nonlinear Ekman layer. For sufficiently large S , this layer separates before
reaching the axis and an internal shear layer forms. The shear layer separates fluid
with azimuthal velocity of the same sense as the base of the cylinder from that with the
sense of the counter-rotating top. There is also a strong meridional jet-like flow along
the shear layer. A detailed study of the axisymmetric basic state and its stability in an
axisymmetric subspace is presented in Lopez (1998). The characteristic axisymmetric
basic state is shown in figure 1. The shear layer in this example separates near the
upper right corner and re-attaches at about mid-depth on the axis. In this paper, we
are interested in the nonlinear dynamics associated with general three-dimensional
instabilities of this shear layer.
S is between 0 and 1 in our study, so the external Rossby number Ro = −(S + 1)/2

is between 0.5 and 1 in magnitude. The transition from axisymmetric to wavy flow is
due to hydrodynamic shear flow instability. This is only weakly affected by rotation
because the shear-layer local Rossby number is considerably higher than the system
Rossby number. However, the basic rotation of the cylinder is crucial in setting up
a detached shear layer in the interior of the fluid that is subject to such instability.
System rotation is important but not so dominant as to constrain the motions to be
two-dimensional in planes perpendicular to the rotation axis. Our geometry moves
the discontinuity between the driving disk and the surrounding walls away from the
interior (where it is located in the previous work cited above) and into the upper
corner. This minimizes its affect on the interior dynamics. The system is invariant
to arbitrary rotations about the axis, SO(2) symmetry, and arbitrary translations in
time, so the basic state is axisymmetric and steady, but with non-trivial structure in
the radial and axial directions (r and z, respectively). In this paper, we study how
the basic state loses stability and how subsequent finite-amplitude wavy states are
selected and maintain or lose stability as S is increased. The other two governing
parameters remain fixed at Re = 1000 and Λ = 0.5.

2. Experimental results
The laboratory cell, sketched in figure 1, has the following dimensions and charac-

teristics:

R = 0.101 m,

H = 0.050 m,

ν = 0.10 cm2 s−1 = 10−5 m2 s−1,

Ω = 1 rad s−1,

Re = 1000± 10,

Λ = 0.5± 0.005.

Figure 2 shows a photograph of the experiment. The cylinder is machined Plexiglas
with a roundness of ±0.03%. The drive lid is made of machined and black-anodized
aluminium with a flatness of 0.02 mm. The gap between this 1.25 cm thick disk and
the rigid Plexiglas sidewall is less than 2 × 10−4 m. The basic rotation is maintained
by a d.c. servo-loop turntable with a stability of ±0.02%. The lid is driven by a
stepper motor attached to the cylinder. Its rotation rate stability is 0.2% or better.
The fluids used were 10 c S silicone oil, for hot thermistor anemometry, or 10 c S
glycerol, for dye injection runs. To keep viscosity constant, and to provide a known
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Figure 2. Photograph of the experiment showing the co-rotating TV cameras, fibre optic slit light,
and differential drive motor. This whole apparatus sits on a rotating table.

reference temperature for our thermistor velocimeter, the experiment was immersed
in a constant temperature bath. The bath was set at 24 ◦C and was maintained within
0.01 ◦C of this value over the course of the experiments.

Crude visualization was accomplished using aluminium flakes in silicone oil. Nicer
photographs of the wavy states were obtained by injecting Fluorescein dye at two
locations at opposite ends of a diameter just below driving disk. Since Fluorescein is
not appropriate for use in silicone oil, which would have to be discarded after being
saturated, these experiments used glycerol. Illumination was provided by a fibre-optic
slit-light focused by a cylindrical lens. Two TV cameras, one looking up from below
and one looking in from the side, imaged the dye. The temporal state of motion was
determined by digitizing the output from a small hot-thermistor constant-temperature
anemometer located 0.025 m in from the sidewall at a height of 0.040 m up from the
transparent Plexiglas bottom. The stem of the probe is 0.0009 m in diameter, while
the probe itself, sticking 0.01 m out from the stem, is 0.0005 m in diameter. A larger
probe (0.0017 m) was found to disturb the flow and to change the axisymmetric-
to-wavy stability boundary, when compared with non-intrusive measurements made
by monitoring Kalliroscope reflectance vs. time at a fixed point using a TV camera.
The smaller probe’s data agreed with the optical transition measurements and has
the advantage of providing relatively clean speed vs. time data from which the wave
frequencies can be accurately obtained.

Figure 3 shows dye images for two extreme cases: axisymmetric steady flow and a
chaotic state. For S < 0.39 rings of dye move in from the upper corner in the Ekman
layer along the upper disk. The rings then advect down into the interior when the
Ekman layer separates from the upper horizontal boundary. S is slowly increased,
usually in steps of 2% with a waiting time of 300 rotations followed by a data taking
interval of a similar length. For S greater than about 0.410 the dye rings break into
waves. Figure 4 shows a wavenumber-4 rotating wave state, RW4 (rotating waves
are invariant spatial structures in a frame rotating at their precession frequency).
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(a) (b)

(c) (d )

Figure 3. Planview of dye patterns resulting from the release of Fluorescein dye at two opposite
points at the upper corner. (a, b) Axisymmetric state, S = 0.39 and (c, d ) chaotic state, S = 0.894,
both for Re = 1000 and Λ = 0.5. The temporal displacements between left and right panels are
about 3 basic rotations. Photographs are taken from below, looking up at a horizontal light sheet
centred on mid-depth with a thickness of about 0.5H .

Even for a simple temporal state, the dye advection patterns can, over time, become
quite complex, as is well known from chaotic advection studies. The sideviews of
figure 4 show the separated boundary layer, diving down into the interior, with a
wavenumber-4 dye structure evolving in time. The sideviews cover the approximate
axial range 0.1H < z < 0.9H . Note that the dye is released into the rotating wave
state. The changes in the dye sheet structure shown in the figure are not due to
spatial changes in the flow state over time, but rather reflect the advection of the
(small amount of) dye (released over a 3 s interval) through the complicated spatial
structure in the combined axisymmetric flow plus rotating wave state as time evolves.

For 0.41 < S < 0.72 two distinct rotating wave states were observed. Example
dye patterns of the RW4 and RW5 states, both at S = 0.440, are shown in figure 5.
These photographs illustrate the regular but highly structured patterns obtained by
nonlinear advection of dye in these wave fields. That these are rotating wave states
is also clearly evident from frequency spectra, as illustrated in figure 6. The spectra
were obtained from the thermistor speed sensor mounted on the rotating cylinder
and represent frequencies in the rotating frame of reference. Although velocimeter
calibration curves were obtained, for frequency analysis we just analysed the voltage
output from the bridge circuit. A peak finder is used to obtain the main component
frequency, which is accurate to better than 0.3%. The waves are nearly but significantly
non-resonant. The phase speeds (frequency over wavenumber) are 0.949 and 0.929
for the two states in figure 6.
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(a) (b)

(c) (d )

Figure 4. Planview and sideview of dye released into a wavenumber-4 rotating wave at S = 0.411.
(a–d ) Time sequence of shots at t = 0, 7, 19, and 24 s (basic rotation = 6.24 s). In the sideview the
dye is injected at the upper corner and initially flows radially inwards in the upper Ekman layer
that is not illuminated by the lateral light beam.

Figure 7 shows the variation of wave frequency with S , as would be seen in the
inertial frame. The inertial-frame frequency (non-dimensionalized by the base rotation
rate Ω) is the wavenumber minus the frequency of the peak obtained from the spectra
(as in figure 6). Positive frequencies are plotted, but all patterns propagate retrograde
(opposite to Ω) in the rotating reference frame. The RW5 state has a higher frequency
at low S and at high S . The curves cross at S ≈ 0.45 and again at S ≈ 0.60. At large S
(greater than about 0.6), RW5 states are harder to track or reach from random initial
conditions. This suggests that the RW5 branch becomes less stable with a smaller
attractor basin as S increases. No RW5 states were found for S > 0.70.

At S = 0.78 a period-doubling bifurcation occurs on the RW4 branch (see figure 8).
The first subharmonic of the primary wavenumber-4 frequency grows. Dye releases in-
dicated that this is related to the appearance of a spatially phase-locked wavenumber-2
disturbance. We have not attempted to quantify the amplitude vs. supercriticality of
these modes because measurements are at a fixed point and changes in the flow’s
spatial structure can be misinterpreted as changes in amplitude. However, there does
not appear to be hysteresis in this transition.

At the same parameter point as that shown in figure 8(b), it is possible to find
a quasi-periodic regime whose time series and spectra are shown in figure 9(a).
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(e) ( f )
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Figure 5. Dye sequences for S = 0.440: (a–d ) RW4 and (e–h) RW5 states. The images in each
sequence are approximately 10 s apart.
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Figure 6. Time series and frequency spectra for (a) RW4 and (b) RW5, both at S = 0.516. Probe
output was digitized at 10 Hz for a period of 2000 s. The frequency is normalized by the base
rotation rate and the signal is measured in the rotating frame of reference.

The signal for this QP regime is dominated by wavenumber 4. The quasi-periodic
modulation, in which the contributions of wavenumbers 4 and 2 wax and wane,
arises at about one-twentieth the frequency of the dominant wave, or with frequency
0.20 (in units of Ω). The quasi-periodic state and the two-wave steady-amplitude
rotating-wave state coexist over a limited range of S . Above about S = 0.81 only the
QP form is found. Eventually, as S increases, the modulations become irregular, as
illustrated in figure 9(b). The details of this transition, and the return to periodic and
axisymmetric flow as S is raised past 1.0 will be reported in a future communication.

In summary, the experiments show rotating waves from S = 0.41 to S = 0.79.
There are two states with wavenumber 4 and 5, with the latter becoming unstable
(and hence not observed) past S = 0.70. For a range of S of about 0.02 centred on
0.79 two more-complicated states can apparently exist together. These are a spatially
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Figure 7. Wave frequencies as functions of S for rotating waves as would be measured in the
inertial frame of reference.

and temporally period-doubled RW4 leading to a phase-locked RW2, and a quasi-
periodic state with modulation frequency about 0.20. For S between approximately
0.81 and 0.84 only quasi-periodic states were found. For S > 0.84 intermittent bursts
of near-periodic motions are interspersed within noisy fluctuations.

As will be shown below, these laboratory results are in remarkable agreement with
numerical computations. However, one stable branch, uncovered numerically, was
not found in the laboratory realizations. This is a weak quasi-periodic mixed wave
state existing from S = 0.44 to 0.46. We tried to find this by stepping slowly forward
and backwards through this region, by doing impulsive starts or jumps from stable
wavenumber 5 or 4 states, or by using initial conditions from QP or chaotic states.
Runs as long as 48 hours (at 6.24 s per base rotation) never relaxed to a QP state in this
window. The system always equilibrated to a stable RW4 or RW5. One possibility is
that the finite probe size may de-stabilize or otherwise damp out the weak mixed mode.

3. Governing equations and computational method
The computational simulations of the three-dimensional motions in the cell sketched

in figure 1 are carried out in the inertial frame of reference. The equations governing
the flow are the Navier–Stokes equations together with initial and boundary con-
ditions. We denote the velocity vector and pressure respectively by u = (u, v, w)T

and p. Then, the non-dimensionalized Navier–Stokes equations in velocity–pressure
formulation written in cylindrical coordinates are

∂tu+ advr = −∂rp+
1

Re

(
∆u− 1

r2
u− 2

r2
∂θv

)
,

∂tv + advθ = −∂θp+

1

Re

(
∆v − 1

r2
v +

2

r2
∂θu

)
,

∂tw + advz = −∂zp+
1

Re
∆w,


(3.1)
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Figure 8. The period-doubling bifurcation from (a) RW4 at S = 0.779 to
(b) a phase-locked RW2 at S = 0.795.

1

r
∂r(ru) +

1

r
∂θv + ∂zw = 0, (3.2)

where

∆ = ∂2
r +

1

r
∂r +

1

r2
∂2
θ + ∂2

z , (3.3)

is the Laplace operator in cylindrical coordinates and

advr = u∂ru+
v

r
∂θu+ w∂zu− v2

r
,

advθ = u∂rv +
v

r
∂θv + w∂zv +

uv

r
,

advz = u∂rw +
v

r
∂θw + w∂zw.


(3.4)
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Figure 9. Time series and frequency spectra for (a) a quasi-periodic state at S = 0.794 and
(b) a chaotic state at S = 0.892.

Note that in addition to the nonlinear coupling, the velocity components (u, v) are
also coupled by the linear operators in this case. Following Orszag & Patera (1983),
we introduce a new set of complex functions

u+ = u+ iv, u− = u− iv. (3.5)

Note that

u =
1

2
(u+ + u−), v =

1

2i
(u+ − u−). (3.6)
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Figure 10. Em for a RW4 solution at Re = 1000, S = 0.50, Λ = 0.5, using M = N = 32, L = 79,
and δt = 0.005.

The Navier–Stokes equations (3.1)–(3.2) can then be written using (u+, u−, w, p) as

∂tu+ + adv+ = +
1

Re

(
∆− 1

r2
+

2i

r2
∂θ

)
u+,

∂tu− + adv− = −
(
∂r − i

r
∂θ

)
p+

1

Re

(
∆− 1

r2
− 2i

r2
∂θ

)
u−,

∂tw + advz = −∂zp+
1

Re
∆w,


(3.7)

(
∂r +

1

r

)
(u+ + u−)− i

r
∂θ(u+ − u−) + 2∂zw = 0, (3.8)

where we have denoted

adv± = advr ± i advθ. (3.9)

The boundary conditions are no slip on the cylinder sidewall, top and bottom:
sidewall (r = 1): u = w = 0, v = 1;
bottom (z = 0): u = w = 0, v = r;
top (z = Λ): u = w = 0, v = Sr.

On the axis, the minimal (essential) pole conditions are imposed to ensure regularity
of the velocity field at r = 0 (see Lopez, Marques & Shen 2002, for details).

The main difficulty in numerically solving the above equations is due to the fact
that the velocity vector and the pressure are coupled together through the continuity
equation. An efficient way to overcome this difficulty is to use a so-called projection
scheme. Here, we use a stiffly stable semi-implicit, i.e. the linear terms are treated
implicitly while the nonlinear terms are explicit, second-order projection scheme.
For the space variables, we use a Legendre–Fourier approximation. The azimuthal
direction is discretized using a Fourier expansion with k + 1 modes corresponding
to azimuthal wavenumbers m = 0, 1, 2, . . . k/2. The axial and radial directions are
discretized with a Legendre expansion, as was done for the axisymmetric version of
this problem (Lopez 1998). With the above discretization, one only needs to solve, at
each time step, a Poisson-like equation for each of the velocity components and for
pressure. These Poisson-like equations are solved using a spectral–Galerkin method,
see Lopez & Shen (1998) and Lopez et al. (2002) for details and convergence tests. The
modal energies, Em, for a typical rotating wave solution with azimuthal wavenumber 4,
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Figure 11. Variation with S of the zonal energies, Em, for Re = 1000, Λ = 0.5; the states P1 (RW4),
P2 (RW5), and P4 (MRW4,5) are as in figure 12. Solid lines correspond to stable states and dashed
lines to unstable states.

i.e. RW4, are plotted in figure 10, where

Em =

∫ Λ

0

∫ 1

0

〈em〉r dr dz,

and

〈em〉 =
1

2

∫ 2π

0

um · ūm dθ

is the azimuthally averaged modal energy density. This solution, corresponding to
Re = 1000, S = 0.50, and Λ = 0.5, was computed with 32 Legendre modes, M and
N, in r and z, and 80 Fourier modes, k = 79, in θ, and time step δt = 0.005; all the
results presented here have this spatial and temporal resolution.

4. Numerical results
From Lopez (1998), we have that the basic state at Re = 1000, Λ = 0.5 is stable

to axisymmetric (m = 0) perturbations over an extensive range of S . When non-
axisymmetric perturbations to the basic state are considered, it loses stability as S is
increased beyond 0.408 to a rotating wave state with azimuthal wavenumber m = 4,
denoted as RW4. This is a supercritical symmetry-breaking Hopf bifurcation; figure 11
shows that E4(RW4) grows linearly with |S − Scr4|, where Scr4 is the value of S at the
Hopf bifurcation. This branch of solutions can be followed by continuation (i.e. taking
an RW4 solution at a value of S as initial condition for a slightly larger value of S) up
to S = 0.441. However, if we take different initial conditions around S = 0.42, some
of these evolve to a rotating wave solution with azimuthal wavenumber m = 5, RW5.
This branch can be continued down to S = 0.4146, and extended out to S = 0.699.
Note that RW5 does not bifurcate directly as a stable solution from the basic state.
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Figure 12. Bifurcation diagram for Re = 1000, Λ = 0.5 as S is varied; • and e correspond to
stable and unstable solutions respectively, the state P0 is the steady axisymmetric basic state, P1 and
P2 are RW4 and RW5 rotating waves, respectively, and P3 and P4 are modulated rotating waves
with mixed azimuthal wavenumbers m = 4 and 5 (the stable one of the two, we denote MRW4,5).

Continuing the RW5 branch to smaller S by small increments, we can for short times
stay arbitrarily close to the unstable RW5 branch, all the way to the basic state
at S = 0.4102 (which itself is unstable, having undergone the aforementioned Hopf
bifurcation at S = 0.408 to RW4). This is also illustrated in figure 11, where it is shown
that E5(RW5) varies linearly with |S − Scr5|. We infer that the unstable RW5 branch
bifurcates from the unstable basic state via a supercritical Hopf bifurcation, and then
subsequently at S = 0.4146 becomes stable. The simplest scenario consistent with this
is a supercritical Neimark–Sacker bifurcation resulting in an unstable 2-torus being
spawned, never observed directly, as the RW5 branch becomes stable.

At S = 0.441, the RW4 branch undergoes a supercritical Neimark–Sacker bifur-
cation, leading to a stable 2-torus. This new solution is a mixed mode, a modulated
rotating wave with wavenumbers m = 4 and 5, denoted as MRW4,5. In figure 11,
E5(MRW4,5) is shown to grow linearly from zero and E4(MRW4,5) decreases from
the value of E4(RW4) at the bifurcation. As S is further increased, MRW4,5 under-
goes a reverse Neimark–Sacker where the mixed mode is absorbed back into the
RW4 branch, which is re-stabilized in the process. RW4 continues to be stable up to
S = 0.7738. This sequence of bifurcations resulting in the stable mixed mode is robust
to spatial and temporal resolution, with no changes when the time step, δt, is doubled
and the number of Fourier modes, L, is halved. This mixed mode branch is the one
mentioned in § 2 that could not be detected experimentally.

The sequences of bifurcations described above are schematically summarized in
figure 12. The first four panels in the figure, (a–d ), are typical of double Hopf
bifurcation scenarios. However, the Neimark–Sacker bifurcations depicted in panels
(e) and (f) involving MRW4,5 are not part of such scenarios (e.g. see Guckenheimer
& Holmes 1986; Kuznetsov 1998). Note that RW4 and RW5 bifurcate from the basic
state at very similar values of S , and one may expect that at nearby values of Re and
Λ they bifurcate simultaneously. Double Hopf dynamics seems to be fairly common
in rotating flows with shear (e.g. see Moroz & Holmes 1984; Churilov & Shukhman
1992; Marques, Lopez & Shen 2002).
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〈v〉
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〈e5〉

Figure 13. Contours of the azimuthally averaged azimuthal velocity 〈v〉, and azimuthally averaged
modal energy density 〈em〉, for (a) RW4 and (b) RW5, at S = 0.500; max(e4) = 2.5 × 10−3 and
max(e5) = 2.1× 10−3.

Figure 13 shows contours of the azimuthally averaged azimuthal velocity, 〈v〉, and
azimuthally averaged modal energy densities, 〈e4〉 and 〈e5〉, for the two rotating wave
states RW4 and RW5 at S = 0.500. Both rotating waves have similar azimuthally
averaged flows, and do not differ appreciably from the axisymmetric basic state at the
same values of Re, Λ and S (given in figure 6(a) of Lopez 1998). The energy in the
axisymmetric component of these states, E0 ∼ 0.5, is two orders of magnitude larger
than the energy in the respective dominant azimuthal modes, E4 and E5. In both
rotating waves, the energy in their non-axisymmetric components is concentrated at
the shear layer formed by the separation of the Ekman layer at the top counter-
rotating lid. A distinguishing feature is how these components interact with the
Ekman layer on the bottom endwall; 〈e4〉 has a comparatively more intense local
maximum near the lower endwall. The reason for this becomes clear on examining
the three-dimensional structure of these solutions.

Figure 14 shows contours of the azimuthal and axial components of velocity, v
and w, in a horizontal plane at z = 0.5Λ looking down from above (the rotation
of the bottom and sidewall is counter-clockwise and the top lid is rotating in the
clockwise direction in this view) for RW4 and RW5, both at S = 0.500. The azimuthal
instability manifests itself near the top, where the corresponding energy is largest,
as a circular ‘cat’s-eye’ pattern, typical of shear layer instabilities. The associated
vortex-like structures, funnels, tend to initially extend vertically downwards and then
are turned into the bottom Ekman layer, whereas in contrast, the mean shear layer
becomes horizontal and attaches to the axis at about mid-height. A three-dimensional
view of these (as isosurfaces of the vertical velocity) is provided in figure 15 for
both RW4 and RW5. Figure 16 shows contours of the axial component of vorticity,
ζ, at heights z = 0.25Λ and 0.5Λ for the RW4 and RW5 cases in figure 14. At
z = 0.5Λ, the fluid above the shear layer is rotating with negative ζ, whereas at the
lower level, the funnels have decended and are locally counter-rotating with negative
ζ surrounded by fluid with large positive ζ. The funnels have relatively large velocity
in their cores (as indicated in figure 15), which advects the locally counter-rotating
fluid down into the Ekman layer. This mechanism is a three-dimensional process;
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(a) v (r, θ, zl) (b) w (r, θ, zl)

(c) v (r, θ, zl) (d ) w (r, θ, zl)

Figure 14. Contours of v and w on a plane at height zl = 0.5Λ for (a, b) RW4 and (c, d ) RW5, both
with S = 0.500. Contour ranges are min–max(v, w) = (±1.0,±0.1), positive (negative) contours are
solid (dashed).

there is no corresponding mechanism in the quasi-two-dimensional, low-aspect-ratio
rotating shear layers, for example, studied experimentally and numerically by Rabaud
& Couder (1983), Chomaz et al. (1988) and Bergeron et al. (2000).

The frequencies, ω, of the rotating wave solutions have been determined from the
spectra of the time series of V = v(0.5, 0.0, Λ/2), PSD(V ), and the sense of rotation
(in the stationary frame) from movie animations of the solutions. For both RW4 and
RW5, the wave structure rotates in the same direction as the bottom and the sidewall,
but with smaller frequency (in the rotating frame of reference, the pattern drifts retro-
grade). For a rotating wave with azimuthal wavenumber m, the precession frequency
is given by ω/m and the corresponding precession period is 2πm/ω. The frequencies
for RW4 and RW5 are plotted in figure 17. The corresponding precession frequencies
are approximately a factor of 20 smaller than that of the bottom and sidewall whose
frequency is 1, and that of the counter-rotating top is S . These are in excellent overall
agreement with the experimentally determined precession frequencies (figure 7), par-
ticularly for S > 0.5. For S < 0.5, the experimental frequencies are about 10% higher
than the computed values. A possible reason for this may be related to the mixed-mode
MRW4,5 that was computed but not unambiquously identified in the experiments.
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(a) (b)

Figure 15. Isosurfaces of the vertical velocity, at two-thirds of the maximum downwards value, for
(a) RW4 and (b) RW5, at S = 0.500; viewed slightly from above.

(a) (b)

z = 0.25Λ

(c) (d )

z = 0.25Λ

Figure 16. Contours of ζ on planes at height z = 0.25Λ and z = 0.5Λ for (a, b) RW4 and (c, d )
RW5, with S = 0.500. Contour ranges are min–max(ζ) = (−2, 12), positive (negative) contours are
solid (dashed).

The azimuthal average of the mixed mode MRW4,5 is essentially the same as that
of RW4 and RW5 (compare figures 13 and 18). Further, the structure of its 〈e4〉 and
〈e5〉 are very similar to the corresponding 〈e4〉 of RW4 and 〈e5〉 of RW5, although
the maximum value of 〈e5〉 is considerably smaller, as the mixed mode bifurcates
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Figure 17. Variation of the frequencies of RW4 and RW5 with S , for Re = 1000 and Λ = 0.5.

〈v〉 〈e4〉 〈e5〉

Figure 18. Contours of the azimuthally averaged azimuthal velocity and azimuthally averaged
modal energy density for MRW4,5 at S = 0.450; max(e4) = 6.9× 10−4, max(e5) = 1.3× 10−4.

(a) v (r, θ, zl) (b) w (r, θ, zl)

Figure 19. Contours of v and w on a plane at height zl = 0.5Λ for MRW4,5 with S = 0.450.
Contour ranges are min–max(v, w) = (±1.0,±0.1), positive (negative) contours are solid (dashed).

from RW4 with an m = 5 component being excited. The three-dimensional structure
of MRW4,5 is a small perturbation on RW4 by the m = 5 component, as can been
seen by comparing figures 14(a, b) and 19. The precession of the structure is roughly
the same as that of RW4 at the same values of S , but it is weakly modulated. The
power spectral density of the time series of V for MRW4,5 at S = 0.450 is given in
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Figure 20. (a) Power spectral density of the time series of V for MRW4,5 at S = 0.450, and (b) the
corresponding primary ωprim and modulation ωmod peaks over the range of S in which the mixed
mode exists.

figure 20. The spectrum contains a primary peak ωprim ≈ 0.245, and another much
smaller (modulation) peak ωmod ≈ 0.031. Note that ωprim − ωmod ≈ 0.214 and that
0.245 and 0.214 are very close to the frequencies of RW4 and RW5 at S = 0.450
(from figure 17), respectively 0.242 and 0.222. From animations the MRW4,5 solutions
appear very similar to the RW4 state, perturbed at the shear layer (see figure 18),
overall the structures (which are no longer rigid) rotating in the same sense and with
very similar frequency to the corresponding RW4, and there is also an m = 1 mode
evident most clearly near the axis (arising from convolution between the m = 4 and
m = 5 components) that rotates in the opposite sense with frequency ωmod.

The rotating wave RW4 loses stability at S = 0.7738 via a period-doubling bifur-
cation (Floquet multiplier crossing the unit circle through −1) and the RW2 solution
branch results. The modal energy E2(RW2) grows linearly from zero with S and
E4(RW2) decreases from the value of E4(RW4) at the critical S value (see figure 21).
The power spectral density of RW4 at S = 0.770 (before the period-doubling bi-
furcation) and of the bifurcated RW2 at S = 0.775 are shown in figure 22, clearly
demonstrating the doubling of the temporal period.

Comparing the structure of RW2 at S = 0.775 with that of RW4 at the same S
(for which it is unstable, but by continuity we can remain arbitrarily close to the
unstable RW4 for a short time), the period doubling is most evident near the axis.
From figure 23, we find that the energy in the m = 2 mode, 〈e2〉, is concentrated in
the lower Ekman layer near the axis. Comparing 〈v〉, (〈u〉, 〈w〉), and 〈e4〉 from RW2

with those from RW4 (figure 13a), the basic characteristics of the averaged RW2 are
similar to those of RW4. One distinguishing effect of the period doubling is how the
shear layer meets the axis: for RW4, the attachment occurred at about mid-height,
whereas with 〈e2〉 being maximum on the axis near the bottom, the shear layer of
RW2 attaches to the axis much closer to the top.

The locally counter-rotating funnel structures on the shear layer are more prevalent
at larger S , as is evident from the contours of w in figures 24(a) and 24(b). Figure 25
presents contours of v in meridional planes at θ = 30◦ and 140◦; the zero-contour
level demarkates the shear layer. The horn-shaped structure of the funnel at θ = 30◦
is very evident as it is sucked into the Ekman layer.

Continuation of RW2 beyond S = 0.790 is not possible; the system evolves to a
state which has the same azimuthal modal structure, but with E0 being time-periodic
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Figure 21. Modal energies, E2 and E4, of RW2, RW4 (dotted line denotes the unstable part of the
branch), and MRW2,0 in the neighbourhood of S where the period-doubling bifurcation from RW4

to RW2 and the double fold bifurcation linking RW2 and MRW2,0 take place.

(NB for a pure rotating wave, the modal energies are constant since the spatial
structure is frozen in a frame rotating at the precession frequency). Continuing this
new branch down to lower S , at S ≈ 0.785 we return to the RW2 branch, completing
a hysteresis loop. Figure 26(a) shows E0 for both RW2 (for which this modal energy is
steady) and the new branch that we denote MRW2,0 (periodic) at the same S = 0.786.
This new branch corresponds to the quasi-periodic states observed experimentally for
this range of S . Figures 26(b) and 26(c) are the power spectra of V of the two states
at S = 0.786, showing typical spectra of a pure rotating wave, (b), and (c) the same
spectra with a modulation (compare with the experimentally determined spectra of
the corresponding states in figures 8b and 9a).

The existence of the hysteresis loop suggests cyclic-fold bifurcations (i.e. saddle-
node bifurcations of limit cycles) at each end, and the presence of an unstable branch
completing the connection. This is illustrated schematically in figure 27. The presence
of such folds and saddle-node bifurcations in this flow has previously been described
for the axisymmetric case (Lopez 1998), but there the fold-cusp occurs at large Re. The
fold bifurcations come about due to a competition between the shear layer attaching
to the axis near the top or the bottom Ekman layers, as in the axisymmetric case. The
shear layer originates in the top corner where the sidewall meets the counter-rotating
top; where it terminates depends on the relative angular momentum of the fluid either
side of it. For smaller S , the fluid above the shear layer has less angular momentum
than the fluid below it, and by centrifugal effects moves towards the axis relative to
the lower high-angular momentum fluid. As it does so, the shear layer tends to attach
at the axis near the bottom as the central region tends to fill with the lower-angular-
momentum fluid above the shear layer. For larger S , the fluid above the shear layer
has more angular momentum and this fluid tends to be centrifuged radially outwards,
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Figure 22. Power spectral densities of RW4 (dashed lines) at S = 0.770 and
RW2 (solid lines) at S = 0.775.

〈v〉 〈e2〉 〈e4〉

Figure 23. Contours of the azimuthally averaged azimuthal velocity and azimuthally averaged
modal energy density for RW2 at S = 0.775; max(e2) = 6.3× 10−5, max(e4) = 1.3× 10−2.

(a) (b) (c)

Figure 24. Contours of w on a plane at height zl = 0.5Λ for (a) RW2 with S = 0.775,
(b) (unstable) RW4 with S = 0.775, and (c) MRW2,0 with S = 0.800 at one instant. Contour
ranges are min–max(w) = ±0.2, positive (negative) contours are solid (dashed).

the fluid below the shear layer near the axis (which has relatively small angular
momentum) is drawn in to fill the void left by the centrifuged fluid, and in effect
the shear layer attaches to the axis much closer to the top. The hysteresis occurs at
intermediate S values. Now, in our non-axisymmetric problem, the fold bifurcations
are more complex since RW2 is a limit cycle and MRW2,0 is a 2-torus, and so a
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(a) (b)

Figure 25. Contours of v in meridional planes at (a) θ = 30◦ and (b) θ = 140◦
for RW2 at S = 0.775.
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Figure 26. (a) Segments of the time series of E0 for RW2 and MRW2,0 at S = 0.786,
(b) and (c) power spectral densities of V from RW2 and MRW2,0, respectively, at S = 0.786.

further bifurcation must occur, introducing the second frequency in MRW2,0, along
the unstable branch. We infer that this is a Neimark–Sacker bifurcation, indicated
schematically in the figure. Note that the point SN1 is a saddle-node of limit cycles
(rotating waves) and SN2 is a saddle-node of 2-tori (modulated rotating waves).

We can further distinguish between RW2 and MRW2,0 by examining their azimuthal
averages. For RW2, these have already been presented in figure 23, and for MRW2,0
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Figure 27. Schematic of the two-fold and intermediate Neimark–Sacker bifurcations along the
RW2 branch, resulting in the MRW2,0 solution branch.

〈v〉 〈e2〉 〈e4〉

Figure 28. Contours of the azimuthally averaged azimuthal velocity and azimuthally averaged
modal energy density for MRW2,0 at S = 0.800; max(e2) = 4.5× 10−3, max(e4) = 1.1× 10−2.

these are given in figure 28. With MRW2,0 the shear layer once again attaches to
the axis, but closer to the bottom (compare 〈v〉 in figures 23 and 28). Also, the
energy in the m = 2 mode is concentrated in the shear layer near where it separates
from the top, in contrast to that in RW2 which was concentrated near the axis and
bottom Ekman layer. With the m = 2 energy being concentrated near the shear layer
separation point, this results in a large-scale symmetry breaking of the shear layer
from C4 to C2 (compare figures 24a and 24c), where in RW2 the shear layer remains
essentially C4-symmetric and the symmetry breaking to C2 is only evident near the
axis.

For S greater than about 0.8 some solutions display the intermittent bursting
phenomena also observed in the experiments. The modal-energy time series in figure 29
show competition between the m = 2, 4 and 5 azimuthal modes. The case in the figure
was initiated from a RW4 state, which is unstable at S = 0.85, to m = 2. The RW4

evolves to an RW2 state that is itself unstable to m = 5. When E5 has grown to finite
amplitude, there is continual exchange of energy among the three modes (and other
modes via nonlinear convolution). The time series shows that the bursting phenomena
consist of E5 growing and drawing energy from E4, while as E4 is reduced the m = 2
component is not supported and E2 diminishes, resulting in a lack of energy source
for E5 which also diminishes and then E4 grows again. In this regime, the flow
behaviour is very complex. These intermittent solutions co-exist with some of the
previously described states, and both the experiments and the numerical simulations
involving these are difficult to analyse. We leave this analysis to a separate and future
investigation.
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Figure 29. Time series of modal energies E2, E4 and E5, for an intermittent state at S = 0.85,
initiated from an RW4 state.

5. Conclusion
Laboratory experiments and computational simulations have been carried out for

a three-dimensional rotating flow driven by a differentially counter-rotating endwall.
The two approaches are effectively equivalent. With fixed rotational Reynolds number
Re = 1000, and aspect ratio Λ = H/R = 0.5, the main regimes as the differential
rotation ratio S is varied are as follows.

(a) S < 0.41: Axisymmetric flow with a separated Ekman layer on the top.
(b) 0.41 < S < 0.79: Multiple rotating waves of wavenumber 4 and 5, RW4 and

RW5. The precession frequencies measured in the laboratory and extracted from the
computations are essentially the same (compare figures 7 and 17).

(c) S ≈ 0.77: A narrow window (of width about 0.01 in S) where RW4 bifurcates
to a subharmonic wavenumber-2 state, RW2.

(d) S ≈ 0.79: A narrow window (of width about 0.01 in S) with two stable states,
RW2 and a modulated (quasi-periodic) wave with wavenumber-2, MRW2,0.

(e) 0.79 < S . 0.83: Quasi-periodic flow.
(f) 0.83 < S: Intermittent bursts of quasi-periodic motion.
The computations have enabled a detailed exploration of the bifurcations to dif-

ferent flow regimes. The first is a supercritical Hopf bifurcation from the steady
axisymmetric basic state to RW4. On increasing S , the unstable basic state undergoes
a second Hopf bifurcation to an unstable RW5, which becomes stable with a small
increase in S , via a Neimark–Sacker bifurcation, spawning an unstable mixed mode.
There is a small window in S where RW4 loses stability via a Neimark–Sacker bifur-
cation and a stable mixed mode MRW4,5 emerges. This state has not been observed
experimentally; this is expected given the small range in S over which it exists and
the small energy level contained in its m = 5 component.

The two stable rotating waves, RW4 and RW5, co-exist over the same range of S
observed in the experiments. The spatial period doubling from RW4, at the end of its
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range (point c above) to RW2 is found to be a symmetry-breaking Neimark–Sacker
bifurcation, and on increasing S is followed by a sequence of saddle-node bifurcations
leading to the MRW2,0 state, which has also been observed in the experiment (point
d above).

For S at about 0.8 and above, quasi-periodic and intermittent states have also been
computed that appear to correspond to states observed experimentally (points e and
f above).

The computations and experiments illustrate the complex three-dimensional nature
of the instabilities occurring in this system. The computed Eulerian fields in the wave
regimes for S > 0.41 show how different instabilities are associated with different
regions in the flow. Eddy energy can concentrate in the vicinity of the shear layer
resulting from the separation of the Ekman layer on the counter-rotating top, or near
the reconnection point on the axis, or near the bottom Ekman layer. The patterns are
nonlinear with sharp corners (figure 14). Dye advection patterns from the experiment
(figure 5) are also sharp cornered and complex. Both methods indicate that shear
instability may lead to polygonal patterns such as those seen in geophysical situations
mentioned in the Introduction. These patterns result from a linear instability of the
shear layer to an azimuthal wavy mode. Where the downward velocity is locally large,
a funnel-like structure forms and is drawn into the bottom Ekman layer, where it
is counter-rotating. The advection of these vortical funnels by the jet-like meridional
velocity at the shear layer produces a strong deformation of the linear mode, leading
to the nonlinear polygonal structures.

Confined rotating flows have shear layers. In the simple problem where the bottom
and sidewall are stationary, and the flow is driven by the rotating top, the dynamics
of the resulting flow are governed by the behaviour of the shear layer that results
when the Ekman layer on the rotating disk is turned by the presence of the sidewall.
In that case, the shear layer remains close to the sidewall. In this study, we have
effectively placed that simple system in a frame which is rotating counter to the top.
This provides an extra degree of freedom (and an extra control parameter) which
effectively allows the shear layer to come away from the sidewall. The rich dynamics
reported here are due to the free shear layer exploring its new-found freedom.

This work was partially supported by NSF grants ATM-9714221, INT-9732637,
CTS-9908599, DMS-0074283, OCE-0002345 (USA), and DGICYT grant PB97-0685
(Spain).
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