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Abstract

Drop dynamics plays a central role in defining the interfacial morphology in two-phase complex fluids such as emulsions and polymer
blends. In such materials, the components are often microstructured complex fluids themselves. To model and simulate drop behavior in
such systems, one has to deal with the dual complexity of non-Newtonian rheology and evolving interfaces. Recently, we developed a
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iffuse-interface formulation which incorporates complex rheology and interfacial dynamics in a unified framework. This paper us
imensional implementation of the method to simulate drop coalescence after head-on collision and drop retraction from an elong
hape in a quiescent matrix. One of the two phases is a viscoelastic fluid modeled by an Oldroyd-B equation and the other is
or the parameter values examined here, numerical results show that after drop collision, film drainage is enhanced when eith
iscoelastic and drop coalescence happens more readily than in a comparable Newtonian system. The last stage of coalescence
y a short-range molecular force in the model that is comparable to van der Waals force. The retraction of drops from an initi
ero-velocity and zero-stress is hastened at first, but later resisted by viscoelasticity in either component. When retracting from an
ith pre-existing stress, produced by cessation of steady shearing, viscoelasticity in the matrix hinders retraction from the begin

hat in the drop initially enhances retraction but later resists it. These results and the physical mechanisms that they reveal are con
rior experimental observations.
2005 Elsevier B.V. All rights reserved.
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. Introduction

Drop dynamics is the key to understanding interfacial mor-
hology in two-phase materials[1]. In nature and in indus-

rial processes, many such materials have components that
re complex fluids themselves, with internal microstructures
hose evolution affects the macroscopic dynamics of the
aterial, especially the rheology. Examples include polymer
lends[2], polymer-dispersed liquid crystals[3] and various
iological fluids[4].

Theoretical and numerical analysis of drop dynamics in
omplex fluids has to struggle with the dual difficulties of

∗ Corresponding author.
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moving interfaces and microstructure-dependent rheo
Specifically, there is the interplay among microscopic, m
scopic and macroscopic scales: (a) the internal micros
ture, e.g., molecular conformation, inside each compo
(b) the interfaces and (c) the flow field. The coupling
tween (b) and (c) alone is well studied for Newtonian dr
[5]. Similarly, the (a)–(c) coupling is the subject of molecu
constitutive theories in rheology (e.g.,[6]). Having both (a
and (b) present in a flow problem is the novelty of this w

Methods for solving moving-interface problems fall in
two broad categories: interface tracking and interface ca
ing [7,8]. The former uses a moving mesh with grid po
residing on the interface. The latter determines the pos
of the interface by using a scalar function, whose evolu
is typically represented by an advection equation on a
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grid. Conceptually, both treat the interface as a zero-thickness
surface, though an essential ingredient in the fixed-grid meth-
ods is a numerical regularization that spreads the interfacial
force over a volume.

Recently, Yue et al.[9] proposed a fixed-griddiffuse-
interface model for two-phase flows of complex fluids. This
model differs from other fixed-grid methods in that the inter-
face is treated asphysically diffuse (e.g.,[10,11]). The inter-
facial position and thickness are determined by a phase-field
variable whose evolution is governed by a mixing energy.
This way, the structure of the interface is rooted in molecular
forces; the tendencies for mixing and demixing are balanced
through the nonlocal mixing energy. This contrasts the level
set and volume-of-fluid methods, which replace the surface
tension by a body force or stress as anumerical device to
regularize the singularity. The significance of this physical
root will become apparent when we discuss the rupture of
the thin film separating two coalescing drops. When the in-
terfacial width approaches zero, the diffuse-interface model
becomes identical to a sharp-interface level-set formulation.
It also reduces properly to the classical sharp-interface model.

In our context of two-phase complex fluids, another attrac-
tion of the diffuse-interface method is its capability of easily
incorporating the rheology of microstructured fluids. This is
by virtue of its energy-based variational formalism. As long
as the conformation of the microstructure is describable by a
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section, we will specialize the formalism for a mixture of a
Newtonian and an Oldroyd-B fluid, and summarize the main
features of the numerical procedure.

The Newtonian and Oldroyd-B components are immis-
cible except in a very thin interfacial region. This diffuse
interface has a small but non-zero thickness, inside which
the two components are mixed and store a mixing energy.
An Oldroyd-B fluid consists in a dilute suspension of linear
Hookean dumbbells in a Newtonian solvent[15]. The total
free energy of the mixture thus comprises two parts: mix-
ing energy of the interface and elastic energy for the dumb-
bells.

We introduce a phase-field variableφ such that the con-
centrations of the Oldroyd-B and Newtonian components are
(1 + φ)/2 and (1− φ)/2, respectively. For the mixing energy,
we adopt the familiar Ginzburg-Landau form:

fmix(φ, ∇φ) = 1

2
λ|∇φ|2 + λ

4ε2 (φ2 − 1)2, (1)

whereλ is the mixing energy density with the dimension of
force, andε is a capillary width that scales with the thickness
of the diffuse interface. Asε → 0, the ratioλ/ε produces the
interfacial tension in the classical sense[16,9]. The evolution
of φ is governed by the Cahn-Hilliard equation:
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ree energy, this energy can be added to the mixing ene
orm the total free energy of the multi-phase system. Th
ormal variational procedure applied to the total free en
ill give rise to the proper constitutive equation for
icrostructured fluids in addition to the evolution equa
f the phase field variable. Using the Frank distortion en

or a liquid crystal, Yue et al.[9] illustrated how interfacia
ynamics and complex rheology can be included in aunified

heoretical framework. Dissipative effects such as vis
tresses, of course, have to be accounted for separatel
ia the standard irreversible thermodynamic procedure[12]
r by including Brownian motion in Hamilton’s princip

13,14].
Yue et al. [9] have implemented the diffuse-interfa

ethod using a spectral representation, and pres
reliminary numerical results to validate the theoret
odel and the numerical method. The goal of this paper
pply the method to physically interesting problems whe
enerates new insights into the physics. We will investi

wo problems: drop coalescence after head-on collision
rop retraction from an elongated initial shape. The far-
atrix fluid remains quiescent in both problems.

. Theory and numerical method

Yue et al.[9] have given a detailed derivation of the t
retical model, discussed its strengths and weaknesse

ts relationship with other fixed-grid methods, and descr
he numerical scheme using spectral discretization. In
.,

∂φ

∂t
+ v · ∇φ = γλ∇2 −∇2φ + φ(φ2 − 1)

ε2 , (2)

hereγλ determines the relaxation time of the interfa
rofile [9].

For a single dumbbell with a connectorQ, its elastic en
rgy is1

2HQ · Q, whereH is the elastic constant. For an e
emble of dumbbells with configuration distributionΨ (Q),
he average energy can be written as

d =
∫

R3

(
kT ln Ψ + 1

2
HQ · Q

)
ΨdQ, (3)

herek is the Boltzmann constant andT is the temperatur
nd the integration is over all possible configurations oQ.
ow the total free energy density of the two-phase syste

= fmix + 1 + φ

2
nfd, (4)

heren is the number density of the dumbbells.
A variational procedure applied to the total free ene

ill yield the elastic stress tensor for the system. The s
ensor due tofmix has been derived by Yue et al.[9], and
ere we will only consider the elastic stress due to the du
ell energyfd. We impose a virtual displacementδx on the
aterial, which takes place instantaneously so that the d
ells deform affinely with no slip between the bead and
urrounding fluid:

Q = Q · ∇δx. (5)
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The corresponding change in the distribution functionΨ can
be calculated from the continuity ofΨ [15]:

δΨ = − ∂

∂Q
· (δQΨ ). (6)

This in turn causes a variation in the dumbbell free energy:

δfd =
∫

R3

(
kT ln Ψ + kT + H

2
Q · Q

)
δΨdQ

=
∫

R3

(
kT ln Ψ + H

2
Q · Q

) [
− ∂

∂Q
· (Q · ∇δxΨ )

]

× dQ =
∫

R3

(
kTQ

∂Ψ

∂Q
+ HQQΨ

)
dQ : (∇δx)T

=
∫

R3

[
−kT

(
∂Q

∂Q

)T

+ HQQ

]
ΨdQ : (∇δx)T

= (−kT I + H〈QQ〉) : (∇δx)T, (7)

where〈·〉 = ∫
R3 ·ΨdQ andI is the identity tensor. Thus, the

dumbbell stress tensor is:

τd = −nkT I + nH〈QQ〉. (8)

This is exactly the Kramers expression for the polymer elastic
stress tensor[15], andτd obeys the Maxwell equation:
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of grid points is typically 2048× 1024. For the time step, we
find the Courant–Friedricks–Lewy condition a useful guide-
line. In all cases tested, the temporal resolution is adequate
as long as the simulation is stable.

The two-dimensionality puts a considerable limitation on
our work, and precludes quantitative comparison with ex-
periments. Since the curvature in the third dimension is not
accounted for, drop relaxation tends to occur at a different
speed than in reality, for example. Our spectral method uses
a regular mesh, and adequate resolution of the interface in
three dimensions will be prohibitively expensive. Work is
under way to develop an adaptive meshing scheme within a
finite-element framework in three dimensions.

3. Drop coalescence after head-on collision

An advantage of the diffuse-interface method is its
ability to handle topological changes in the interfacial
morphology, and this section exploits this ability to probe the
coalescence of two drops after a head-on collision. Yue et al.
[9] illustrated this ability by a single example of Newtonian
drops coalescing in a Newtonian matrix. Here we explore
two physically important issues: (a) the representation of
short-range molecular forces in the diffuse-interface frame-
work; (b) the effects of viscoelasticity in either component
o
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d + λHτd(1) = µp[∇v + (∇v)T ], (9)

here the subscript(1) denotes the upper convected der
ive,λH = ζ/(4H) is the relaxation time,ζ being the friction
oefficient between the dumbbell beads and the suspe
olvent, andµp = nkTλH is the polymer viscosity. Addin
he interfacial elastic stress[9] and the proper viscous stre
e obtain the total stress tensor:

=
(

1 − φ

2
µn + 1 + φ

2
µs

)
[∇v + (∇v)T ] + 1 + φ

2
τd

+ λ∇φ∇φ, (10)

hereµn is the viscosity of Newtonian component andµs is
he viscosity of the Newtonian solvent.

Eqs.(2) (9) and (10), along with the continuity and m
entum equations∇ · v = 0 andρ

(
∂v
∂t

+ v · ∇v
) = −∇p +

· τ, form the governing equations for our two-phase
em.

We use a two-dimensional (2D) Fourier spectral me
or solving these equations, and an interested reader ca
etails of the numerical algorithm in[9,17]. All simulations
re done on a regular mesh in a rectangular domain with
dic boundary conditions in both directions. To enhance
ility, we advance time semi-implicitly, with the non-line

ransport terms treated explicitly while the linear terms
licitly. The number of operations per time step scale
(N logN), N being the number of unknowns. We have c

ied out mesh and time-step refinements to determine th
quacy of our spatial and temporal resolutions. The inte

ypically requires 7–10 grids to resolve, and the total num
n the collision and coalescence.
We have adopted the scheme of Nobari et al.[18] to simu-

ate the head-on collision of two identical drops. Initially, t
tationary drops of diameterD are separated by a center-
enter distanced. Then a body forcef is applied to accelera
he drops toward each other. When the drop velocity atta
rescribed valueU/2, f is turned off. The two drops collid

nto each other by inertia and coalesce.

.1. Newtonian drops in a Newtonian matrix: molecular
orces

Fig. 1 illustrates a typical run for two Newtonian dro
n a Newtonian matrix of the same viscosity. The ini
eparation between the centers of the drops isd = 1.5D,
nd the body force is turned on att = 0 and off att = 0.336

o achieve aU value that corresponds toRe = 33.6. Time is
caled here byD/U. The drops deform while approachi
ach other (t = 1.342). As a result, a thin film of the matr
uid forms between the two drops. The thinning of this fi
ia the drainage of the matrix fluid through the narrow
onduit, determines the time scale of coalescence.
rainage requires a high pressure in the middle of the
hich produces a “dimpled shape” for the interface[19],
ith the minimum film thickness not at the middle po
ut farther out toward the sides. Rupture of the film at th

ocations traps a filament of the matrix fluid inside
esultant large drop. The subsequent breakup of the fila
nto drops is not due to capillary instability; rather it
aused by the stretching flow due to the bulging inter
9]. The most important feature, however, is that coalesc
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Fig. 1. Collision and coalescence of two Newtonian drops in a Newtonian matrix. The Reynolds number, defined usingD andU, is Re = 33.6, and the Weber
number isWe = 12. Other parameters are:ε = 0.01 andγ = 3.365× 10−5 (after Yue et al.[9], ©Cambridge University Press.).

occurs “naturally” as a result of the Cahn-Hilliard dynamics
(cf. Eq. (2)). This contrasts sharp-interface simulations
where the film separating the two drops has to be artificially
removed to bring about the topological change[18].

A natural question is whether the breakage and reconnec-
tion of the interfaces simulated here reflects reality. Accord-
ing to our current understanding, the rupture of an interface is
not a purely hydrodynamic process. As the film gets to a crit-
ical thickness of tens of nanometers, van der Waals attraction
overcomes electric double-layer repulsion and causes the film
to rupture and the two interfaces to merge[20–22]. This type
of molecular interaction is what the Cahn-Hilliard mixing
energy strives to represent. In this sense, the diffuse-interface
model contains the physics of short-range molecular forces.
However, the form of the Cahn-Hilliard force turns out to be
different from the familiar van der Waals force.

Consider a liquid film (F) of uniform thicknessh sand-
wiched between semi-infinite domains of another fluid (A)
(Fig. 2). The van der Waals interaction energy per unit area
between the parallel interface can be written as[23]:

EA = − Ah

12πh2 , (11)

where Ah is the Hamaker constant. The intervening film
would in general hamper the van der Waals interaction, but
we neglect this effect here for simplicity. From this energy
we can get the disjoining pressure

Π ≡ pA − pF = −dEA

dh
= − Ah

6πh3 . (12)

To derive the counterpart of the disjoining pressure in the
diffuse-interface representation, we consider the equilibrium
φ(y) profile in the configuration ofFig. 2. In the bulk phase
A, φ → 1. If the film is much thicker than the interfaces
(h � ε), thenφ(0) would approach−1 in the film phase.
Since the film is thin, however,φ(0) = φ0 > −1. Now the
disjoining pressure can be calculated from the stress field.
Note that the mixing energy of Eq.(1) produces an elastic
stress tensor[9]:
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Fig. 2. A draining film and the correspondingφ profile.

T = −(p − fmix)I − λ∇φ∇φ, (13)

wherep is the thermodynamic pressure, andI is the second-
order unit tensor. In the bulk phase A, the normal stress in
the y direction is simply−pA. At the center of the film,
dφ
dy

∣∣∣
y=0

= 0 because of symmetry. Thus, the normal stress

there is−pF + λf0, wheref0 = (φ2
0 − 1)2/4ε2 is the local

part of the mixing energy. A normal force balance then gives
the disjoining pressure in the diffuse-interface model as

Πφ = −λf0 = −λ(φ2
0 − 1)2

4ε2 . (14)

The disjoining pressure in Eq.(14) has the following in
common with the van der Waals force in Eq.(12):

• The disjoining pressure is negative, indicating attraction
between the two interfaces;

• The attraction is a short-distance force. It becomes signif-
icant only if the film is sufficiently thin (h ∼ ε); for large
h, bothΠ andΠφ vanish.

There are notable differences, however. Ash → 0, the van
der Waals force diverges:Π → ∞. On the other hand, as the
two diffuse interfaces merge,φ0 → 0 andΠφ approaches a
finite value−λ/4ε2. For a film of thicknessh ∼ ε, the two

der
on

t-

Fig. 3. Comparison of the disjoining pressureΠφ in the diffuse-interface
model, computed from Eqs.(14) and (17), with Π of Eq.(16)derived from
the van der Waals force. The two pressures are scaled by−λ/4ε2, and we
have assumedε = ξ in Eq.(16).

φ0 = − tanh

(
h

2
√

2ε

)
. (17)

Inserting this into Eq.(14), we illustrate the quantitative dif-
ferences betweenΠφ andΠ at differenth values inFig. 3.
On a fundamental level, the discrepancy betweenΠ andΠφ

stems from the truncation of the Cahn-Hilliard free energy at
the quadratic term|∇φ|2. An elegant explanation has been
given by Pismen[24]. Finally, one must note that the Cahn-
Hilliard dynamics is phenomenological in nature, and alter-
native diffusion mechanisms are available[25].

Besides the disjoining pressure, two additional factors af-
fect the film drainage and rupture in a diffuse-interface frame-
work. The first is the capillary thicknessε, which can be seen
as a measure of the thickness of the interface.Figs. 4 and
5 show simulations with a larger or smallerε than inFig. 1
with all other parameters unchanged. The early stage of the
simulations, say fort ≤ 1.342, is identical withFig. 1. This
is before the interfacial profiles of the two drops overlap. For
a largerε, the interfaces of the two drops overlap at an ear-
lier time during their approach, and the ensuing coalescence
occurs more readily (Fig. 4). Note that the interface does not
have time to develop the dimpled shape, and no matrix fluid
is trapped inside the drop. On the other hand, a smallerε

prolongs the coalescence process (Fig. 5). As compared with
Fig. 1, the points of rupture are more toward the ends of the
fi ltant
c s not
b
c ach
ε re is
a
m ,
i work
i

al cur-
v de-
f cess.
expressions for the disjoining pressure have the same or
of magnitude. This can be seen by noting the connecti
between the Hamaker constant and the surface tension[23]:

σ =
√

3

2π2

Ah

ξ2 , (15)

whereξ is the intermolecular center-to-center distance. No
ing thatσ = (2

√
2/3)(λ/ε) [9], we transform Eq.(12) into

Π = −2
√

2π

9
√

3

λ

ε2

(
ξ

ε

)2 ( ε

h

)3
, (16)

which, forh ∼ ε ∼ ξ, is on the same order asΠφ in Eq.(14).
To estimateΠφ for a non-vanishingh, we may assume a
hyperbolic tangentφ-profile as in a one-dimensional equilib-
rium interface[9]. Then the phase-field function in the middle
of the film can be estimated:
lm. This produces a less pronounced waist in the resu
ompound drop, and the entrapped matrix filament doe
reak up but retracts into a droplet. The effect ofε is not to be
onfused with numerical resolution of the interface. For e
, mesh refinement has confirmed that the grid used he
dequate for resolving the interface (see also[9]). The opti-
al ε cannot be determined by ana priori criterion. Rather

t needs to reflect the range of the molecular forces at
n the particular experiment to be simulated.

The coalescence process also depends on the glob
ature of the interfaces. In other words, it depends on how
ormed the drops are at the start of the film drainage pro
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Fig. 4. Collision and coalescence of two Newtonian drops in a Newtonian matrix with a thicker interface. The parameters are the same asFig. 1 except for
ε = 0.02.

We have varied the degree of “initial deformation” by artifi-
cially using a higher surface tension (with the surface energy
densityλ a hundred times larger) for various lengths of time
before coalescence. An example is shown inFig. 6 in which
the higher interfacial tension, corresponding toWe = 0.12, is
applied fort ≤ 0.503. Compared withFig. 1, the initial defor-
mation is smaller and the interfaces between the drops have a
larger curvature. This results in a speedier film drainage and
coalescence. Note also the lack of an inflection point on the
interface between film rupture; no matrix fluid is entrapped
in the resultant drop.

3.2. Role of viscoelasticity in coalescence

To investigate the role of viscoelasticity in film drainage,
we compare three runs that are identical except for the rheol-
ogy of the matrix or drop fluid: Newtonian drops in a Newto-

nian matrix (N/N), Newtonian drops in an Oldroyd-B matrix
(N/O) and Oldroyd-B drops in a Newtonian matrix (O/N). The
Oldroyd-B and Newtonian fluids have the sameshear viscos-
ity. This scheme is complicated somewhat by the fact that the
coalescence process depends on the initial deformation of the
drops. For twoviscoelastic drops, the initial acceleration and
approach will lead to a slightly different geometry at what
may be considered the start of film drainage than for two
Newtonian drops. To obtain a uniform initial drop shape, we
place two Newtonian drops closer to each other atd = 1.2D

in a Newtonian matrix, accelerate them using a larger body
force for a shorter periodt = 0.087, and suppress their initial
deformation by temporarily raising the interfacial energyλ

by a factor of 100. At the end of the acceleration, the original
λ is restored, and the phase function and velocity att = 0.087
are used as the “initial condition” for all the calculations in
this section includingN/O andO/N cases. For the viscoelas-

F onian m
ε

ig. 5. Collision and coalescence of two Newtonian drops in a Newt
= 0.005.
atrix with a thinner interface. The parameters are the same asFig. 1 except for
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Fig. 6. Collision and coalescence of two Newtonian drops in a Newtonian matrix, with initial deformation artificially suppressed by using an interfacial energy
100 times larger untilt = 0.503. The Weber number isWe = 0.12 beforet = 0.503 andWe = 12 afterwards. Other parameters are the same asFig. 1.

tic fluid the polymer stress is simply set to zero att = 0.087.
This gives us an identical “initial configuration” att = 0.087
for all three runs. TheN/N case is illustrated inFig. 7. Note
that the drops are essentially undeformed att = 0.087, with a
minimum film thicknesshmin = 0.171. During film drainage,
the minimum thickness always occurs at the middle of the
film, and no matrix filament is trapped in the combined drop.

Fig. 8 compares the thinning of the film thicknesshmin
for the three cases at several values of the Deborah number

De = UλH/D. When either the matrix or the drop phase is
viscoelastic, the film drainage isfaster than forN/N. More-
over, this effect becomes stronger with increasing Deborah
numberDe. This trend is also born out by the velocity profile
of the drainage flow in various cases (Fig. 9).

Let us consider theN/O case first where the matrix is
an Oldroyd-B fluid. The flow in the draining film is essen-
tially planar extension; this has been verified by calculating
the components of the strain-rate tensor.Fig. 10shows the

F
1

ig. 7. Collision and coalescence of two Newtonian drops in a Newtonian ma
00 times larger untilt = 0.087. The Reynolds number isRe = 26.1, and the Webe
trix, with initial deformation artificially suppressed by using an interfacial energy
r number isWe = 9.6. Other parameters are:ε = 0.01 andγ = 3.48× 10−5.
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Fig. 8. Decrease of the minimum film thicknesshmin during film drainage. (a) Comparison ofN/O runs at four Deborah numbers with theN/N case; (b)
comparison ofO/N runs at four Deborah numbers with theN/N case. All other parameters are the same as inFig. 7.

Fig. 9. Velocity profilesv(x) along a horizontal liney = 0.105 (position shown in the inset) for the draining flow inFig. 8at t = 0.695. (a) Newtonian drops
in an Oldroyd-B matrix (N/O); (b) Oldroyd-B drops in a Newtonian matrix (O/N). Thex andy axes are along and normal to the direction of drop acceleration,
with the origin at the center of the film.

temporal variation of the extensional rateε̇ at the center of
the film. While the drops accelerate toward each other, the
strain rate must have increased. When the acceleration stops
att = 0.087 and the film drainage commences, the strain rate
starts to decrease in time. The upturn toward the end is due
to short-range forces discussed before, and corresponds to
the precipitous decrease of film thickness just before coa-
lescence (Fig. 8). In this final stage, the disjoining pressure
Πφ ∼ λ/ε2 [cf. Eq. (14)] is much larger than the pressure
drop caused by interfacial tension�p ∼ λ/εD and domi-
nates the film drainage process. Before this (t < 0.8, say),
the drainage can be approximately described by a power-law:
hmin ∝ t−0.8, which is somewhat faster than the Newtonian
scalinghmin ∝ t−2/3 predicted by lubrication theory for “par-
tially mobile" interfaces[19]. In this power-law regime, our
value ofhmin is within 20% of the Newtonian prediction. Such
a small discrepancy is unexpected since our calculations are
in 2D with inertia, viscoelasticity and diffuse interfaces.

The reaction of the Oldroyd-B matrix to this time-
dependent squeezing flow is illustrated by the normal stress
differenceN1 = τyy − τxx and elongational viscosityη =

Fig. 10. Variation of the extension rateε̇ = ∂v/∂y = −∂u/∂x at the center
of the film during drainage. The drops are Newtonian while the matrix is
Newtonian or Oldroyd-B with various relaxation times.
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Fig. 11. Evolution of (a) the normal stress difference and (b) the elongational viscosity at the center of the film for the same simulations as inFig. 10.

N1/ε̇ in Fig. 11. The Newtonian fluid has a constantη, of
course, and its normal stressN1 traces the extension rate.
The Oldroyd-B fluids have lowerN1 andη at the beginning
of the drainage process since the polymer chains are pre-
dominantly in the coiled state. They are stretched later by the
extensional flow, and continue to unravel even asε̇ declines.
Hence, a cross-over occurs both inN1 and inη, at a timetc that
roughly scales with the polymer relaxation time. Fort < tc,
the Oldroyd-B fluids present less elongational viscosity than
the Newtonian fluid, which implies faster drainage. Fort > tc,
on the other hand, the viscoelastic normal stress grows be-
yond that of the Newtonian stress. As a result, the Oldroyd-B
fluids now exhibit a stronger resistance to deformation. The
drainage is then hampered by viscoelasticity. This scenario
is confirmed byTable 1, which lists the time�t for the final
stage of drainage from a film thicknesshmin = 0.04–0. With
increasingDe, �t decreases first and then increases.�t for
N/O atDe = 0.017 being slightly longer than that ofN/N is
a numerical artifact due to errors in determining the exact
time whenhmin reaches 0.04. Only at large enoughDe can
the Oldroyd-B fluid attain a stress much higher than its New-
tonian counterpart, and the hardening of the polymer is felt
only toward the end of the drainage process. In fact, if we

measure the time taken to drain the film from a larger ini-
tial thicknesshmin ≥ 0.06–0, then the upturn in�t for large
De will not appear. To summarize, the apparent viscoelas-
tic effect of hastening film drainage and drop coalescence in
Fig. 8is actually the integrated result of two stages of oppos-
ing tendencies. The first stage, where the polymeric matrix
offers weaker resistance to extension, dominates the second
stage, where the high level of viscoelastic stress suppresses
film drainage. Conceivably, for different parameter values or
a different constitutive model, the trend may be reversed. We
will return to this point shortly when comparing our simula-
tions with experiments.

Essentially the same argument applies to Oldroyd-B drops
coalescing in a Newtonian matrix (O/N).Fig. 12illustrates the
evolution of the normal stress differenceN1 and the elonga-
tional viscosityη just inside the Oldroyd-B drop (atφ = 0.9).
The viscous normal stress from the baselineN/N case is also
shown for comparison. The viscoelastic stress is initially slow
in developing but in time exceeds that of the Newtonian stress.
This resemblesFig. 11except that the viscoelastic stress now
acts on the drop side of the interfaces. The effect on film
drainage is the same, however, considering that the interfaces
have negligible curvature over most of the film, and simply

F ational p.
T

ig. 12. Evolution of (a) the normal stress difference and (b) the elong
he matrix is Newtonian.
viscosity at the intersection ofy = 0 andφ = 0.9, just inside the Oldroyd-B dro
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Table 1
Duration of the final stage of film drainage ashmin decreases from 0.04 to 0

Test case �t

N/N 0.541
N/O, De = 0.017 0.545
N/O, De = 0.087 0.533
N/O, De = 0.348 0.542
N/O, De = 1.390 0.555
O/N, De = 0.017 0.540
O/N, De = 0.087 0.514
O/N, De = 0.348 0.500
O/N, De = 1.390 0.508

transmit the viscoelastic stress into the film. Finally, the du-
ration of the last stage of drainage�t first decreases withDe

and then turns up, in a similar way to theN/O case (Table 1).
Numerous experiments have been carried out on drop co-

alescence in Newtonian fluids, especially with surfactants on
the interface[26–28]. In contrast, we have found only two
experimental studies that used polymer solutions. Zdravkov
et al.[19] measured the minimum film thickness as a function
of time during coalescence between two viscoelastic drops in
a Newtonian matrix. Perhaps because of adsorption of poly-
mer molecules on the interface, the drops are to a large extent
immobilized. Thus,hmin(t) obeys the Newtonian scaling for
immobile film drainage, and the viscoelasticity in the drop
component is not at all manifested. More interestingly, Drehe
et al.[29] were able to investigate the effects of viscoelasticity
in the matrix phase on the coalescence between a Newtonia
drop and an essentially flat interface between the two com
ponents. For larger drops, viscoelasticity is found to reduce
coalescence time. For smaller ones, on the other hand, film
drainage is slower than in a comparable Newtonian matrix
and coalescence is delayed. By estimating the strain rate
the film for various drop sizes, Dreher et al.[29] argued that
for smaller drops, the deformation is sufficiently strong to
produce a large elastic stress that resists film drainage. Fo
larger drops, the flow is weak so the matrix viscosity is be-
low that of a Newtonian matrix having the same steady shea
v s tha
w
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whereR0 is the equilibrium drop radius,µm is the matrix
viscosity,f (β) = 40(β + 1)/(2β + 3)(19β + 16) andβ is the
viscosity ratio between the drop and the matrix. By measuring
L(t) and B(t), the half-length and half-width of the drop,
the interfacial tensionσ can be calculated from curve fitting.
Since these models are intended for Newtonian fluids, it is
surprising that they give fairly good results for some two-
phasepolymeric systems[30].

The simulations in this section aim to elucidate the effects
of viscoelasticity, in either the drop or the matrix phase, on
drop retraction. One of the two components is Newtonian
and the other is an Oldroyd-B fluid. The calculations are in
2D, but we expect the physical insights gained here to be
relevant to the 3D experiments. As in previous theoretical and
numerical calculations, we assume the retraction is slow and
the fluids are highly viscous so as to render inertia negligible.
For simplicity, the two components are assumed to have the
same density and same steady-shear viscosity. The geometry
of the problem is shown inFig. 13. Initially, the drop is elliptic
with semi-axesL0 andB0. We will use the final drop radius
R0 = √

L0B0 as the characteristic length.
Let us first consider the retraction of an elliptic drop from a

stationary initial state with zero velocity and zero stress. This
is intended to mimic experiments where the elongated drop
is produced by melting a filament sandwiched between two

t
, but
the

a-

:

iscosity. Qualitatively, these are the same two scenario
e have illustrated inFig. 11andTable 1.

. Drop retraction

Drop retraction is a convenient method for measuring
nterfacial tension between the drop and matrix fluids[30,31].
he basis of this measurement is the relationship betwee
volution of the drop shape and the interfacial tension. V
us phenomenological formulae have been developed b
uming Newtonian rheology in both the drop and the m
hases, and they typically give similar results[32–34]. Maf-

ettone and Minale’s[32] model, for example, describes t
etraction of an ellipsoidal drop by:

2 − B2 = (L2 − B2)t=0 exp

[
− σ

µmR0
f (β)t

]
, (18)
r

n
-

,
in

r

r
t

e
-
s-

sheets of the matrix fluid[30]. Depending on how the filamen
is produced, there may be residual stress frozen inside
we neglect this possibility. For most results in this section
initial geometric parameters areW = H = 6, L0 = 1.1055
andB0 = 0.9045, which correspond to an initial deform
tion parameterD0 = (L0 − B0)/(L0 + B0) = 0.1. From the
equilibrium drop radiusR0, viscosityµ and interfacial ten-
sionσ, we define a characteristic time scale for retraction

tret = µR0

σ
. (19)

The Deborah number is defined asDe = λH/tret, whereλH
is the relaxation time of the polymer. Note thatDe differs

Fig. 13. Computational domain for drop retraction.
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Fig. 14. TheL2 − B2 ∼ t curves for drop relaxation from an initially elliptic
shape withD0 = 0.1.

from its usual definition using a strain rate by a factor that is
the capillary number. Two Deborah numbers are simulated:
De = 1 and 5. The other dimensionless parameters are:ε =
0.01, λ = 1.0607× 10−2 (corresponding toσ = 1). For the
Oldroyd-B fluid, the retardation time is equal to the relaxation
time.

Fig. 14compares several cases of drop retraction, with a
Newtonian drop in an Oldroyd-B matrix (N/O), an Oldroyd-B
drop in a Newtonian matrix (O/N), and a Newtonian drop in a
Newtonian matrix (N/N) as the baseline. Perhaps surprisingly,
theO/N andN/O cases differ very little for the sameDe. This
is because the interfacial tension drives the retraction against
resistance fromboth the drop and the matrix, and whether the
viscoelasticity occurs in the drop or the matrix, it produces
roughly the same amount of resistance. First, the fluids in the
drop and in the matrix are subject to roughly equal extension
rates, but with opposite signs. At the pointed ends of the
drop, for instance, the interface compresses the drop fluid
and stretches the matrix fluid, regardless of their rheology.
This can be seen from the velocity profileu(x) in Fig. 15; |u|
reaches its maximum near the interface (atx ≈ 1.02) for both
N/O andO/N. Furthermore, the velocity gradient∂u/∂x—or
the extension rate—has roughly the same magnitude on both
sides of the interface and betweenN/O andO/N. A similar
argument can be made at the “waist" of the drop, i.e., the ends
of the minor axes.
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Fig. 15. Local velocity profilesu(x) across the interface att = 5. The inter-
face is atx ≈ 1.02.

cous normal stress on the Newtonian side. Therefore, the
total resistance to retraction is roughly the same for the two
cases. Hence, the proximity ofO/N andN/O curves inFig. 14.
This contrasts flow-induced drop deformation (e.g.,[36,37])
where the two cases present opposite trends. There, the de-
formation is driven by a prescribed flow and the interplay
between interfacial tension and normal stresses is different.

The second notable feature is the effect ofDe, which can
be explained as in Section3.2. Owing to the finite time needed
for stress growth in a viscoelastic fluid, the resistance to re-
traction is initially weaker than in a Newtonian fluid. Hence,
the retraction is faster in the initial stage forN/O andO/N
than forN/N. This is reversed later as the viscoelastic stress
exceeds the Newtonian stress, and the retraction becomes
slower than that forN/N. Not surprisingly, this effect is more
pronounced at higherDe.

Based on the above discussion, the drop retraction method
for measuring interfacial tension is likely to work for vis-
coelastic fluids if the retraction is slow (due to high viscosity,
say), and the Deborah number is small. Otherwise the retrac-
tion does not follow an exponential law and the method will
fail. Indeed, the experiments of Mo et al.[30] and Son and
Yoon[31] involve retraction times of many hundreds of sec-
onds. Assuming a polymer relaxation time of several seconds,
the Deborah number as defined here will beDe ∼ 0.01.

Most previous work on drop retraction deals with a differ-
e lon-
g ape.
C actor
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Second, we may write out the polymer tensile stress
lanar extensional flow (u, v) = (ε̇x, −ε̇y) of an Oldroyd-B
uid [35]:

p,xx = 2µpε̇

1 − 2λHε̇

{
1 − exp

[
− t

λH
(1 − 2λHε̇)

]}
. (20)

iven the small value of∂u/∂x at the interface, the local De
rah number|λHε̇| � 1. Eq.(20) implies that the polymer
ill produce roughly the same amount of stress if stretc
r compressed at the same|ε̇|. In other words, betweenN/O
ndO/N, the polymer normal stressτp,xx has more or les

he same magnitude on the polymer side, as does th
nt initial condition: the cessation of a steady shear or e
ational flow that has deformed the drop to a steady sh
ompared with the retraction discussed above, a new f

s the initial stress field; the polymer chains are stretched
heir relaxation will be coupled with the relaxation of
rop shape. We have simulated drop retraction from in
onditions produced by steady shear at a capillary nu
f Ca = 0.1; Fig. 16 compares the behavior ofO/N, N/O
ndN/N systems. Note that the initial deformationD0 dif-

ers slightly among the five runs because of the different
oelasticity of the components. It is also slightly larger t
hat inFig. 14.
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Fig. 16. TheL2 − B2 ∼ t curves for drop relaxation from initial conditions
produced by steady shear. For the 5 runs, the initial deformation parame-
ters areD0 = 0.1078 (N/N), 0.1065 (N/O, De = 1), 0.1035 (N/O, De = 5),
0.1072 (O/N, De = 1), and 0.1053 (O/N, De = 5). The computational do-
main is 8π × 8, somewhat larger than forFig. 14.

Despite the differingD0, the retraction of an Oldroyd-B
drop in a Newtonian matrix (O/N) is very close to that start-
ing with zero initial stress (Fig. 14). In contrast, the retraction
of a Newtonian drop in an Oldroyd-B matrix (N/O) is quite
different from its counterpart inFig. 14. The retraction is
slower than theN/N case from the very beginning, and the
discrepancy grows with time. The effect is also more pro-
nounced for higherDe. These observations can be explained
by studying the flow field and the polymer stress distribution.
During the steady shear prior to retraction, the flow inside the
drop is highly rotational in all cases, while outside it is shear
or moderately extensional (Fig. 17). Thus, if the matrix is
viscoelastic, a considerable normal stress builds up around
the drop. In contrast, if the drop is viscoelastic, there is little
polymer stress inside the drop.Fig. 18plots the evolution of
the normal stress differenceN1 = τnn − τtt just outside the

Fig. 18. Normal stress difference in the Oldroyd-B fluid near the drop tip.
The data are take at the intersection ofφ = 0.9 and the major axis of drop.
Recall thatφ = 1 in the bulk Oldroyd-B fluid.

end of the drop forN/O and just inside forO/N during retrac-
tion, n andt being the local normal and tangential direction.
The former is much larger and lasts longer, and explains the
retarded retraction in the Oldroyd-B matrix. The persistence
of polymer stress outside the contracting ends of the drop is
partly due to the fact the retraction further stretches the poly-
mer chains or at least postpones their recoiling[38]. This
effect is significant sinceDe = λH/tret ≥ 1, with the poly-
mer chain relaxing more slowly than the drop. Also note that
for O/N, the small residual viscoelastic stress inside the drop
tends to promote drop retraction initially becauseN1 > 0.

The experiment most relevant to our simulation is that
of Tretheway and Leal[38], who measured the retraction
of Newtonian drops suspended in a PIB/PB Boger fluid
following planar extensional flow. Although quantitative
comparison is precluded by the different flow types and
dimensionality, the qualitative trends are the same. In par-
ticular, Tretheway and Leal[38] suggested that the tensile

F dy shea er

i )/2, an
ig. 17. Streamlines (a) and flow type contours (b) near a drop in stea

s defined asα = ‖D‖−‖�‖
‖D‖+‖�‖ , whereD = (∇v + (∇v)T)/2, � = ((∇v)T − ∇v
r. Both the drop and the matrix are Newtonian.Ca = 0.1. The flow type paramet

d the norm of the matrices is defined by, e.g.,‖D‖ =
√

D:DT

2 .
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stress induced by the contraction of the drop ends causes the
drop retraction to slow down in a viscoelastic matrix. This is
essentially borne out by ourFigs. 16 and 18. In addition, the
prediction that persisting polymer stresses in the matrix hin-
der drop retraction confirms similar predictions by the phe-
nomenological models of Maffettone and Greco[39] and Yu
et al.[40]. Hooper et al.[41] computed the retraction of a drop
pre-deformed by a uniaxial elongational flow. The cessation
of flow, however, is effected by instantaneously freezing the
outer boundaries of the computational domain. The induced
backflow inside the domain causes the drop to stretch further
before retraction.

5. Summary

In this paper, we applied a diffuse-interface formulation
to drop coalescence and retraction involving Newtonian and
Oldroyd-B fluids. Somewhat coincidentally, in most cases
the viscoelasticity works in much the same way whether it
occurs in the drop or in the matrix. The only exception is drop
retraction after cessation of steady shear.

The diffuse interface makes it possible to simulate topo-
logical changes such as drop coalescence. The final stage
of the coalescence is dominated by short-range molecular
forces, and we have shown that the Cahn-Hilliard energy pro-
d orce.
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