
Journal of Scientific Computing (2023) 96:40
https://doi.org/10.1007/s10915-023-02252-z

A Ginzburg-Landau-H−1 Model and Its SAV Algorithm
for Image Inpainting

Xiangyu Bai1 · Jiebao Sun1 · Jie Shen2 ·Wenjuan Yao1 · Zhichang Guo1

Received: 10 June 2022 / Revised: 23 March 2023 / Accepted: 5 May 2023 /
Published online: 15 June 2023
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023

Abstract
Image inpaintingmodels and the corresponding numerical algorithms play key roles in image
processing. At present, the visual output of the oscillatory inpainting area is usually not
natural. In this paper, we propose an image inpainting model based on the Ginzburg-Landau
functional and H−1-norm. In the model, the H−1-fidelity term performs well in preserving
the edges of the oscillatory inpainting areas, and the Ginzburg-Landau functional can provide
additional geometric content. Theoretically, we prove the existence of the minimizer for the
proposed energy functional. Based on the scalar auxiliary variable approach, we develop an
efficient numerical scheme to solve the proposed model. Further, we use a time step adaptive
strategy to accelerate the convergence. Experimental results validate the effectiveness of the
proposed algorithm for image inpainting.

Keywords Image inpainting · Ginzburg-Landau functional · H−1-norm · Oscillatory
inpainting areas · Scalar auxiliary variable

Mathematics Subject Classification 65N20

1 Introduction

Image inpainting refers to the reconstruction of the contaminated and missing parts of an
image using information from the surrounding areas, which is essentially an ill-posed inverse
problem. In real life, the damage to binary images such as fax documents, digital signatures
and contract invoices is common, and the goal of image inpainting is to restore these images
as closely as possible to match the human visual perception. Image inpainting technology can
be used in a wide range of fields, including the removal of redundant objects from precious
photographs, the inpainting of collections of calligraphies and paintings, and extended to
biomedical, aerospace, etc.
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Existing image inpainting methods can be roughly classified into four categories: the first
is examplar-based inpainting approaches [1, 2]; the second is sparse representation-based
inpainting approaches [4, 5]; the third is deep learning based inpainting methods [6, 8, 9];
while the fourth is the PDE based approach [10–25].

The examplar-based inpainting approach is based on the influential work of Efros and
Leung [1]. Such techniques use statistical characteristics of the image and self-similarity as
prior information. The texture inpainting is accomplished by learning the inpainting domain
from the known parts of the texture. Learning includes the process of sampling, and copying
or stitching together examplars (patches extracted from known parts of an image). These
methods are usually useful for texture images, but they do not perform verywell in preserving
the structures or edges of the images [3].

Sparse representation-based inpainting methods [4, 5] assume that unknown and known
regions of the image have the same sparsity, so unknown regions can be sparsely represented
by dictionaries. After calculating the sparse representation of the image in the overcomplete
dictionary, the image is reconstructed by the corresponding dictionary and sparse coding.
These methods are good for images with abundant known information and regular changes,
but quite often, they are not very suitable for images with large damaged areas [3].

Pathak et al. [6] proposed an unsupervised Context Encoder model, which is an ear-
lier image inpainting model based on deep learning. Since then, researchers had proposed
improved inpaintingmodels based onConvolutional Neural Networks andGenerativeAdver-
sarial Networks [7–9]. This kind of methods can generate the matching content in the
inpainting domain through network training. However, it requires a high computer hard-
ware configuration, large training sets and long training time.

In the seminal work of Bertalmio et al. [10], they introduced the idea of the PDE into
digital image inpainting technology and proposed the BSCB inpainting model. The essential
idea is to spread information around the inpainting areas smoothly inward along the direction
of the isophotes. The process of image inpainting is interleaved with the anisotropic diffusion
process to ensure the proper evolution of the direction field. In subsequent work, variational
models originally used for image denoising and segmentation tasks [11, 12] were also used
for image inpainting [13, 14]. In the variational inpainting method, the classical total varia-
tion (TV) denoising model [11] was applied to the inpainting of nontextured images through
simple adjustment [13], and the function of the fidelity term in the model was limited to the
complement of the inpainting area. Similarly, Esedoglu and Shen extended the Mumford-
Shah (MS) segmentation model [12] to the MS inpainting model [14]. The TV inpainting
model and the MS inpainting model are second-order PDE inpainting models, which have
effective inpainting for some small-scale damaged images but fail to meet the connectivity
principle in the connection of some damaged edges (e.g. circle). The TV inpainting model
also leads to the staircasing effect. To this end, a third-order PDE inpainting model based on
curvature-driven diffusions (CDD) was proposed in [15], which can realize the inpainting of
images with larger damaged areas than the two second-order PDE inpainting models. How-
ever, the inpainting effect of the CDD inpainting model is not ideal when the unknown region
has corners. In order to achieve better results, more and more researchers are considering
appropriate high-order PDE inpainting models for image inpainting.

Inspired by Mumford [16], a fourth-order variational inpainting approach was considered
in [17] to overcome some shortcomings of low-order inpaintingmodels. Chan et al. combined
the CDD inpainting model [15] and the transport process [10] to smoothly connect isophotes
across large inpainting areas, for which they proposed the Euler’s elastica (EE) inpainting
model. Due to the deficiency of the MS inpainting model, Esedoglu and Shen [14] proposed
the Mumford-Shah-Euler (MSE) inpainting model with better performance and the ability to
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restore missing edges more smoothly than the MS inpainting model. They approximated the
proposed variational problem by applying the conjecture of DeGiorgi [18] and solved it using
the gradient descent method. Accordingly, a fourth-order nonlinear parabolic equation was
obtained, which is similar to the Cahn–Hilliard equation [19]. But this fourth-order equation
and corresponding numerical computation are relatively complex. To this end, a pioneering
work was proposed by Bertozzi et al. [20, 21] with a fourth-order equation for binary image
inpainting based on theCahn–Hilliard equation. ThemodifiedCahn–Hilliard (mCH) equation
has many advantages of the MSE inpainting model, especially, it can match image intensity
and direction of edges. Furthermore, it is simpler and requires less computation than theMSE
inpainting model [21]. In various subsequent works [23–25], the image inpainting model
based on the Cahn–Hilliard equation was further improved. In [23], Bertozzi et al. suggested
a generalization for grayscale image inpainting, they split the grayscale image bitwise into
some channels, and each binary channel was applied to the mCH equation inpainting model.

The main challenge of image inpainting using high-order equations is to develop suitable,
simple models and efficient discrete schemes corresponding to the models. In particular, if
the model can be cast into a gradient flow, then the many efficient techniques developed for
gradient flows can be adopted. At present, numerical methods for solving gradient flow prob-
lems include the convex splitting method [26–28], stabilization method [29, 30], Lagrange
multiplier method [31], invariant energy quadratization (IEQ) method [32, 33] and scalar
auxiliary variable (SAV) method [34, 35], etc. Among them, the IEQ method is an efficient
scheme to construct energy stability. Its disadvantages are that the elliptic equations with
complex variable coefficients need to be solved at each time step, and a coupling system is
caused in gradient flow with multiple components [34]. In order to overcome these short-
comings of the IEQ method, Shen et al. [34] proposed the SAV method. The SAV method
essentially only needs to solve the decoupling equation with constant coefficients at each
time step. It inherits all the advantages of the IEQ method, and is much more efficient and
easy to implement. It has been successfully applied in many fields, for instance, materials
science and fluid dynamics [36–39].

In order to better achieve the natural visual output of topologically complex (non-simply
connected) inpainting areas and oscillatory areas, we propose a variational inpainting model
based on the Ginzburg-Landau functional and the H−1-norm. In particular, this model can be
interpreted as a gradient flow. We then adopt the SAV approach to develop a numerical algo-
rithm for the proposed variational inpainting model to meet the high efficiency requirements
of image processing.

Specifically, the proposed variational inpainting approach has the following advantages:

– The Ginzburg-Landau functional can provide additional geometric information and the
H−1-fidelity term performs well in preserving the edges of the oscillatory areas. Com-
bining the Ginzburg-Landau functional and the H−1-norm, we propose a variational
inpainting model that inherits the advantages of both.

– The existence of the minimizer for the proposed variational inpainting model is proved.
– An efficient and easy to implement numerical scheme based on the SAV algorithm is

constructed for this proposedmodel, and a time step adaptive strategy is used to accelerate
the convergence.

– The proposed model performs well in the oscillatory areas and topologically complex
areas. In terms of output efficiency and applicability, our proposed method outperforms
some classical PDE-based inpainting methods. The proposed method can also be applied
to grayscale image inpainting.
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The rest of the article is organized as follows. In Sect. 2, we introduce some fundamental
notations and definitions. Related work and a variational inpainting model are dedicated
in Sect. 3. We describe the specific discrete scheme in Sect. 4. Section5 is presented the
numerical results and experimental analysis. We conclude this paper in Sect. 6.

2 Preliminaries

First of all, we introduce some notations to be used in this paper. The L2 inner product

between the functions u and v is defined as: (u, v) = ∫
Ω
u(x)v(x)dx and ‖u‖ = (u, u)

1
2

represents the L2 norm of u.

Lemma 1 [44] Let V0 = {
u ∈ H1(Ω) : ∫

Ω
u(x)dx = 0

}
. If g ∈ L2(Ω), with

∫
Ω
g(x)dx =

0, then the following problem:

−Δu = g,

with homogeneous Neumann or periodic boundary condition admits a unique solution u in
V0.

Lemma 1 states that if g satisfies the conditions g ∈ L2(Ω) and
∫
Ω
g(x)dx = 0, then

there exists a unique solution u. This solution can be expressed as u = Δ−1g, where Δ−1

denotes the inverse of the negative Laplace operator with homogeneous Neumann or periodic
boundary conditions. For later use, we are now to introduce the Sobolev space H−1(Ω) here,

which can be defined by H−1(Ω) =
{
F ∈ H1(Ω)∗ | 〈F, 1〉(H1)

∗
,H1 = 0

}
, endowed with

the inner product (v1, v2)−1 = (∇(Δ−1)v1,∇(Δ−1)v2) and together the corresponding norm

‖v1‖−1 = (v1, v1)
1
2−1.

Now let E(u) represent a free energy functional whose variational derivative is denoted
by μ = δE/δu. We consider the following general form of gradient flow:

∂u

∂t
= Gμ,

with suitable boundary conditions, and G denotes a non-positive symmetric operator which
provides the dissipation mechanism. In particular, G = −I for the L2 gradient flow, G = Δ

for the H−1 gradient flow, and G = −(−Δ)α(0 < α < 1) for the non-local H−α gradient
flow. As long as G is non-positive, the corresponding energy satisfies a dissipation law, i.e.,

dE(u)

dt
= δE

δu
· ∂u

∂t
= (μ,Gμ) ≤ 0.

3 The NewModel and its Analysis

In this section, we first present some related work, then we propose a new variational model
for image inpainting based on the Ginzburg-Landau functional and the H−1-norm, and prove
the existence of the solution for the proposed inpainting model.

3.1 RelatedWork

In terms of image inpainting for preserving edge and curvature problems, high-order PDE
models usually perform better than second-order PDE models [40]. Specifically, for image
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inpainting problems, high-order derivatives can provide supplementary information on the
isoline directions and high-order PDE models can reproduce the “high-order” (curvature,
corners, etc) features [41]. In this paper, we also consider using a high-order variational
model for image inpainting.

The phase field approach was first proposed by Van der Waals [42]. Its key idea is to
represent a sharp interface between two substances (one substance is 1 and the other is 0) by
a smooth “phase” function φ(x), with a fast transition from 1 to 0 at the interface. The phase
field function can be obtained by minimizing a corresponding energy functional. A typical
example is the Ginzburg-Landau functional [19]:

E1(u) =
∫

Ω

(
ε

2
|∇u|2 + 1

ε
F(u)

)

dx, (1)

where F denotes the double-welled potential energy F(u) = u2(u − 1)2. The two wells
correspond to u value taken by great majority grayscale values in the image inpainting model
[23]. A potential withwells is selected as 0 (black) and 1 (white). The parameter ε plays a vital
role in the image inpainting problem and it can be regarded as a measure of the transition
domain between two grayscale states [20]. Moreover, a fourth-order PDE is obtained by
gradient descent with respect to the H−1 inner product for the Ginzburg–Landau functional
(1), leading to theCahn–Hilliard equation.Hence, theGinzburg–Landau functional is suitable
for binary image inpainting.

We recall that the fourth-order mCH equation inpainting model in [20, 21] is as follows:

ut = −Δ

(

εΔu − 1

ε
F ′(u)

)

+ λ(x)( f − u), in Ω × (0, T ),

u(0, x) = f (x), in Ω,

∂u

∂n
= ∂Δu

∂n
= 0, on ∂Ω × (0, T ), (2)

where f is the given binary image and F ′(u) = 4u3 − 6u2 + 2u. The characteristic function

λ(x) is represented by λ(x) =
{
0, x ∈ D

λ0, x ∈ Ω\D , and D ⊂ Ω is the inpainting region. The

original Cahn–Hilliard equation is the H−1 gradient flow for the energy (1), while the second
term in the right-hand side of the Eq. in (2) is derived by the L2 gradient flow for the energy:

E2(u) =
∫

Ω

λ(x)( f − u)2dx . (3)

The mCH Eq. (2) was regarded as a superposition of different gradient descents for two
energies (1) and (3) in [20, 21]. It is not a real gradient descent for the sum of the energies
(1) and (3), no matter with respect to the inner product of L2 or H−1 [21].

3.2 Two Classical Norms in the Fidelity Term

In the fidelity term of the image inpainting model, u can fit f under either the L2-norm or the
H−1-norm, where u is an inpainting version of f which is a given image in the areaΩ . In this
paper, we use the H−1-norm in the construction of fidelity term. In fact, the H−1-norm has
been used as a suitable norm of functional space for image inpainting [41, 44, 45]. Compared
with the L2-fidelity term adopted in most existing work [13, 14, 17], the H−1-fidelity term
owns the ability to preserve the edges of the oscillatory areas.
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For image decomposition and image restoration problems, Osher et al. proposed a varia-
tional model by using a weak norm for the fidelity term [43], which is based on a norm for
oscillatory functions introduced by Meyer [46] involving the H−1-norm. In [43], the authors
found that the H−1-fidelity termwas better than the L2-fidelity term for reproducing textured
or oscillatory patterns due to the fact that the H−1-norm allows the existence of oscillatory
functions. Furthermore, they proposed a variational model based on the H−1-fidelity term,
which performed well in preserving the edges of oscillatory patterns.

To study the superiority of the H−1-norm in the inpainting effect of oscillatory areas,
we compare the inpainting effect subject to the two different fidelity terms, i.e., the L2- and
H−1-fidelity term. In order to present the character of the H−1-fidelity term in the image
inpainting task, we consider the inpainting of two oscillatory patterns. In the comparative
experiment, we take the regularization term as 1

2

∫
Ω

|∇u|2dx . For comparison, we consider
two different fidelity terms in the variational model, which are expressed as follows:

‖λ(x)(u − f )‖2, (4)

and
‖λ(x)(u − f )‖2−1, (5)

i.e., the functionu approximates f in the sense of L2 and H−1 in the given region, respectively.
A finite-difference scheme is used for the numerical scheme of this experiment. The results
are shown in Fig. 1.

In Figs. 1a and d, the gray area is the inpainting area. As shown in Figs. 1b, c and 1e, f,
the inpainting results using the H−1-fidelity term (5) in the variational model are superior
compared to the results using the L2-fidelity term (4). In particular, the H−1-fidelity term
in the image inpainting model performs better than the L2-fidelity term in preserving the
edges of the oscillatory areas. Hence, it is advantageous to use the H−1-fidelity term in the
variational image inpainting model.

3.3 The NewModel and its Properties

Noticing that the high-order PDE models facilitate the reproduction of the “high-order” fea-
tures (corners and curvature), and high-order derivatives can provide additional information
on the isoline direction, we shall use the high-order regularization term in the proposed image
inpainting model.

Since the H−1-fidelity term is beneficial in preserving the edges of the oscillatory inpaint-
ing areas, we adopt the H−1-norm in the fidelity term, i.e.,

R = 1

2
‖λ(x)(u − f )‖2−1, (6)

where

λ(x) =
{

λ0 in Ω\D
0 in D

,

and D ⊂ Ω denotes the inpainting area.
In order to better accomplish image inpainting for oscillatory regions and topologically

complex regions, we propose the following variational model by combining the Ginzburg-
Landau functional together with the H−1-fidelity term:

min
u∈H1(Ω)

E(u) :=
∫

Ω

(
ε

2
|∇u|2 + 1

ε
F(u)

)

dx + 1

2
‖λ(x)(u − f )‖2−1, (7)
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(a) Damaged image (b) Result by L2-
fidelity term

(c) Result by H−1-
fidelity term

(d) Damaged image (e) Result by L2-
fidelity term

(f) Result by H−1-
fidelity term

Fig. 1 Inpainting results by two different norms in the fidelity term (λ0 = 100)

where ε > 0 and F(u) = u2(u − 1)2.
It is not difficult to obtain the variation derivative μ of E , i.e.,

μ := δE

δu
= −εΔu + 1

ε
F ′(u) + λ(x)2Δ−1(u − f ).

Hence the gradient descent with respect to the H−1 inner product for (7) is

ut = Δ

(

−εΔu + 1

ε
F ′(u)

)

+ λ(x)2( f − u), in Ω × (0, T ), (8)

subjected to the homogeneous Neumann or periodic boundary conditions, and the initial
condition u(0, x) = f (x) in Ω . Therefore, the fourth-order PDE Eq. (8) is the H−1 gradient
flow with respect to (7).

Note that form of the gradient flow derived from the new variational problem (7) is the
same as the Eq. (2). However, there are two essential differences between our work and the
work of [20, 21]. Firstly, the proposed model (7) is essentially a variational model rather than
the diffusion based model (2). We construct the model by designing a proper fidelity term
to protect texture and topologically complex regions. Differently, the model (2) is derived
from the perspective of constructing diffusion equations. They integrate H−1 and L2 gradient
flows, rather than considering them in a unified gradient flow. Secondly, the gradient flow
structure of our approach enables us to use numericalmethods developed for gradient flows, in
particular, we adopt the efficient SAV approach, which is particularly developed for gradient
flows, to solve (8), while the convex splitting method was used in [20, 21].

Remark 1 Integrating on both sides of the Eq. (8) over the domain Ω , thanks to the homoge-
neous Neumann or periodic boundary conditions, we derive that d

dt

∫
Ω
udx = 0. Therefore,

in our model, u and f satisfy
∫
Ω\D( f − u)dx = 0.
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Theorem 1 For f ∈ L2(Ω), there exists a solution u ∈ H1(Ω) for the minimization problem

inf
u∈H1(Ω)

E(u) =
∫

Ω

(
ε

2
|∇u|2 + 1

ε
F(u)

)

dx + 1

2
‖λ(x)(u − f )‖2−1.

Proof Let uk be a minimizing sequence of the non-negative functional E(u), then there is a
constant M > 0 such that

∫
Ω

|∇uk |2 ≤ M2 for all k ≥ 0. Moreover, E(uk) is bounded for
k ≥ k0 for some k0. We can see that there exists a positive constant C such that

∫

Ω

u2kdx =
∫

Ω∩{|uk |>2}
u2kdx +

∫

Ω∩{|uk |≤2}
u2kdx

≤
∫

Ω∩{|uk |>2}
(uk)

2(uk − 1)2dx + 4|Ω|

≤
∫

Ω

F(uk)dx + 4|Ω| ≤ C,

we obtain that uk is uniformly bounded in L2(Ω), i.e., uk is uniformly bounded in H1(Ω):
there exists a constant C ′ such that

‖uk‖H1(Ω) = ‖uk‖L2(Ω) + ‖∇uk‖L2(Ω) ≤ C ′.

Combined with the compact embedding H1(Ω) ↪→ L2(Ω), there exists a subsequence of
uk , still denoted uk , and u ∈ H1(Ω), such that

uk⇀u in H1(Ω), uk → u a.e. Ω, uk → u in L2(Ω), for k → ∞.

By the weak lower semicontinuity, it holds that
∫

Ω

|∇u|2dx ≤ lim inf
k→∞

∫

Ω

|∇uk |2 dx .

According to Fatou’s lemma, we deduce
∫

Ω

u2(u − 1)2dx =
∫

Ω

lim inf
k→∞ (uk)

2(uk − 1)2dx ≤ lim inf
k→∞

∫

Ω

(uk)
2(uk − 1)2dx .

Since the embedding L2(Ω) ↪→ H−1(Ω) is continuous, we get

‖u‖−1 ≤ C‖u‖2.
We also have

uk − f → u − f in L2(Ω) for k → ∞.

Further,

uk − f → u − f in H−1(Ω) for k → ∞.

Combining the above analysis, it is not difficult to obtain the fact that

E(u) ≤ lim inf
k→∞ E (uk) ,

therefore, u is a minimizer of E in H1(Ω).
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4 The Numerical Algorithm

In this section, we develop an efficient and easy-to-implement scheme based on the SAV
method, and we use an adaptive time stepping strategy to improve the efficiency.

4.1 SAV Scheme for Solving the ProposedModel

ThemCH equation inpainting model (2) is generally solved by the convex splitting approach,
which was proposed by [47] and developed by [48]. The idea of the convex splitting approach
is to split the energy functional as the sum of a convex functional and a concave functional,
which is normally used to solve gradient flows. Specifically, the original Cahn–Hilliard
equation is regarded as the H−1 gradient flow of the energy E1(u) in (1), while the fitting
term in (2) is a gradient flow in L2 for the energy E2(u) in (3). They use convex splitting for
E1(u) and E2(u) by E1(u) = E11(u)− E12(u) and E2(u) = E21(u)− E22(u), respectively
where

E11(u) =
∫

Ω

ε

2
|∇u|2 + C1

2
|u|2dx, E12(u) =

∫

Ω

−1

ε
F(u) + C1

2
|u|2dx,

and

E21(u) =
∫

Ω\D
C2

2
|u|2dx, E22(u) =

∫

Ω\D
−λ0( f − u)2 + C2

2
|u|2dx .

From the discussed above, the convex splitting scheme reads

un+1 − un

Δt
= −∇H−1

(
En+1
11 (u) − En

12(u)
)

− ∇L2

(
En+1
21 (u) − En

22(u)
)

,

where ∇H−1 and ∇L2 denote gradient descent in regard to the H−1 inner product, and the
L2 inner product, respectively, let tn = nΔt for 0 ≤ n ≤ N = [T /Δt] with Δt > 0 the
time step size and un denotes the numerical approximation to u(·, t)|t=tn . This produces the
following numerical scheme:

un+1 − un

Δt
+ εΔ2un+1 − C1Δun+1 + C2u

n+1

= Δ

(
1

ε
F ′ (un

)
)

+ λ(x)
(
f (x) − un

) − C1Δun + C2u
n . (9)

The constants C1 and C2 are chosen to be large enough such that E11(u), E12(u), E21(u)

and E22(u) are convex. The convex splitting method can solve the inpainting model (2), but
as it stands, extra parameters such as C1 and C2 are introduced and the time is lost due to
adjusting parameters. Furthermore, the convex splitting method involves solving a nonlinear
system at each time step.

Taking the disadvantages of the convex splitting method into account, we adopt a recent
proposed method, i.e., SAV algorithm to solve the proposed inpainting model (7). The SAV
algorithm is a powerful technology that is suitable for a large class of gradient flow.According
to Sect. 2, the H−1 gradient flow can be written as:

∂u

∂t
= Δμ. (10)
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Define L = −εΔ and consider the following free energy functional

E(u) = 1

2
(u, Lu) + Ẽ1(u), (11)

which consists of the linear part and the nonlinear part Ẽ1(u). It is not difficult to find that
L is a non-negative symmetric linear operator independent of u. In addition, the free energy
Ẽ1(u) in the SAV algorithm is required to be bounded from below, i.e., Ẽ1(u) ≥ C0 > 0
holds for an existential constant C0. We can define this free energy as:

Ẽ1(u) =
∫

Ω

F1(u)dx + C0, (12)

where

F1(u) = u2 (u − 1)2

ε
+ 1

2

(∇(Δ−1)λ(x)(u − f )
)2

, (13)

and C0 can be selected to be a sufficiently small positive number. Next, we use the SAV
algorithm to solve the proposed minimization energy functional problem. In view of (11),
we consider the total energy functional

E(u) =
∫

Ω

[
ε

2
|∇u|2 + F1(u)

]

dx + C0.

Hence, the corresponding H−1 gradient flow takes the following form:

∂u

∂t
= Δμ, (14)

μ = δE/δu = −εΔu + F ′
1(u), (15)

where

F ′
1(u) = 4u3 − 6u2 + 2u

ε
+ λ2(x)

(
Δ−1) (u − f ).

We introduce a scalar auxiliary variable:

r =
√
Ẽ1(u), (16)

and expand the gradient flow (14) and (15) as follows:

∂u

∂t
= Δμ, (17)

μ = −εΔu + r
√
Ẽ1(u)

F ′
1(u), (18)

dr

dt
= 1

2
√
Ẽ1(u)

∫

Ω

F ′
1(u)ut dx . (19)

Since we are interested in the steady state solution, inspired by [49], we employ the following
modified first-order SAV scheme:

un+1 − un

Δt
= Δμn+1, (20)

μn+1 = −εΔun+1 + r̄ n+1
√
Ẽ1 (un)

F ′
1

(
un

)
, (21)
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r̄ n+1 − rn

Δt
= 1

2
√
Ẽ1 (un)

∫

Ω

F ′
1

(
un

) un+1 − un

Δt
dx; (22)

rn+1 =
√
Ẽ1

(
un+1

)
. (23)

If we plug (21) and (22) in (20), we can eliminate r̄ n+1 to obtain

un+1 − un

Δt
= Δ

⎧
⎨

⎩
−εΔun+1 + F ′

1 (un)
√
Ẽ1 (un)

[
rn +

∫

Ω

F ′
1 (un)

2
√
Ẽ1 (un)

(
un+1 − un

)
dx

]
⎫
⎬

⎭
.

(24)
Rearranging the above equation yields

(
I + εΔtΔ2) un+1 − Δt

2
Δbn

(
bn, un+1)

= un + ΔtrnΔbn − Δt

2

(
bn, un

)
Δbn := gn, (25)

where

bn = F ′
1 (un)

√
Ẽ1 (un)

.

Multiplying (25) with A−1, then taking the inner product with bn , we find

(
bn, un+1) − Δt

2

(
A−1Δbn, bn

) (
bn, un+1) = (

A−1gn, bn
)
, (26)

where

A = I + εΔtΔ2.

Therefore, we can determine
(
bn, un+1

)
from the above that

(
bn, un+1) =

(
A−1gn, bn

)

1 − Δt
2

(
A−1Δbn, bn

) . (27)

Finally, combining the above with (25), we know that

un+1 = A−1
(

gn + Δt

2

(
bn, un+1) Δbn

)

. (28)

Remark 2 In summary, each time step of the scheme (20)–(22) can be implemented as:

(i) Compute bn , and gn defined by the righthand side of (25);
(ii) With bn and gn known, we can compute

(
bn, un+1

)
from (27);

(iii) Finally, we solve un+1 from (28) by determining
(
bn, un+1

)
.

Therefore, only two linear equations with constant coefficients need to be solved at each time
step according to (i) and (iii), the form of two linear systems as follows:

(I + εΔtΔ2)x̄ = b̄.

Hence, the above SAV scheme is efficient and easy to implement.

Taking the L2 inner product of (20), (21) and (22) with μn+1, un+1−un
Δt and 2r̄ n+1 respec-

tively, we obtain immediately the following:
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Theorem 2 The first-order scheme (20)–(22) satisfies a modified energy dissipation law as
follows:

1

Δt

[
Ē

(
un+1, r̄ n+1) − Ē

(
un, rn

)]

+ 1

Δt

[ ε

2

(
un+1 − un,−Δ

(
un+1 − un

)) + (
r̄ n+1 − rn

)2]

= − (
μn+1, μn+1) ,

where Ē(u, r) = − ε
2 (u,Δu) + r2 is the modified energy.

Remark 3 The above result does not mean that the first-order scheme (20)–(23) is uncon-
ditionally energy stable. However, if we set rn+1 = r̄ n+1 in (23) as in the original
SAV approach [34], the scheme becomes unconditionally energy stable in the sense that
Ē

(
un+1, rn+1

) ≤ Ē (un, rn).

4.2 Adaptive Time Stepping Strategy

In order to achieve numerical results efficiently and accurately, an adaptive time stepping
strategy can be applied in the case where the schememeets the unconditional energy stability
[50, 51]. Correspondingly, we construct an adaptive time stepping algorithm for our SAV
scheme. Let tol be a reference tolerance, e be the relative error of energy, and ρ be a default
safety coefficient. We can apply the following formula to update the time step size,

Adρ(e, τ ) = ρ

(
tol

e

)1/2

τ.

In this paper, we set τmin = 10−4 and τmax = 10−1, where τmin and τmax denote the
minimum and the maximum time step, respectively. We choose τmin as the initial time step.
The procedure of the strategy is described as follows.

Algorithm 1 The procedure of time step adaptive strategy
Input: ε, λ, tol, ρ, τmin, τmax;
1: Calculate un+1 by the SAV scheme with time step τn ;

2: Update En+1 = E
(
un+1

)
;

3: Compute en+1 = |En − En+1|/|En+1|;
4: if en+1 > tol then
5: Recalculate τn = max

{
τmin,min

{
Adρ

(
en+1, τn

)
, τmax

}}
and go to step 1;

6: else
7: Update τn+1 = max

{
τmin,min

{
Adρ

(
en+1, τn

)
, τmax

}}
;

8: end if
9: return τn+1;

4.3 Space Discretization of the Numerical Algorithm

In this subsection, we describe the space discretization of the SAV algorithm (20)–(22) at
each iteration. We assume periodic boundary conditions, the Neumann boundary conditions
can be treated similarly. The input discrete image u is assumed to be M × L pixels, and
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such that u (i, j) = u (iΔx1, jΔx2) for i = 0, 1, . . . , M − 1, j = 0, 1, . . . , L − 1, Δx1
and Δx2 denote the grid size, and we adopt Δx1 = Δx2 = 1 in the forthcoming tests.
According to the scheme (20)–(22), we introduced the calculation of Ẽ1 (un), F ′

1 (un) and
un+1. Let y = Δ−1U , where U = λ(x)(u − f ), it is obvious that once we work out Δ−1U
i.e., y, we can calculate Ẽ1 (un) and F ′

1 (un). Similarly, once we figure out A−1W , where
A = I + εΔtΔ2, W = gn or W = Δbn , we can figure out

(
bn, un+1

)
and un+1.

We give the definition of the discrete forward and backward differential operators with
the periodic condition as follows:

∂+
1 y(i, j) =

{
(y(i + 1, j) − y(i, j))/Δx1, 0 ≤ i < M − 1,

(y(0, j) − y(M − 1, j))/Δx1, i = M − 1,

∂−
1 y(i, j) =

{
(y(i, j) − y(i − 1, j))/Δx1, 0 < i ≤ M − 1,

(y(0, j) − y(M − 1, j))/Δx1, i = 0,

∂+
2 y(i, j) =

{
(y(i, j + 1) − y(i, j))/Δx2, 0 ≤ j < L − 1,

(y(i, 0) − y(i, L − 1))/Δx2, j = L − 1,

∂−
2 y(i, j) =

{
(y(i, j) − y(i, j − 1))/Δx2, 0 < j ≤ L − 1,

(y(i, 0) − y(i, L − 1))/Δx2, j = 0.

Correspondingly, the central difference and the gradient operators can be defined as

∂c1 y(i, j) = (
∂−
1 y(i, j) + ∂+

1 y(i, j)
)
/2,

∂c2 y(i, j) = (
∂−
2 y(i, j) + ∂+

2 y(i, j)
)
/2,

∇±y(i, j) = (
∂±
1 y(i, j), ∂±

2 y(i, j)
)
.

We first solve the problem y = Δ−1U . From Remark 1, we know that
∫
Ω
Udx = 0. Besides,

y satisfies the condition
∫
Ω
ydx = 0 by setting y = y− ȳ with ȳ = ∫

Ω
ydx/|Ω|. According

to Lemma 1, we can obtain the equation −Δy = U has a unique solution. Next, we can use
FFT to solve y. We apply the corresponding discretization:

− (
∂−
1 ∂+

1 + ∂−
2 ∂+

2

)
y = U .

We use the discrete Fourier transformation F on both sides at the same time, and we get

F∂±
1 y(i, j) = ±

(
e±√−1z1i − 1

)
F y(i, j),

F∂±
2 y(i, j) = ±

(
e±√−1z2j − 1

)
F y(i, j).

where z1i = 2π(i − 1)/(M − 1), i = 0, · · · , M − 1, z2j = 2π( j − 1)/(L − 1), j =
0, · · · , L − 1, we have the following equation:

−2
(
cos z1i + cos z2j − 2

)
F y(i, j) = FU (i, j).

Finally, we can solve y by

y(i, j) = F−1
(
FU (i, j)/

(
−2

(
cos z1i + cos z2j − 2

)))
.

We can define the differential and the gradient operators that are similar to the previous. We
also try to solve the equation z = A−1W through FFT. First of all, we need to obtain the
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following discretization:

z + εΔt
(
∂−
1 ∂+

1 + ∂−
2 ∂+

2

)2
z = W .

We then employ the discrete Fourier transform on both sides of the equation, and get the
equation as follows:

(

1 + 4εΔt
(
cos z1i + cos z2j − 2

)2)

Fz(i, j) = FW (i, j).

Once we compute Fz, we can discover the value z by applying the discrete inverse Fourier
transform.

5 Numerical Experiments

We present in this section binary image inpainting results of our proposed model (7), imple-
mented by the SAV scheme, and discuss the efficiency of the adaptive time stepping strategy.
In addition, the proposed method is generalized to grayscale image inpainting.

5.1 Inpainting of Binary Images

In the experiment, our inpainting model is solved with a large value of ε (e.g., ε = 1.4) and
this step is stopped when the steady state solution is obtained, which causes the topology of
the inpainting area to be reconnected. Next, the pixel value of the binary image more than
0.5 is taken to 1, and the value less than 0.5 is set to 0. The simple threshold method can
make the edges of images sharpened. The choice of ε is presented in Table 1. The geometric
graphics in the table refer to Figs. 2, 3, 4 and 5 and the cartoon patterns refer to Figs. 10 and
11. Other parameters are chosen to be λ0 = 1, C0 = e−5. The gray area in the input image
represents the inpainting region and we choose two classes of initial values for it, we set
random initial data in the gray area of Figs. 2, 3, 4, 5 and 6 and set 0.5 for the initial values
of the remaining test images. The methods we compared are the BSCB inpainting model in
[10], the TV inpainting model in [13], the CDD inpainting model in [15], theMSE inpainting
model in [14], and the mCH equation inpainting model in [20].

The proposed inpainting model (7) is suitable for binary image inpainting. We first focus
our attention on the inpainting area of the topology with corners. As shown in Fig. 2b, the
inpainting domain is a rectangle that covers the upper part of the triangle. The pentagram is
displayed in Fig. 3b and the inpainting area is irregularly covered on the image. Figure 2c–g
show that triangles have been truncated and have become a shape similar to a trapezoid.
A similar situation has occurred in Fig. 3c–g. In both examples, we see that using other
inpainting methods is hard for the image information to continue to spread along the two
sides of the occluded corners, which has destroyed the geometric structure of the original
image and has lost most of the image information in the inpainting area. Examples indicate

Table 1 The values of ε for numerical experiments

Image Geometric graphics Text Stripe Sloping stripe Ripple Cartoon patterns

ε 1.4 1.4 0.7 0.5 0.4 1.2
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(e) MSE (f) CDD (g) mCH (h) Ours

(a) Original image (b) Damaged image (c) BSCB (d) TV

Fig. 2 Inpainting the triangle

(e) MSE (f) CDD (g) mCH (h) Ours

(a) Original image (b) Damaged image (c) BSCB (d) TV

Fig. 3 Inpainting the pentagram

what our inpainting model is able to accomplish: continuing to spread geometric information
along both sides of corners and recovering most of the image content, as shown in Figs. 2h
and 3h.

In order to compare the results more clearly, we made statistics on the number of pixels
with values less than 0.5 in Figs. 2 and 3, respectively. The value 0 represents black, and
the value 1 stands for white. In the inpainting area, the approximate size of the black area
obtained by each inpaintingmethod is counted in Table 2. It shows that for the triangle image,
our inpainting method was able to fill around 91% of the black area, while other inpainting
methods can only reach about 0%−36%.Someof these inpaintingmethods do not recover any
image content at all, and others only recover a small portion of the image. For the inpainting
of the pentagram, it demonstrates that our inpainting method can reconstruct around 84% of
the black area, while other inpainting methods only reconstruct about 30%− 59%. One can
see that our inpainting approach works well for topology with corners.

Then we turn our attention to the inpainting area that the topology with curvature. In Fig. 4
we display different inpainting results for the circle. Note that the MSE inpainting method
output unconnected arcs on the edge and missing some black areas in the circle. The mCH
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Table 2 Statistical results of the image pixel values

Category Initial value BSCB TV CDD MSE mCH Ours

Triangle 174 4 0 0 63 45 159

Pentagram 249 135 75 75 127 147 208

(a) Original image (b) Damaged image (c) BSCB (d) TV

(e) MSE (f) CDD (g) mCH (h) Ours

Fig. 4 Inpainting the circle

(e) MSE (f) CDD (g) mCH (h) Ours

(a) Original image (b) Damaged image (c) BSCB (d) TV

Fig. 5 Inpainting the ring

equation inpainting method is able to restore some missing regions, but it makes blurring
edges. The others produce visible artificial corners, while our proposed inpainting method
completes successfully the reconstruction of the circle. As for the inpainting results of the
ring in Fig. 5, again the other inpainting approaches make the connection unsatisfactory. Our
inpainting approach yields natural visual effects for both the large outer circle and the small
inner circle.

As illustrated in Fig. 6, we show the inpainting performance of each inpainting approach
on the text. For some oscillatory patterns, our inpainting approach also outperforms the other
inpainting approaches. As can be seen in Fig. 7a, the width of the stripes gradually widens
from left to right. Our method can inpainting the fine stripe in Fig. 7h, other methods can
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(a) Original image (b) Damaged image

(c) BSCB (d) TV

(e) MSE (f) CDD

(g) mCH (h) Ours

Fig. 6 Inpainting the text

only inpainting the wide stripe in Fig. 7c–g. It can be observed in Figs. 8 and 9 that our
inpainting approach is suitable for preserving the edges of the oscillatory areas. Especially,
the other inpainting methods fail to produce natural visual output, our inpainting method can
connect the edges of images relatively smoothly and result in a reasonable reconstruction of
the image.

The results of inpainting the cartoon patterns are displayed in Figs. 10 and 11. In both
cases, the cartoon patterns were randomly corrupted. In Fig. 10, the BSCB, TV, MSE, and
CDD inpainting methods all caused some contour edges of the cat to be disconnected, such
as the bottom edge of the cat. In contrast, our inpainting method can smoothly connect these
edges. In Fig. 11, the BSCB, TV, MSE, and CDD inpainting methods all have the problem
of inaccurate shape restoration in some local areas of the cow, such as the lower left corner
of the cow. However, our inpainting method can more accurately inpainting these areas. As
shown in Figs. 10 and 11g, the mCH inpainting method will make the cartoon patterns blurry.

All the numerical experiments are performed under Windows 10, on a computer with an
Intel Core i7-10750H CPU at 2.60 GHz with 16.0 GB of RAM, and run in MATLAB 9.8.0
(R2020a). In Table 3, we show the comparison of CPU time (in seconds) for results in four
test images. One can easily observe that our method takes relatively less time to achieve good
inpainting results, the overall performance is more efficient than the other five approaches.
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(a) Original image (b) Damaged image (c) BSCB (d) TV

(e) MSE (f) CDD (g) mCH (h) Ours

Fig. 7 Inpainting the stripe with unequal width

(a) Original image (b) Damaged image (c) BSCB (d) TV

(e) MSE (f) CDD (g) mCH (h) Ours

Fig. 8 Inpainting the sloping stripe

We discussed the impact ofmodel parameters on experimental results. Two key parameters
in the proposedmodel are ε and λ0. The role of ε is the interface thickness of a transition layer
of the separated region which represents two different states.We conducted experiments with
different values of ε while keeping the other parameters constant in the proposed model. A
set of experimental results is shown in Fig. 12. If an excessively small value of ε is chosen, it
will be unable to connect larger inpainting areas because the sharp transition region caused
by the small value of ε makes it difficult to blend with surrounding pixels. Conversely, if an
excessively large value of ε is chosen, it will result in the loss of the sharp features of the
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(a) Original image (b) Damaged image (c) BSCB (d) TV

(e) MSE (f) CDD (g) mCH (h) Ours

Fig. 9 Inpainting the ripple

(a) Original image (b) Damaged image (c) BSCB (d) TV

(e) MSE (f) CDD (g) mCH (h) Ours

Fig. 10 Inpainting the cat

image because the large value of ε causes the transition region to become oversmoothed.
Therefore, when choosing the value of ε, it is necessary to consider the size of the inpainting
area and the characteristics of the image, while balancing the connection of the inpainting
area and sharp features. We choose ε to be between 0.4 and 2.5 empirically.
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(a) Original image (b) Damaged image (c) BSCB (d) TV

(e) MSE (f) CDD (g) mCH (h) Ours

Fig. 11 Inpainting the cow

Table 3 Comparison of CPU
time

Image BSCB TV CDD MSE mCH Ours

Pentagram 9.42 8.87 7.95 15.26 3.44 0.91

Text 48.13 7.52 109.82 16.10 4.56 4.12

Sloping stripe 9.14 9.16 14.43 14.91 3.54 0.73

Ripple 4.95 8.62 14.58 15.41 3.23 0.39

The parameter λ0 in the proposed model is used to balance the regularization term and
the fidelity term. Selecting an appropriate value of λ0 is crucial for achieving high-quality
inpainting results. We take the same initial condition except for different values of λ0. We
show the results of inpainting triangle in Fig. 13. If the value of λ0 that is too small is selected,
the pixel values in the non-inpainting area will be affected, and the inpainting result may not
appear natural. Conversely, if a value of λ0 that is too large is selected, the connection between
the inpainting area and the rest of the image may not be smooth, leading to a reduced visible
effect. We suggest empirically choosing λ0 between 0.8 and 1.2.

5.2 Application of the Adaptive Time Stepping Strategy

In this subsection, we present several test results to demonstrate the efficiency of the time
step adaptive strategy. We choose three test images for the experiment by using the SAV
algorithm. In all examples, we select tol = 0.03, ρ = 0.05. For comparison, we perform the
experiment by the SAV algorithm using different fixed time steps i.e., a large fixed time step
Δt = 10−2 and a small time step Δt = 10−4.

Table 4 shows the number of iterations and CPU time required by three test images in
different time steps. We observe that the algorithm with time step adaptive strategy requires
the least number of iterations and CPU time compared with the other two methods. We
plot the evolution of energy curves for triangle image inpainting in Fig. 14. Similarly, we
present three different time step methods. It can be seen that the energy of numerical solution
decreases as the number of iterations increases, and ultimately converge to the steady state.
Among them, the energy curve of using the adaptive time stepping strategy is first converged
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(e) ε = 1 (f) ε = 1.5 (g) ε = 2.5 (h) ε = 5

(a) Damaged image (b) ε = 0.1 (c) ε = 0.2 (d) ε = 0.5

Fig. 12 Inpainting results with different ε parameter values

(e) λ0 = 1 (f) λ0 = 2 (g) λ0 = 5 (h) λ0 = 10

(a) Damaged image (b) λ0 = 0.01 (c) λ0 = 0.1 (d) λ0 = 0.5

Fig. 13 Inpainting results with different λ0 parameter values

to the steady state. In addition, we show in Fig. 15, the change of adaptive time steps during
the triangle image inpainting. To sum up, these results verify that the time step adaptive
strategy for the SAV algorithm is efficient.

5.3 Inpainting of Grayscale Images

In this subsection, we extend the proposed inpainting method to grayscale images by com-
bining the reasonable strategy proposed in [23]. To be specific, we split the grayvalue image
bitwise into K binary channels,

u(x) ≈
K∑

k=1

uk(x)2
−(k−1),

where u(x) denotes the grayscale image, uk(x) is a binary channel. Our inpainting method
is performed on each channel. Then the grayscale image inpainting can be implemented
by assembling all channels. In our experiment, we set K = 8 and combine the two-step

123



40 Page 22 of 27 Journal of Scientific Computing (2023) 96 :40

Ta
bl
e
4

T
he

nu
m
be
r
of

ite
ra
tio

ns
an
d
C
PU

tim
e
of

di
ff
er
en
tt
im

e
st
ep
s

In
de
x

T
he

nu
m
be
r
of

ite
ra
tio

ns
C
PU

tim
e(
s)

T
im

e
st
ep
s

Δ
t
=

10
−3

Δ
t
=

10
−2

A
da
pt
iv
e
st
ep

Δ
t
=

10
−3

Δ
t
=

10
−2

A
da
pt
iv
e
st
ep

T
ri
an
gl
e

19
98

83
24

00
0

61
65

60
8.
14

73
.8
2

17
.7
1

C
ir
cl
e

39
99

86
59

89
7

10
27

7
12

39
.0
3

19
0.
12

30
.2
2

R
in
g

15
99

80
15

99
9

12
19

1
49

8.
33

50
.2
7

35
.3
1

123



Journal of Scientific Computing (2023) 96 :40 Page 23 of 27 40

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

t 105

60

80

100

120

140

160

180

200

220

240

E
ne

rg
y

Adaptive

 t=10-2

 t=10-3

Fig. 14 Energy evolution of different time steps for inpainting the triangle
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Fig. 15 Adaptive time steps of inpainting the triangle

approach in [20] to adjust experimental parameter. In the first step, we choose a large value
of ε (e.g., ε = 1.4), and the added step is we reduce the value of ε (e.g., ε = 0.5) to get the
result by taking the result of the first step as the initial data.

With the above technique, we are now to perform grayscale image inpainting. In Fig. 16
shows four original grayscale images and Fig. 17 shows corresponding damaged grayscale
images.Our inpainting results are all displayed in Fig. 18.As shown in Fig. 17a, the inpainting
areas are irregular, and the visible inpainting effects are produced in Fig. 18a. The grayscale
images in Fig. 18b and c demonstrate the application of our image inpainting technique for
erasing autokinetic text. The final example is the inpainting of a bar code on a commodity.
It can be observed that our inpainting method is capable of achieving a satisfactory visual
effect.
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Fig. 16 The original grayscale images

Fig. 17 The damaged grayscale images

Fig. 18 Inpainting the grayscale images

6 Concluding Remarks

We developed a new image inpainting model by using the Ginzburg-Landau functional and
a H−1 fidelity term. The proposed model can better capture some geometric contents of
topologically complex inpainting areas. Meanwhile, the H−1-fidelity term preserves well
the edges of the oscillatory inpainting areas. We established the existence of the minimizer
for the proposed variational inpainting model, and proposed an efficient numerical algorithm
by adopting the SAV algorithm with the adaptive time stepping strategy. The scheme is very
efficient and easy to implement.

Our numerical results indicate that the proposed inpainting approach works better com-
paredwith other tested approaches, evenwhen the topology of the inpainting areas is complex
or the areas are oscillatory. We also extended the image inpainting technique to grayscale
images.
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