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Abstract

Drop dynamics plays a central role in defining the interfacial morphology in two-phase complex fluids such as emulsions and polymer
blends. In such materials, the components are often microstructured complex fluids themselves. To model and simulate drop behavior in
such systems, one has to deal with the dual complexity of non-Newtonian rheology and evolving interfaces. Recently, we developed a
diffuse-interface formulation which incorporates complex rheology and interfacial dynamics in a unified framework. This paper uses a two-
dimensional implementation of the method to simulate drop coalescence after head-on collision and drop retraction from an elongated initial
shape in a quiescent matrix. One of the two phases is a viscoelastic fluid modeled by an Oldroyd-B equation and the other is Newtonian.
For the parameter values examined here, numerical results show that after drop collision, film drainage is enhanced when either phase is
viscoelastic and drop coalescence happens more readily than in a comparable Newtonian system. The last stage of coalescence is dominate
by a short-range molecular force in the model that is comparable to van der Waals force. The retraction of drops from an initial state of
zero-velocity and zero-stress is hastened at first, but later resisted by viscoelasticity in either component. When retracting from an initial state
with pre-existing stress, produced by cessation of steady shearing, viscoelasticity in the matrix hinders retraction from the beginning while
that in the drop initially enhances retraction but later resists it. These results and the physical mechanisms that they reveal are consistent with
prior experimental observations.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction moving interfaces and microstructure-dependent rheology.
Specifically, there is the interplay among microscopic, meso-
Drop dynamics is the key to understanding interfacial mor- scopic and macroscopic scales: (a) the internal microstruc-
phology in two-phase materi§dd. In nature and in indus-  ture, e.g., molecular conformation, inside each component;
trial processes, many such materials have components thafb) the interfaces and (c) the flow field. The coupling be-
are complex fluids themselves, with internal microstructures tween (b) and (c) alone is well studied for Newtonian drops
whose evolution affects the macroscopic dynamics of the [5]. Similarly, the (a)—(c) coupling is the subject of molecular
material, especially the rheology. Examples include polymer constitutive theories in rheology (e.§6]). Having both (a)
blendg[2], polymer-dispersed liquid crystdl3] and various and (b) present in a flow problem is the novelty of this work.
biological fluids[4]. Methods for solving moving-interface problems fall into
Theoretical and numerical analysis of drop dynamics in two broad categories: interface tracking and interface captur-
complex fluids has to struggle with the dual difficulties of ing [7,8]. The former uses a moving mesh with grid points
residing on the interface. The latter determines the position
"+ Corresponding author. _of the_ interface by using a scalar fun_ction, th_Jse evoluftion
E-mail address: ffeng@chml.ubc.ca (J.J. Feng). is typically represented by an advection equation on a fixed
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grid. Conceptually, both treat the interface as a zero-thicknesssection, we will specialize the formalism for a mixture of a
surface, though an essential ingredient in the fixed-grid meth- Newtonian and an Oldroyd-B fluid, and summarize the main
ods is a numerical regularization that spreads the interfacialfeatures of the numerical procedure.
force over a volume. The Newtonian and Oldroyd-B components are immis-
Recently, Yue et al[9] proposed a fixed-gridiffuse- cible except in a very thin interfacial region. This diffuse
interface model for two-phase flows of complex fluids. This interface has a small but non-zero thickness, inside which
model differs from other fixed-grid methods in that the inter- the two components are mixed and store a mixing energy.
face is treated gshysically diffuse (e.g.[10,11). The inter- An Oldroyd-B fluid consists in a dilute suspension of linear
facial position and thickness are determined by a phase-fieldHookean dumbbells in a Newtonian solvghb]. The total
variable whose evolution is governed by a mixing energy. free energy of the mixture thus comprises two parts: mix-
This way, the structure of the interface is rooted in molecular ing energy of the interface and elastic energy for the dumb-
forces; the tendencies for mixing and demixing are balancedbells.
through the nonlocal mixing energy. This contrasts the level ~ We introduce a phase-field varialifesuch that the con-
set and volume-of-fluid methods, which replace the surface centrations of the Oldroyd-B and Newtonian components are
tension by a body force or stress asanerical device to (14 ¢)/2 and (1— ¢)/2, respectively. For the mixing energy,
regularize the singularity. The significance of this physical we adopt the familiar Ginzburg-Landau form:
root will become apparent when we discuss the rupture of . N
the thin film separating two coalescing drops. When the in- . _ 2, M2 a2
terfacial width approaches zero, the diffuse-interface model Fmix(¢: V) = 2MV¢| + 4¢2 o @)
becomes identical to a sharp-interface level-set formulation.
Italso reduces properly to the classical sharp-interface model
In our context of two-phase complex fluids, another attrac-
tion of the diffuse-interface method is its capability of easily
incorporating the rheology of microstructured fluids. This is
by virtue of its energy-based variational formalism. As long
as the conformation of the microstructure is describable by a 2
free energy, this energy can be added to the mixing energy toaj = 2| _y2 M
: +v-V¢=yAV?2 |-V2p + 5 , (2)
form the total free energy of the multi-phase system. Then a €
formal variational procedure applied to the total free energy
will give rise to the proper constitutive equation for the
microstructured fluids in addition to the evolution equation
of the phase field variable. Using the Frank distortion energy
for a liquid crystal, Yue et al[9] illustrated how interfacial
dynamics and complex rheology can be includedinified
theoretical framework. Dissipative effects such as viscous
stresses, of course, have to be accounted for separately, e.g., 1
via the standard irreversible thermodynamic procedi®g fa= / <kT Inv+_-HQ- Q> vdo, 3
or by including Brownian motion in Hamilton’s principle R® 2

(13,14} ] ) ] wherek is the Boltzmann constant affids the temperature,
Yue et al.[9] have implemented the diffuse-interface on the integration is over all possible configurationgdof

method using a spectral representation, and presenteqq,y the total free energy density of the two-phase system is:
preliminary numerical results to validate the theoretical

model and the numerical method. The goal of this paper is to 1+¢

apply the method to physically interesting problems where it J= fmix + T”fd’ (4)

generates new insights into the physics. We will investigate

two problems: drop coalescence after head-on collision andwherer is the number density of the dumbbells.

drop retraction from an elongated initial shape. The far-field A variational procedure applied to the total free energy

matrix fluid remains quiescent in both problems. will yield the elastic stress tensor for the system. The stress
tensor due tofmix has been derived by Yue et ], and
here we will only consider the elastic stress due to the dumb-

2. Theory and numerical method bell energyfy. We impose a virtual displacemesx on the
material, which takes place instantaneously so that the dumb-

Yue et al.[9] have given a detailed derivation of the the- bells deform affinely with no slip between the bead and the

oretical model, discussed its strengths and weaknesses angurrounding fluid:

its relationship with other fixed-grid methods, and described

the numerical scheme using spectral discretization. In this6Q = Q - Véx. (5)

wherej is the mixing energy density with the dimension of
‘force, anck is a capillary width that scales with the thickness
of the diffuse interface. As — 0, the ratio\ /¢ produces the
interfacial tension in the classical seif$6,9]. The evolution

of ¢ is governed by the Cahn-Hilliard equation:

where yA determines the relaxation time of the interfacial
profile [9].

For a single dumbbell with a connect@, its elastic en-
ergy is%HQ - Q, whereH is the elastic constant. For an en-
semble of dumbbells with configuration distributigr{ Q),
the average energy can be written as
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The corresponding change in the distribution funconan
be calculated from the continuity @f [15]:

ad
W =———-(60VY). 6
TR (6)
This in turn causes a variation in the dumbbell free energy:

5fd=/ <kT|nlI/+kT+HQ- Q) swdQ
R3 2

= kT Inw " 0 Véxw
e 20-0) g0

_ o . T
><dQ_/R3 (kTQaQ+HQQl1/> do : (Véx)

_ [ (22
_/Rg[ kT<8Q> +HQQ
= (—kTI + H(QQ)): (Véx)T, 7)

where(:) = [,s -wdQ and[ is the identity tensor. Thus, the
dumbbell stress tensor is:

wdQ : (Véx)"

T4 = —nkTI+nH(QQ). (8)
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of grid points is typically 2048« 1024. For the time step, we
find the Courant—Friedricks—Lewy condition a useful guide-
line. In all cases tested, the temporal resolution is adequate
as long as the simulation is stable.

The two-dimensionality puts a considerable limitation on
our work, and precludes quantitative comparison with ex-
periments. Since the curvature in the third dimension is not
accounted for, drop relaxation tends to occur at a different
speed than in reality, for example. Our spectral method uses
a regular mesh, and adequate resolution of the interface in
three dimensions will be prohibitively expensive. Work is
under way to develop an adaptive meshing scheme within a
finite-element framework in three dimensions.

3. Drop coalescence after head-on collision

An advantage of the diffuse-interface method is its
ability to handle topological changes in the interfacial
morphology, and this section exploits this ability to probe the
coalescence of two drops after a head-on collision. Yue et al.
[9] illustrated this ability by a single example of Newtonian
drops coalescing in a Newtonian matrix. Here we explore
two physically important issues: (a) the representation of

This is exactly the Kramers expression for the polymer elastic short-range molecular forces in the diffuse-interface frame-

stress tensdi 5], andty obeys the Maxwell equation:

Td + AHTAQ) = /Lp[VU + (VU)T], )

work; (b) the effects of viscoelasticity in either component
on the collision and coalescence.
We have adopted the scheme of Nobari efla] to simu-

where the subscrigiy denotes the upper convected deriva- late the head-on collision of two identical drops. Initially, two

tive, .y = ¢/(4H) is the relaxation time; being the friction

stationary drops of diamet&r are separated by a center-to-

coefficient between the dumbbell beads and the suspendingeenter distance. Then a body forc¢ is applied to accelerate

solvent, andup = nkTin is the polymer viscosity. Adding
the interfacial elastic stre$§d] and the proper viscous stress,
we obtain the total stress tensor:

_(1—¢ 1+¢
=2 M 2

1+
n+ ¢
+AVepVo,

,us) Vo + (Vo)1 + 5 g

(10)

wherepun is the viscosity of Newtonian component anglis
the viscosity of the Newtonian solvent.

Egs.(2) (9) and (10)along with the continuity and mo-
mentum equations - v = 0 andp (£ +v- Vo) = —Vp +

the drops toward each other. When the drop velocity attains a
prescribed valué//2, f is turned off. The two drops collide
into each other by inertia and coalesce.

3.1. Newtonian drops in a Newtonian matrix: molecular

forces

Fig. lillustrates a typical run for two Newtonian drops
in a Newtonian matrix of the same viscosity. The initial
separation between the centers of the dropg is 1.5D,
and the body force is turned onzat 0 and off att = 0.336
to achieve &/ value that corresponds ®e = 33.6. Time is

V - 7, form the governing equations for our two-phase sys- scaled here by)/U. The drops deform while approaching

tem.

each other#{(= 1.342). As a result, a thin film of the matrix

We use a two-dimensional (2D) Fourier spectral method fluid forms between the two drops. The thinning of this film,
for solving these equations, and an interested reader can findvia the drainage of the matrix fluid through the narrowing

details of the numerical algorithm [8,17]. All simulations

conduit, determines the time scale of coalescence. The

are done on aregular mesh in a rectangular domain with peri-drainage requires a high pressure in the middle of the film,
odic boundary conditions in both directions. To enhance sta- which produces a “dimpled shape” for the interfgd®],

bility, we advance time semi-implicitly, with the non-linear

transport terms treated explicitly while the linear terms im-

with the minimum film thickness not at the middle point
but farther out toward the sides. Rupture of the film at those

plicitly. The number of operations per time step scales as locations traps a filament of the matrix fluid inside the
O(N log N), N being the number of unknowns. We have car- resultant large drop. The subsequent breakup of the filament
ried out mesh and time-step refinements to determine the adinto drops is not due to capillary instability; rather it is
equacy of our spatial and temporal resolutions. The interfacecaused by the stretching flow due to the bulging interface
typically requires 7—10 grids to resolve, and the total number [9]. The most important feature, however, is that coalescence
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t=0.336 t=1.342
OO

t=1.678 t=2.349

t=2.433 =2.517

t=2.685 t=3.356

Fig. 1. Collision and coalescence of two Newtonian drops in a Newtonian matrix. The Reynolds number, definBdamsifgis Re = 33.6, and the Weber
number isWe = 12. Other parameters are= 0.01 andy = 3.365x 10~° (after Yue et al[9], ©Cambridge University Press.).

occurs “naturally” as a result of the Cahn-Hilliard dynamics Ap
(cf. Eq. (2). This contrasts sharp-interface simulations “A =~ ~ 12752°
where the film separating the two drops has to be artificially
removed to bring about the topological chafg@]. where A, is the Hamaker constant. The intervening film
A natural question is whether the breakage and reconnec-would in general hamper the van der Waals interaction, but
tion of the interfaces simulated here reflects reality. Accord- we neglect this effect here for simplicity. From this energy
ing to our current understanding, the rupture of an interface is we can get the disjoining pressure
not a purely hydrodynamic process. As the film gets to a crit-
ical thickness of tens of nanometers, van der Waals attraction dEa Ay
overcomes electric double-layer repulsion and causes the film'' = PA = PF = =747 = " g3
to rupture and the two interfaces to mefgé-22] This type
of molecular interaction is what the Cahn-Hilliard mixing To derive the counterpart of the disjoining pressure in the
energy strives to represent. In this sense, the diffuse-interfacediffuse-interface representation, we consider the equilibrium
model contains the physics of short-range molecular forces. ¢(y) profile in the configuration ofig. 2 In the bulk phase
However, the form of the Cahn-Hilliard force turns outto be A, ¢ — 1. If the film is much thicker than the interfaces
different from the familiar van der Waals force. (h > €), then¢(0) would approach-1 in the film phase.
Consider a liquid film (F) of uniform thickneds sand- Since the film is thin, however)(0) = ¢p > —1. Now the
wiched between semi-infinite domains of another fluid (A) disjoining pressure can be calculated from the stress field.
(Fig. 2. The van der Waals interaction energy per unit area Note that the mixing energy of Eql) produces an elastic
between the parallel interface can be writterji28y: stress tensd®]:

(11)

(12)
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N i S
4 R N

Fig. 2. A draining film and the correspondigigprofile.

T =—(p— fmix)I —AV¢V9,

wherep is the thermodynamic pressure, ahi$ the second-

(13)

order unit tensor. In the bulk phase A, the normal stress in

the y direction is simply—pa. At the center of the film,
do
dy|y—0
there is—pr + Afo, where fo = (¢Z — 1)%/4€? is the local
part of the mixing energy. A normal force balance then gives
the disjoining pressure in the diffuse-interface model as

A(@3 — 1)?
42 ’

The disjoining pressure in E§14) has the following in
common with the van der Waals force in Kj2):

Iy = —Afo=— (14)

e The disjoining pressure is negative, indicating attraction
between the two interfaces;

The attraction is a short-distance force. It becomes signif-
icant only if the film is sufficiently thin§ ~ ¢); for large

h, both [T andI1, vanish.

There are notable differences, however./As> 0, the van
der Waals force diverge$l — oo. On the other hand, as the
two diffuse interfaces mergep — 0 andlls approaches a
finite value— /4€2. For a film of thickness ~ ¢, the two

= 0 because of symmetry. Thus, the normal stress ¢o = —tanh<
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2

1.5¢

0.5}

hle

Fig. 3. Comparison of the disjoining pressumg in the diffuse-interface
model, computed from Eqél4) and (17)with /7 of Eq. (16) derived from
the van der Waals force. The two pressures are scaledibijie?, and we
have assumed= & in Eq.(16).

h
5 ﬁe) . a7
Inserting this into Eq(14), we illustrate the quantitative dif-
ferences betweef¥, and /7 at differenth values inFig. 3.
On a fundamental level, the discrepancy betwHeand /1,
stems from the truncation of the Cahn-Hilliard free energy at
the quadratic termiVg|2. An elegant explanation has been
given by Pismeiji24]. Finally, one must note that the Cahn-
Hilliard dynamics is phenomenological in nature, and alter-
native diffusion mechanisms are availaf2é].

Besides the disjoining pressure, two additional factors af-
fectthe film drainage and rupture in a diffuse-interface frame-
work. The first is the capillary thicknegswhich can be seen
as a measure of the thickness of the interfdggs. 4 and
5 show simulations with a larger or smallethan inFig. 1
with all other parameters unchanged. The early stage of the
simulations, say for < 1.342, is identical withFig. 1 This
is before the interfacial profiles of the two drops overlap. For
a largere, the interfaces of the two drops overlap at an ear-
lier time during their approach, and the ensuing coalescence

expressions for the disjoining pressure have the same ordeiccurs more readilyRig. 4. Note that the interface does not
of magnitude. This can be seen by noting the connection have time to develop the dimpled shape, and no matrix fluid

between the Hamaker constant and the surface tef&8n

_\/§Ah

whereg is the intermolecular center-to-center distance. Not-
ing thato = (24/2/3)(1/€) [9], we transform Eq(12) into

23/271 A & 2 e\3
B 9.3 €2 <6> (h) ’

which, forh ~ € ~ &, is on the same order @&, in Eq.(14).

To estimatelT, for a non-vanishing:, we may assume a

hyperbolic tangenp-profile as in a one-dimensional equilib-

rium interfacg9]. Then the phase-field function in the middle

of the film can be estimated:

(16)

is trapped inside the drop. On the other hand, a smaller
prolongs the coalescence procdsg(5). As compared with
Fig. 1, the points of rupture are more toward the ends of the
film. This produces a less pronounced waist in the resultant
compound drop, and the entrapped matrix filament does not
break up but retracts into a droplet. The effect &fnot to be
confused with numerical resolution of the interface. For each
€, mesh refinement has confirmed that the grid used here is
adequate for resolving the interface (see §3® The opti-
mal e cannot be determined by arpriori criterion. Rather,
it needs to reflect the range of the molecular forces at work
in the particular experiment to be simulated.

The coalescence process also depends on the global cur-
vature of the interfaces. In other words, it depends on how de-
formed the drops are at the start of the film drainage process.
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t=1.678 t=1.846

t=1.930 t=2.014

Fig. 4. Collision and coalescence of two Newtonian drops in a Newtonian matrix with a thicker interface. The parameters are thEigainexaspt for
€ =0.02.

We have varied the degree of “initial deformation” by artifi- nian matrix (v/N), Newtonian drops in an Oldroyd-B matrix
cially using a higher surface tension (with the surface energy (N/O) and Oldroyd-B drops in a Newtonian matri2/(V). The
densityx a hundred times larger) for various lengths of time Oldroyd-B and Newtonian fluids have the sashear viscos-

before coalescence. An example is showRim 6in which ity. This scheme is complicated somewhat by the fact that the
the higher interfacial tension, correspondingte = 0.12, is coalescence process depends on the initial deformation of the
applied forr < 0.503. Compared witkig. 1, the initial defor- drops. For twaviscoelastic drops, the initial acceleration and

mation is smaller and the interfaces between the drops have approach will lead to a slightly different geometry at what

larger curvature. This results in a speedier film drainage andmay be considered the start of film drainage than for two
coalescence. Note also the lack of an inflection point on the Newtonian drops. To obtain a uniform initial drop shape, we

interface between film rupture; no matrix fluid is entrapped place two Newtonian drops closer to each othet at 1.2D

in the resultant drop. in a Newtonian matrix, accelerate them using a larger body
force for a shorter period= 0.087, and suppress their initial
3.2. Role of viscoelasticity in coalescence deformation by temporarily raising the interfacial eneigy

by a factor of 100. At the end of the acceleration, the original
To investigate the role of viscoelasticity in film drainage, X isrestored, and the phase function and velocity-ai0.087
we compare three runs that are identical except for the rheol-are used as the “initial condition” for all the calculations in
ogy of the matrix or drop fluid: Newtonian drops in a Newto- this section includingv/O andOIN cases. For the viscoelas-

t=2.014 t=3.020

t=3.188 =4.027

Fig. 5. Collision and coalescence of two Newtonian drops in a Newtonian matrix with a thinner interface. The parameters are theéigaiexeaspt for
€ = 0.005.
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QO

t=0.671 t=1.007

t=1.175 t=1.342

Fig. 6. Collision and coalescence of two Newtonian drops in a Newtonian matrix, with initial deformation artificially suppressed by using aalietenfgg
100 times larger untid = 0.503. The Weber number e = 0.12 beforer = 0.503 andWe = 12 afterwards. Other parameters are the sanfégad.

tic fluid the polymer stress is simply set to zero at 0.087. De = U,y /D. When either the matrix or the drop phase is
This gives us an identical “initial configuration” at= 0.087 viscoelastic, the film drainage faster than forN/N. More-
for all three runs. TheV/N case is illustrated ifrig. 7. Note over, this effect becomes stronger with increasing Deborah

that the drops are essentially undeformed-at0.087, with a numberDe. This trend is also born out by the velocity profile

minimum film thicknes&mi, = 0.171. During filmdrainage,  of the drainage flow in various casdsd. 9).

the minimum thickness always occurs at the middle of the  Let us consider th&v/O case first where the matrix is

film, and no matrix filament is trapped in the combined drop. an Oldroyd-B fluid. The flow in the draining film is essen-
Fig. 8 compares the thinning of the film thicknekgin tially planar extension; this has been verified by calculating

for the three cases at several values of the Deborah numbethe components of the strain-rate tengég. 10shows the

t=0.087 t=0.348
t=0.695 t=0.869
t=1.043 t=1.564

Fig. 7. Collision and coalescence of two Newtonian drops in a Newtonian matrix, with initial deformation artificially suppressed by using aalietenfgg
100 times larger until = 0.087. The Reynolds numberRe = 26.1, and the Weber numberige = 9.6. Other parameters are= 0.01 andy = 3.48 x 107°.
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0.08 0.08
———— NIN NIN
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RN\ N/O, De=0.087 NN - OIN, De=0.087
0.06 PO N/O, De=0.348 0.06 ™Y, - OIN, De=0.384
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0.02} A 0.02
| WA |
W
i
ﬂ I
oL .0yl [0]
0.5 0.6 0.7 0.8 0.9 1 1.1 0.5 1.1

(@) t (b) S t

Fig. 8. Decrease of the minimum film thicknessin during film drainage. (a) Comparison 870 runs at four Deborah numbers with théN case; (b)
comparison oD/N runs at four Deborah numbers with tN&V case. All other parameters are the same &sgn7.
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[ s N B ! - = = - , De=0. N\ A\
I ///,' 777777 N/O, De=0.087 .\\’\ /7 —.—-—-— OIN, De=0.087 AN
V', 7 — — — - NIO, De=0.348 o\ Y iy — — —— OIN, De=0.348 AN
0.13 4 / —-—-—-~ NIO, De=1.390 N 013k OIN, De=1.390 «
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0.12 TR - 1\ 1 1\ l 0.12 L 1 L T 1 1\ |
-0.1 -0.05 0 0.05 0.1 -0.1 -0.05 0 0.05 0.1
(a) X (b) x

Fig. 9. Velocity profilesu(x) along a horizontal ling = 0.105 (position shown in the inset) for the draining flowFiy. 8ats = 0.695. (a) Newtonian drops
in an Oldroyd-B matrix §/0); (b) Oldroyd-B drops in a Newtonian matri(N). Thex andy axes are along and normal to the direction of drop acceleration,
with the origin at the center of the film.

temporal variation of the extensional ratat the center of
the film. While the drops accelerate toward each other, the
strain rate must have increased. When the acceleration stops
atr = 0.087 and the film drainage commences, the strain rate 3sr
starts to decrease in time. The upturn toward the end is due
to short—rqnge forces discuss'ed be_fore, anq corresponds to sl - m; De=0.087
the precipitous decrease of film thickness just before coa- I —-A— N/O, De=0.348
lescenceFig. 8). In this final stage, the disjoining pressure v v NODes1.3%0
My ~ 1/€2 [cf. Eq. (14)] is much larger than the pressure 2.5
drop caused by interfacial tensianp ~ A/eD and domi-
nates the film drainage process. Before this 0.8, say),
the drainage can be approximately described by a power-law:
himin o< 1~98, which is somewhat faster than the Newtonian
scalingimin o t~2/3 predicted by lubrication theory for “par- 15
tially mobile" interfacefl9]. In this power-law regime, our
value ofhmin is within 20% of the Newtonian prediction. Such
a small discrepancy is unexpected since our calculations are 0 02 04 06 0.8 i
in 2D with inertia, viscoelasticity and diffuse interfaces. t

The reaction Of the Ol_dr_oyd-B matrix to this time- Fig. 10. Variation of the extension rate= dv/dy = —du/ox at the center
dependent squeezing flow is illustrated by the normal SUesSof the film during drainage. The drops are Newtonian while the matrix is
difference N1 = 1y, — 7. and elongational viscosity = Newtonian or Oldroyd-B with various relaxation times.

ov/dy
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b NIN | NN
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Fig. 11. Evolution of (a) the normal stress difference and (b) the elongational viscosity at the center of the film for the same simulatanslas in

measure the time taken to drain the film from a larger ini-
tial thicknessimin > 0.06-0, then the upturn in¢ for large

Ni/e in Fig. 11 The Newtonian fluid has a constait of
course, and its normal stredg traces the extension rate. >

The Oldroyd-B fluids have loweN; andn at the beginning De will not appear. To summarize, the apparent viscoelas-
of the drainage process since the polymer chains are pre+ic effect of hastening film drainage and drop coalescence in
dominantly in the coiled state. They are stretched later by the Fig. 8is actually the integrated result of two stages of oppos-
extensional flow, and continue to unravel ever dgclines. ing tendencies. The first stage, where the polymeric matrix
Hence, a cross-over occurs botiNpand inn, atatime, that offers weaker resistance to extension, dominates the second
roughly scales with the polymer relaxation time. Fef ¢, stage, where the high level of viscoelastic stress suppresses
the Oldroyd-B fluids present less elongational viscosity than film drainage. Conceivably, for different parameter values or
the Newtonian fluid, whichimplies faster drainage. Ferz,, a different constitutive model, the trend may be reversed. We
on the other hand, the viscoelastic normal stress grows be-will return to this point shortly when comparing our simula-
yond that of the Newtonian stress. As a result, the Oldroyd-B tions with experiments.

fluids now exhibit a stronger resistance to deformation. The  Essentially the same argument applies to Oldroyd-B drops
drainage is then hampered by viscoelasticity. This scenariocoalescingin a Newtonian matri@(V). Fig. 12illustrates the

is confirmed byTable 1 which lists the timeAr for the final evolution of the normal stress differendig and the elonga-
stage of drainage from a film thicknésgi, = 0.04—0. With tional viscosityy just inside the Oldroyd-B drop (gt= 0.9).
increasingDe, At decreases first and then increasesfor The viscous normal stress from the baseMi¥ case is also

NIO at De = 0.017 being slightly longer than that &N is shown for comparison. The viscoelastic stressis initially slow
a numerical artifact due to errors in determining the exact in developing butintime exceeds that of the Newtonian stress.
time whenhnmin reaches 0.04. Only at large enoufla can This resembleBig. 11except that the viscoelastic stress now
the Oldroyd-B fluid attain a stress much higher than its New- acts on the drop side of the interfaces. The effect on film
tonian counterpart, and the hardening of the polymer is felt drainage is the same, however, considering that the interfaces
only toward the end of the drainage process. In fact, if we have negligible curvature over most of the film, and simply
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Fig. 12. Evolution of (a) the normal stress difference and (b) the elongational viscosity at the intersegtio®aindg = 0.9, just inside the Oldroyd-B drop.
The matrix is Newtonian.



172 P. Yue et al. / J. Non-Newtonian Fluid Mech. 129 (2005) 163-176

Table 1 where Ry is the equilibrium drop radiugym is the matrix
Duration of the final stage of film drainage /agin decreases from 0.04 to 0 viscosity, 7 (8) = 40(8 + 1)/(28 + 3)(198 + 16) andBisthe

Test case At viscosity ratio between the drop and the matrix. By measuring
NIN 0.541 L(r) and B(z), the half-length and half-width of the drop,
NIO, De = 0.017 0.545 the interfacial tension can be calculated from curve fitting.
NIO, De = 0.087 0.533

Since these models are intended for Newtonian fluids, it is

%g’ gz B 2’233 8'225 surprising that they give fairly good results for some two-
OIN, De = 0.017 0.540 phasepolymeric systemg30]. _

OIN, De = 0.087 0.514 The simulations in this section aim to elucidate the effects
OIN, De = 0.348 0.500 of viscoelasticity, in either the drop or the matrix phase, on
OIN, De = 1.390 0.508

drop retraction. One of the two components is Newtonian
and the other is an Oldroyd-B fluid. The calculations are in
transmit the viscoelastic stress into the film. Finally, the du- 2D, but we expect the physical insights gained here to be
ration of the last stage of drainage first decreases wite relevantto the 3D experiments. As in previous theoretical and
and then turns up, in a similar way to tNéO case Table J). numerical calculations, we assume the retraction is slow and
Numerous experiments have been carried out on drop co-the fluids are highly viscous so as to render inertia negligible.
alescence in Newtonian fluids, especially with surfactants on For simplicity, the two components are assumed to have the
the interfacg26—28] In contrast, we have found only two same density and same steady-shear viscosity. The geometry
experimental studies that used polymer solutions. Zdravkov of the problem is shown iRig. 13 Initially, the drop is elliptic
etal.[19] measured the minimum film thickness as a function with semi-axed.q and Bg. We will use the final drop radius
of time during coalescence between two viscoelastic drops in Ry = +/LoBg as the characteristic length.
a Newtonian matrix. Perhaps because of adsorption of poly-  Letusfirst consider the retraction of an elliptic drop from a
mer molecules on the interface, the drops are to a large extenstationary initial state with zero velocity and zero stress. This
immobilized. Thushnmin(z) obeys the Newtonian scaling for is intended to mimic experiments where the elongated drop
immobile film drainage, and the viscoelasticity in the drop is produced by melting a filament sandwiched between two
componentis notatall manifested. More interestingly, Dreher sheets of the matrix fluigB0]. Depending on how the filament
etal.[29] were able to investigate the effects of viscoelasticity is produced, there may be residual stress frozen inside, but
in the matrix phase on the coalescence between a Newtoniarwe neglect this possibility. For most results in this section the
drop and an essentially flat interface between the two com- initial geometric parameters ai€ = H = 6, Lo = 1.1055
ponents. For larger drops, viscoelasticity is found to reduce and By = 0.9045, which correspond to an initial deforma-
coalescence time. For smaller ones, on the other hand, filmtion parameteDg = (Lo — Bo)/(Lo + Bo) = 0.1. From the
drainage is slower than in a comparable Newtonian matrix, equilibrium drop radiusRg, viscosityu and interfacial ten-
and coalescence is delayed. By estimating the strain rate insiono, we define a characteristic time scale for retraction:
the film for various drop sizes, Dreher et @9] argued that R
for smaller drops, the deformation is sufficiently strong to et = u. (19)
produce a large elastic stress that resists film drainage. For o
larger drops, the flow is weak so the matrix viscosity is be- The Deborah number is defined Bg = An/fret, Whereiy
low that of a Newtonian matrix having the same steady shearis the relaxation time of the polymer. Note thae differs
viscosity. Qualitatively, these are the same two scenarios that
we have illustrated ifrig. 11andTable 1

4. Drop retraction

Drop retraction is a convenient method for measuring the
interfacial tension between the drop and matrix fl(i8fs31] H
The basis of this measurement is the relationship between the
evolution of the drop shape and the interfacial tension. Vari-
ous phenomenological formulae have been developed by as-
suming Newtonian rheology in both the drop and the matrix
phases, and they typically give similar res(ii2—34] Maf-
fettone and Minale’$32] model, for example, describes the
retraction of an ellipsoidal drop by:

o w

umRo

L2—32=(L2—Bz)t=oexp[— f(ﬂ)z], (18)

Fig. 13. Computational domain for drop retraction.
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Fig. 14. TheL“ — B ~ rcurves for drop relaxation from an initially elliptic face is atr ~ 1.02.

shape withDg = 0.1.

from its usual definition using a strain rate by a factor thatis cous normal stress on the Newtonian side. Therefore, the
the capillary number. Two Deborah numbers are simulated: total resistance to retraction is roughly the same for the two
De = 1 and 5. The other dimensionless parameterseate:  cases. Hence, the proximity 6/N andN/O curves irFig. 14

0.01, & = 1.0607 x 10~ (corresponding te = 1). Forthe  This contrasts flow-induced drop deformation (e[86,37)
Oldroyd-B fluid, the retardation time is equal to the relaxation where the two cases present opposite trends. There, the de-

time.. . _ formation is driven by a prescribed flow and the interplay
Fig. 1_4compe_1res several cases Of drop retraction, with a petween interfacial tension and normal stresses is different.
Newtonian drop in an Oldroyd-B matri#(0), an Oldroyd-B The second notable feature is the effechef which can

drop in a Newtonian matrixf/N), and a Newtoniandropina  be explained as in Secti@2 Owing to the finite time needed
Newtonian matrix§/N) as the baseline. Perhaps surprisingly, for stress growth in a viscoelastic fluid, the resistance to re-
theO/N andN/O cases differ very little for the sani@e. This traction is initially weaker than in a Newtonian fluid. Hence,

is because the interfacial tension drives the retraction againsthe retraction is faster in the initial stage f§t0 and O/N
resistance fromoth the drop and the matrix, and whetherthe  than forV/N. This is reversed later as the viscoelastic stress
viscoelasticity occurs in the drop or the matrix, it produces exceeds the Newtonian stress, and the retraction becomes
roughly the same amount of resistance. First, the fluids in the sjower than that foiV/N. Not surprisingly, this effect is more
drop and in the matrix are subject to roughly equal extension pronounced at highePe.

rates, but with opposite signs. At the pointed ends of the = Based on the above discussion, the drop retraction method
drop, for instance, the interface compresses the drop fluidfor measuring interfacial tension is likely to work for vis-
and stretches the matrix fluid, regardless of their rheology. coelastic fluids if the retraction is slow (due to high viscosity,
This can be seen from the velocity profilex) in Fig. 15 [u| say), and the Deborah number is small. Otherwise the retrac-
reaches its maximum near the interfacex(at 1.02) forboth  tion does not follow an exponential law and the method will
NIO andO/N. Furthermore, the velocity gradiedu /dx—or fail. Indeed, the experiments of Mo et §0] and Son and

the extension rate—has roughly the same magnitude on bothyoon [31] involve retraction times of many hundreds of sec-

sides of the interface and betwe®fO andO/N. A similar  onds. Assuming a polymer relaxation time of several seconds,
argument can be made at the “waist" of the drop, i.e., the endsithe Deborah number as defined here willlbe~ 0.01.
of the minor axes. Most previous work on drop retraction deals with a differ-

Second, we may write out the polymer tensile stress for a ent initial condition: the cessation of a steady shear or elon-
planar extensional flowu( v) = (ex, —ey) of an Oldroyd-B  gational flow that has deformed the drop to a steady shape.
fluid [35]: Compared with the retraction discussed above, a new factor

20 p¢ ¢ . is the initial s_tress _field; the polyme_r chains are st_retched and
Tpxx = T—2ame {1 —exp [—m(l - ZAHe)] } . (20 their relaxation will be coupled with the relaxation of the

drop shape. We have simulated drop retraction from initial

Given the small value dfu/9x at the interface, the local Deb-  conditions produced by steady shear at a capillary number
orah numbetiye| <« 1. EQ.(20) implies that the polymers  of Ca = 0.1; Fig. 16 compares the behavior @/N, N/O
will produce roughly the same amount of stress if stretched and N/N systems. Note that the initial deformati@w, dif-
or compressed at the san# In other words, betweeN/O fers slightly among the five runs because of the different vis-
and O/N, the polymer normal stress, ., has more or less  coelasticity of the components. It is also slightly larger than
the same magnitude on the polymer side, as does the visthat inFig. 14
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produced by steady shear. For the 5 runs, the initial deformation parame-
ters areDg = 0.1078 (V/N), 0.1065 (V/O, De = 1), 0.1035 §/O, De = 5),
0.1072 QIN, De = 1), and 0.1053@/N, De = 5). The computational do-

main is 8 x 8, somewhat

Despite the differingDg, the retraction of an Oldroyd-B
drop in a Newtonian matrix@/N) is very close to that start-
ing with zero initial stressKig. 14). In contrast, the retraction
of a Newtonian drop in an Oldroyd-B matriv{0) is quite
different from its counterpart ifrig. 14 The retraction is
slower than theV/N case from the very beginning, and the
discrepancy grows with time. The effect is also more pro-
nounced for higheDe. These observations can be explained
by studying the flow field and the polymer stress distribution.
During the steady shear prior to retraction, the flow inside the

or moderately extensionaFig. 17). Thus, if the matrix is

polymer stress inside the drdpig. 18plots the evolution of
the normal stress differendé; = t,,,, — t;; just outside the

larger than féiig. 14

0.5

0.14
012
N/O, De=5
0.1+ — — — — OIN, De=5
0.08 -

Fig. 18. Normal stress difference in the Oldroyd-B fluid near the drop tip.
The data are take at the intersectionpof 0.9 and the major axis of drop.
Recall thaip = 1 in the bulk Oldroyd-B fluid.

end of the drop foN/O and just inside foO/N during retrac-
tion, n andt being the local normal and tangential direction.
The former is much larger and lasts longer, and explains the
retarded retraction in the Oldroyd-B matrix. The persistence
of polymer stress outside the contracting ends of the drop is
partly due to the fact the retraction further stretches the poly-
mer chains or at least postpones their recoili@g]. This
effect is significant sincde = Ay /et > 1, with the poly-
mer chain relaxing more slowly than the drop. Also note that
for O/IN, the small residual viscoelastic stress inside the drop
tends to promote drop retraction initially becawge> 0.

The experiment most relevant to our simulation is that
drop is highly rotational in all cases, while outside it is shear of Tretheway and Leal38], who measured the retraction
of Newtonian drops suspended in a PIB/PB Boger fluid
viscoelastic, a considerable normal stress builds up aroundfollowing planar extensional flow. Although quantitative
the drop. In contrast, if the drop is viscoelastic, there is little comparison is precluded by the different flow types and
dimensionality, the qualitative trends are the same. In par-
ticular, Tretheway and LedB8] suggested that the tensile

0.5

\ol o006
© |77

0.5

Fig. 17. Streamlines (a) and flow type contours (b) near a drop in steady shear. Both the drop and the matrix are Néwterln.The flow type parameter

Dl

is defined as = 15 ar

whereD = (Vv + (Vv)T)/2, 2 = ((Vv)T — Vv)/2, and the norm of the matrices is defined by, @ = 4/ 22

D:DT
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stress induced by the contraction of the drop ends causes th&NNSF of China (No. 20174024 and No. 20490220). J.S. was
drop retraction to slow down in a viscoelastic matrix. This is supported by the NSF (DMS-0074283, DMS-0311915). C.L.
essentially borne out by oligs. 16 and 18In addition, the was supported by the NSF (DMS-0405850). We acknowledge
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etal.[40]. Hooper et al[41] computed the retraction of adrop References

pre-deformed by a uniaxial elongational flow. The cessation

of flow, however, is effected by instantaneously freezing the

outer boundaries of the computational domain. The induced
backflow inside the domain causes the drop to stretch further
before retraction.

5. Summary

In this paper, we applied a diffuse-interface formulation
to drop coalescence and retraction involving Newtonian and
Oldroyd-B fluids. Somewhat coincidentally, in most cases
the viscoelasticity works in much the same way whether it
occurs in the drop or in the matrix. The only exception is drop
retraction after cessation of steady shear.

The diffuse interface makes it possible to simulate topo-

logical changes such as drop coalescence. The final stage

of the coalescence is dominated by short-range molecular
forces, and we have shown that the Cahn-Hilliard energy pro-
duces such a force comparable with the van der Waals force.
Viscoelasticity in either component hastens film drainage and

drop coalescence, and the effect can be explained by the rel-

atively slow stress growth in the non-Newtonian component.
Drop retraction is generally hindered by viscoelasticity, ow-
ing to the persistence of the polymer stresses. As a result,
one cannot infer the interfacial tension in general from the
retraction process using Newtonian models.

Within the theoretical framework of the current paper,
the above results have been rationalized by analyzing the
flow and stress fields near the interfaces. On the other
hand, direct comparison with experiments is hampered
by the two-dimensionality of our simulations and the
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