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An orthogonal system of rational functions is introduced. Some results on
rational approximations based on various orthogonal projections and interpola-
tions are established. These results form the mathematical foundation of the
related spectral method and pseudospectral method for solving differential equa-
tions on the half line. The error estimates of the rational spectral method and
rational pseudospectral method for two model problems are established. The
numerical results agree well with the theoretical estimates and demonstrate the
effectiveness of this approach.

KEY WORDS: Legendre rational polynomials; rational approximation;
spectral method; pseudospectral method.

1. INTRODUCTION

Many science and engineering problems of current interest are set in
unbounded domains. In the context of spectral methods, a number of
approaches for treating unbounded domains have been proposed and
investigated. A direct approach is to use spectral method associated with
some orthogonal systems in unbounded domains, such as the Hermite
spectral method and the Laguerre method, see, e.g., Maday et al. [12],
Guo [8], and Guo and Shen [11]. It is also possible to reformulate
original problems in unbounded domains to certain singular�degenerate
problems in bounded domains by variable transformations, and then use
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the Jacobi polynomials to approximate the resulting singular problems, see,
e.g., Guo [6, 10]. Another effective method for solving such problems is
based on rational approximations. For instance, Christov [5] and Boyd
[3, 4] developed some spectral methods on infinite intervals by using
mutually orthogonal systems of rational functions. But the convergences
and error estimates for those rational spectral methods are still not
available.

In this paper, we investigate the spectral method and pseudospectral
method on the half line by using a new mutually orthogonal system of
rational functions, with the weight function (x+1)&2. We also give a
framework for theoretical analysis of rational approximation in weighted
Sobolev space. Although we may make variable transformations to change
differential equations on the half line into certain singular�degenerate
problems on a finite interval, it is preferable to approximate the differential
equations on the half line directly using rational approximations in certain
cases, such as in exterior problems where the obstacles may become too
complicated after variable transformations. Indeed, for this type of exterior
problems, we can choose a circle�sphere which encloses the obstacle, and
then use a combined finite-element, Fourier-rational approximation in
which the geometric complexity is handled by a finite-element method and
the domain outside the circle�sphere is handled by a rational approximation
in the radial direction and Fourier approximation in other direction(s).
The details of this approach is beyond the scope of this paper and will be
considered in a future work.

This paper is organized as follows. In the next section, we introduce
the system of rational functions induced by the Legendre polynomials and
its basic properties. In Sec. 3, we study various orthogonal projections and
establish some results on the rational approximation. In Sec. 4, we consider
two kinds of rational interpolations. The results in these two sections form
the mathematical foundation for the related spectral method and
pseudospectral method. In Sec. 5, we analyze rational spectral method
and rational pseudospectral method for two model problems. In Sec. 6, we
discuss numerical implementations and present some numerical results
which agree well with the theoretical analysis and which demonstrate the
effectiveness of this new approach.

2. LEGENDRE RATIONAL FUNCTIONS

We first introduce some notations. Let 4=[x | 0<x<�] and /(x)
be a positive weight function. For 1�p��, let

L p
/(4)=[v | v is measurable and &v&Lp

/
<�]
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where

&v&Lp
/
={\|4

|v(x)| p /(x) dx+
1�p

ess sup
x # 4

|v(x)|

1�p<�

p=�
(2.1)

We denote by (u, v)/ and &v&/ respectively the inner product and the
norm of the space L2

/(4), i.e.,

(u, v)/=|
4

u(x) v(x) /(x) dx, &v&/=(v, v)1�2
/

For any non-negative integer m, we set

H m
/ (4)={v } �k

x v=
d kv
dxk # L2

/(4), 0�k�m=
equipped with the inner product, the semi-norm and the norm as follows,

(u, v)m, /= :
m

k=0

(�k
xu, �k

xv)/ , |v|m, /=&�m
x v&/ , &v&m, /=(v, v)1�2

m, /

For any real number r>0, we define the space H r
/(4) with the norm &v&r, /

by space interpolation as in Adams [1]. As usual / will be omitted from
the notations if /(x)#1.

Let Ll (x) be the Legendre polynomial of degree l. We recall that Ll (x)
is the eigenfunction of the singular Sturm�Liouville problem

�x((1&x2) �x Ll (x))+l(l+1) Ll (x)=0, l=0, 1, 2,... (2.2)

We define the Legendre rational function of degree l by

Rl (x)=- 2 Ll \x&1
x+1+

Thus, Rl (x) is the l th eigenfunction of the singular Sturm�Liouville
problem

(x+1)2 �x(x �xv)+*v=0, x # 4 (2.3)

with the corresponding eigenvalue *=l(l+1).
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Clearly, we have

lim
x � �

Rl (x)=- 2, lim
x � �

x �xRl (x)= lim
x � �

2 - 2 x
(x+1)2 L$l \x&1

x+1+=0

We also recall that the recurrence formulas and the orthogonality of the
Legendre polynomials lead to

Rl+1(x)=
2l+1
l+1

}
x&1
x+1

Rl (x)&
l

l+1
R l&1(x), l�1

2(2l+1) Rl (x)=(x+1)2 (�xRl+1(x)&�xR l&1(x)), l�1

and

|
4

R l (x) Rm(x) |(x) dx=(l+ 1
2)&1 $l, m (2.4)

where |(x)=(x+1)&2 and $l, m is the Kronecker function. Thus, the
Legendre rational expansion of a function v # L2

|(4) is

v(x)= :
�

l=0

v̂l Rl (x), with v̂l=(l+ 1
2) |

4
v(x) Rl (x) |(x) dx

Next, let |1(x)=x. By virtue of (2.3), (2.4) and the asymptotic
behaviors of Rl (x) and x �xRl (x) at infinity, we find that [�xRl (x)] are
mutually orthogonal in L2

|1
(4), namely,

|
4

�xRl (x) �xRm(x) |1(x) dx=l(l+1)(l+ 1
2)&1 $l, m (2.5)

We shall now derive some inverse inequalities and embedding
inequalities. Let N be any positive integer, and

RN=span[R0 , R1 ,..., RN]

Hereafter, we denote by c a generic positive constant independent of
any function and N.

Theorem 2.1. For any , # RN and 1�p�q��,

&,&Lq
|
�(2( p+1) N 2)1�p&1�q &,&Lp

|

Proof. Let y # 4� =(&1, 1), x=(1+ y)�(1& y). For any , # RN , we
set �( y)=,((1+ y)�(1& y)). By the definition of RN , we have �( y) # PN ,
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which is the set of polynomials of degree at most N. By an inverse
inequality in PN (see, e.g., Theorem 2.7 of Guo [7]),

\|4�
|�( y)|q dy+

1�q

�(( p+1) N 2)1�p&1�q \|4�
|�( y)| p dy+

1�p

Therefore,

&,&Lq
|
=2&1�q \|4�

|�( y)|q dy+
1�q

�2&1�q(( p+1) N2)1�p&1�q \|4�
|�( y)| p dy+

1�p

=(2( p+1) N 2)1�p&1�q &,&Lp
|

Theorem 2.2. Let m be any non-negative integer and 2�p<�.
Then, for any , # RN ,

&�m
x ,&Lp

|
�cN 2m &,&Lp

|

Also for any r�0,

&,&r, |�cN 2r &,&|

Proof. Let y # 4� , PN and �( y) be the same as in the proof of the last
theorem. Then (see, e.g., Theorem 2.8 of Guo [7]),

&�m
y �&Lp(4� )�cN 2m &�&Lp(4� )

Thus

&�x,&Lp
|
=\ 1

2 p+1 |
4�

|�y�( y)| p( y&1)2p dy+
1�p

�2 \|4�
|�y �( y)| p dy+

1�p

�cN 2 \|4�
|�( y)| p dy+

1�p

=cN2 &,&Lp
|

By repeating the above procedure, we deduce that for any non-negative
integer m,

&�m
x ,&Lp

|
�cN 2m &,&Lp

|

The second result follows from the above inequality with p=2 and space
interpolation. g
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Remark 2.1. In particular, for any � # PN ,

&�y�&L2(4� )�
3
2N2 &�&L2(4� )

which leads to that

&�x,&|�3N2 &,&|

Theorem 2.3. If v # L2
|2(4), �xv # L2

|(4) and v(0)=0, then

&v&|2� 2
3 |v|1, |

If v # L2
|(4), �xv # L2(4) and v(0)=0, then

&v&|�2 - 2 |v|1

Proof. Let u( y)=v((1+ y)�(1& y)). Then, in order to prove the first
result, it suffices to prove that

|
4�

u2( y)(1& y)2 dy� 4
9 |

4�
(�yu( y))2 (1& y)4 dy

Since u(&1)=0, we have that for any y # 4� ,

u2( y)(1& y)3=|
y

&1
�z(u2(z)(1&z)3) dz

Hence,

u2( y)(1& y)3+3 |
y

&1
u2(z)(1&z)2 dz

=2 |
y

&1
u(z) �z u(z)(1&z)3 dz

�2 \|4�
u2(z)(1&z)2 dz+

1�2

\|4�
(�zu(z))2 (1&z)4 dz+

1�2

Letting y � 1, we obtain that

|
4�

u2( y)(1& y)2 dy� 4
9 |

4�
(�yu)2 (1& y)4 dy

This proves the first result. The second result follows from the first result
applied to (x+1) v(x). g
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3. LEGENDRE RATIONAL POLYNOMIAL APPROXIMATIONS

In this section, we investigate various orthogonal projections.
We define the L2

|(4)-orthogonal projection PN : L2
|(4) � RN by

(Pnv&v, ,)|=0, \, # RN

In order to estimate &PNv&v&| , we need to introduce the space

H r
|, A(4)=[v | v is a measurable and &v&r, |, A<�]

where for non-negative integer r,

&v&r, |, A=\ :
r

k=0

&(x+1) (r�2)+k �k
xv&2

|+
1�2

For any real r>0, the space H r
|, A(4) is defined by space interpolation.

Let A be the Sturm�Liouville operator in (2.3), namely,

Av(x)=&|&1(x) �x(x �xv(x))

By induction,

Amv(x)= :
2m

k=1

(x+1)m+k pk(x) �k
xv(x) (3.1)

where pk(x) are some rational functions which are bounded uniformly on the
whole interval 4. So Am is a continuous mapping from H 2m

|, A(4) to L2
|(4).

Theorem 3.1. For any v # H r
|, A(4) and r�0,

&PNv&v&|�cN &r &v&r, |, A

Proof. We first assume that r=2m. By virtue of (2.3), (2.4) and
integration by parts,

v̂=
1
2

(2l+1) |
4

v(x) Rl (x) |(x) dx=
2l+1

2l(l+1) |4
v(x) AR l (x) |(x) dx

= &
2l+1

2l(l+1) |4
v(x) �x(x �xRl (x)) dx=

2l+1
2l(l+1) |4

x �xv(x) �xRl (x) dx

= &
2l+1

2l(l+1) |4
�x(x �xv(x)) Rl (x) dx=

2l+1
2l(l+1) |4

Av(x) Rl (x) |(x) dx

= } } } =
2l+1

2l m(l+1)m |
4

Amv(x) Rl (x) |(x) dx (3.2)
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Therefore, we derive from (3.1), (3.2) and the definition of H r
|, A(4) that

&PNv&v&2
|= :

�

l=N+1

v̂2
l &Rl &2

|

�cN&4m :
�

l=N+1
\�4 Amv(x) Rl (x) |(x) dx

&Rl &2
| +

2

&Rl&2
|

�cN&4m &Amv&2
|�cN&4m &v&2

r, |, A

Next, let r=2m+1. By (2.3) and integration by parts,

v̂l =
2l+1

2l m(l+1)m |
4

Amv(x) R l (x) |(x) dx

=&
2l+1

2l m+1(l+1)m+1 |
4

Amv(x) �x(x �xRl (x)) dx

=&
2l+1

2l m+1(l+1)m+1 |
4

�x(Amv(x)) �x Rl (x) |1(x) dx

Thanks to (2.5) and (3.1),

&PNv&v&2
|= :

�

l=N+1

v̂2
l &Rl&2

|

= :
�

l=N+1

2l+1
2(l(l+1))2m+2 \|4

�x(Amv) �xRl (x) |1(x) dx+
2

= :
�

l=N+1

(2l+1) &�xR l&2
|1

2(l(l+1))2m+2

_\�4 �x(Amv) �xRl (x) |1(x) dx
&�xRl&2

|1
+

2

&�xRl&2
|1

�cN &2(2m+1) :
�

l=N+1 \
�4 �x(Amv) �xR l (x) |1(x) dx

&�xRl &2
|1

+
2

&�xRl&2
|1

�cN &2(2m+1) &�x(Amv)&2
|1

�cN &2(2m+1) &�x(Amv)(x+1)3�2&2
|

�cN &2(2m+1) &v&2
r, |, A

The general result follows from the previous results and space interpola-
tion. g
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The H 1
|(4)-orthogonal projection P1

N : H 1
|(4) � RN is a mapping

such that for any v # H 1
|(4),

(P1
Nv&v, ,)1, |=0, \, # RN

In order to estimate &P1
Nv&v&1, | , we recall some approximation

results on Jacobi polynomials established in [9]. Let us define

L2
:, ;(4� )={u } &u&L2

:, ;
=\|4�

u2( y)(1& y): (1+ y); dy+
1�2

<+�= (3.3)

and

a:, ;, #, $(u, w)=|
4�

�y u �y w(1& y): (1+ y); dy

+|
4�

u( y) w( y)(1& y)# (1+ y)$ dy (3.4)

We also denote H 0
:, ;, #, $(4� )=L2

#, $(4� ) and

H 1
:, ;, #, $(4� )=[u | u is measurable on 4� and &u&1, :, ;, #, $<+�] (3.5)

where &u&1, :, ;, #, $=a1�2
:, ;, #, $(u, u). For 0<+<1, H +

:, ;, #, $(4� ) and its norm
&u&+, :, ;, #, $ are defined by space interpolation. We also define

H r
:, ;, V (4� )=[u | u is measurable on 4� and &u&r, :, ;, V <+�] (3.6)

where for non-negative integer r,

&u&2
r, :, ;, V =A (1)

r, :, ;(u)+A (2)
r, :, ;(u) (3.7)

with

A (1)
r, :, ;(u)= :

r

k=r&[r�2]+1
|

4�
(�k

y u( y))2 (1& y2)&r+2k&1 (1& y): (1+ y); dy

(3.8)

A (2)
r, :, ;(u)= :

[(r+1)�2]

k=1
|

4�
(�k

y u( y))2 (1& y): (1+ y); dy

The space H r
:, ;, V (4� ) and its norm &u&r, :, ;, V for real positive r are defined

by space interpolation.
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Let P� 1
N, :, ;, #, $ : H 1

:, ;, #, $(4� ) � PN be orthogonal projection operator
defined by

a:, ;, #, $(P� 1
N, :, ;, #, $ u&u, �)=0, \� # PN (3.9)

By using the notations on pp. 380�381 and Theorem 2.5 in [9], we know
that for :�#+2, ;�$+2, and for any u # H r

:, ;, #, $(4� ) with r�1, we have

&P� 1
N, :, ;, #, $u&u&2

1, :, ;, #, $�cN 2&2r &u&2
r, :, ;, V (3.10)

If in addition, :�#+1, ;�$+1 and 0�+�1, then

&P� 1
N, :, ;, #, $u&u&2

+, :, ;, #, $�cN 2+&2r &u&2
r, :, ;, V (3.11)

In order to estimate &P1
Nv&v&1, | we need to introduce another space.

For any non-negative integer r,

H r
|, B(4)=[v | v is measurable on 4 and &v&r, |, B<+�] (3.12)

where

&v&r, |, B=\ :
r

k=1

&(x+1)r�2+k&1�2 �k
xv&2

|+
1�2

(3.13)

As usual, for any r>0, the space H r
|, B(4) and its norm are defined by

space interpolation.

Theorem 3.2. For any v # H r
|, B(4) with r�1,

&P1
Nv&v&1, |�cN1&r &v&r, |, B

Proof. By definition, &P1
Nv&v&1, |�&,&v&1, | for any , # RN . Let

y=(x&1)�(x+1), u( y)=v((1+ y)�(1& y)). By taking ,=P� 1
N, 2, 0, 0, 0

u( y)|y=(x&1)�(x+1) , a direct computation together with (3.10) (:=2,
;=#=$=0) leads to

&,&v&2
1, |= 1

8 |
4�

(�yP� 1
N, 2, 0, 0, 0u( y)&�yu( y))2 ( y&1)4 dy

+ 1
2 |

4�
(P� 1

N, 2, 0, 0, 0u( y)&u( y))2 dy

�c &P� 1
N, 2, 0, 0, 0u&u&2

1, 2, 0, 0, 0�cN 2&2r &u&2
r, 2, 0, V
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Note that 1& y=2�(x+1), 1& y2=4x�(x+1)2 and one can show easily
by induction that

�k
y u( y)= :

k

j=1

qj (x)(x+1)k+ j � j
xv(x) (3.14)

where qj (x) are some rational polynomials which are uniformly bounded
on 4. Thus, for any non-negative integer r,

A (1)
r, 2, 0(u)�c :

r

k=r&[r�2]+1

:
k

j=1

&(x+1)(r�2)+ j&(1�2) � j
xv&2

|�c &v&2
r, |, B

Similarly, we have

A (2)
r, 2, 0(u)�c :

[(r+1)�2]

k=1

:
k

j=1

&(x+1)k+ j&1 � j
xv&2

|�c &v&2
r, |, B

This fact together with space interpolation complete the proof. g

When we apply the Legendre rational spectral method to partial dif-
ferential equations with Dirichlet boundary conditions at x=0, we need
another orthogonal projection. Let us denote

H 1
0, |(4)=[v | v # H 1

|(4), v(0)=0 and v(x)(x+1)&3�2 � 0, as x � �]

R0
N=[, # RN | ,(0)=0] (3.15)

a&
|(u, v)=(�xu, �x(v|))+&(u, v)|

We define the H 1
0, |(4)-orthogonal projection P1, 0

N : H 1
0, |(4) � R0

N by

a&
|(P1, 0

N v&v, ,)=0, \, # R0
N

Lemma 3.1. For any u, v # H 1
0, |(4) and &> 3

4 ,

a&
|(v, v)�c &v&2

1, |

|a&
|(u, v)|�c &u&1, | &v&1, |

Proof. Let &= 3
4+= and =>0. By integrating by parts and using

Theorem 2.3, we find that
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a&
|(v, v)=(�x v, �x(v|))+&(v, v)|

=|v| 2
1, |+& &v&2

|+(�xv, v�x|)

=|v| 2
1, |+& &v&2

|+
1
2 |

4
�x(v2(x)) �x|(x) dx

=|v| 2
1, |+& &v&2

|&3 |
4

v2(x)(x+1)&4 dx

=|v| 2
1, |+& &v&2

|&3 &v&2
|2

=|v| 2
1, |&\9

4
&

=
2+ &v&2

|2+\3
4

+=+ &v&2
|&\3

4
+

=
2+ &v&2

|2

�
2
9

= |v| 2
1, |+

=
2

&v&2
| (3.16)

This leads to the first result. Next, by the Cauchy�Schwartz inequality and
Theorem 2.3,

|(�xu, v �x |)|= } |4
�xu(x) v(x) �x|(x) dx }

�2 &�xu&| &v&|2�c |u| 1, | |v|1, |

which implies the second result. g

In order to estimate &P1, 0
N v&v&1, | , we need another result in [9]. Let

us define

H 1, L
:, ;, #, $(4� )=[u # H 1

:, ;, #, $(4� ) | u(&1)=0], PL
N=[u # PN | u(&1)=0]

and the orthogonal projection P� 1, L
N, :, ;, #, $ : H 1, L

:, ;, #, $(4� ) � PL
N by

a:, ;, #, $(P� 1, L
N, :, ;, #, $u&u, �)=0, \, # PL

N

Thanks to Theorem 2.6 in [9], we know that if :�#+2, ;�0 and $�0,
then for any u # H r

:, ;, #, $(4� ) & H 1, L
:, ;, #, $(4� ), we have

&P� 1, L
N, :, ;, #, $u&u&2

1, :, ;, #, $�cN 2&2r &u&2
r, :, ;, V (3.17)

and if in addition, :�#+1, ;�$+1 and 0�+�1, then

&P� 1, L
N, :, ;, #, $u&u&2

+, :, ;, #, $�cN 2+&2r &u&2
r, :, ;, V (3.18)
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Theorem 3.3. For any v # H r
|, B(4) & H 1

0, |(4), &> 3
4 and r�1,

&P1, 0
N v&v&1, |�cN1&r &v&r, |, B

Proof. By Lemma 3.1, for any , # R0
N ,

&P1, 0
N v&v&2

1, |�ca&
|(P1, 0

N v&v, P1, 0
N v&v)

=ca&
|(P1, 0

N v&v, ,&v)

�c &P1, 0
N v&v&1, | &,&v&1, |

Therefore

&P1, 0
N v&v&1, |�c inf

, # R
0
N

&,&v&1, | (3.19)

Next, let x=(1+ y)�(1& y), u( y)=v((1+ y)�(1& y)) and take ,=
P� 1, L

N, 2, 0, 0, 0u( y)|y=(x&1)�(x+1) in (3.19). Then, the desired result follows from
(3.17) and a similar argument as in the proof of Theorem 3.2. g

We now consider yet another orthogonal projection which will be
used in the Legendre rational interpolation approximations and in the
Legendre rational pseudospectral method. Let

â|(u, v)= 1
2 |

4
�x u(x) �xv(x)(x+1) dx+|

4
u(x) v(x) |(x) dx (3.20)

The orthogonal projection P� 1
N : H 1

|, A(4) � RN is a mapping such that for
any v # H 1

|, A(4),

â|(P� 1
N v&v, ,)=0, \, # RN (3.21)

Theorem 3.4. For any v # H r
|, A(4) and r�1,

&P� 1
Nv&v&|�cN&r &v&r, |, A

and

&(x+1)3�2 �x(P� 1
Nv&v)&|�cN1&r &v&r, |, A

Proof. Let us denote

u( y)=v \1+ y
1& y+ , u*N( y)=P� 1

N v(x)|x=(1+ y)�(1& y)
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By definition, we have

|
4�

�y(u*N( y)&u( y)) �y�( y)(1& y) dy

+|
4�

(u*N( y)&u( y)) �( y) dy=0, \� # PN (3.22)

Thus, u*N( y)=P� 1
N, 1, 0, 0, 0 u( y). Under the transform x=(1+ y)�(1& y), we

have

|
4

(P� 1
N v&v)2 |(x) dx= 1

2 |
4�

(u*N&u)2 dy

|
4

(x+1)3 (�x(P� 1
Nv&v))2 |(x) dx=|

4�
(�y(u*N&u))2 (1& y) dy

Therefore, we derive from (3.11) with :=1, ;=#=$=0 that

&P� 1
Nv&v&|�&u*N&u&2

0, 1, 0, 0, 0�cN&2r &u&2
r, 1, 0, V (3.23)

and

&(x+1)3�2 �x(P� 1
Nv&v)&|�c &u*N&u&2

1, 1, 0, 0, 0�cN2&2r &u&2
r, 1, 0, V (3.24)

A direction computation leads to

A (1)
r, 1, 0(u)�c :

r

k=r&[r�2]+1

:
k

j=1

&(x+1) (r�2)+ j � j
xv&2

|�c &v&2
r, |, A

Similarly,

A (2)
r, 1, 0(u)�c :

[(r+1)�2]

k=0

:
k

j=1

&(x+1)k+ j&(1�2) � j
xv&2

|�c &v&2
r, |, A g

We now give an estimate for the L�-norm of the projection operator
P� 1

N which will be useful for analyzing nonlinear problems. Similar estimates
for other projection operators can also be established. To do this, we intro-
duce the following Hilbert space. For any non-negative integer r,

H r
|, C (4)=[v | v is measurable and &v&r, |, C<�]

with the norm

&v&r, |, C=\ :
r

k=0

&(x+1)r+k �k
xv&2

|+
1�2
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For any real r>0, the space H r
|, C (4) and its norm are defined by space

interpolation.

Theorem 3.5. For any v # H r
|, C (4) with r>1, we have

&P� 1
Nv&L�(4)�c &v&r, w, C

Proof. Let u( y), u*N and P� 1
N, 1, 0, 0, 0u( y) be the same as defined above.

Then

&P� 1
Nv&L�(4)=&u*N&L�(4� )=&P� 1

N, 1, 0, 0, 0u( y)&L�(4� )

Thanks to Theorem 2.11 in [9], we have for r>1,

&P� 1
N, 1, 0, 0, 0u( y)&L�(4� )�c(&u&r, 1, 0, V +&u&H r(4� ))

Moreover, by (3.14),

&u&2
Hr(4� )= :

r

k=0

:
k

j=1
|

4
(x+1)2k+2j (� j

x v(x))2 |(x) dx

�c :
r

j=0
|

4
(x+1)2r+2j (� j

xv(x))2 |(x) dx�c &v&2
r, |, C

Then the desired result follows. g

4. LEGENDRE RATIONAL INTERPOLATION APPROXIMATION

In actual computations, it is convenient to use interpolations. We first
consider the Legendre�Gauss rational interpolation. We denote by `N, j the
N+1 distinct real zeros of RN+1(x), 0� j�N. Indeed,

`N, j=(1+_N, j )(1&_N, j )
&1 (4.1)

where _N, j are the zeros of LN+1(x). Let |N, j be the corresponding
Christoffel numbers, 0� j�N, such that

|
4

,(x) |(x) dx= :
N

j=0

,(`N, j ) |N, j , \, # R2N+1 (4.2)

As we know, the weights of the Legendre�Gauss quadrature are

\N, j=
2

(1&_2
N, j)(�xLN+1(_N, j ))2 , 0� j�N
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Thus

|N, j=
2

`N, j (`N, j+1)2 (�xRN+1(`N, j ))2 (4.3)

Moreover, by virtue of (15.3.10) in Szego� [15],

|N, jt
2?`1�2

N, j

(N+1)(`N, j+1)
(4.4)

We next introduce the discrete inner product and the discrete norm
associated with the Legendre�Gauss rational interpolation points,

(u, v)|, N= :
N

j=0

u(`N, j ) v(`N, j ) |N, j , &v&|, N=(v, v)1�2
|, N

Thanks to (4.2), we have

(,, �)|, N=(,, �)| , \,� # R2N+1 (4.5)

For any v # C(4), the Legendre�Gauss rational interpolant INv # RN such
that

INv(`N, j )=v(`N, j ), 0� j�N

or equivalently,

(INv&v, ,)|, N=0, \, # RN

The following theorem is related to the stability of the Legendre�
Gauss rational interpolation.

Theorem 4.1. For any v # H 1
|, A(4),

&INv&|�c(&v&|+N&1 &x1�2 �xv&)

Proof. By (4.4) and (4.5),

&INv&2
|=&INv&2

|, N= :
N

j=0

v2(`N, j ) |N, j

�cN &1 :
N

j=0

v2(`N, j ) `1�2
N, j (`N, j+1)&1
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Let x=(1+cos %)�(1&cos %) and v̂(%)=v((1+cos %)�1&cos %)). Then

&INv&2
|�cN &1 :

N

j=0

v̂2(%N, j ) \1+cos %N, j

1&cos %N, j+
1�2

(1&cos %N, j )

According to (4.1) and Theorem 8.9.1 in Szego� , (15)

%N, j=
1

N+1
( j?+O(1)), 0� j�N (4.6)

where O(1) is bounded uniformly for all 0� j�N. Now, let a0=O(1)�
(N+1) and a1=(N?+O(1))�(N+1). Then %N, j # Kj/[a0 , a1], Kj being
of size c�(N+1). Consequently,

&INv&2
|�cN &1 :

N

j=0

sup
% # Kj

|v̂2(%) sin %|

By using an inequality of space interpolation (see (13.7) in Bernardi and
Maday [2]), we know that for any f # H1(a, b),

max
a�x�b

| f (x)|�c \ 1

- b&a
& f &L2(a, b)+- b&a &�x f &L2(a, b) + (4.7)

Hence

&INv&2
|�c :

N

j=0

(&v̂(%) sin1�2 %&2
L2(Kj)

+N&2 &�% (v̂(%) sin1�2 %)&2
L2(Kj)

)

�c(&v̂(%) sin1�2 %&2
L2(0, ?)+N&2 &�% (v̂(%) sin1�2 %)&2

L2(a0 , a1))

�c(&v̂(%) sin1�2 %&2
L2(0, ?)+N&2 &�% v̂(%) sin1�2 %)&2

L2(0, ?)

+\ sup
a0�%�a1

cos2 %
N2 sin %+ &v̂(%) sin1�2 %&2

L2(0, ?))

�c(&v̂(%) sin1�2 %&2
L2(0, ?)+N&2 &�% v̂(%) sin1�2 %&2

L2(0, ?))

�c(&v(x)&2
L2

|(4)+N &2 &x1�2 �xv&2)

This completes the proof. g

Theorem 4.2. For any v # H r
|, 4(4) and 0�+�1�r,

&INv&v&+, |�cN2+&r &v&r, |, A
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Proof. Since IN(P� 1
N v) coincides with P� 1

Nv, we derive from Theorems
3.4 and 4.1 that

&INv&P� 1
Nv&|�(&P� 1

Nv&v&|+N &1&x1�2 �x(P� 1
Nv&v)&)

�cN&r &v&r, |, A (4.8)

Using Theorem 3.4 again,

&INv&v&|�&P� 1
Nv&v&|+&INv&P� 1

Nv&|�cN &r &v&r, |, A (4.9)

Furthermore, by (4.8) and Theorems 2.2 and 3.4,

|INv&v| 1, |�|P� 1
Nv&v|1, |+|INv&P� 1

Nv|1, |

�&P� 1
Nv&v&1, |+cN 2 &INv&P� 1

Nv&|

�c &P� 1
Nv&v&1, |+cN2&r &v&r, |, A

�cN2&r &v&r, |, A (4.10)

Finally, we get the desired result by (4.9), (4.10) and space interpolation.
g

We now deal with the Legendre�Gauss�Radau rational interpolation.
We denote by �̀ N, j the N+1 distinct zeros of RN(x)+RN+1(x), 0� j�N.
Indeed,

�̀ N, j=(1+_̂N, j )(1&_̂N, j )
&1 (4.11)

where _̂N, j are the zeros of LN(x)+LN+1(x). In particular, �̀ N, N=0. Let
|̂N, j be the corresponding Christoffel numbers, 0� j�N, such that

|
4

,(x) |(x) dx= :
N

j=0

,( �̀ N, j ) |̂N, j , \, # R2N (4.12)

As we know, the weights of the Legendre�Gauss�Radau quadrature are

\̂N, j =
1

(N+1)2

1&_̂N, j

(LN(_̂N, j ))2 , 0� j�N&1

\̂N, N=
2

(N+1)2
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Thus

|̂N, j=
2

(N+1)2

1

( �̀ N, j+1)(RN( �̀ N, j ))2
, 0� j�N&1

(4.13)

|̂N, N=
1

(N+1)2

Moreover, by virtue of (15.3.10) in Szego� [15],

|̂N, jt
4?
N

�̀ 1�2
N, j

( �̀ N, j+1)
, 0� j�N&1 (4.14)

The discrete inner product and the discrete norm associated with the
Legendre�Gauss�Radau rational interpolation points are,

(u, v)|, N, t= :
N

j=0

u( �̀ N, j ) v( �̀ N, j ) |̂N, j , &v&|, N, t=(v, v)1�2
|, N, t

Thanks to (4.12),

(,, �)|, N, t=(,, �)| , \,� # R2N (4.15)

For any v # C(4� ), the Legendre�Gauss�Radau rational interpolant
I� Nv(x) # RN , satisfying

I� Nv( �̀ N, j )=v( �̀ N, j ), 0� j�N

or equivalently,

(I� Nv&v, ,)|, N, t=0, \, # RN

The following theorem is related to the stability of the Legendre�
Gauss�Radau rational interpolation.

Theorem 4.3. For any v # H 1
|, A(4),

&I� Nv&|�c(&v&|+N&1 &(x+1)1�2 �x v&)

Proof. By (4.13), (4.14) and (4.15),

&I� Nv&2
|=&I� Nv&2

|, N, t
= :

N

j=0

v2( �̀ N, j ) |̂N, j

�cN&1 :
N&1

j=0

v2( �̀ N, j ) �̀ 1�2
N, j (1+ �̀ N, j )

&1+(N+1)&2 v2(0)
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By the trace theorem,

|v(0)|2�c &v&2
H 1�2(0, 1)�c " 1

x+1
v"

2

H 1�2(0, 1)

�c &v&2
1�2, |�c &v&2

1, |

Let x=(1+cos %)�(1&cos %) and v̂(%)=v((1+cos %)�(1&cos %)). Then

&I� Nv&2
|�cN&1 :

N&1

j=0

v̂2(%� N, j ) \1+cos %� N, j

1&cos %� N, j+
1�2

(1&cos %� N, j )+cN&2 &v&2
1, |

According to (4.11), Theorem 8.9.1 of Szego� [15], and the relation
between _N, j and _̂N, j , we assert that

%� N, j=
1
N

( j?+O(1)), 0� j�N&1

Then, the conclusion follows from an similar argument as in the proof of
Theorem 4.1. g

Theorem 4.4. For any v # H r
|, A(4) and 0�+�1�r,

&I� Nv&v&+, |�cN2+&r &v&r, |, A

Proof. Since I� N(P� 1
Nv) coincides with P� 1

Nv, we have from Theorems
3.4 and 4.3 that

&I� Nv&P� 1
N v&|�c(&P� 1

Nv&v&|+N&1 &(x+1)1�2 �x(P� 1
Nv&v)&)

�cN&r &v&r, |, A (4.16)

Using Theorem 3.4 again,

&I� Nv&v&|�&P� 1
Nv&v&|+&I� Nv&P� 1

Nv&|�cN &r &v&r, |, A (4.17)

Furthermore, by (4.16), and Theorems 2.2 and 3.4,

|I� Nv&v|1, |�|P� 1
Nv&v| 1, |+|I� Nv&P� 1

Nv| 1, |

�&P� 1
N v&v&1, |+cN 2 &I� N v&P� 1

Nv&|

�c &P� 1
Nv&v&1, |+cN 2&r &v&r, |, A

�cN2&r &v&r, |, A (4.18)

Finally, we get the desired result by (4.16), (4.18) and space interpolation.
g
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5. APPLICATIONS

We consider first the following model problem

&�2
xU(x)+&U(x)= f (x), 0<x<�

{U(0)=0 (5.1)

(x+1)&3�2 U(x) � 0, as x � �

where &>0 and f (x) is a given function. For simplicity, we assume &> 3
4 .

Otherwise, we can use the variable transformation x=:y, :> 1
2 - 3�&.

A weak formulation of (5.1) with &> 3
4 is to find U # H 1

0, |(4) such that

:&
|(U, v)=( f, v)| , \v # H 1

0, |(4) (5.2)

If f # (H 1
0, |(4))$, then by Lemma 3.1 and the Lax�Milgram Lemma, (5.2)

with &> 3
4 has a unique solution.

The Legendre rational spectral scheme for (5.1) is to find uN # R0
N ,

such that

a&
|(uN , ,)=( f, ,)| , \, # R0

N (5.3)

Theorem 5.1. If U # H r
|, B(4) & H 1

0, |(4), &> 3
4 and r�1, then

&uN&U&1, |�cN 1&r &U&r, |, B

Proof. Let UN=P1, 0
N U. By (5.2),

a&
|(UN , ,)=( f, ,)| , \, # R0

N (5.4)

Let U� N=uN&UN . Then, by (5.3) and (5.4),

a&
|(U� N , ,)=0, \, # R0

N (5.5)

Thus, uN=UN and the desired result follows from Theorem 3.3. g

We now consider the Legendre�Gauss�Radau rational pseudospectral
scheme for (5.1). Let

a&
|, N(u, v)=(�x u, �xv&2v(1+x)&1)|, N, t+&(u, v)|, N, t

Since

�x Rl (x)=
2 - 2

(x+1)2 L$l \x&1
x+1+=

- 2
2

(1& y)2 L$l ( y) }y=(x&1)�(x+1)

# Rl+1
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and

Rl (x)(1+x)&1=
- 2

2
(1& y) Ll ( y) }y=(x&1)�(x+1)

# Rl+1

we know from (4.15) that for any ,, � # RN&1 ,

a&
|, N(,, �)=a&

|(,, �) (5.6)

A legendre rational pseudospectral method for (5.1) is to find
uN # R0

N&1 such that

a&
|, N(uN , ,)=( f, ,)|, N, t , \, # R0

N&1 (5.7)

Theorem 5.2. If U # H r
|, B(4) & H 1

0, |(4), f # H r&1
|, A(4), &> 3

4 and
r�1, then

&uN&U&1, |�cN 1&r(&U&r, |, B+& f &r&1, |, A) (5.8)

Proof. By (4.15) and Theorem 2.3, we have for any , # RN&1 ,

|( f, ,)|, N, t |= } \I� N((x+1) f ),
,

x+1+|, N, t
}= } (I� N(x+1) f ),

,
x+1+| }

�&I� N((x+1) f )&| &,&| 2

�&I� N((x+1) f )&| &,&1, | (5.9)

Hence, by the Lax�Milgram Lemma, (5.7) has a unique solution such that

&uN&1, |�c &I� N((x+1) f )&|

Let UN=P1, 0
N&1U. Then by (5.6) and (5.7), we have for any , # R0

N&1 ,

a&
|(UN , ,)=( f, ,)|

(5.10)
a&

|(uN , ,)=(IN f, ,)|

Therefore,

a&
|(UN&uN , ,)=( f&IN f, ,)| , , # R0

N&1
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Let ==&& 3
4>0. Taking ,=UN&uN and using (3.16), we obtain

=
2

&uN&UN&2
|+

2=
9

|uN&UN | 2
1, |

�a&
|, N(uN&UN , uN&UN)

=( f&IN f, UN&uN)|�& f&IN f &| &UN&uN&|

�= & f&IN f &2
|+

=
4

&UN&uN &2
| (5.11)

Therefore, by Theorems 3.3 and 4.4,

&uN&U&1, |�&UN&U&1, |+&uN&UN &1, |

�cN 1&r(&U&r, |, B+& f &r&1, |, A) g

Next, we consider a time-dependent model problem

{
�t U(x, t)&�2

xU(x, t)= f (x, t)
�x U(0, t)=0
(x+1)&3�2 U(x, t) � 0
U(x, 0)=U0(x)

0<x<�, 0<t�T
0�t�T
as x � �, 0�t�T
0<x<�

(5.12)

A weak formulation of (5.12) is to find U # L2(0, T; H 1
|(4)) & L�(0, T;

L2
|(4)) such that

(�t U(t), v)|+(�xU(t), �xv)|+(�xU(t), v �x|)=( f, v)| , \v # H 1
|(4)

(5.13)

If U0 # L2
|(4) and f # L2(0, T; L2

|(4)), then (5.12) has a unique solution.
The Legendre rational spectral scheme for (5.12) is to find uN(t) # RN for
all 0�t�T such that

{(�tuN(t), ,)|+(�xuN(t), �x,)|+(�xuN(t), , �x|)=( f, ,)| , \, # RN

uN(0)=PNU0
(5.14)

Theorem 5.3. If U # H1(0, T; H r
|, B(4)) and U0 # H r&1

|, A(4) & H r
|, B(4)

with r�1, then for all 0�t�T,

&uN(t)&U(t)&2
|+|

t

0
&uN(s)&U(s)&2

1, | ds�c*ectN 2&2r

where c* is a positive constant depending only on the norms of U and U0

in the mentioned spaces.
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Proof. Let UN=P1
N U. By (5.13),

(�tUN(t), ,)|+(UN(t), ,)1, |+(�x UN(t), , �x|)&(UN(t), ,)|

{ =( f, ,)|+ :
3

i=1

Gi (t, ,), \, # RN (5.15)

UN(0)=P1
NU0

where

G1(t, ,)=(�tUn(t)&�tU(t), ,)|

G2(t, ,)=(�xUN(t)&�xU(t), , �x|)

G3(t, ,)=(U(t)&UN(t), ,)|

Now, let U� N=uN&UN . Then by (5.14) and (5.15),

(�tU� N(t), ,)|+(U� N(t), ,)1, |+(�x U� N(t), , �x|)&(U� N(t), ,)|

{ =& :
3

i=1

G i (t, ,) (5.16)

U� N(0)=PN U0&P1
NU0

Taking ,=U� N in (5.16), we find

d
dt

&U� N(t)&2
|+2&U� N(t)&2

1, |+2(�xU� N(t) �x|)&2 &U� N(t)&2
|

�2 :
3

i=1

|Gi (t, U� N(t))| (5.17)

It is easy to see that

2 |(�x U� N(t), U� N(t) �x|)|+2 &U� N(t)&2
|�|U� N(t)| 2

1, |+6 &U� N(t)&2
|

By virtue of Theorems 3.1 and 3.2,

2 |G1(t, U� N(t))|�&U� N(t)&2
|+cN 2&2r &�t U(t)&2

r, |, B

2 |G2(t, U� N(t))|�&U� N(t)&2
|+cN 2&2r &U(t)&2

r, |, B

2 |G3(t, U� N(t))|�&U� N(t)&2
|+cN 2&2r &U(t)&2

r, |, B

&U� N(0)&2
|�cN 2&2r(&U0&2

r&1, |, A+&U0&2
r, |, B)

�cN 2&2r &U0&2
r, |, B
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Thus,

d
dt

&U� N(t)&2
|+&U� N(t)&2

1, |

�8 &U� N(t)&2
|+cN2&2r(&�tU(t)&2

r, |, B+&U(t)&2
r, |, B) (5.18)

Let us denote

E(v, t)=&v(t)&2
|+|

t

0
&v(s)&2

1, | ds

\(t)=cN2&2r \&U0&2
r&1, |, A+&U0&2

r, |, B+|
t

0
(&�sU(s)&2

r, |, B) ds+
Integrating (5.18) with respect to t, we obtain that

E(U� N , t)�c |
t

0
E(U� N , s) ds+\(t)

Finally, we use the above estimate and Theorem 3.2 to get the following
result. g

We now consider the Legendre�Gauss rational pseudospectral scheme
for (5.13): Find uN(t) # RN&1 for all 0�t�T such that

(�t uN(t), ,)|, N+(�xuN(t), �x ,&2,(x+1)&1)|, N

{ =( f (t), ,)|, N , \, # RN&1 (5.19)

uN(0)=IN&1U0

Theorem 5.4. If U # H1(0, T; H r
|, B(4)), U0 # H r&1

|, A(4) & H r
|, B(4)

and f # H r&1
|, A(4) with r�1, then for all 0�t�T,

&uN(t)&U(t)&2
|+|

t

0
&uN(s)&U(s)&2

1, | ds�c*ectN 2&2r

where c* is a positive constant depending only on the norms of U, U0 and
f in the mentioned spaces.

Proof. Let UN=P1
N&1U. We get from (5.13) that

(�t UN(t), ,)|, N+(�xUN(t), �x,&2,(x+1)&1)|, N

=( f (t), ,)|+ :
6

i=4

Gi (t, ,), \, # RN&1 , t # (0, T] (5.20)
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where

G4=(�tUN(t), ,)|, N&(�tU(t), ,)|

G5=(�xUN(t), �x,)|, N&(�xU(t), �x,)|

G6=2(�xU(t), ,(x+1)&1)|&2(�xUN(t), ,(x+1)&1)|, N

Further, let U� N=uN&UN . then by subtracting (5.20) from (5.19), we
obtain that for any , # RN&1 and t # (0, T],

(�t U� N(t), ,)|, N+(�xU� N(t), �x,&2,(x+1)&1)|, N

=( f (t), ,)|, N&( f (t), ,)|& :
6

i=4

Gi (t, ,) (5.21)

U� N(0)=IN&1 U0&P1
N&1 U0

Taking ,=U� N(t) in (5.21), we get from (4.5) that

d
dt

&U� N(t)&2
|+2 |U� N(t)| 2

1, |

�2 :
6

i=4

|Gi (t, U� N(t))|+4 |(�xU� N(t), U� N(t)(x+1)&1)| |

+2 |( f (t), U� N(t))|, N&( f (t), U� N(t))| | (5.22)

Next, we estimate the terms at the right side of (5.22). By virtue of (4.5)
and Theorem 3.2,

2 |G4(t, U� N(t))|�&U� N(t)&2
|+cN 2&2r &�t U(t)&2

r, |, B

2 |G5(t, U� N(t))|� 1
2 |U� N(t)| 2

1, |+cN 2&2r &U(t)&2
r, |, B

2 |G6(t, U� N(t))|�&U� N(t)&2
|+cN 2&2r &U(t)&2

r, |, B

Clearly,

4 |(�x U� N(t), U� N(t)(x+1)&1)| |� 1
2 |U� N(t)| 2

1, |+8 &U� N(t)&2
|

Thanks to Theorem 4.2,

2 |( f (t), U� N(t))|, N&( f (t), U� N(t))| |=2 |(IN f (t)& f (t), U� N(t))| |

�&U� N(t)&2
|+cN 2&2r & f (t)&2

r&1, |, A

(5.23)
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Moreover, Theorems 3.2 and 4.2 imply that

&U� N(0)&2
|�cN2&2r(&U0&2

r&1, |, A+&U0&2
r, |, B)

Thus,

d
dt

&U� N(t)&2
|+&U� N(t)&2

1, |�12 &U� N(t)&2
|+cN 2&2r(&�tU(t)&2

r, |, B

+&U(t)&2
r, |, B+& f (t)&2

r&1, |, A) (5.24)

Let

\1(t)=cN 2&2r \&U0&2
r&1, |, A+&U0&2

r, |, B

+|
t

0
(&�sU(s)&2

r, |, B+&U(s)&2
r, |, B+& f (s)&2

r&1, |, A) ds+
Integrating (5.24) with respect to t, we obtain that

E(U� N , t)�c |
t

0
E(U� N , s) ds+\1(t)

which implies the desired result. g

6. NUMERICAL IMPLEMENTATIONS

We now present an efficient algorithm for solving (5.1) by using the
rational pseudospectral scheme (5.7). As is shown in [14] (see also [13]),
one need to use compact combinations of rational Legendre polynomials as
basis functions. Indeed, setting �j (x)=1�- 2(Rj (x)+Rj+1(x)), we have
�(0)=0 and

R0
N&1=span[�j : j=0, 1,..., N&2] (6.1)

Hence, setting

bkj=(�j , �k)|, N, t=(�j , �k)| , akj=a&
|, N(�j , �k)=&(�j" , �k)|

uN= :
N&2

j=0

x j�j (x), x� =(x0 , x1 ,..., xN&2)t (6.2)

f� =( f0 , f1 ,..., fN&2)t with fk=( f, �j )|
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the Rational Legendre Galerkin approximation (5.7) is reduced to:

(&B+A) x� = f� (6.3)

One verify easily by the transform x=(1+ y)�(1& y) that

bkj =|
1

&1
(Lj ( y)+Lj+1( y))(Lk( y)+Lk+1( y)) dy

akj =& 1
4 |

1

&1
(1& y)2 [(1& y)2(L$j ( y)+L$j+1( y))]$ (Lk( y)+Lk+1( y)) dy

=& 1
4 |

1

&1
[(1& y)2 [(1& y)2(Lk( y)+Lk+1( y))]$]$ (Lj ( y)+Lj+1( y)) dy

(6.4)

By using the orthogonality of Legendre polynomials, one find immediately
that B=(bkj ) is a symmetric tridiagonal matrix whose nonzero entries are

bkk=
2

2k+1
+

2
2k+3

, bk, k+1=bk+1, k=
2

2k+3

Similarly, one find that A=(akj ) is a non-symmetric seven diagonal matrix
whose nonzero entries can be directly computed, although a little tedious,
using the properties of Legendre polynomials. Hence, (6.3) can be efficiently
solved.

We now present some numerical experiments using the above scheme
to solve (5.1) with &=2. Three illustrative examples are considered.

Example 1. U(x)=sin kxe&x.
Here, the function decays exponentially at infinity, so Theorem 5.2

predicts that errors of rational pseudospectral approximation will decrease
faster than any algebraic rate. In Fig. 1, we plot the log10 of H 1

|-errors vs.
- N. The two near straight lines corresponding to k=1, 2 and 4 indicate
that the errors decay like e&c - N.

Example 2. U(x)=x�(1+x)h.
The second example decays algebraicly at infinity without essential

singularity. One can check directly that &U&r, |, B+& f &r&1, |, A is finite for
r<2h. Hence, according to Theorem 5.2, we can expect a convergence rate
for the H 1

| -norm to be of the order 2h&1&= for any =>0. The observed
convergence rate for the H 1

| -norm plotted in Fig. 2 is about 2h. Note that
when h is a positive integer, the exact solution will be a rational polyno-
mial so its pseudospectral approximation with N�h+2 will be exact.
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Fig. 1. Convergence rates of the rational pseudospectral approximation: Example 1.

Example 3. U(x)=(sin 2x)�(1+x)h.
The third example decays algebraicly at infinity but it also has an

essential singularity at infinity. One can check directly that &U&r, |, B+
& f &r&1, |, A is finite for r< 2

3 (h+1). Hence, according to Theorem 5.1, we
can expect a convergence rate of order 2

3h& 1
3&= with any =>0 for the

Fig. 2. Convergence rates of the rational pseudospectral approximation: Example 2.
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Fig. 3. Convergence rates of the Legendre rational approximation: Example 3.

H 1
| -error. The observed convergence rate plotted in Fig. 3 agrees well with

the theoretical result.
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