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ARTICLE INFO ABSTRACT

MSC: We develop in this paper an adaptive time-stepping approach for gradient flows with distinct
351<gs treatments for conservative and non-conservative dynamics. For the non-conservative gradient
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flows in Lagrangian coordinates, we propose a modified formulation augmented by auxiliary

ggﬁ‘g terms to guarantee positivity of the determinant, and prove that the corresponding adaptive

second-order Backward Difference Formulas (BDF2) scheme preserves energy stability and the
Keywords: maximum principle under the time-step ratio constraint 0 < r, <r .. < % On the other hand, for
Gradient flow the conservative Wasserstein gradient flows in Lagrangian coordinates, we propose an adaptive
Lagr: ar'lgiar'z COOrdi”‘_HeS BDF2 scheme which is shown to be energy dissipative, and positivity preserving under the time-
2:2’;;‘3;:;2:55 ping step ratio constraint 0 < r, < r.. < %ﬁ inlDand 0 <r, <rp < i in 2D, respectively. We also

present ample numerical simulations in 1D and 2D to validate the efficiency and accuracy of the
proposed schemes.

1. Introduction

We consider in this paper adaptive time-stepping Lagrangian approaches for gradient flows with conservative and non-conservative
dynamics. Specifically, the non-conservative models require the enforcement of determinant positivity through auxiliary operators,
while the conservative systems need mechanisms for mass conservation.

For the non-conservative system characterized by energy functional E(p) and positive mobility M(p) > 0, the governing equation
takes the form:

SE

Op = —M(P)—6 , 1.1)
p

d

where the total mass of p is usually not conserved, i.e., - /Q p(x,t)dx # 0. Notable examples include the Allen-Cahn equation [1],
Burgers-Huxley and Burgers-Fisher equations [2]. Through the non-conservative transport framework [3]

p+v-Vp=0, 1.2)
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$0<r_n\le r_{\max }\le \frac {3}{2}$


$0<r_n\le r_{\max }\le \frac {3+\sqrt {17}}{2}$


$0<r_n\le r_{\max }\le \frac {5}{4}$


$E(\rho )$


$\mathcal {M}(\rho ) > 0$


\begin {equation}\label {eq:non} \partial _t\rho = -\mathcal {M}(\rho )\frac {\delta E}{\delta \rho },\end {equation}


$\rho $


$\frac {\mathrm {d}}{\mathrm {d}t}\int _{\Omega }\rho (x,t)\mathrm {d}x \neq 0$


\begin {align}\label {eq:non flow} \rho _t + \bm {v}\cdot \nabla \rho = 0,\end {align}


\begin {align}\label {eq:ac eu} \bm {v}\cdot \nabla \rho = \mathcal {M}(\rho )\frac {\delta E}{\delta \rho }.\end {align}


\begin {equation}\label {eq:wd} \partial _t\rho = \nabla \cdot \left (\mathcal {M}(\rho )\nabla \frac {\delta E}{\delta \rho }\right ),\end {equation}


$\frac {\mathrm {d}}{\mathrm {d}t}\int _{\Omega }\rho (x,t)\mathrm {d}x = 0$


\begin {align}\label {eq:con flow} \partial _t\rho + \nabla \cdot (\rho \bm {v}) = 0,\end {align}


\begin {align}\rho \bm {v} = -\mathcal {M}(\rho )\nabla \frac {\delta E}{\delta \rho }.\end {align}


$\mathcal {M}(\rho )=\rho $


$\frac {1}{2}$


$0 < r_n \leq r_{\max } \leq \frac {3}{2}$


$0 < r_n \leq r_{\max } \leq \frac {3+\sqrt {17}}{2}$


$0 < r_n \leq r_{\max } \leq \frac {5}{4}$


$\bm X$


$\bm v$


${\bm x}({\bm X},t)$


\begin {align}& \frac {\mathrm {d}{\bm x}({\bm X},t)}{\mathrm {d} t}={\bm v}({\bm x}({\bm X},t),t),\label {flow}\\ & {\bm x}({\bm X},0)={\bm X},\label {flow1}\end {align}


$\bm x$


$\bm X$


$\frac {\partial {\bm x}}{\partial {\bm X}}$


$\bm v$


\begin {equation}\label {transport} \rho _t+({\bm v}\cdot \Grad _{\bx })\rho =0.\end {equation}


\begin {equation}\label {essential} \rho (\bx (\bX ,t),t)=\rho (\bx ,0)=\rho _0(\bx ) \quad \forall t,\end {equation}


$\rho _0(\bx )$


$\bx (\bX ,0)=\bX $


$\rho _0(\bx )=\rho _0(\bX )$


\begin {equation}\rho (\bx (\bX ,t),t)=\rho \circ \bx (\bX ) = \rho _0(\bX ). \label {Xeqn6-2.12}\end {equation}


$\bx (\bX ,t)$


$\phi (\bX ;t)=\bx (\bX ,t)$


$t$


$\phi ^{-1}$


$\phi $


$\rho (\bx (\bX ,t),t)=\rho (\bX ,0)$


$t$


$0<a\le \rho (\bX ,0)\le b$


$t$


$a\le \rho (\bx ,t)\le b$


\begin {equation}\label {eq:ac ori} \partial _t\rho =-\mathcal {M}(\rho )(-\epsilon ^2\Delta \rho +F'(\rho )),\qquad (x,t)\in \Omega \times (0,T],\end {equation}


$|\rho (\bx ,0)|\le 1$


$\bx \in \Omega $


$|\rho (\bx ,t)|\le 1$


$(\bx ,t)\in \Omega \times (0,T]$


$L^2$


$L^2$


$\rho $


$\epsilon >0$


$T$


$\mathcal {M}(\rho )> 0$


$\mathcal {M}(\rho )\equiv 1$


$\mathcal {M}(\rho )=1-\rho ^2$


$F(\rho )=\frac {1}{4}(\rho ^2-1)^2$


$F(\rho )=\frac {1}{4}(\rho ^2-1)^2$


$L^2$


\begin {equation}\label {diss:law:0} \frac {\mathrm {d}}{\mathrm {d}t}E(\rho )=-\int _{\Omega }\mathcal {M}(\rho )|\rho _t|^2\mathrm {d}x,\end {equation}


$E(\rho )=\int _{\Omega }\frac {\epsilon ^2}{2}|\nabla \rho |^2+F(\rho )\ \mathrm {d}x$


\begin {align}\label {diss:law:1} \frac {\mathrm {d}}{\mathrm {d}t}E(\rho )=-\int _{\Omega }\mathcal {M}(\rho )|({\bm v}\cdot \Grad _{\bx })\rho |^2\mathrm {d}x,\end {align}


$\rho _t=-({\bm v}\cdot \Grad _{\bx })\rho $


\begin {align}\label {traj} {\bm v}\cdot \nabla \rho =\mathcal {M}(\rho )(-\epsilon ^2\Delta \rho +F'(\rho )).\end {align}


\begin {align}x_t(X,t)\rho _0^{\prime }(X)\left (\frac {\partial x}{\partial X}\right )^{-1}{\frac {1}{\mathcal {M}(\rho _0(X))}}=-\epsilon ^2\partial _X\left (\rho _0^{\prime }(X)\left (\frac {\partial x}{\partial X}\right )^{-1}\right )\left (\frac {\partial x}{\partial X}\right )^{-1}+F'(\rho _0(X)),\label {ac:tra1}\end {align}


\begin {align}x|_{\partial \Omega }=X|_{\partial \Omega },\qquad x(X,0)=X,\ X\in \Omega .\end {align}


$\frac {\partial x}{\partial X}(X,t)>0$


$\forall X\in \Omega $


$\eta _0\partial _X\left (\frac {\mathrm {d}}{\mathrm {d}t}\log (\frac {\partial x}{\partial X})\right )$


$0<\eta _0 \ll 1$


$\frac {\partial x}{\partial X}(X,t)$


\begin {equation}\label {ac:regularied tra1} \begin {aligned} & x_t(X,t)(\rho _0^{\prime }(X))^2\left (\frac {\partial x}{\partial X}\right )^{-1}{\frac {1}{\mathcal {M}(\rho _0(X))}}-\eta _0\partial _X\left (\frac {\mathrm {d}}{\mathrm {d}t}\log \left (\frac {\partial x}{\partial X}\right )\right )\\=&-\frac {\epsilon ^2}{2}\partial _X\left (\rho _0^{\prime }(X)\left (\frac {\partial x}{\partial X}\right )^{-1}\right )^2+\partial _XF(\rho _0(X)). \end {aligned}\end {equation}


$\mathcal {M}(\rho )>0$


\begin {align}\label {eq: ac 1} \frac {\mathrm {d}E_{ac}}{\mathrm {d}t}=-\int _{\Omega ^0_{\bm X}}\left |x_t(X,t)\rho _0^{\prime }(X)\left (\frac {\partial x}{\partial X}\right )^{-1}\right |^2\frac {1}{\mathcal {M}(\rho _0(X))}\frac {\partial x}{\partial X}\mathrm {d}X-\int _{\Omega ^0_{\bm X}} \eta _0|\partial _Xx_t|^2\left (\frac {\partial x}{\partial X}\right )^{-1}\mathrm {d}X,\end {align}


\begin {align*}E_{ac}=\int _{\Omega ^0_{\bm X}}\left (\frac {\epsilon ^2}{2}\left |\rho _0^{\prime }(X)\left (\frac {\partial x}{\partial X}\right )^{-1}\right |^2+F(\rho _0(X))\right )\frac {\partial x}{\partial X}\mathrm {d}X.\end {align*}


$-x_t$


\begin {equation*}\begin {aligned} &-\int _{\Omega ^0_{\bm X}}\left |x_t\rho _0^{\prime }(X)\left (\frac {\partial x}{\partial X}\right )^{-1}\right |^2\frac {\partial _{X}x}{\mathcal {M}(\rho _0(X))}\mathrm {d}X+\eta _0\int _{\Omega ^0_{\bm X}}\partial _{X}\left (\frac {\mathrm {d}}{\mathrm {d}t}\log \left (\frac {\partial x}{\partial X}\right )\right )x_t\mathrm {d}X\\ =&\frac {\epsilon ^2}{2}\int _{\Omega ^0_{\bm X}}\partial _X\left (\rho _0^{\prime }(X)\left (\frac {\partial x}{\partial X}\right )^{-1}\right )^2x_t-\partial _XF(\rho _0(X))x_t\mathrm {d}X\\ =&-\frac {\epsilon ^2}{2}\int _{\Omega ^0_{\bm X}}\left (\rho _0^{\prime }(X)\left (\frac {\partial x}{\partial X}\right )^{-1}\right )^2\partial _Xx_t+F(\rho _0(X))\partial _Xx_t\mathrm {d}X\\ =&\frac {\mathrm {d}}{\mathrm {d}t}\int _{\Omega ^0_{\bm X}}\left (\frac {\epsilon ^2}{2}\left |\rho _0^{\prime }(X)\left (\frac {\partial x}{\partial X}\right )^{-1}\right |^2+F(\rho _0(X))\right )\frac {\partial x}{\partial X}\mathrm {d}X. \end {aligned}\end {equation*}


\begin {equation*}\begin {aligned} \int _{\Omega ^0_{\bm X}}\partial _{X}\left (\frac {\mathrm {d}}{\mathrm {d}t}\log \left (\frac {\partial x}{\partial X}\right )\right )x_t\mathrm {d}X=-\int _{\Omega ^0_{\bm X}}\frac {\mathrm {d}}{\mathrm {d}t}\log \left (\frac {\partial x}{\partial X}\right )\partial _{X}x_t\mathrm {d}X=\int _{\Omega ^0_{\bm X}} |\partial _Xx_t|^2\left (\frac {\partial x}{\partial X}\right )^{-1}\mathrm {d}X. \end {aligned}\end {equation*}


$\tau _{n}:=t^{n}-t^{n-1}>0$


$r_{n+1}:=\frac {\tau _{n+1}}{\tau _{n}}>0$


$n\ge 1$


$\{r_n\}_n$


$r_{\max }$


$r_n\le r_{\max }$


$\forall n$


$T>0$


$T=\sum _{n=1}^N\tau _{n}$


${ x}^n$


${ x}(\cdot , t^n)$


$\rho _0^{\prime }(X)\left (\frac {\partial x}{\partial X}\right )^{-1}\frac {1}{\mathcal {M}(\rho _0(X))}$


$\ell _n:=\frac {\partial x^n}{\partial X}\mathcal {M}(\rho _0(X))$


$\forall n\ge 1$


${ x}^{n-1},\ { x}^n$


$\rho ({X},0)$


$({ x}^{n+1},\rho ^{n+1})$


\begin {equation}\begin {aligned} &\frac {(2r_{n+1}+1)(\rho _0^{\prime }(X))^2}{2\tau _{n+1}(r_{n+1}+1)}(\ell _{n+1}^{-1}+\ell _n^{-1})(x^{n+1}-x^n) -\eta \tau _{n+1}\partial _X\left (\log \frac {\partial x^{n+1}}{\partial X}-\log \frac {\partial x^{n}}{\partial X}\right )\\ &-\frac {r_{n+1}^2(\rho _0^{\prime }(X))^2}{\tau _{n+1}(r_{n+1}+1)}\left (\left (1+\frac {1}{2r_{n+1}}\right )\ell _{n}^{-\frac {1}{2}}-\frac {1}{2r_{n+1}}\ell _{n+1}^{-\frac {1}{2}}\right )\left (\frac {1}{2}\ell _{n-1}^{-\frac {1}{2}}+\frac {1}{2}\ell _{n}^{-\frac {1}{2}}\right )(x^{n}-x^{n-1})\\ =&-\frac {\epsilon ^2}{2}\partial _X\left (\rho _0^{\prime }(X)\left (\frac {\partial x^{n+1}}{\partial X}\right )^{-1}\right )^2+\partial _XF(\rho _0(X)).\label {scheme:bdf2 modified variable} \end {aligned}\end {equation}


$\frac {1}{2\tau _{n+1}}(\ell _{n+1}^{-1}+\ell _n^{-1})(x^{n+1}-x^n)$


$\frac {1}{\tau _n}\left (\left (1+\frac {1}{2r_{n+1}}\right )\ell _{n}^{-\frac {1}{2}}-\frac {1}{2r_{n+1}}\ell _{n+1}^{-\frac {1}{2}}\right )\left (\frac {1}{2}\ell _{n-1}^{-\frac {1}{2}}+\frac {1}{2}\ell _{n}^{-\frac {1}{2}}\right )(x^{n}-x^{n-1})$


$\ell _{n+\frac {1}{2}}^{-1}x_t|_{n+\frac {1}{2}}$


$\ell ^{-1}_{n-\frac {1}{2}}x_t|_{n-\frac {1}{2}}$


$\frac {2r_{n+1}+1}{r_{n+1}+1}\ell ^{-1}_{n+\frac {1}{2}}x_t|_{n+\frac {1}{2}}-\frac {r_{n+1}}{r_{n+1}+1}\ell ^{-1}_{n-\frac {1}{2}}x_t|_{n-\frac {1}{2}}$


$\ell ^{-1}_{n+1}x_t|_{n+1}$


$-\eta \tau _{n+1}\partial _X\left (\log \frac {\partial x^{n+1}}{\partial X}-\log \frac {\partial x^{n}}{\partial X}\right )$


$\eta \ge 0$


$\frac {\partial x^{n+1}}{\partial X}$


$x^{n+1}$


$\rho (x^{n+1}(X))=\rho _0(X)$


$\mathcal {M}(\rho )>0$


$0<r_{\max }\le \frac {3}{2}$


\begin {equation}\begin {aligned} &E^{n+1}+\frac {r_{\max }}{2\tau _{n+1}(r_{\max }+1)}\left ((\rho _0^{\prime }(X))^2(\ell _{n+1}^{-1}+\ell _{n}^{-1})(x^{n+1}-x^{n}),x^{n+1}-x^{n}\right )\\ &+\eta \tau _{n+1}\left (\log \frac {\partial x^{n+1}}{\partial X}-\log \frac {\partial x^{n}}{\partial X},\frac {\partial x^{n+1}}{\partial X}-\frac {\partial x^{n}}{\partial X}\right )\\ \le &E^{n}+\frac {r_{\max }}{2\tau _{n}(r_{\max }+1)}\left ((\rho _0^{\prime }(X))^2(\ell _{n-1}^{-1}+\ell _{n}^{-1})(x^{n}-x^{n-1}),x^{n}-x^{n-1}\right ), \end {aligned} \label {Xeqn12-2.23}\end {equation}


$E^n=\int _{\Omega ^0_{\bm X}}\left (\frac {\epsilon ^2}{2}\left |\rho _0^{\prime }(X)\left (\frac {\partial x^n}{\partial X}\right )^{-1}\right |^2+F(\rho _0(X))\right )\frac {\partial x^n}{\partial X}\mathrm {d}X$


$-(x^{n+1}-x^n)$


\begin {equation}\label {energy,eq1} \begin {aligned} &\sum _{i=1}^3L_i:=-\frac {2r_{n+1}+1}{2\tau _{n+1}(r_{n+1}+1)}\left ((\rho _0^{\prime }(X))^2(\ell _{n+1}^{-1}+\ell _n^{-1})(x^{n+1}-x^n),x^{n+1}-x^n\right )\\ &+\left (\eta \tau _{n+1}\partial _X\left (\log \frac {\partial x^{n+1}}{\partial X}-\log \frac {\partial x^{n}}{\partial X}\right ),x^{n+1}-x^n\right )+\frac {r_{n+1}^2}{\tau _{n+1}(r_{n+1}+1)}\\ &\times \left ((\rho _0^{\prime }(X))^2\left (\left (\frac {2r_{n+1}+1}{2r_{n+1}}\right )\ell _{n}^{-\frac {1}{2}}-\frac {1}{2r_{n+1}}\ell _{n+1}^{-\frac {1}{2}}\right )\left (\frac {1}{2}\ell _{n-1}^{-\frac {1}{2}}+\frac {1}{2}\ell _{n}^{-\frac {1}{2}}\right )(x^{n}-x^{n-1}),x^{n+1}-x^{n}\right )\\ =&\frac {\epsilon ^2}{2}\left (\partial _{\bm X}\left |\rho _0^{\prime }(X)\left (\frac {\partial x^{n+1}}{\partial X}\right )^{-1}\right |^2,x^{n+1}-x^{n}\right )-\left (\partial _XF(\rho _0(X)),x^{n+1}-x^{n}\right ):=\sum _{i=1}^2R_i. \end {aligned}\end {equation}


$L_3$


\begin {align*}&\left ((\rho _0^{\prime }(X))^2\left (\left (1+\frac {1}{2r_{n+1}}\right )\ell _{n}^{-\frac {1}{2}}-\frac {1}{2r_{n+1}}\ell _{n+1}^{-\frac {1}{2}}\right )\left (\frac {1}{2}\ell _{n-1}^{-\frac {1}{2}}+\frac {1}{2}\ell _{n}^{-\frac {1}{2}}\right )(x^{n}-x^{n-1}),x^{n+1}-x^{n}\right )\\ \le & \frac {1}{4}\left ((\rho _0^{\prime }(X))^2\left (\left (1+\frac {1}{2r_{n+1}}\right )\ell _{n}^{-\frac {1}{2}}-\frac {1}{2r_{n+1}}\ell _{n+1}^{-\frac {1}{2}}\right )^2(x^{n+1}-x^{n}),x^{n+1}-x^{n}\right )\\ &+\left ((\rho _0^{\prime }(X))^2\left (\frac {1}{2}\ell _{n-1}^{-\frac {1}{2}}+\frac {1}{2}\ell _{n}^{-\frac {1}{2}}\right )^2(x^{n}-x^{n-1}),x^{n}-x^{n-1}\right )\\ \le &\frac {1}{4}\left ((\rho _0^{\prime }(X))^2\left (\frac {(2r_{n+1}+1)^2+2r_{n+1}+1}{4r_{n+1}^2}\ell _{n}^{-1}+\frac {2r_{n+1}+2}{4r_{n+1}^2}\ell _{n+1}^{-1}\right )(x^{n+1}-x^{n}),x^{n+1}-x^{n}\right )\\ &+\frac {1}{2}\left ((\rho _0^{\prime }(X))^2(\ell _{n-1}^{-1}+\ell _{n}^{-1})(x^{n}-x^{n-1}),x^{n}-x^{n-1}\right )\\ = &\frac {1}{4}\frac {(2r_{n+1}+1)^2+2r_{n+1}+1}{4r_{n+1}^2}\left ((\rho _0^{\prime }(X))^2(\ell _{n}^{-1}+\ell _{n+1}^{-1})(x^{n+1}-x^{n}),x^{n+1}-x^{n}\right )\\ &-\frac {1}{4}\frac {(2r_{n+1}+1)^2-1}{4r_{n+1}^2}\left ((\rho _0^{\prime }(X))^2\ell _{n+1}^{-1}(x^{n+1}-x^{n}),x^{n+1}-x^{n}\right )\\ &+\frac {1}{2}\left ((\rho _0^{\prime }(X))^2(\ell _{n-1}^{-1}+\ell _{n}^{-1})(x^{n}-x^{n-1}),x^{n}-x^{n-1}\right ).\end {align*}


$(2r_{n+1}+1)^2-1>0$


$\forall r_{n+1}>0$


\begin {equation}\label {energy,eql1} \begin {aligned} L_1+L_3 \le &-\frac {2r_{n+1}+1}{2\tau _{n+1}(r_{n+1}+1)}\left ((\rho _0^{\prime }(X))^2(\ell _{n+1}^{-1}+\ell _n^{-1})(x^{n+1}-x^n),x^{n+1}-x^n\right )\\ &+\frac {(2r_{n+1}+1)^2+2r_{n+1}+1}{16\tau _{n+1}(r_{n+1}+1)}\left ((\rho _0^{\prime }(X))^2(\ell _{n}^{-1}+\ell _{n+1}^{-1})(x^{n+1}-x^{n}),x^{n+1}-x^{n}\right )\\ &+\frac {r_{n+1}^2}{2\tau _{n+1}(r_{n+1}+1)}\left ((\rho _0^{\prime }(X))^2(\ell _{n-1}^{-1}+\ell _{n}^{-1})(x^{n}-x^{n-1}),x^{n}-x^{n-1}\right )\\ =&-\frac {(2r_{n+1}+1)(3-r_{n+1})}{8\tau _{n+1}(r_{n+1}+1)}\left ((\rho _0^{\prime }(X))^2(\ell _{n+1}^{-1}+\ell _n^{-1})(x^{n+1}-x^n),x^{n+1}-x^n\right )\\ &+\frac {r_{n+1}^2}{2\tau _{n+1}(r_{n+1}+1)}\left ((\rho _0^{\prime }(X))^2(\ell _{n-1}^{-1}+\ell _{n}^{-1})(x^{n}-x^{n-1}),x^{n}-x^{n-1}\right ). \end {aligned}\end {equation}


$L_2$


\begin {equation}\begin {aligned} L_2&=-\eta \tau _{n+1}\left (\log \frac {\partial x^{n+1}}{\partial X}-\log \frac {\partial x^{n}}{\partial X},\frac {\partial x^{n+1}}{\partial X}-\frac {\partial x^{n}}{\partial X}\right )\\ &=-\eta \tau _{n+1}\left (\left (\frac {\partial \xi }{\partial X}\right )^{-1},\left (\frac {\partial x^{n+1}}{\partial X}-\frac {\partial x^{n}}{\partial X}\right )^2\right )\le 0, \end {aligned} \label {Xeqn15-2.26}\end {equation}


$\xi $


$x^n$


$x^{n+1}$


$\frac {1}{y}$


$y$


$y>0$


\begin {equation}\begin {aligned} R_1=&-\frac {\epsilon ^2}{2}\left (\left |\rho _0^{\prime }(X)\left (\frac {\partial x^{n+1}}{\partial X}\right )^{-1}\right |^2,\partial _{\bm X}(x^{n+1}-x^{n})\right )\\ \ge &\ \frac {\epsilon ^2}{2}\int _{\Omega ^0_{\bm X}}(\rho _0^{\prime }(X))^2\left (\frac {\partial x^{n+1}}{\partial X}\right )^{-1}\mathrm {d} X-\frac {\epsilon ^2}{2}\int _{\Omega ^0_{\bm X}}(\rho _0^{\prime }(X))^2\left (\frac {\partial x^{n}}{\partial X}\right )^{-1}\mathrm {d} X. \end {aligned} \label {Xeqn16-2.27}\end {equation}


\begin {equation}\label {energy,eqr2} \begin {aligned} R_2 =-\int _{\Omega ^0_{\bm X}}\partial _{\bm X}F(\rho _0(X))(x^{n+1}-x^{n})\mathrm {d} X =\int _{\Omega ^0_{\bm X}}F(\rho _0(X))\partial _{\bm X}(x^{n+1}-x^{n})\mathrm {d} X. \end {aligned}\end {equation}


\begin {align*}&E^{n+1}+\frac {(2r_{n+1}+1)(3-r_{n+1})}{8\tau _{n+1}(r_{n+1}+1)}\left ((\rho _0^{\prime }(X)(\ell _{n+1}^{-1}+\ell _n^{-1})(x^{n+1}-x^n),\rho _0^{\prime }(X)(x^{n+1}-x^n)\right )\\ &+\eta \tau _{n+1}\left (\log \frac {\partial x^{n+1}}{\partial X}-\log \frac {\partial x^{n}}{\partial X},\frac {\partial x^{n+1}}{\partial X}-\frac {\partial x^{n}}{\partial X}\right )\\ \le &E^{n}+\frac {r_{n+1}^2}{2\tau _{n+1}(r_{n+1}+1)}\left ((\rho _0^{\prime }(X))^2(\ell _{n-1}^{-1}+\ell _{n}^{-1})(x^{n}-x^{n-1}),(x^{n}-x^{n-1})\right )\\ \le & E^{n}+\frac {r_{\max }}{2\tau _{n}(r_{\max }+1)}\left ((\rho _0^{\prime }(X))^2(\ell _{n-1}^{-1}+\ell _{n}^{-1})(x^{n}-x^{n-1}),(x^{n}-x^{n-1})\right ).\end {align*}


\begin {align*}\frac {(2r_{n+1}+1)(3-r_{n+1})}{8(r_{n+1}+1)}\ge \frac {r_{\max }}{2(r_{\max }+1)},\end {align*}


$h(s)=\frac {(2s+1)(3-s)}{8(s+1)}$


$0<s<3$


$h(s)$


$0<s<-1+\sqrt {2}$


$-1+\sqrt {2}<s\le r_{\max }<3$


$0<r_{\max }\le \frac {3}{2}$


$2r_{\max }^2-r_{\max }-3\le 0$


\begin {align*}h(s)\ge \min \{h(0),h(r_{\max })\}=\min \left \{\frac {3}{8}, \frac {(2r_{\max }+1)(3-r_{\max })}{8(r_{\max }+1)}\right \}\ge \frac {r_{\max }}{2(r_{\max }+1)},\end {align*}


$r_{n}\equiv 1$


$\forall n$


\begin {align*}&E^{n+1}+\frac {3}{8\tau }\left ((\rho _0^{\prime }(X))^2(\ell _{n+1}^{-1}+\ell _n^{-1})(x^{n+1}-x^n),(x^{n+1}-x^n)\right )\\ \le &E^{n}+\frac {1}{4\tau }\left ((\rho _0^{\prime }(X))^2(\ell _{n-1}^{-1}+\ell _n^{-1})(x^{n}-x^{n-1}),(x^{n}-x^{n-1})\right ).\end {align*}


\begin {equation}\begin {aligned} &\frac {(1+2r_{n+1})x^{n+1}-(1+r_{n+1})^2x^{n}+r_{n+1}^2x^{n-1}}{\tau _{n+1}(1+r_{n+1})}\rho _0^{\prime }(X)\left (\frac {\partial x^{n+1}_\star }{\partial X}\right )^{-1}\\ =&-\epsilon ^2\partial _X\left (\rho _0^{\prime }(X)\left (\frac {\partial x^{n+1}}{\partial X}\right )^{-1}\right )\left (\frac {\partial x^{n+1}}{\partial X}\right )^{-1}+F'(\rho _0(X)),\label {scheme:ac 2nd} \end {aligned}\end {equation}


$\frac {\partial x_{\star }^{n+1}}{\partial X}$


\begin {equation*}\frac {\partial x_{\star }^{n+1}}{\partial X}=\begin {cases} \frac {\partial ((1+r_{n+1})x^{n}-r_{n+1}x^{n-1})}{\partial X},&\ \text {if}\ \frac {\partial x^n}{\partial X}\ge \frac {\partial x^{n-1}}{\partial X},\\ \frac {1}{(1+r_{n+1})/\frac {\partial x^n}{\partial X} -r_{n+1}/\frac {\partial x^{n-1}}{\partial X}},&\ \text {if}\ \frac {\partial x^n}{\partial X}<\frac {\partial x^{n-1}}{\partial X}. \end {cases}\end {equation*}


$\frac {\partial x^{n+1}}{\partial X}$


$(\frac {\partial x^{n+1}_\star }{\partial X})^{-1}$


$\left (\frac {\partial x}{\partial X}\right )^{-1}$


$\tilde {\ell }_{n+1}^{-1}$


\begin {equation*}\tilde {\ell }_{n+1}^{-1} := \begin {cases} \left (\frac {\partial ((1+r_{n+1})x^{n}-r_{n+1}x^{n-1})}{\partial X}\right )^{-1}\left (\mathcal {M}(\rho _0(X))\right )^{-1}, & \text {if } \frac {\partial x^n}{\partial X} \geq \frac {\partial x^{n-1}}{\partial X}, \\ \left ((1+r_{n+1})\left (\frac {\partial x^n}{\partial X}\right )^{-1}-r_{n+1}\left (\frac {\partial x^{n-1}}{\partial X}\right )^{-1}\right )\left (\mathcal {M}(\rho _0(X))\right )^{-1}, & \text {if } \frac {\partial x^n}{\partial X} < \frac {\partial x^{n-1}}{\partial X}. \end {cases}\end {equation*}


$\ell _{K}^{-1}$


$\tilde {\ell }_{K}^{-1}$


$K=n-1,n,n+1$


$\rho $


$\mathcal {M}(\rho )=\rho $


\begin {align}\label {eq:wasserstein} \partial _t\rho =\nabla \cdot (\rho {\bm v}),\quad \bm {v}=\nabla \frac {\delta E}{\delta \rho },\end {align}


$E(\rho )=\int _{\Omega }F(\rho )\mathrm {d}{\bm x} =\int _{\Omega }U(\rho ({\bm x}))+V({\bm x})\rho ({\bm x})\mathrm {d}{\bm x}+\frac {1}{2}\int _{\Omega \times \Omega }W({\bm x}-{\bm y})\rho ({\bm x})\rho ({\bm y})\mathrm {d}{\bm x}\mathrm {d}{\bm y}$


$F(\rho )$


$U(\rho )$


$V({\bm x})$


$W({\bm x},{\bm y})=W({\bm y},{\bm x})$


\begin {align*}\rho {\bm v} = - \rho \Grad \frac {\delta E}{\delta \rho },\end {align*}


\begin {equation}\label {vis:force:0} \begin {split} &\rho _0({\bm X})\frac {\mathrm {d} {\bm x}}{\mathrm {d}t}+\rho _0(\bm X)\Grad _{\bm x}\frac {\delta E}{\delta \rho } =0,\\ & \rho (\bx ,t)=\frac {\rho _0({\bm X})}{\text {det}\frac {\partial \bm x}{\partial {\bm X}}}. \end {split}\end {equation}


\begin {equation}\label {vis:force} \begin {split} & \rho _0({\bm X})\frac {\mathrm {d} {\bm x}}{\mathrm {d}t}-\varepsilon \Delta _{\bm X} \frac {\mathrm {d}{\bm x}}{\mathrm {d}t} +\rho _0(\bm X)\Grad _{\bm x}\frac {\delta E}{\delta \rho } =0,\\ &\rho (\bx ,t)=\frac {\rho _0({\bm X})}{\text {det}\frac {\partial \bm x}{\partial {\bm X}}}. \end {split}\end {equation}


${\bm x}^{n+1}|_{\partial \Omega }={\bm X}|_{\partial \Omega }$


$\Omega ^0_{\bm x}=\Omega ^0_{\bm X}$


$\varepsilon \Delta _{\bm X} \frac {\mathrm {d}{\bm x}}{\mathrm {d}t}$


$\varepsilon \ge 0$


$n\ge 1$


${\bm x}^{n-1},\ {\bm x}^{n}$


$\tau _{n+1}$


$r_{n+1}$


$\rho _0({\bm X})$


$({\bm x}^{n+1},\rho ^{n+1})$


\begin {align}&\rho _0({\bm X})\frac {(1+2r_{n+1}){\bm x}^{n+1}-(1+r_{n+1})^2{\bm x}^{n}+r_{n+1}^2{\bm x}^{n-1}}{\tau _{n+1}(1+r_{n+1})}-\tau _{n+1}\Delta _{\bm X} ({\bm x}^{n+1}-{\bm x}^{n})+\rho _0({\bm X})\nabla _{\bm x}F'\left (\frac {\rho _0({\bm X})}{\text {det}\frac {\partial {\bm x}^{n+1}}{\partial {\bm X}}}\right )=0,\label {eq:jko_2}\\ &\rho ^{n+1}=\frac {\rho _0({\bm X})}{\text {det}\frac {\partial {\bm x}^{n+1}}{\partial {\bm X}}}, \label {eq:jko_11}\end {align}


${\bm x}^{n+1}|_{\partial \Omega }={\bm X}|_{\partial \Omega }$


$\Omega ^0_{\bm x}=\Omega ^0_{\bm X}$


${\bm x}^0$


${\bm x}^1$


${\bm x}^0={\bm X}$


${\bm x}^1$


$\rho _0({\bm X})>0$


$E({\bm x})$


$\bm x$


$U(s)=s\log s$


$1\leq n\leq N$


$\rho ^{n+1}({\bm x})$


$\int _{\Omega ^t_{\bm x}}\rho ^{n+1}({\bm x})\mathrm {d}{\bm x}=\int _{\Omega ^0_{\bm X}}\rho _0({\bm X})\mathrm {d}{\bm X}$


\begin {equation}\label {eq:jko_semi} {\bm x}^{k+1}:=\arg \min _{\bm x}\Bigg \{\frac {1}{2\tau _{n+1}}\int _{\Omega ^0_{\bm X}}\rho _0({\bm X})\frac {|(1+2r_{n+1}){\bm x}-(1+r_{n+1})^2{\bm x}^{n}+r_{n+1}^2{\bm x}^{n-1}|^2}{(1+r_{n+1})(1+2r_{n+1})}\mathrm {d}{\bm X}+E({\bm x})+\frac {\tau _{n+1}}{2}\int _{\Omega ^0_{\bm X}}|\nabla _{\bm X}({\bm x}-{\bm x}^k)|^2\mathrm {d}{\bm X}\Bigg \}.\end {equation}


$\bm x$


$E({\bm x})$


$U(s)=s\log s$


$\frac {\rho _0({\bm X})}{\text {det}\frac {\partial {\bm x}^{n+1}}{\partial {\bm X}}}$


$\text {det}\frac {\partial {\bm x}^{n+1}}{\partial {\bm X}}\ge 0$


$\text {det}\frac {\partial {\bm x}^{n+1}}{\partial {\bm X}}=0$


${\bm x}^{n+1}$


$+\infty $


$\rho ^{n+1}>0$


$\text {det}\frac {\partial {\bm x}}{\partial {\bm X}}\mathrm {d}{\bm X}=\mathrm {d}{\bm x}$


\begin {align*}\int _{\Omega ^t_{\bm x}}\rho ^{n+1}({\bm x})\mathrm {d}{\bm x}=\int _{\Omega ^t_{\bm x}}\frac {\rho _0({\bm X})}{\text {det}\frac {\partial {\bm x}^{n+1}}{\partial {\bm X}}}\mathrm {d}{\bm x}=\int _{\Omega ^0_{\bm X}}\frac {\rho _0({\bm X})}{\text {det}\frac {\partial {\bm x}^{n+1}}{\partial {\bm X}}}\text {det}\frac {\partial {\bm x}^{n+1}}{\partial {\bm X}}\mathrm {d}{\bm X}=\int _{\Omega ^0_{\bm X}}\rho _0({\bm X})\mathrm {d}{\bm X}.\end {align*}


$\rho _0({\bm X})>0$


$0<r_{\max }\le \frac {3+\sqrt {17}}{2}$


$E({\bm x})$


$\bm x$


\begin {equation}\begin {aligned} &E({\bm x}^{n+1})+\frac {r_{\max }}{2\tau _{n+1}(1+r_{\max })}\int _{\Omega ^0_{\bm X}}\rho _0({\bm X})|{\bm x}^{n+1}-{\bm x}^{n}|^2\mathrm {d}{\bm X}\\ \le & E({\bm x}^{n})+\frac {r_{\max }}{2\tau _{n}(1+r_{\max })}\int _{\Omega ^0_{\bm X}}\rho _0({\bm X})|{\bm x}^{n}-{\bm x}^{n-1}|^2\mathrm {d}{\bm X}. \end {aligned} \label {Xeqn30-3.36}\end {equation}


${\bm x}^{n+1}-{\bm x}^{n}$


\begin {align*}&\frac {1+2r_{n+1}}{\tau _{n+1}(1+r_{n+1})}\int _{\Omega ^0_{\bm X}}\rho _0({\bm X})\left (|{\bm x}^{n+1}-{\bm x}^{n}|^2-\frac {r_{n+1}^2}{1+2r_{n+1}}({\bm x}^{n+1}-{\bm x}^{n})({\bm x}^{n}-{\bm x}^{n-1})\right )\mathrm {d}{\bm X}\nonumber \\ +&\tau _{n+1}\|\partial _{\bm X}({\bm x}^{n+1}-{\bm x}^{n})\|^2+\left (\frac {\delta E}{\delta {\bm x}}({\bm x}^{n+1}),({\bm x}^{n+1}-{\bm x}^{n})\right )=0,\end {align*}


$E({\bm x})$


$\bm x$


\begin {equation}\label {eq:energy1} \begin {aligned} &\frac {1+2r_{n+1}}{\tau _{n+1}(1+r_{n+1})}\int _{\Omega ^0_{\bm X}}\rho _0({\bm X})\left (|{\bm x}^{n+1}-{\bm x}^{n}|^2-\frac {r_{n+1}^2}{1+2r_{n+1}}({\bm x}^{n+1}-{\bm x}^{n})({\bm x}^{n}-{\bm x}^{n-1})\right )\mathrm {d}{\bm X}\\ +&\tau _{n+1}\|\partial _{\bm X}({\bm x}^{n+1}-{\bm x}^{n})\|^2+E({\bm x}^{n+1})\le E({\bm x}^{n}). \end {aligned}\end {equation}


\begin {equation*}\begin {aligned} &\int _{\Omega ^0_{\bm X}}\rho _0({\bm X})\left (|{\bm x}^{n+1}-{\bm x}^{n}|^2-\frac {r_{n+1}^2}{1+2r_{n+1}}({\bm x}^{n+1}-{\bm x}^{n})({\bm x}^{n}-{\bm x}^{n-1})\right )\mathrm {d}{\bm X}\\ \ge &\int _{\Omega ^0_{\bm X}}\rho _0({\bm X})\left (\frac {2+4r_{n+1}-r_{n+1}^2}{2(1+2r_{n+1})}|{\bm x}^{n+1}-{\bm x}^{n}|^2-\frac {r_{n+1}^2}{2(1+2r_{n+1})}|{\bm x}^{n}-{\bm x}^{n-1}|^2\right )\mathrm {d}{\bm X}. \end {aligned}\end {equation*}


\begin {align*}&\int _{\Omega ^0_{\bm X}}\rho _0({\bm X})\left (\frac {2+4r_{n+1}-r_{n+1}^2}{2\tau _{n+1}(1+r_{n+1})}|{\bm x}^{n+1}-{\bm x}^{n}|^2-\frac {r_{n+1}^2}{2\tau _{n+1}(1+r_{n+1})}|{\bm x}^{n}-{\bm x}^{n-1}|^2\right )\mathrm {d}{\bm X}\nonumber \\ +&\tau _{n+1}\|\partial _{\bm X}({\bm x}^{n+1}-{\bm x}^{n})\|^2+E({\bm x}^{n+1})\le E({\bm x}^{n}),\end {align*}


$r_{n+1}=\frac {\tau _{n+1}}{\tau _{n}}$


\begin {align*}&\frac {2+4r_{n+1}-r_{n+1}^2}{2\tau _{n+1}(1+r_{n+1})}\int _{\Omega ^0_{\bm X}}\rho _0({\bm X})|{\bm x}^{n+1}-{\bm x}^{n}|^2\mathrm {d}{\bm X}+\tau _{n+1}\|\partial _{\bm X}({\bm x}^{n+1}-{\bm x}^{n})\|^2+E({\bm x}^{n+1})\\ \le &E({\bm x}^{n})+\frac {r_{n+1}}{2\tau _{n}(1+r_{n+1})}\int _{\Omega ^0_{\bm X}}\rho _0({\bm X})|{\bm x}^{n}-{\bm x}^{n-1}|^2\mathrm {d}{\bm X}\\ \le & E({\bm x}^{n})+\frac {r_{\max }}{2\tau _{n}(1+r_{\max })}\int _{\Omega ^0_{\bm X}}\rho _0({\bm X})|{\bm x}^{n}-{\bm x}^{n-1}|^2\mathrm {d}{\bm X}.\end {align*}


$g(r_{n+1}):=\frac {2+4r_{n+1}-r_{n+1}^2}{1+r_{n+1}}\ge \frac {r_{\max }}{1+r_{\max }}$


$g(r)=\frac {2+4r-r^2}{1+r}$


$r\in (0,-1+\sqrt {3})$


$r\in (-1+\sqrt {3},r_{\max })$


$g(r)\ge \min \{g(0),g(r_{\max })\}$


$0<r\le r_{\max }$


\begin {align*}g(r_{\max })\ge \frac {r_{\max }}{1+r_{\max }},\end {align*}


$2+3r_{\max }-r_{\max }^2\ge 0$


$0<r_{\max }\le \frac {3+\sqrt {17}}{2}$


$\bm x$


$0<r_{\max }\le \frac {3+\sqrt {17}}{2}$


$\Omega _0^X=[-L,L]$


$\Omega _0^x=[-L,L]$


$-L=X_0<X_1<\cdots <X_{M_x}=L$


$h=\frac {2L}{M_x}$


$x_{j+\frac {1}{2}}:=\frac {1}{2}(x_j+x_{j+1})$


\begin {align*}(D_hx)_{j+\frac {1}{2}}:=\frac {1}{h}(x_{j+1}-x_j),\end {align*}


$j=0,1,\cdots ,M_x-1$


\begin {align*}(d_hx)_j:=\frac {1}{h}(x_{j+\frac {1}{2}}-x_{j-\frac {1}{2}}),\end {align*}


$j=1,\cdots ,M_x-1$


\begin {align*}(u,v)_h:=\sum _{j=0}^{M_x-1}(uv)_{j+\frac {1}{2}}h,\end {align*}


\begin {align*}[u,v]_h=\sum _{j=1}^{M_x-1}(uv)_jh+\frac {h}{2}(u_0v_0+u_{M_x}v_{M_x}).\end {align*}


$v$


$v_0=v_{M_x}=0$


$(D_hu,v)_h=-[u,d_hv]_h$


$n\ge 1$


$x^{n-1}$


$x^n$


$\tau _{n+1}$


$r_{n+1}$


$(x^{n+1},\rho ^{n+1})$


\begin {equation}\label {scheme:ac fully discrete} \begin {aligned} &\frac {(2r_{n+1}+1)(\rho _0^{\prime }(X_{j+\frac {1}{2}}))^2}{2\tau _{n+1}(r_{n+1}+1)M(\rho _0(X_{j+\frac {1}{2}}))}\left ((D_hx^{n+1})_{j+\frac {1}{2}}^{-1}+(D_hx^{n})_{j+\frac {1}{2}}^{-1}\right )(x_{j+\frac {1}{2}}^{n+1}-x_{j+\frac {1}{2}}^{n})\\ &-\eta \tau _{n+1}D_h\left (\log (d_hx^{n+1}) -\log (d_hx^{n})\right )_{j+\frac {1}{2}}\\&-\frac {r_{n+1}^2(\rho _0^{\prime }(X_{j+\frac {1}{2}}))^2}{2\tau _{n+1}(r_{n+1}+1)M(\rho _0(X_{j+\frac {1}{2}}))}\left (\left (1+\frac {1}{2r_{n+1}}\right )(D_hx^n)_{j+\frac {1}{2}}^{-\frac {1}{2}}-\frac {1}{2r_{n+1}}(D_hx^{n+1})_{j+\frac {1}{2}}^{-\frac {1}{2}}\right )\\ &\times \left ((D_hx^{n-1})_{j+\frac {1}{2}}^{-\frac {1}{2}}-(D_hx^n)_{j+\frac {1}{2}}^{-\frac {1}{2}}\right )(x_{j+\frac {1}{2}}^{n}-x_{j+\frac {1}{2}}^{n-1})\\ =&-\frac {\epsilon ^2}{2}D_h(\rho _0^{\prime }(X)(d_hx^{n+1})^{-1})^2_{j+\frac {1}{2}}+D_hF(\rho _0(X))_{j+\frac {1}{2}}, \end {aligned}\end {equation}


$\rho ^{n+1}_{j+\frac {1}{2}}=\rho _0(X_{j+\frac {1}{2}})$


$j=0$


$1$


$\cdots $


$M_x-1$


\begin {align}(x_0^0,x_1^0,\cdots ,x_{M_x}^0)=(X_0,X_1,\cdots ,X_{M_x}),\quad x^{n+1}_0=X_0,\ x^{n+1}_{M_x}=X_{M_x}.\end {align}


$\eta \tau _{n+1}D_h\left (\log (d_hx^{n+1}) -\log (d_hx^{n})\right )$


$\eta \ge 0$


$d_hx^{n+1}$


$-(x^{n+1}-x^n)$


$\mathcal {M}(\rho )>0$


$0<r_{\max }\le \frac {3}{2}$


\begin {equation}\label {eq: ac energy discrete} \begin {aligned} &E_h^{n+1}+\frac {r_{\max }}{2\tau _{n+1}(r_{\max }+1)}\left (\frac {(\rho _0^{\prime })^2}{\mathcal {M}(\rho _0)}((D_hx^{n+1})^{-1}+(D_hx^{n})^{-1})(x^{n+1}-x^{n}),(x^{n+1}-x^{n})\right )_h\\ &+\eta \tau _{n+1} [\log (d_hx^{n+1}) -\log (d_hx^{n}),d_h(x^{n+1}-x^n)]_h\\\le &E_h^{n}+\frac {r_{\max }}{2\tau _{n}(r_{\max }+1)}\left (\frac {(\rho _0^{\prime })^2}{\mathcal {M}(\rho _0)}((D_hx^{n-1})^{-1}+(D_hx^{n})^{-1})(x^{n}-x^{n-1}),(x^{n}-x^{n-1})\right )_h, \end {aligned}\end {equation}


\begin {align*}E_h^n=\frac {\epsilon ^2}{2}\left [|\rho _0^{\prime }(X)(d_hx^n)^{-1}|^2,d_hx^n\right ]_h+\left [F(\rho _0(X)),d_hx^n\right ]_h.\end {align*}


$-(x^{n+1}-x^n)$


\begin {equation}\begin {aligned} &-\frac {2r_{n+1}+1}{2\tau _{n+1}(r_{n+1}+1)}\left (\frac {(\rho _0^{\prime }(X))^2}{\mathcal {M}(\rho _0(X))}\left ((D_hx^{n+1})^{-1}+(D_hx^{n})^{-1}\right )(x^{n+1}-x^{n}),x^{n+1}-x^n\right )_h\\ &+\eta \tau _{n+1}\left (D_h\left (\log (d_hx^{n+1}) -\log (d_hx^{n})\right ),x^{n+1}-x^n\right )_h\\&+\frac {r_{n+1}^2}{2\tau _{n+1}(r_{n+1}+1)}\left (\frac {(\rho _0^{\prime }(X))^2}{\mathcal {M}(\rho _0(X))}\left (\left (1+\frac {1}{2r_{n+1}}\right )(D_hx^n)^{-\frac {1}{2}}-\frac {1}{2r_{n+1}}(D_hx^{n+1})^{-\frac {1}{2}}\right )\right .\\ &\times \left .\left ((D_hx^{n-1})^{-\frac {1}{2}}-(D_hx^n)^{-\frac {1}{2}}\right )(x^{n}-x^{n-1}),x^{n+1}-x^n\right )_h\\ =&\frac {\epsilon ^2}{2}(D_h(\rho _0^{\prime }(X)(d_hx^{n+1})^{-1})^2,x^{n+1}-x^n)-(D_hF(\rho _0(X)),x^{n+1}-x^n)_h. \end {aligned} \label {Xeqn34-4.41}\end {equation}


$\frac {1}{y}$


$y$


\begin {equation}\label {eq: discrete ac 1} \begin {aligned} &-\frac {2r_{n+1}+1}{2\tau _{n+1}(r_{n+1}+1)}\left (\frac {(\rho _0^{\prime }(X))^2}{\mathcal {M}(\rho _0(X))}\left ((D_hx^{n+1})^{-1}+(D_hx^{n})^{-1}\right )(x^{n+1}-x^{n}),x^{n+1}-x^n\right )_h\\ &-\eta \tau _{n+1}\left [\log (d_hx^{n+1}) -\log (d_hx^{n}),d_h(x^{n+1}-x^n)\right ]_h\\&+\frac {r_{n+1}^2}{2\tau _{n+1}(r_{n+1}+1)}\left (\frac {(\rho _0^{\prime }(X))^2}{\mathcal {M}(\rho _0(X))}\left (\left (1+\frac {1}{2r_{n+1}}\right )(D_hx^n)^{-\frac {1}{2}}-\frac {1}{2r_{n+1}}(D_hx^{n+1})^{-\frac {1}{2}}\right )\right .\\ &\times \left .\left ((D_hx^{n-1})^{-\frac {1}{2}}-(D_hx^n)^{-\frac {1}{2}}\right )(x^{n}-x^{n-1}),x^{n+1}-x^n\right )_h\\ =&-\frac {\epsilon ^2}{2}[(\rho _0^{\prime }(X)(d_hx^{n+1})^{-1})^2,d_h(x^{n+1}-x^n)]_h+[F(\rho _0(X)),d_h(x^{n+1}-x^n)]_h\\ \ge &\frac {\epsilon ^2}{2}[(\rho _0^{\prime }(X)(d_hx^{n+1})^{-1})^2,d_hx^{n+1}]_h-\frac {\epsilon ^2}{2}[(\rho _0^{\prime }(X)(d_hx^{n})^{-1})^2,d_hx^{n}]_h\\ &+[F(\rho _0(X)),d_h(x^{n+1}-x^n)]_h. \end {aligned}\end {equation}


$D_hx^n\mathcal {M}(\rho _0)=\ell _{h^n}$


\begin {align*}&\left ((\rho _0^{\prime }(X))^2((1+\frac {1}{2r_{n+1}})\ell _{h^n}^{-\frac {1}{2}}-\frac {1}{2r_{n+1}}\ell _{h^{n+1}}^{-\frac {1}{2}})(\frac {1}{2}\ell _{h^{n-1}}^{-\frac {1}{2}}+\frac {1}{2}\ell _{h^{n}}^{-\frac {1}{2}})(x^{n}-x^{n-1}),x^{n+1}-x^{n}\right )_h\\ \le &\frac {1}{4}\left ((\rho _0^{\prime }(X))^2(\frac {(2r_{n+1}+1)^2+2r_{n+1}+1}{4r_{n+1}^2}\ell _{h^{n}}^{-1}+\frac {2r_{n+1}+2}{4r_{n+1}^2}\ell _{h^{n+1}}^{-1})(x^{n+1}-x^{n}),x^{n+1}-x^{n}\right )_h\\ &+\frac {1}{2}\left ((\rho _0^{\prime }(X))^2(\ell _{h^{n-1}}^{-1}+\ell _{h^n}^{-1})(x^{n}-x^{n-1}),x^{n}-x^{n-1}\right )_h\\ \le &\frac {1}{4}\frac {(2r_{n+1}+1)^2+2r_{n+1}+1}{4r_{n+1}^2}\left ((\rho _0^{\prime }(X))^2(\ell _{h^n}^{-1}+\ell _{h^{n+1}}^{-1})(x^{n+1}-x^{n}),x^{n+1}-x^{n}\right )_h\\ &+\frac {1}{2}\left ((\rho _0^{\prime }(X))^2(\ell _{h^{n-1}}^{-1}+\ell _{h^n}^{-1})(x^{n}-x^{n-1}),x^{n}-x^{n-1}\right )_h.\end {align*}


\begin {align*}&-\frac {2r_{n+1}+1}{2\tau _{n+1}(r_{n+1}+1)}\left (\frac {(\rho _0^{\prime }(X))^2}{\mathcal {M}(\rho _0(X))}\left ((D_hx^{n+1})^{-1}+(D_hx^{n})^{-1}\right )(x^{n+1}-x^{n}),x^{n+1}-x^n\right )_h\\ &+\frac {r_{n+1}^2}{2\tau _{n+1}(r_{n+1}+1)}\left (\frac {(\rho _0^{\prime }(X))^2}{\mathcal {M}(\rho _0(X))}\left ((1+\frac {1}{2r_{n+1}})(D_hx^n)^{-\frac {1}{2}}-\frac {1}{2r_{n+1}}(D_hx^{n+1})^{-\frac {1}{2}}\right )\right .\\ &\times \left .\left ((D_hx^{n-1})^{-\frac {1}{2}}-(D_hx^n)^{-\frac {1}{2}}\right )(x^{n}-x^{n-1}),x^{n+1}-x^n\right )_h\\ \le &-\frac {2r_{n+1}+1}{2\tau _{n+1}(r_{n+1}+1)}\left (\frac {(\rho _0^{\prime }(X))^2}{\mathcal {M}(\rho _0(X))}\left ((D_hx^{n+1})^{-1}+(D_hx^{n})^{-1}\right )(x^{n+1}-x^{n}),x^{n+1}-x^n\right )_h\\ &+\frac {(2r_{n+1}+1)^2+2r_{n+1}+1}{16\tau _{n+1}(r_{n+1}+1)}\left (\frac {(\rho _0^{\prime }(X))^2}{\mathcal {M}(\rho _0(X))}((D_hx^n)^{-1}+(D_hx^{n+1})^{-1})(x^{n+1}-x^{n}),x^{n+1}-x^{n}\right )_h\\ &+\frac {r_{n+1}^2}{2\tau _{n+1}(r_{n+1}+1)}\left (\frac {(\rho _0^{\prime }(X))^2}{\mathcal {M}(\rho _0(X))}((D_hx^{n-1})^{-1}+(D_hx^n)^{-1})(x^{n}-x^{n-1}),x^{n}-x^{n-1}\right )_h\\ =&-\frac {(2r_{n+1}+1)(3-r_{n+1})}{8\tau _{n+1}(r_{n+1}+1)}\left (\frac {(\rho _0^{\prime }(X))^2}{\mathcal {M}(\rho _0(X))}((D_hx^n)^{-1}+(D_hx^{n+1})^{-1})(x^{n+1}-x^{n}),x^{n+1}-x^{n}\right )_h\\ &+\frac {r_{n+1}^2}{2\tau _{n+1}(r_{n+1}+1)}\left (\frac {(\rho _0^{\prime }(X))^2}{\mathcal {M}(\rho _0(X))}((D_hx^{n-1})^{-1}+(D_hx^n)^{-1})(x^{n}-x^{n-1}),x^{n}-x^{n-1}\right )_h,\end {align*}


\begin {equation*}\begin {aligned} &E_h^{n+1}+\frac {(2r_{n+1}+1)(3-r_{n+1})}{8\tau _{n+1}(r_{n+1}+1)}\left (\frac {(\rho _0^{\prime }(X))^2}{\mathcal {M}(\rho _0(X))}((D_hx^n)^{-1}+(D_hx^{n+1})^{-1})(x^{n+1}-x^{n}),x^{n+1}-x^{n}\right )_h\\ &+\eta \tau _{n+1}\left [\log (d_hx^{n+1}) -\log (d_hx^{n}),d_h(x^{n+1}-x^n)\right ]_h\\ \le &E_h^n+\frac {r_{\max }}{2\tau _{n}(r_{\max }+1)}\left (\frac {(\rho _0^{\prime }(X))^2}{\mathcal {M}(\rho _0(X))}((D_hx^{n-1})^{-1}+(D_hx^n)^{-1})(x^{n}-x^{n-1}),x^{n}-x^{n-1}\right )_h. \end {aligned}\end {equation*}


\begin {align*}h(r_{n+1})=\frac {(2r_{n+1}+1)(3-r_{n+1})}{8(r_{n+1}+1)}\ge \frac {r_{\max }}{2(r_{\max }+1)},\end {align*}


$0<r_{\max }\le \frac {3}{2}$


$(\tilde {D}_hx^{n+1})^{-1}$


\begin {equation*}(\tilde {D}_h x^{n+1})^{-1} := \begin {cases} \left ((1+r_{n+1})D_h x^n - r_{n+1}D_h x^{n-1}\right )^{-1}, & \text {if } D_hx^n \geq D_hx^{n-1}, \\ (1+r_{n+1})(D_h x^n)^{-1} - r_{n+1}(D_h x^{n-1})^{-1}, & \text {if } D_hx^n < D_hx^{n-1}. \end {cases}\end {equation*}


$({D}_h x^{K})^{-1}$


$(\tilde {D}_h x^{K})^{-1}$


$K=n-1,n,n+1$


$S_{ad}:=\{{\bm x}: \ x_{j+1}>x_{j}\ \text {for}\ j=0, 1, \cdots , M_x-1, \ \text {and} \ x_0=X_0,\ x_{M_x}=X_{M_x}\}$


${\bm x}^{n-1}$


${\bm x}^{n}$


$\tau _{n+1}$


$r_{n+1}$


$\rho _0({\bm X})$


$({\bm x}^{n+1},\rho ^{n+1})$


\begin {equation}\label {eq:discre optim11} \begin {cases} &\displaystyle {\bm x}^{n+1}:=\arg \inf _{{\bm x}\in S_{ad}}\frac {1+2r_{n+1}}{2\tau _{n+1}(1+r_{n+1})}\left (\rho _0({\bm X}),|{\bm x}-\hat {\bm x}^{n}|^2\right )_h+E_h({\bm x})\\ &\qquad \qquad \qquad \qquad \qquad \displaystyle +\frac {\tau _{n+1}}{2}\left (|D_h( {\bm x}- {\bm x}^{n})|^2,1\right )_h,\\ &\displaystyle \rho _{j+\frac {1}{2}}^{n+1}:=\frac {\rho _0(X_{j+\frac {1}{2}})}{(D_hx^{n+1})_{j+\frac {1}{2}}},\qquad j=0, 1, \cdots , M_x-1, \end {cases}\end {equation}


${\bm x}=(x_0,x_1,\ldots ,x_{M_x-1},x_{M_x})$


${x}_{j+\frac {1}{2}}:=\frac {1}{2}(x_{j+1}+x_{j})$


$\hat {\bm x}^{n}=\frac {(1+r_{n+1})^2}{1+2r_{n+1}}{\bm x}^{n}-\frac {r_{n+1}^2}{1+2r_{n+1}}{\bm x}^{n-1}$


$E_h({\bm x}):=\left (F\left (\frac {\rho _0({\bm X})}{D_h{\bm x}}\right ),D_h{\bm x}\right )_h$


$\bm x$


${\bm x}={\bm x}^{n+1}$


\begin {equation}\label {eq:weak formula} \begin {aligned} &\dfrac {1+2r_{n+1}}{\tau _{n+1}(1+r_{n+1})}\left (\rho _0({\bm X})({\bm x}^{n+1}-\hat {\bm x}^{n}),\delta {\bm x}\right )_h+\tau _{n+1}\left (D_h({\bm x}^{n+1}-{\bm x}^{n}),D_h\delta {\bm x}\right )_h\\ &\quad +\left (\frac {\delta E_h}{\delta {\bm x}}({\bm x}^{n+1}),\delta {\bm x}\right )_h=0. \end {aligned}\end {equation}


$\delta {\bm x}=(\delta x_0,\delta x_1,\cdots ,\delta x_{M_x-1},\delta x_{M_x})$


$\delta x_i= \delta _{ij}$


$i,j=0,1\cdots ,M_x-1$


\begin {align}&\dfrac {1+2r_{n+1}}{2\tau _{n+1}(1+r_{n+1})}\rho _0(X_{j+\frac {1}{2}})(x_{j+\frac {1}{2}}^{n+1}-\hat {x}_{j+\frac {1}{2}}^{n})h+\dfrac {1+2r_{n+1}}{2\tau _{n+1}(1+r_{n+1})}\rho _0(X_{j-\frac {1}{2}})(x_{j-\frac {1}{2}}^{n+1}-\hat {x}_{j-\frac {1}{2}}^{n})h\nonumber \\ &-\tau _{n+1}\frac {(x_{j+1}^{n+1}-x_{j+1}^{n})-2(x_j^{n+1}-x_{j}^{n})+x_{j-1}^{n+1}-x_{j-1}^{n}}{h^2}h+\frac {\delta E_h}{\delta x_j}({\bm x}^{n+1})=0,\label {eq:scheme bdf2}\\ &\rho _{j+\frac {1}{2}}^{n+1}:=\frac {\rho _0(X_{j+\frac {1}{2}})}{(D_hx^{n+1})_{j+\frac {1}{2}}},\qquad j=0, 1, \cdots , M_x-1,\label {schem:2-1}\end {align}


\begin {align}{\bm x}^0=(X_0,X_1,\cdots ,X_{M_x})\quad \text {and}\quad x_{0}^{n+1}=X_0,\quad x_{M_x}^{n+1}=X_{M_x}.\label {schem:1-3}\end {align}


${\bm x}^1$


$\rho ^1$


$\rho _0(X)>0$


$X\in \Omega _0^X$


$F(s)$


$F(s)\ge 0$


$s\ge 0$


$\lim \limits _{s\rightarrow 0}F(\frac {1}{s})s=\infty $


$\bm {x}^{n+1}\in S_{ad}$


$\frac {\delta ^2 E_h}{\delta {\bm x}^2}>0$


$\rho _{j+\frac {1}{2}}^{n+1}>0$


$j=0, 1, \cdots , M_x-1$


$0<r_{n+1}\le r_{\max }\le \frac {3+\sqrt {17}}{2}$


\begin {equation}\begin {split} &E_h({\bm x}^{n+1})+\dfrac {r_{\max }}{2\tau _{n+1}(1+r_{\max })}\left (\rho _0({\bm X})({\bm x}^{n+1}-{\bm x}^{n})^2,1\right )_h\\ \le & E_h({\bm x}^{n})+\dfrac {r_{\max }}{2\tau _{n}(1+r_{\max })}\left (\rho _0({\bm X})({\bm x}^{n}-{\bm x}^{n-1})^2,1\right )_h. \end {split} \label {Xeqn38-4.48}\end {equation}


$\delta {\bm x}={\bm x}^{n+1}-{\bm x}^{n}$


\begin {align*}&\dfrac {1+2r_{n+1}}{\tau _{n+1}(1+r_{n+1})}\left (\rho _0({\bm X})({\bm x}^{n+1}-{\bm x}^{n})^2,1\right )_h- \dfrac {r_{n+1}^2}{\tau _{n+1}(1+r_{n+1})}\left (\rho _0({\bm X})({\bm x}^{n}-{\bm x}^{n-1}),{\bm x}^{n+1}-{\bm x}^{n}\right )_h\\ & +\tau _{n+1}(|D_h({\bm x}^{n+1}-{\bm x}^{n})|^2,1)_h+\left (\frac {\delta E_h}{\delta {\bm x}}({\bm x}^{n+1}),{\bm x}^{n+1}-{\bm x}^{n}\right )_h=0,\end {align*}


$E({\bm x})$


$\bm x$


\begin {align*}&\dfrac {2+4r_{n+1}-r_{n+1}^2}{2\tau _{n+1}(1+r_{n+1})}\left (\rho _0({\bm X})({\bm x}^{n+1}-{\bm x}^{n})^2,1\right )_h- \dfrac {r_{n+1}^2}{2\tau _{n+1}(1+r_{n+1})}\left (\rho _0({\bm X})({\bm x}^{n}-{\bm x}^{n-1})^2,1\right )_h\\ +&\tau _{n+1}(|\nabla _h({\bm x}^{n+1}-{\bm x}^{n})|^2,1)_h+E_h({\bm x}^{n+1})\le E_h({\bm x}^{n}),\end {align*}


\begin {align*}&E_h({\bm x}^{n+1})+\dfrac {2+4r_{n+1}-r_{n+1}^2}{2\tau _{n+1}(1+r_{n+1})}\left (\rho _0({\bm X})({\bm x}^{n+1}-{\bm x}^{n})^2,1\right )_h\\ \le & E_h({\bm x}^{n})+ \dfrac {r_{\max }}{2\tau _{n}(1+r_{\max })}\left (\rho _0({\bm X})({\bm x}^{n}-{\bm x}^{n-1})^2,1\right )_h.\end {align*}


$g(r_{\max })\ge \frac {r_{\max }}{1+r_{\max }}$


$0<r_{\max }\le \frac {3+\sqrt {17}}{2}$


$E_h(\bm {x})$


$\bm {x}$


$F(s)=\frac {1}{m-1}s^m$


$m>1$


$F(s)=s\log s+sV(x)$


$s \geq 0$


$\lim \limits _{s\to 0} F\left (\frac {1}{s}\right )s = \infty $


${\bm x}=(x,y)$


${\bm X}=(X,Y)$


$\frac {\partial {\bm x}}{\partial {\bm X}}=\frac {\partial (x,y)}{\partial (X,Y)}$


$\Omega _0^X=[-L_x,L_x]\times [-L_y,L_y]$


$L_x$


$L_y>0$


$\Omega _0^x=\Omega _0^X$


$M_x$


$M_y\in \mathbb {N}$


$h_x=\frac {2L_x}{M_x}$


$h_y=\frac {2L_y}{M_y}$


$X_{ij}=X_0+jh_x$


$Y_{ij}=Y_0+ih_y$


$0\le j\le M_x$


$0\le i\le M_y$


$\rho _{ij}^0=\rho (X_{ij},Y_{ij},0)\ge 0$


${\bm x}^0={\bm X}$


$\rho _0({\bm X})$


${\bm x}^1$


$\forall n\ge 1$


${\bm x}^{n-1}$


${\bm x}^{n}$


$\tau _{n+1}$


$r_{n+1}$


$(x^{n+1},y^{n+1})$


\begin {align}&\rho _{ij}^0D_2x_{ij}^{n+1}-\varepsilon \tau _{n+1}\Delta _{\bm X}(x^{n+1}_{ij}-x^{n}_{ij}) +\frac {\delta \tilde {E}_{h,2}}{\delta x}({\bm x}_{ij}^{n+1})=0,\label {eq:wasserstein 2d-1}\\ &\rho _{ij}^0D_2y_{ij}^{n+1}-\varepsilon \tau _{n+1}\Delta _{\bm X}(y^{n+1}_{ij}-y^{n}_{ij}) +\frac {\delta \tilde {E}_{h,2}}{\delta y}({\bm x}_{ij}^{n+1})=0,\label {eq:wasserstein 2d-2}\end {align}


$D_2a_{ij}^{n+1}:=\frac {(1+2r_{n+1})a_{ij}^{n+1}-(1+r_{n+1})^2a_{ij}^n+r_{n+1}^2a_{ij}^{n-1}}{\tau _{n+1}(1+r_{n+1})}$


$\tilde {E}_{h,2}({\bm x}):=\sum _{i,j}F(\frac {\rho _{ij}^0}{\text {det}\frac {\partial {\bm x}}{\partial {\bm X}}|_{ij}})\text {det}\frac {\partial {\bm x}}{\partial {\bm X}}|_{ij}$


${\bm x }^{n+1}|_{\partial \Omega }={\bm X}|_{\partial \Omega }$


$\rho _{ij}^{n+1}$


\begin {align}\label {eq:rho in 2d} \rho _{ij}^{n+1}=\frac {\rho _{ij}^0}{\mathcal {F}_{ij}^{n+1}}\quad \text {with}\quad \mathcal {F}_{ij}^{n+1}=\left |\begin {array}{cc} \frac {\partial x_{ij}^{n+1}}{\partial X} &\frac {\partial y_{ij}^{n+1}}{\partial X} \\ \frac {\partial x_{ij}^{n+1}}{\partial Y} &\frac {\partial y_{ij}^{n+1}}{\partial Y} \\ \end {array}\right |=\left |\begin {array}{cc} \frac { x_{i,j+1}^{n+1}-x_{i,j-1}^{n+1}}{2h_x} &\frac { y_{i,j+1}^{n+1}-y_{i,j-1}^{n+1}}{2h_x} \\ \frac { x_{i+1,j}^{n+1}-x_{i-1,j}^{n+1}}{2h_y} &\frac {y_{i+1,j}^{n+1}-y_{i-1,j}^{n+1}}{2h_y} \\ \end {array}\right |.\end {align}


$E_{ad}=\{{\bm x}:\ \text {det}\frac {\partial {\bm x}}{\partial {\bm X}}|_{ij}>0 \ \text {for all}\ i,j\in \mathbb {N}, \ {\bm x}|_{\partial \Omega } ={\bm X}|_{\partial \Omega }\}$


\begin {align}\label {min:2d} {\bm x}^{n+1}:=\arg \inf _{\bm {x}\in E_{ad}}J_{n+1}({\bm x}),\end {align}


$J_{n+1}({\bm x}):=E_{h,2}({\bm x})+\sum _{i,j}\frac {1+2r_{n+1}}{2\tau _{n+1}(1+r_{n+1})}\rho _{ij}^0|{\bm x}_{ij}-\hat {\bm x}_{ij}^{n}|^2h_xh_y+\frac {\varepsilon \tau _{n+1}}{2}\sum _{i,j}(|\frac {{\bm x}_{i,j+1}-{\bm x}_{i,j+1}^{n}-{\bm x }_{i,j}+{\bm x}_{i,j}^{n}}{h_x}|^2+|\frac {{\bm x}_{i+1,j}-{\bm x}_{i+1,j}^{n}-{\bm x}_{i,j}+{\bm x}_{i,j}^{n}}{h_y}|^2)h_xh_y$


$E_{h,2}({\bm x}):=\tilde {E}_{h,2}({\bm x})h_xh_y$


$F(s)\ge 0$


$s\ge 0$


$\lim \limits _{s\rightarrow 0}F(\frac {1}{s})s=\infty $


${\bm x}^{n+1}\in E_{ad}$


$0<r_{n+1}\le r_{\max }\le \frac {5}{4}$


\begin {equation}\begin {aligned} &E_{h,2}({\bm x}^{n+1})+\sum _{i,j}\frac {r_{\max }^3}{\tau _{n+1}(1+r_{\max })(1+2r_{\max })}\rho _{ij}^0|{\bm x}_{ij}^{n+1}-{\bm x}_{ij}^{n}|^2h_xh_y\\ \le & E_{h,2}({\bm x}^{n})+\sum _{i,j}\frac {r_{\max }^3}{\tau _{n}(1+r_{\max })(1+2r_{\max })}\rho _{ij}^0|{\bm x}_{ij}^{n}-{\bm x}_{ij}^{n-1}|^2h_xh_y. \end {aligned} \label {Xeqn39-4.53}\end {equation}


$J_{n+1}({\bm x})$


$E_{ad}$


${\bm x}\in \partial E_{ad}$


$J_{n+1}({\bm x})=\infty $


\begin {align*}\mathcal {S}:=\Big \{{\bm x}\in E_{ad}:\ J_{n+1}({\bm x})\le E_{h,2}({\bm x}^{n})+\sum _{i,j}\frac {r_{n+1}^4}{2\tau _{n+1}(1+r_{n+1})(1+2r_{n+1})}\rho _{ij}^0|{\bm x}_{ij}^{n}-{\bm x}_{ij}^{n-1}|^2h_xh_y:=\gamma \Big \}\end {align*}


$\mathbb {R}^2$


${\bm x}^{n}\in \mathcal {S}$


$\mathcal {S}$


$\mathcal {S}$


$\mathbb {R}^2$


${\bm x}^{n+1}\in \mathcal {S}$


\begin {equation}\label {eq:energy2d} \begin {aligned} &E_{h,2}({\bm x}^{n+1})+\sum _{i,j}\frac {1+2r_{n+1}}{2\tau _{n+1}(1+r_{n+1})}\rho _{ij}^0|{\bm x}_{ij}^{n+1}-\hat {\bm x}_{ij}^{n}|^2h_xh_y\\ \le & E_{h,2}({\bm x}^{n})+\sum _{i,j}\frac {r_{n+1}^4}{2\tau _{n+1}(1+r_{n+1})(1+2r_{n+1})}\rho _{ij}^0|{\bm x}_{ij}^{n}-{\bm x}_{ij}^{n-1}|^2h_xh_y. \end {aligned}\end {equation}


$|a-b|^2\ge \frac {1}{2}|a|^2-|b|^2$


$a={\bm x}^{n+1}_{ij}-{\bm x}^{n}_{ij}$


$b=\frac {r_{n+1}^2}{1+2r_{n+1}}({\bm x}^{n}_{ij}-{\bm x}^{n-1}_{ij})$


$\frac {1}{2}|{\bm x}_{ij}^{n+1}-{\bm x}_{ij}^{n}|^2-\frac {r_{n+1}^4}{(1+2r_{n+1})^2}|{\bm x}_{ij}^{n}-{\bm x}_{ij}^{n-1}|^2\le |{\bm x}_{ij}^{n+1}-\hat {\bm x}_{ij}^{n}|^2$


\begin {align*}&E_{h,2}({\bm x}^{n+1})+\sum _{i,j}\frac {1+2r_{n+1}}{4\tau _{n+1}(1+r_{n+1})}\rho _{ij}^0|{\bm x}_{ij}^{n+1}-{\bm x}_{ij}^{n}|^2h_xh_y\nonumber \\ \le & E_{h,2}({\bm x}^{n})+\sum _{i,j}\frac {r_{n+1}^4}{\tau _{n+1}(1+r_{n+1})(1+2r_{n+1})}\rho _{ij}^0|{\bm x}_{ij}^{n}-{\bm x}_{ij}^{n-1}|^2h_xh_y\nonumber \\ \le & E_{h,2}({\bm x}^{n})+\sum _{i,j}\frac {r_{\max }^3}{\tau _{n}(1+r_{\max })(1+2r_{\max })}\rho _{ij}^0|{\bm x}_{ij}^{n}-{\bm x}_{ij}^{n-1}|^2h_xh_y.\nonumber \end {align*}


$\frac {1+2r_{n+1}}{4(1+r_{n+1})}>\frac {1}{4}\ge \frac {r_{\max }^3}{(1+r_{\max })(1+2r_{\max })}$


$0<r_{n+1}\le r_{\max }\le \frac {5}{4}$


$\frac {5}{4}$


${\bm x}^0={\bm X}$


$\rho _0({\bm X})$


$({\bm x}^1,\rho ^1)$


$(x^{n},y^{n})$


$\forall n\ge 1$


$(x^{n+1},y^{n+1})$


\begin {align}&\rho _{ij}^0D_2x_{ij}^{n+1}-\varepsilon \tau _{n+1}\Delta _{\bm X}(x^{n+1}_{ij}-x^{n}_{ij})+\frac {\delta \tilde {E}_{h,2}}{\delta x}((1+r_{n+1}){\bm x}_{ij}^{n}-r_{n+1}{\bm x}_{ij}^{n-1})=0,\label {scheme:2d explicit1}\\ &\rho _{ij}^0D_2y_{ij}^{n+1}-\varepsilon \tau _{n+1}\Delta _{\bm X}(y^{n+1}_{ij}-y^{n}_{ij})+\frac {\delta \tilde {E}_{h,2}}{\delta y}((1+r_{n+1}){\bm x}_{ij}^{n}-r_{n+1}{\bm x}_{ij}^{n-1})=0,\label {scheme:2d explicit2}\end {align}


${\bm x }^{n+1}|_{\partial \Omega }={\bm X}|_{\partial \Omega }$


$\frac {\delta \tilde {E}_{h,2}}{\delta {\bm x}}$


$\rho ^{n+1}$


$\gamma $


$\beta $


$\bm x(\bm X,t)$


$t$


$\bm x(\bm X,t)$


$\Omega ^0_{\bm X}$


$\Omega ^t_{\bm x}$


$\bm X$


$\bm x$


$F(\bm X,t)=\frac {\partial \bm x(\bm X,t)}{\partial \bm X}$


$\rho _0(X)=1-X^2$


$X\in [-1,1]$


$\epsilon =0.01$


$\mathcal {M}(\rho )\equiv 1$


$\mathcal {M}(\rho )=1-\rho ^2$


$M_x=16\times 2^{i-1}$


$N=625\times 2^{i-1}$


$i=1$


$4$


$i=7$


$\tau =\frac {T}{N}$


$\delta X=\frac {2}{M_x}$


$\text {Order}(i)=\ln \left (\frac {\text {error}(i)}{\text {error}(i-1)}\right )/\ln \left (\frac {M_x(i)}{M_x(i-1)}\right )$


$\tau _n=\frac {\sigma _nT}{\sum _{k=1}^{N}\sigma _k}$


$\sigma _n\in (0,1)$


$\forall n$


$\text {Order}(i)=\ln \left (\frac {\text {error}(i)}{\text {error}(i-1)}\right )/\ln \left (\frac {\tau (i)}{\tau (i-1)}\right )$


$\tau (i)$


$\rho _0(X)=1-X^2$


$X\in [-1,1]$


$\epsilon =0.01$


$\eta =0$


$T=0.5$


$\tau _n = \frac {\sigma _n T}{\sum _{k=1}^{N} \sigma _k}$


$\sigma _n \in (0,1)$


$\forall n$


$T=20$


$\epsilon =0.01$


$M_x=100$


$N=2000$


$\tau _n=\frac {\sigma _nT}{\sum _{k=1}^{N}\sigma _k}$


$\beta =1e5$


$r_{\text {user}}=1.5$


$\tau _{\max }=0.1$


$\tau _{\min }=1e-3$


$\epsilon = 0.01$


$\mathcal {M}(\rho ) \equiv 1$


$E(\rho )=\int _{\Omega }\frac {1}{m-1}\rho ^m\mathrm {d}x$


\begin {align}\rho _0(x)=\cos \left (\frac {\pi x}{2}\right ),\qquad x\in [-1,1],\end {align}


$x|_{\partial \Omega }=X|_{\partial \Omega }$


$M_x=10000$


$N=20000$


$m=2$


$T=0.5$


$m=2$


$T=0.5$


$r_{\max }$


\begin {align}\partial _tx=-\frac {m}{m-1}\frac {\partial _X(\rho (X,0))^{m-1}}{(\partial _Xx)^{m}},\end {align}


$\partial _tx\neq 0$


\begin {align}\label {initial:wt} \rho _0(x)=\left (\frac {m-1}{m}\left ((1-\theta )\sin ^2(x)+\theta \sin ^4(x)\right )\right )^{1/(m-1)},\qquad x\in [-\pi ,0],\end {align}


$\theta \in [0,0.25]$


$t_{w,e}:=\frac {1}{2(m+1)(1-\theta )}$


$r_{\text {user}}=1.4$


$\tau _{\min }=1e-6$


$\tau _{\max }=1e-2$


$r_{\text {user}}=1.4$


$\tau _{\min }=1e-6$


$\tau _{\max }=5\times 1e-3$


$\gamma =0.1,\ 1,\ 10,\ 100$


$\beta =0.1,\ 1,\ 10,\ 100$


$m=2$


$\theta =0.25$


$M_x=800$


$\theta =0.25$


$\theta =0.25$


$M_x=800$


$\delta t=\frac {1}{800}$


$\gamma =10$


$\tau _{\max }=5\times 1e-3$


$m=2$


$0<t\le 0.22$


$t=0.22$


$t=0.19$


$m=2.5$


$E(u)=\int _{\Omega } u\ln u\mathrm {d}x+\frac {1}{2\pi }\int _{\Omega \times \Omega }\ln |x-y| u(x)u(y)\mathrm {d}x\mathrm {d}y$


\begin {align}u_0(x)=\frac {C}{\sqrt {2\pi }}\exp ^{-\frac {x^2}{2}}+10^{-8},\quad x\in [-15,15],\end {align}


$C=5\pi $


$M_x=800$


$M_x=800$


$\beta =1e-2$


$\tau _{\min }=1e-4$


$\tau _{\max }=1e-2$


$r_{\text {user}}=3.5$


$u(x, y, 0)$


\begin {align}\label {barenblatt} u(x,y,t) = \max \left ( 0.1 - \frac {\kappa (m-1)}{4m} \frac {x^2 + y^2}{(t+1)^{\kappa }}, 0 \right )^{\frac {1}{m-1}},\end {align}


$\kappa = \frac {1}{m}$


$M_x = M_y = 64$


$\varepsilon \tau _{n+1}^2 \Delta _{\bm {X}} {\bm {x}}^{n+1}$


$\varepsilon = 0.5$


$\tau _{\min } = 1e-4$


$\tau _{\max } = 1e-2$


$r_{\text {user}} = 1.25$


$\beta = 1e-2$


$m=2$


$M_x=M_y=64$


$T=2$


$\varepsilon =0.5$


$\tau _{\min }=1e-4$


$\tau _{\max }=1e-2$


$r_{\text {user}}=1.25$


$\beta =1e-2$


$T=2$


$m=5$


$M_x=M_y=64$


$T=4$


$\varepsilon =40$


$\tau _{\min }=1e-4$


$\tau _{\max }=1e-2$


$r_{\text {user}}=1.25$


$\beta =1e-2$


$T=4$


$m=2$


$T = 2$


$m=5$


$T = 4$


\begin {equation}\label {ini:nonradial} \rho _0(x,y)=\begin {cases} 25(0.25^2-(\sqrt {x^2+y^2}-0.75)^2)^{\frac {3}{2}}, &\sqrt {x^2+y^2}\in [0.5,1]\ \text {and}\ (x<0\ \text {or}\ y<0),\\ 25(0.25^2-x^2-(y-0.75)^2)^{\frac {3}{2}}, &x^2+(y-0.75)^2\le 0.25^2\ \text {and}\ x\ge 0,\\ 25(0.25^2-(x-0.75)^2-y^2)^{\frac {3}{2}}, &(x-0.75)^2+y^2\le 0.25^2\ \text {and}\ y\ge 0,\\ 0,\ &\text {otherwise}, \end {cases}\end {equation}


$\varepsilon \tau _{n+1}^2\Delta _{\bm X}{\bm x}^{n+1}$


$\varepsilon =100$


$m=3$


$M_x=M_y=128$


$\tau =1e-3$


$\varepsilon =100$


\begin {align*}\partial _t \rho = \nabla \cdot (\rho \nabla W * \rho ) + \nu \Delta \rho ^m, \quad m \ge 1,\end {align*}


$W(x) = \frac {1}{2\pi } \ln |x|$


$\nu = 1$


$m = 1$


$m = 2$


$\varepsilon \tau _{n+1}^2 \Delta _{\bm {X}} {\bm {x}}^{n+1}$


$C = 1$


$C = 5\pi $


\begin {align}\label {initial value} u_0(x,y) = C e^{-x^2 - y^2}, \quad (x,y) \in [-5,5] \times [-5,5].\end {align}


$C=1$


$M_x=M_y=64$


$\beta =1e-2$


$\tau _{\min }=1e-4$


$\tau _{\max }= 1e-2$


$r_{\text {user}}=1.5$


$m=1$


$\varepsilon =0.1$


$m=2$


$\varepsilon =0.01$


$C=5\pi $


$M_x=M_y=64$


$\varepsilon =10$


$\beta =1e-2$


$\tau _{\min }=5\times 1e-4$


$\tau _{\max }=5\times 1e-2$


$r_{\text {user}}=1.5$


$m = 1$


$m = 2$
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the original model (1.1) can be reformulated in Eulerian coordinates as:
O0F
v-Vp=M(p)—. (1.3)
op

This Eulerian formulation will subsequently be transformed into an equivalent Lagrangian representation.
On the other hand, a conservative system is governed by

dp=V- (M(p)v@) (1.4)
op

which preserves mass, i.e., % /Q p(x,t)dx = 0. This class of gradient flows includes well-known models such as the Cahn-Hilliard
equation [4], Porous-Medium equation (PME) [5], Poisson-Nernst-Planck system [6], and Keller-Segel equation [7]. The conservative
model (1.4) can be cast as a continuity equation in the Eulerian framework [8-10]:

0,p+V - (pv) =0, (1.5)
with
E
ov = -M(p)V3E. (1.6)
op

This conservative formulation will likewise be transformed into its Lagrangian counterpart in subsequent analysis.

A typical example of a non-conservative phase-field model is the Allen-Cahn equation. Extensive research has been dedicated to
developing numerical schemes in the Eulerian framework that preserve its key physical properties, especially the energy dissipation
law and the maximum bound principle (MBP) [11-21]. In contrast to Eulerian methods, Lagrangian approaches offer distinct advan-
tages in interface tracking. The variational Lagrangian framework developed in [9] allows for efficient computation of equilibrium
states in Allen-Cahn type models while maintaining sharp interfaces and addressing free boundary problems, while the work [3]
introduced a Lagrangian formulation via a non-conservative transport equation, and rigorously demonstrated the preservation of
energy dissipation and MBP.

On the other hand, if M(p) = p, the conservative model (1.4) reduces to a Wasserstein gradient flow. Recent advancements in direct
numerical methods for Wasserstein gradient flows emphasize the preservation of three fundamental properties: mass conservation,
positivity preservation, and energy dissipation [10,22-24]. These methods have been successfully applied to various physical systems,
including the porous media equation [25-27], the Fokker-Planck equation [28,29], the Poisson-Nernst-Planck system [22,30,31],
and the Keller-Segel model [32-34]. On the other hand, numerical methods based on the celebrated Jordan-Kinderlehrer-Otto (JKO)
scheme [35] have been extensively studied in the literature [36-42]. A recent study by [43] introduces an innovative flow dynamic
approach that reformulates the constrained minimization problem into an unconstrained framework. This transformation facilitates
a first-order Lagrangian scheme while preserving the essential properties of the original problem.

Since dynamics of gradient flows often behave very differently at different times. Significant progress has been made in developing
adaptive strategies tailored to enhance computational efficiency across a range of gradient flows [21,44-49]. A key advancement is
presented in [50,51], where a novel kernel recombination technique enables the design of nonuniform BDF2 schemes for the Allen-
Cahn model in Eulerian coordinates, successfully preserving the MBP property under mild time-step ratio constraints. Within the
Wasserstein gradient flow framework, [52] introduces a variational BDF2 method with proven %—order convergence. This approach
is further extended in [53], which applies geometric extrapolation techniques in Wasserstein space to construct BDF2 numerical
methods, with numerical experiments confirming second-order accuracy. However, to the best of the authors’ knowledge, there is no
second-order structure-preserving method with variable time steps for gradient flows in Lagrangian coordinates.

In this work, we employ distinct flow dynamic approaches introduced in [3,43] to develop second-order Lagrangian numerical
schemes with adaptive temporal discretization for both non-conservative and conservative systems. Specifically, novel numerical
methods for the Allen-Cahn equation and Wasserstein gradient flows are formulated using the non-conservative continuity Eq. (1.2)
and the conservative continuity Eq. (1.5), respectively. These schemes are shown to preserve the intrinsic properties of the original
systems, while the constraints on maximum time-step ratios are rigorously analyzed across various application scenarios. Compared
to conventional Eulerian approaches, the proposed Lagrangian framework offers significant advantages in resolving sharp-interface
phenomena and addressing problems involving singularities and free boundaries. The main contributions of this study include:

(i) For non conservative models such as the Allen-Cahn equation, we construct a modified BDF2 scheme with variable time steps in
Lagrangian coordinates via a regularized flow dynamics framework. This novel strategy introduces a new regularization operator
to ensure positive-definite Jacobian determinants. The scheme is rigorously proven to preserve the energy dissipation law and
the MBP property under the condition 0 < r, <r ., < %

(ii) For conservative models written as Wasserstein gradient flows, we develop an adaptive BDF2 scheme in Lagrangian coordinates,

which preserves the system’s original properties when the time-step ratio satisfies 0 < r, < ry . < 3+;ﬁ inlDand 0 <r, < rp. <
2 in 2D.

(iii) An effective adaptive time-stepping algorithm is implemented for numerical validation. The proposed schemes demonstrate
enhanced capabilities in capturing sharp interfaces in the Allen-Cahn system, simulating trajectory evolution, and maintaining
determinant positivity through rigorous regularization mechanisms.

The remainder of the paper is organized as follows. In Section 2, we introduce the non-conservative model and present the
modified BDF2 scheme with variable time steps for the Allen-Cahn equation, which is both energy-dissipative and MBP-preserving.
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Section 3 details and analyzes BDF2 schemes with adaptive time steps for Wasserstein gradient flows, establishing corresponding
energy dissipation laws. Numerical experiments in Section 6 validate the theoretical results, utilizing the strategy outlined in Section 5.

2. Non-conservative models

We shall first consider the adaptive time-stepping method based on the flow dynamic approach for non-conservative models in
the section.

2.1. Flow map

Given an initial position or a reference configuration X, and a velocity field v, recall the flow map x(X,7):

dx(jf D (X1, 1), @.7)

x(X,0) =X, (2.8)

where x represents the Eulerian coordinates and X denotes the Lagrangian coordinates, :7’2 represents the deformation associated
with the flow map. We assume that v is the velocity such that

pi+@-Vy)p=0. (2.9
2.2. Maximum bounds preserving

Then, the above transport equation and the flow map defined in (2.7)—(2.8) determine the following kinematic relationship
between Eulerian and Lagrangian coordinates, see also [3,43]

%p(x(X, N,0)=p,+@-Vyp=0, (2.10)
which leads to
p(x(X,1),1) = p(x,0) = py(x) V1, (2.11)
where p(x) is the initial condition in the Lagrangian coordinates. Since x(X,0) = X, we have py(x) = py(X).
Then we obtain from (2.11)
p(x(X,1),1) = pox(X) = py(X). (2.12)
Once we have the flow map x(X, 1), we set ¢(X;1) = x(X,t) for each ¢. Then, we derive from (2.10) that the solution of (2.9) is
given by
P, 1) = pgodp™! (x,1) = po(¢p™" (x.1), (2.13)

where ¢! is the inverse function of ¢, see [3,43].

Then p(x(X,1),1) = p(X,0) for all ¢. This indicates that the method preserves the maximum principle, i.e., if the initial value satisfies
0 < a < p(X,0) <b, then for any time ¢, we have a < p(x,1) < b. It is also well-known that the Allen-Cahn Eq. (2.14) with variable
mobility possesses the maximum principle-preserving property [54], which implies that if the initial value satisfies |p(x,0)| < 1 for
all x € Q, then the solution satisfies |p(x,7)| < 1 for all (x,7) € Q x (0, T].

2.3. L? Gradient flow in Lagrangian coordinate

We shall take the Allen-Cahn equation with Dirichlet boundary condition as an example of non-conservative model in this section.
The Allen-Cahn equation which is a L? gradient flow, originally introduced by Allen and Cahn in [1] to describe the motion of
anti-phase boundaries in crystalline solids, takes the following form:

0,p = —M(p)(—€>Ap + F(p)), (x,1) € Q% (0,T], (2.14)

where p represents the concentration of one of the two metallic components of the alloy, ¢ > 0 is a small parameter reflecting the width
of the transition regions, and T is the final time, M(p) > 0 is a general mobility function, which can be M(p) =1 or M(p) = 1 — p?,
see [20]. F(p) = Al—‘(p2 — 1)? is the Ginzburg-Landau double-well potential F(p) = %(p2 —1)? [12]. Eq. (2.14) can be regarded as a L?
gradient flow, in the sense that

Lo =~ [ M@la 215)
Q

in which the energy is defined by E(p) = jg %lel2 + F(p) dx. By introducing the flow map (2.9), we can reformulate the energy
dissipative law (2.15) into

3=~ / MP)I@- V)pldx, 2.16)
1 Q
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where we used the equality p, = —(v - V,)p. By using the least action principle, and Newton’s force balance law [3,9], we can derive
the following trajectory equation in Eulerian coordinates:

v Vp = Mp)(—e*Ap + F'(p)). (2.17)

We rewrite the trajectory Eq. (2.17) into Lagrangian coordinates

-1 -1 -1
1 2 / a_x d_x /!
(X 0p0( 2% ) T = 0 (pooo( =3 )( )+ F o), (2.18)
with the following boundary and initial conditions:

xlgo = Xlog, X, 0)=X, X €Q. (2.19)

Notice that the determlnant (X 1) > 0 should be positive, VX € Q, see [3]. In the following adaptive time-stepping Lagrangian

schemes, we introduce an extra logarlthmlc term noax< 3 log( ) with 0 <7, < 1 to preserve the positivity of the determinant

=)
0X
ﬁ = (X, 1). Then a modified trajectory equation in Lagrangian coordinates for the Allen-Cahn equation with variable mobility is proposed
as follows:

x,(X, ’)(Po(X))z(aX) lm - '100"(% log (66_;())

2 ax \-1\ 2 (2.20)
—%6;((;:500(6—;) ) +0x F(po(X)).

Based on the modified trajectory Eq. (2.20), we can derive the following modified energy dissipative law for the Allen-Cahn
equation in Lagrangian coordinate.

Lemma 2.1. For the Allen-Cahn Eq. (2.14) with a general mobility M(p) > 0, the trajectory Eq. (2.20) is energy dissipative in the sense

that
dE,, _ /
dr QUX

E, = /Qg( <§ peo( )"

Proof. Multiplying both sides of (2.20) by —x, and using integration by parts leads to

- / nA0( L 'M(po(x))dxw / (S tog (25))ax

2 , ox \-1\ 2
=%/ﬂ 6X<p0(X)<a—x) )x,—dXF(pO(X))x,dX

0x .\ 2 0x\7!
x,(X, t)pO(X)( —M(po(x)) Sax /Q . Mo10xx, | (ax) dx, (2.21)

where

+ F(PO(X))> 2Xax.

Z1\ 2
(p(J(X)(a—") ) Oy, + Flpg(X )y x,dX

2
_d e, ox \~!
Ta oy, (7 00 (5x)

The second term on the left hand side of above equality can be rewritten by

/0 0X((;1tlog(ax)>x,dX=—/Qo %mg(d" >6Xde / |axx,|2(g;‘()_ dx.
X

Then a combination of above estimations yields the energy dissipation law (2.21). O

+ F(po(X>>> 2Xax.

2.4. Adaptive time-stepping Lagrangian scheme

Given time-step 7, := " —"~! > 0, and define the time-step ratio r,,; := T’:" >0, n > 1, assume that the time-step ratio {r,},

is uniformly bounded with an upper bound r, ‘max> Vh. For any given final time 7' > 0, T = 2:':1 7,,. Denote x” the

numerical approximation to x(-, #").

max Such that r, <r,

1
Mpo(X))

stepping methods that can also preserve energy stability in the discrete level. By introducing ¢, := %M(po(x )), we propose the

-1
The primary challenge lies in approximating the non-constant mobility term pg(X )(;—;) in (2.20) for variable time-
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following second-order adaptive time-stepping scheme for (2.20): Vn > 1, given x"~!, x" and p(X, 0), solve (x"*!, p"*1) from

2y + D (X)?
27n+1(rn+l + 1)

(pp(X))? T T RN !
”+1 0 2 _ - 2 2 n _ n—1
n+1(rn+l +1D <<1 " 2rn+] >If)n 2rn+1 fn+l> <2f” ! T2 f >(X * ) (2.22)
Z1\2
=_76X<PO(X)< 3% > > +0x Fpo(X))-

+ £, — 5" and L <<1 n

—1 1 6x”+' ox"
(t’n+l £ = x™) =,y 0x (log s log %

1

_1 _1 _1 1
)f,,z— L ¢ 2><lf 2 41y 2>(x - x"1) are second-

Remark 2.1. Notice that —(f

n+1 2r,,+1 2rpyy Nl 2" n— 2
_ _ 21 +1
order approximations to #~! x,| 1 and 77! x| Ls respectively. Then the linear combination r"“ T Lx) 1 - Ll f Lxl
i nts L7t n— P LT b s R S
2 2 2
is a second-order approximation to f;l] X;| 415> SEE [34].
. . - e ntl
The artificial regularization term —zr, 0y <log —log & % ) with 5 > 0 is introduced in (2.22) to preserve the positivity of 0):) e

at the next time step. Once the trajectory x"*! is determmed from (2.22), the solution to Allen-Cahn equation can be obtained from

PG X)) = po(X).
We prove below that the scheme (2.22) is energy stable with variable time steps.

Theorem 2.1. For the Allen-Cahn Eq. (2.14) with a general mobility M(p) > 0, if the maximum time-step ratio satisfies 0 < r,, < 2, then
the second-order scheme (2.22) is energy dissipative in the sense that

-
En+l ma; X 2 f f—' n+l _ n , n+l _ n
2Tn+l("m.1x + l)((po( )) ( n+l + n )(x X ) X X )
axn+l ox" axn+l ax"
log =55~ 1 - 2.23
+m”+'<0g ox % ox Tox T ox (2.23)
r,
<E" 4 ——_max X 2{- e 1), X — X1,
S e D (PO + A DG =277 =)
N
Wwhere the energy is defined by E" = fg(}{ <§ pé(X)(‘;iX) ‘ + F(po(X))>"idX
Proof. We take inner product of (2.22) with respect to —(x"*! — x), and then estimate each term of the following equality:
3
c 2r,4 +1
L. = [l 2 L (,17 (X))z(f + f*l)(anrl —x"), XL _yn
2
ox"+! ox" 1 Mp1
+ ( n7,,,0 (10 —lo >,x"+ -_x" ) —
< O\ ToxT T ox n+1(rn+1 +1) (2.24)

2r, + 1\ -1 1 -1 1
’ 2 n+l 2 _ 2 n _  n—1 n+l _ .n
<(voor((F ) - o (0 e 10 Jor =t =)
2 aer—l -1? 1 |
=5 ox PO(X)< > M —x ) = (9x Fpp(X)), X1 = x") :=2Ri‘

0X =
By repeatedly applying the Cauchy-Schwarz inequality to estimate L3, it can be shown that

1 -3 1 -3 -3 -
<1 ! (X))? 1 1 f_% 1 f_l : n+1 ny .+l n
7| (X)) +2’n+1 T (C e I
N
+<(p6(X))2<zfn 21+ f"2> (xn_xnl)’xn_xnl)

2y + D24 27, + 1 27 +2
((po(x»z(( it D+ 2 s f;;1><x"+1—x"),x"+l-x">

42 42
n+l n+l

A
4
1 _ _ _
+5((pg<X>)2<f e - X, X - x)
1 Q2r,41 +1) +2r,+1

2
4 4"‘n+1

(PO + €7 )M = X, X = %)
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1@+ 2 -1

/ 2 p—1 n+1 n n+1 n
i (XD E, ) (M = x), X"+ — ")

1
+ %((pg(X))z(f;_ll + f;l)(x" —x" ), x" — x"h.

Since (27, + 1)> = 1> 0 Vr,,; > 0, we have
21, +1
27,1y + 1)
Qrpp + D2+ 27, +1

16‘L'n+l (rn+l + 1)

2
rn+l

+ _—
27, (rpg + 1
_ Qryp + DG =r,pp)

87n+l(rn+l + 1)

2
rn+l

"
27n+l(rn+1 +1

Li+Ly<— (oD@ + €D = xm), %"+ — ")

(@ + £, A = ), X = ")

(O + D" = x"h,x" = x"71) (2.25)

((pé)(X))z(f_l + f;l)(x"'H _ X"),X"+I _ xn)

n+1

(2@t + 2D = %", x" = x"1).
Using the integration by parts and the mean value theorem yields the following estimate for L,:
ox+l Ix" gxn+l Ix" >

Ly=- log X _log 2 9x7
2 ”T"“(Og X Box Tox T ox

06\~ (ot o\ (2:26)
=- — - <
Tont1 (ax) ( X aX> =5
where ¢ lies between x” and x"*!. The first term on the right hand side of (2.24) can be estimated by applying the integration by
parts and the convexity of i with respect to y with y > 0:

, axn+l -2
X
2y( )< X >

€2 , 5 axnt1 -1 _6‘2 , 5 ox" -1
23/@;@0()(» < = > ax 7/98(@0()0) (5¢) ax.

Similarly, the last term on the right hand side of (2.24) can be rewritten as follows

, ax(xn+1 _ xn)>
(2.27)

Ry =— / ax F(po(X))(x™! — xMdX = / Fpp(X))ox (x"*! = x")dX. (2.28)
% %
Substituting (2.25)-(2.28) into (2.24) shows that
@rpp + DB = rpyy)
87n+1(rn+] + 1)
axn+1 ax" axn+1 ax" >

log & 1 , -
+”T"+'<°g ox 80X Tox X

E™! 4 (XL + D™ = x), gy (X" = x™)

2
n rn+1
2Tn+1(rn-+—1 +1D
1

SE"+ 5 (GO + £, D" = X", (" = x"h)).

(B XNX &L + 2" = x"h), (x" = x"1)

Then the energy dissipation law will be derived once the following inequality holds:
(2rn+l + D3 - rn+l) > "max
8+ 1 T 2rpax + 1)

Denote function A(s) = % for 0 < s < 3, since h(s) is increasing in the range 0 < s < -1+ \/5, and decreasing in the range

“1+V2<s< Fmax < 3. Then if the maximum time-step ratio satisfies 0 < r,, < %, we have 2r2 - r ., —3 <0and

. o 3 (Zrmax + D3 - rmax) Fmax
h(s) > min{h(0), h(r,,,)} = min { 3 80 + 1) } > W, + I

which completes the proof. [

Remark 2.2. If we set the time-step ratio r, = 1, Vn, the scheme (2.22) reduces to a second-order numerical scheme with a fixed
time step. In this case, the energy dissipation law will also hold

Erl 4 s_T((p:)(X))z(f;-el—l + T -, (- x)
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1 _ _ — —
SE" 4+ —((pQO7 (@ + D" =2, (= xh).

Remark 2.3. The standard BDF2 numerical scheme with variable time steps can also be proposed:

-1
(427, X" = (L7 )2 42 X! 0(X) o
)
Ty (L +7,40) 0 0X

p) nl \ 1 ) nl\ !
:_GZaX(pg(X)< 5 > )( x ) + F'(po(X)),

(2.29)

oxtl . .
where —*— is a second-order extrapolation term defined by
(1474 )x" = X" 1) e ox"  ox!
n+l PSS 2 WA 3 S >
Xy 0X ’ if 5x 2 X
= e g
0X - R e

ox oxn=1" oX oX
(1+’n+1)/ﬁ_'n+1/ ;X

The scheme (2.29) is positivity-preserving for 2" and MBP-preserving, a proof of which follows similarly from previous works [3].

This idea has also been applied to the Keller-Segel equation [34], the Cahn-Hilliard equation [55] and the PME [26,56]. However,
n+l1
as discussed in [33,34], the energy stability of (2.29) is not easy to be proved due to the non-constant term (a;}

of the proposed scheme (2.22) is that its energy stability can be theoretically established, in contrast to (2.29).

)~!. The advantage

-1
Remark 2.4. The unique solvability of the proposed scheme (2.22) is not established above due to the implicit treatment of (;—;) s

which introduces nonlinearity and prevents direct derivation of the scheme’s energy functional. To address this issue, we introduce
ir:l using an explicit extrapolation method:

(a<(1+rn+1>x"—rn+1x”’1_>)_l(M(pO(X »)~ if & 5 o
1 . 0xX ’ 0X = Tox °
el " a1 n-1\—1 -1 . n n-1

(0 men() = (52 oo™ %5 <25

By replacing £¢! with 7', K = n—1,n,n + | in scheme (2.22), the unique solvability can be established through the convexity of the
energy functional [3]. The energy dissipation law can then be derived following the analysis in Theorem 2.1. Related methodology
can be found in reference [3,34].

3. Mass conservative models

In this section, we explore adaptive time-stepping methods for mass-conservative models, using Wasserstein gradient flows as
illustrative examples. If the variable p satisfies the conservative transport Eq. (1.5), the mass conservation law is inherently fulfilled.

3.1. Wasserstein gradient flows in Lagrangian coordinate

The conservative model (1.4) with M(p) = p can be written as Wasserstein gradient flows [40,57]

dp=V-(v), v=vE, (3.30)
op
where the energy is defined by E(p) = [, F(p)dx = [, U(p(x)) + V (x)p(x)dx + % Jaxa W (x — y)p(x)p(y)dxdy. F(p) is the energy density,
U(p) is an internal energy density, V (x) is a drift potential and W (x, y) = W (y, x) is an interaction potential . The solution to (3.30)
satisfies the nice properties, positivity-preserving, mass conservative and energy dissipative. As discussed in [43], a combination of
(1.5) and Wasserstein gradient flows (3.30) leads to the constitutive relation:

SE

=—pve=,
>

which can be rewritten into the following Lagrangian form [43]:

dx SE
X)— X)V,— =0,
pol )dt + po(X) )

pix.1y = 20X @D

ox *
det X

We can readily demonstrate that the Lagrangian formulation (3.31) is equivalent to the original system (1.4) at the continuous level.
We propose adaptive time-stepping schemes to solve (1.4) based on (3.31), rather than directly utilizing (1.4).

7
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We note that (3.31) constitutes a highly nonlinear system. To solve (3.31) efficiently, we introduce a regularization term to (3.31),
resulting in the following modified system:

dx dx SE
X)— —eAxy— + py(X)V,— =0,
po( )dt EAX g po( )"5
po(X) (3.32)
plx,1) = =2 PP

We use the Dirichlet boundary condition x"*!|,q = X|,q, and QJ = Q. Notice that £A x ‘ji—’t‘ is an artificial viscosity term and ¢ > 0 is
a small constant. Below we shall propose adaptive time-stepping methods to solve the modified system (3.32).

3.2. Adaptive time-stepping method

A second-order semi-discrete scheme with variable time steps for (3.32) can be constructed as follows: for any n > 1, given x"~!, x",
T,+1> 'y and the initial value py(X), the solution (x"*1, p"*1) can be obtained by solving

(1 + 27, )x™! = (1 +r,,+1)2x”+ri+]x”‘1 20(X)
_ n+l _ .n ' 0 -
o(X) i T Ax " =)+ OV, [ L= =0, (3.33)
oX
X
o= L)w (3.34)
det &
X

with the Dirichlet boundary condition x"*!|5, = X|,0, and Q7 = Q. Since (3.33) requires initial values x” and x', we choose x° = X
and use the first-order scheme in [43] to solve x!.
Now we will prove that the scheme (3.33)—(3.34) preserves properties of Wasserstein gradient flows.

Lemma 3.1. Assume initial value py(X) > 0, if the energy E(x) is convex with respect to x, then there exists a unique solution to scheme
(3.33)—(3.34). Moreover, if the internal energy density is of the form U(s) = slog s, then for any 1 < n < N, the solution p"*!(x) to numerical
scheme (3.33)-(3.34) is positive and mass conservative in the sense that fg, p(x)dx = fgo po(X)dX.

X X

Proof. The solution to scheme (3.33) is the minimizer of the following variational problem:

. 1
k+1 . _
x .—argmxln{2

Tnt1

2o( n+1
o 0 47, ) +2r,40)

(14 27, )% = (L4 2" 472 %12
/g = - aX + B + 2 /m V(e —x5)P"dX ¢ (3.35)

X

Since the above variational problem is convex with respect to x due to the convexity of E(x), the scheme (3.33) admits a unique

solution. In addition, If the internal energy density is of the form U(s) = slog s, then the term —2 0% _ should stay in the domain of the
dei

oxh+1
X

n+1 n+1
logarithmic function. This implies that det’)z—; >0.If deto;—x+ =0, then the variational energy functional in (3.35) at x"*! becomes
+00, which contradicts the minimizer. Then the solution satisfies p"*! > 0. Using the equality (3.34) and det:—;dX = dx, we have

X X n+1
e [ LK) oo [ 0B G0y o [, x0dx.
ot 0 1. dxm] X o M0
@ Q& deta—x Qy deta—x Qy

Hence, the scheme (3.33)-(3.34) is mass conservative. [

The energy dissipation law will hold under a mild condition on the maximum time-step ratio.

Theorem 3.1. Assume the initial value p,(X) > 0, and the maximum time-step ratio satisfies 0 < rp, < %ﬁ If energy E(x) is convex
with respect to x, then scheme (3.33) is energy dissipative in the sense that

r

B+ —— [ ()™ — %" PdX
27n+1(1 +rmax) QUX 0

(3.36)

¥
<E(x") + L/ po(X)|x" — x" 1 2dX.
2Tn(l"'rmax) QUX 0

Proof. Taking inner product with x"*! — x" of (3.33) leads to

142r,.

Tn+l(1 + rn+l) 9(})(

2

r

pO(X)<|xn+l _ xn|2 _ ; +"2+r1 (xn+l —x"H(x" = X"l)>dX
n+1

SE

o o e =P + (T2, - x) =0,
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an application of the convexity of E(x) with respect to x implies that

1+42r,,

2

r
s 5 , pO(X)<|xn+l _ xn|2 _ ntl (xn+l —x"H(x" = xnl)>dx
T+l Fnt1) JQ5

1420, (3.37)
7, 10 (™ = xM12 + EG™) < E(x").

For the first term on the left hand side of (3.37), using the Cauchy-Schwarz inequality shows that

2
r
/ pO(X)<|xn+l _ xn|2 n+l (anrl —xMH(x" — xnl)>dX
QY

0 1 +2r,4
24+4r,, —r? r
Z/ ﬂ()(X) Mlxnﬁ—l _xrt|2_ len_xn—lp dx.
Q(;( 2(1 +2r,,+1) 2(1 +2rn+l)
Substituting above estimate into (3.37) leads to
— 2 2
[, 00 2V et et T Yax
QY 27, (L4 rpp) 27, (L +rpy)

g 0x ™ = 212 + EG") < E(x"),

then the following inequality holds by using r,,; = T’:" :

2
2+4r”+1 B r’l+1 n+1 n2 n+1 nyn2 n+1
m o poX)|x" = x"|"dX + 7, [l0x (X" = x")||” + E(x")

n+ n+ X

<EG+ — [0l — % 2dx
21}’1(1 +rn+l) Q(;(
g
<E(x") 4 —— D po(X)|x" — x"'2dX.

27'-”(1 + rmax) SZ(;(

2+4r, -1

2
ntl » mx Tt can be easily verified that the function

The energy dissipation law will hold under the condition that g(r,,,) 1= —~ z
n+l max

g(r) = % is increasing within r € (0, -1 + \/3) and decreasing with r € (-1 + \/5 Fmax)» then we have g(r) > min{g(0), g(rya)} for

0 < r < rpax- The energy dissipation law will be derived once the maximum time-step ratio satisfies:

rmax

Z—
1+r

B
max

g(r max )

that is 2 + 3r, r2 >0, then the energy dissipation law holds when 0 < r

max ~ "max = max —

< 3+;/ﬁ. O

Remark 3.1. In above Theorem, we assume that the energy is convex with respect to x. In fact, the PME and Fokker-Planck equation
satisfy such assumption in one dimension.

Remark 3.2. Similar to the adaptive time-stepping BDF2 scheme proposed for the Cahn-Hilliard equation in [47], which has been

proved to be energy stable when the maximum time-step ratio satisfies 0 < r,,, < M The restriction can be relaxed by using the

discrete convolution kernel in [58] and the scalar auxiliary variable approach in [21]. It would be interesting to investigate whether
the scheme (3.33) remains energy stable under a milder restriction on the maximum time-step ratio.

4. Fully discrete schemes

In this section, we shall construct adaptive time-stepping with standard finite difference in space for non-conservative models and
conservative models.

4.1. Non-conservative models

For simplicity, we use the Allen-Cahn Eq. (2.18) as an example.

Let QOX =[-L,L] and QF = [-L, L] represent the computational domain in Lagrangian and Eulerian coordinates, respectively.

The spatial grids are defined as —L = X( < X < - < X, = L, with the grid spacing given by h = L—L We define the midpoints

1 . . . )
X, 1= S+ x40, and the discrete differential operators as follows:

1
(th)j+% = E(XjJrl - xj),
forj=0,1,---,M, -1, and

1=X. 1),

1
(dpx); 1= Z(xj+2 i=3
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for j =1,---, M, — 1. The discrete inner product is defined by

M, -1
o)y = Y @), 1h,
j=0

and
M1 A
ol = ih+ = + .
[u, v],, ; (uv); 2 (upvg +upg ag)
If the test function v satisfies the boundary conditions vy = vy, =0, the summation by parts formula holds: (Dyu, v);, = —[u, d;vl,.

The fully discrete, adaptive time stepping scheme for the Allen-Cahn equation is given as follows: for any n > 1, given x"~!, x",
7,41 and r,,, solve (x"*1, p"*1) from:

Qro + 1)(p6(Xj+%))2

2241 0y + DM (po(X 1))
2

(Dpx™ 7L+ D)) =X )
Jt3 Jt3 Jt3 Jt3

— 17,41 Dy (log(d,x"t1) — log(d,,x”))H%

2 / 2
rn+l(p0(Xj+%)) 1 _1 1 _1
mTI o a1y 3 (4.38)
S oy - p o)
2

2Tn+l(rn+l + I)M(pO(XjJr Tl Jt3 n+1
_1 _L
X <(thn—l). 2l _ (thn). 21>(X’~, - xn—ll)
Jjts3 J J

+3 +3 j+3

2
_ € n+1y\—1\2
=— 7D,,(p()()()(d,,x +ly )H% + Dy F(po(X)),,

L
then the solution to the Allen-Cahn equation will be obtained by p"*l1 = pO(Xj oy for j =0, 1, ---, M, — 1. The following initial and
j+§ 2

boundary conditions will be considered:

0,x9, - ,xglx) = (Xg, X1, Xy ), xp = X, x’}';: =Xy . (4.39)

The term 57, D, (log(d;,x"*!) — log(d,x")) with # > 0 is introduced to ensure the positivity of d;x"*!.
Similar to the semi-discrete case, taking a discrete inner product of (4.38) with —(x"*! — x") will lead to the energy dissipation
law in Lagrangian coordinate.

Theorem 4.1. For the Allen-Cahn Eq. (2.14) with M(p) > 0, if the maximum time-step ratio satisfies 0 < rp,, < %, then the fully discrete
numerical scheme (4.38) is energy dissipative in the sense that

r

(0})*
En+| + max 0 D n+1y—1 + (D, x" -1 n+l _ .n , n+l _ .n
N D Gt D\ Mgy P PO, 6 =D ,
+ 17,4 [log(dyx" 1) — log(dpx"), dpy(x™ = xM)], (4.40)
r,

<E,

+ max (‘0(,))2 «D xn—l)—l +(D xn)—l)(xn _ xn—l) x" - xnfl)
h 27, (rmax + 1 \ M(pp) h h ’ h,

where the discrete energy is defined by

2
E!= % (o) x") 12, dpx"], + [F(po(X)), djpx"] .

Proof. Taking a discrete inner product of (4.38) with —(x"*! — x") leads to

2 +1 < (X2

((thnJrl)fl + (thn)fl)(anrl _ xn), xn+l _ xn>

250 (g + D\ Mlpo(X)) .
+ 17,11 (D (log(dyx™") ~ log(d)x")) . x™! = x"),
2 / 2
Tutl (py(X)) (( 1 ) _1 1 . _1)
+ 1+ D, x")"2 — D, x" 2 (4.41)
20,1y + D <M(pO(X)) T (Dpx") 2rn+1( pxX™ )

1 1
X ((thn—])fi _ (thn)fi )(xn _ xn—l)’ xn+1 _ xﬂ)h

2
=%(Dh<pg()<><dhx"“)‘l>2,x"+1 = X") = (D F(po(X)), x™+ — x"),,.

10
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By applying summation by parts and utilizing the convexity of i with respect to y, we have

2t (X))
2Tn+l (rn+1 + 1) M(pO(X))

= N7, [log(d,x™") = log(dyx™), djy(x"' = x™)],

2 / >
) (X)) 1 m-t 1 =1
+ 27, (P + D <M(p0(X)) I+ 7 (Dpx")"2 T (Dpx")"2

R e e O R

((thn+1)—1 + (thn)—l)(an _ xn)’ xn+| _ X")
h

(4.42)

h

2
=- %[(pg<X>(dhx"+‘)‘1)2, dp(x"™t = XM, + [F(po (X)), dyp(x"™' = x™M)],
2 2
> SLHOWx" )™ dyx"™ 1y = S LX) ™ dyx"

+ [Fpg(X)), djy(x"™+ = xM)].

Denote D, x" M(py) = ¢, similar to the semi-discrete case, repeatedly applying the Cauchy-Schwarz inequality leads to

1 5 1 =5 1,5 1,3 -
,X21+—f2——f2 11 4 2p 2 n_nl’n+1_n
<<p0( P+ 5o=) = 5l LG+ ) =X h =)

1 Qrpp + D2 +2r, +1  2r +2
SZ <(p6(X))2( n+ " > n+ fhnl + Z+2 Loh,,l+1 )(anrl _ xn)7 xn+l — x"
] ] h

Li oy 2, o1 “Uygon _ on=1y on _ on—1
+ 3 (WP + D6 =X =)
L@+ D2 +2r,,, +1

- 2
4 4.rnJrl

hntl

((P{)(X))z(f;nl F 271 (T — xm), X xn)h

+ 3 (GhOPEL + b =2, -5 |

Then we obtain the following estimate for the first and third terms on the left hand side of (4.42):

2y + 1 ( (0l (X))?

_ n+1y-1 ny—1 n+l _ n n+l _ on
(e + D\ Mipo(X) ((th )7+ (Dyx") )(x x"), x X >h

2 / 2
"t (pp(XD) ( 1 pl 1 el _1>
+ 27, (rp + 1) <M(p0(X)) 1+ T NDpx")"2 T (Dyx")"2
X ((thn—l)—% _ (thn)—% )(xn _ xn—l)7 xn+l _ xn)
2 41 [ (BhX?
- 2Tn+l(rn+l + 1) M(pO(X))
Qrpy + D2+ 20, + 1 (0p(X))?

16Tn+l(rn+l + 1) M(Po(X))

. e (ph(X)?
2Tn+l(rn+1 + 1) M(pO(X))

@+ DG =1 [ (B0
- 87, 1(rpp1 + 1) M(po(X))

e (ph(X))?
+
27,1y + 1)\ M(pp(X))

h

((thnJrl)fl + (thn)fl)(anrl _ xn), xn+l _ xn)
h

((thn)—l + (thn+l)—l)(xn+l _ xn)’ xn+1 _ xn>
h

((thn—l)—l 4 (thn)—l)(xn _ Xn—])’ x" — xn—])
h

((thn)—l + (thn+1)—l)(xn+l _ xn)’ xVH—l _ xn)
h

((thnfl)fl + (thn)fl)(xn _ xnfl), X" = xnl) ,
h

a combination of above inequality with (4.42) shows

Qrppr + DG = rpyp) [ BHX)?
8T,y 1(rup1 + 1) M(py(X))

+ 1741 [log(dyx™!) ~ log(dx"). dy (" = xM]

- Frnax (P (X))
2t 2 e + D\ Mpp(X))

E:+l + ((thn)—l + (thn+l)—l)(xn+l _ xn)7 xn+l _ xn>

h

((thn—l)—l + (thn)—l)(xn _ xn—l)’ X" — xn—l) .
h

11
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then the energy dissipation law will hold once the following inequality holds:

(2rn+l + D3 - rn+l) > "max
8+ 1 T 2rpax + 1)

h(rn+1) =

which implies that if the maximum time-step ratio satisfies 0 < r,,,, < >, the energy dissipation law (4.40) holds. O

max = 7>
Remark 4.1. For the fully discrete scheme (4.38), we extend the approach developed for the semi-discrete case in Remark 2.4 by
redefining the discrete operator (D,x"*!)~! as:
-1 .
(D)l o= { (A +rp)Dyx" = r,,+1D,,x"‘1) s if D,x" > D,x""1,

A+ 7, )Dpx ™ =1 (Dpx"™ 171, if Dyx" < Dypx1.

By replacing (D, x*¥)~! with (D,,x¥)™!, K = n— 1,n,n+ 1 in scheme (4.38), we can establish both unique solvability and the energy
dissipation law. The analysis follows analogous arguments to those for the semi-discrete scheme.

4.2. Conservative models

We construct below a full discrete numerical scheme for the Wasserstein gradient flows (3.30).
Define the admissible set S, :={x : x;;; >x; for j=0,1,-+, M, - 1, and xy = X, xp; = X, }. Given X" X" 7,04, rpyq and
the initial value py(X), solving (x"*!, p"*1) from the following finite dimensional minimization problem:

142r,,,
™ i=arg inf ——— " (p(X), |x — £"1?), + Ej(x)
XES, 2rn+1(1;rr,,+1)( 0 Jut B
n+1 _emy 2
+=5= (IDy(x = x"I% 1), (4.43)
po(X 1)
2 .
P"ill = D) j=0,1,- M, —1,
Jt3 ( hX )j+%
1 on _ (e )? " - . e .
where x = (xq, X[, ..., Xy _1, Xpr,), X1 = 2 G +x)p), & = ﬁ "— ﬁx" 1, and the discrete energy is defined by E,(x) :=

po(X)
(F(%55) D),
Taking the variational of (4.43) with respect to x leads to the weak formulation with x = x"*!:
142r,
Tn+1(1 + rrH—l)

SE
+ <—h(x”+1),5x> =0.
ox h

Taking the test function 6x = (6x, 6x, - ’5xM¥_1’5xMx) with 6x; = 5 (Dirac function) for i, j =0,1--, M, — 1, we obtain the fol-
lowing second-order scheme with variable time steps:

(PoX)(x™! = 2"),6%), + 7,11 (Dp(x™' = x"), D6x),,
(4.44)

1+2r 1+2r
e X, DT =8 L X 6~ Dk
20 (L+71p01) AR 27, (1 + ryy) A
(M Y= 20— Xy X SE
Jj+1 Jj+l J J j—1 j—1 h ot
- h+ —(x = 0, 4.45
n+l n 5%, ( ) ( )
1 pO(X“%)
pn+ = j:()’l,...’M _1’ (4,46)
j+% (thn+l)j+% x
with the initial and boundary conditions
x = (Xo. Xy, Xyy) and xgt=Xo. X=X, (4.47)

We can use the first-order numerical scheme proposed in [43] to calculate x' and p'.
Theorem 4.2. Assume the initial value py(X) > 0 for X € QX, the energy density F(s) satisfies F(s) >0 for s > 0, and lir% F(%)s = o0,
§—
2
then the scheme (4.45)—(4.46) has a unique solution x"+! € S,q when % > 0, the solution is positive p"“1 >0for j=0,1,---,M -1,
j+

3+v/17

2
. . . . . 17 I
and mass conservative. Moreover, if the time-step ratio satisfies 0 < r, | < ry,, < =——, the energy is dissipative:

r
E (xn+l) + max p (X)(xn+l _xn)Z’l
" 2Tn+1(1+rmax)( 0 )h

r
<E 4 max X n_ n—1 2’1 .
SENE+ 5 (0" =X,

(4.48)

12
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Proof. The first two properties can be derived using similar technique in [3], the proof of which is omitted here. To prove the energy
dissipation law, we set 6x = x"*! — x" in (4.44) and obtain
2

r
p) (X)(anrl _xn)Z’l ol p) (X)(x" _ xnfl)’anrl —x"
( 0 )h Tn+l(1+rn+l)( 0 )

1+2r,,,

Tn+1(1+rn+l) h

OF,
+ 2 (1D, (" =2 1), + <—§x” ("), % — x”) =0,
h

using the Cauchy-Schwarz inequality and the convexity of E(x) with respect to x shows that

M([, (X)(x"1 — x"y? 1), - rﬁ—“(p (X)(x" — x""1)? 1)
2Tn+l(l +rn+l) 0 ’ h 2Tn+l(1 +I‘,,+1) 0 ' h

7, (V" = X2, 1), + Ep(x™) < Ef(x),
then we have
244, —r?

”
n+l +1 ny2
——— (X" = x"), 1
27, (T +rypp) ( 0 )h

i
<Ep(x") + =5 (pp(X)(x" — x""1)2,1),,.
SENE) + 5 (0" = xR ),

Eh(er-I) +

Similar to the semi-discrete case discussed above, the energy dissipation law can be derived under the condition that g(r,,,) > li%,
which holds for 0 < ry, < Y7 [

Remark 4.2. The convexity of the energy E,(x) with respect to x is crucial for both the unique solvability and the discrete energy
dissipative law of our proposed schemes. In fact, the energy densities of the Porous Medium equation and Fokker-Planck equation are
F(s)= ﬁs"’ ,m>1and F(s) = slogs + sV (x) which will satisfy the following two key assumptions: F(s) can be made non-negative

by adding an appropriate positive constant for all s > 0, and lin(l) F( % )s = oo.
5! S

Remark 4.3. For several Lagrangian coordinate-based models, convergence analysis and error estimates have been established for
various numerical schemes in the existing literature [20,21,24,50]. The convergence properties of our proposed schemes can be
analyzed by adapting the techniques from these previous works. We will investigate this issues in future work.

4.3. Adaptive time-stepping methods in 2D

Now we generalize adaptive time-stepping, Lagrangian methods based on flow dynamic approach into two-dimensional case.
Denote x = (x, ), X = (X,Y), and the Jacobian matrix ;’—; = ;((;f)). SetQX =[-L,. L]x[-L, L]JwithL, L,>0,andQ} =QY.
. ) S 2L,
Given M,, M, € N, and define the spatial grid size h, = ZMﬁ, hy= 7. Let X;; = Xo + jh,, Y;; =Yy +ih,for0<j <M, 0<i < M,
x y

and p}; = p(X;;.Y;;,0) 2 0.

Given x° = X and the initial value py(X), the first step x
BDF2 scheme with variable time steps can be proposed:

Implicit numerical scheme. Vn > 1, given x"~!, x", 7,1, 1,1, solving (x"*1, y"*1) from

! is calculated by the first-order scheme in [43]. Then the fully implicit

0 Dyx"+ — Ay (xm! — ")+'S 22 xmty =0 (4.49)
PijP2X;; ETpr1Rx (XG5 Xij ox x;;)=0, .
0 Dyt — A (;/’+'—;/’)+5E"’2( =0 (4.50)
PijP2Yi; ETn18x V5 ij 5y X )=0 .

il . 2 a2l 412l - I ox . N .
where D,a!™ = and E,,(x) := Y, ; F(—5—)det==|;;. The Dirichlet boundary condition is consid-
ij Ty (I+r 1) > i,j detﬁ\w ox 'ij
o yhtl —
ered: x5 = Xls.
Then p;';’l is derived by
nl __n+l nel _ ptl
2 oxyiH! ay! Yij+1 " rij-1 ij+1 Vi1
+1 ij - +1 2h 20,
Pf'j == with 7’,-'} = agﬁl oan)il =1 ol el ol ot |- (4.51)
Fl ij Yij i+l Ni=lj i+l i1,
J oY oY 2h, 2h,

dx

The scheme (4.49)-(4.50) should be solved in the admissible set E,; = {x : detﬁl i

solution to which is the minimizer of the following minimization problem:

>0 forall i,j €N, x|;0 =X]|;0}, and the

x+1 ::argxierg Jyp1 (x), (4.52)
ad

h I ‘= E 1424 0 %" 12h.h ETntl x"'j+l_x:j+l_x[‘/+x:lvj 2 xf*"/_xrl+|«j_x['j+x:l~l Dhoh d
where i1 (%) 1= Epp(0) + X, mpij|xi,-—x,-j| oy + =53 r [=+1 n, [9hihy,  an

Ejo(x) i= Ej5(x)h,h,. We obtain the following result for the scheme (4.49)~(4.50).

13
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Theorem 4.3. Assume the energy density F(s) > 0 for s > 0, and satisfies lin% F(%)s = oo. Then there exists a solution x"*' € E,; to the
S
nonlinear numerical scheme (4.49)—(4.50), and the following energy dissipation law holds under the condition that 0 < r,,; < rp., < %:
3

”

n+l)+ max 0 ntl _ n |2

z P X x!|“h.h
ij nJrl(1 + rmax)(l + 2rmax) A Y *

(4.53)
r?nax 0 |41 n—12
<E,,(x")+ p Xt —x"7 |“h,h
" ; 7,(1 +rmax)(l +2rmax) v v A

Proof. The existence of the solution to scheme (4.49)—(4.50) is equivalent to the existence of the minimizer of J,,, ; (x) in the admissible
set E,,;. Then we turn to prove the existence of the minimizer of the minimization problem (4.52). If the minimizer lies on the boundary
of the admissible set, that is x € dE,;, we have J,(x) = oo, which is a contradiction. Following the proof in [10,38], the claim of
the theorem will be derived once we show that the sub-level set

4

.
. . n+1 —-1)2 .
§ 1= {X € Euy ¢ Iy < Bl ”2 T T LA R AL =

is a non-empty compact subset of R2. Clearly, x" € S, so it is non-empty. Similar to [10,43], the boundedness and closedness of S
can be established. Consequently, S is a non-empty compact subset of R?.
If x"*! € S is a minimizer of the minimization problem (4.52), we have

1+2r,
E, (™1 + n+1 0 XL %" 2hoh
hz( ) Z 2Tn+l(1 +rn+1) Ul Ul R
A (4.54)
SEh,z(X")+ Z "p1 p |x" _x?j‘illzhxhy'
Lj

21‘-}1+1(1 +rn+l)(1 +2rn+1) i

Using the inequality |a — b2 > 1|a|? — |b|® with a = x"*! —x" and b = s - (x]. —xf’.“) shows that 1 |x"! — x" |2 —
2 ij ij 12r,, ij 21%ij ij

r
R 3 S—
(142r,41)? lxij
X < |x;’j+l — &7|?, substituting which into (4.54) leads to

1+2r,,
E,,2<x"+1)+ —— 0! i —x"?h h
r4 1
<E,,(x")+ Uas A2 1x" —x"1h h
' ; Ty (L7 DA+ 27, ) VY Y x

3
-
<Ep (") + Z ma |, ;'j’l |2hxhy.
<

7oL+ r)(L+ 2r) iy

3
142r,41 1 > "max
4(0+rpp) T 4T (I ) (4 2rme0)

If the time-step ratio is chosen such that 0 < r,,; < ry.. < 4, where 3 7 is computed numerically, then the proof is complete. O

The energy dissipation law will hold under the condition that the maximum time-step ratio satisfies

Explicit numerical scheme. Given x° = X and the initial value p,(X), the first step (x!, p!) is solved by the first-order scheme
proposed in [43]. Given (x",y"), Vn > 1, (x"*!, y"*!) can be solved by the linear scheme:

p?j szr'fl —61',1+1AX(x’.'.+1 DX = Pyt X5 b= (4.55)
p?jDzy:'j“ — e, DX r”+1x;'j’1) =0, (4.56)

with the Dirichlet boundary condition x"*! |, = X|;0,
p"+! will be derived by (4.51).

5

5. Adaptive time-stepping strategy
In this section, we describe our adaptive time-step strategy in Algorithm 1 which determines time steps based on the changes of

trajectory and energy [21,48]. To be specific, the parameter y in (5.57) reflects the sensitivity of the time step with respect to changes
of trajectory, and g in (5.58) represents the sensitivity of the time step with respect to changes of energy.

6. Numerical experiments

We present in this section some numerical experiments to validate the accuracy and stability of the proposed numerical schemes.

14
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Algorithm 1 Adaptive time-stepping algorithm related to energy and trajectory changes.

1: Initialize 7,, "', x", E"™', E", 7,1, Tmaxs Tuser
2: Set tolerances tol
3: Compute the next time-step by the following strategy with § 4" :=

T,
7,41 = min <max <Tmin’ +), ruser‘rn>, (5.57)
L+yllo, x|

TleX

O 7,y = min|max | 7y, ——— |, Fyer 7y (5.58)
\/1+Bl6.EN2

: Compute x3*} and p*! by solving scheme (4.45)-(4.47) with time-step size 7,
oxnt1

: Compute the Jacobian determinant det %

1
if det ”;; > 0 then

o yentl n+l  _n+l n+1
Accept step: x"*' « xprp P e oo
else
Reject step and decrease time-step: 7, | = %'r,, +1 and return to step 4
: end if
: return x"*1, p"*1 E"*1 and 7,

eEN Q> DR

—
= O

Fig. 1. A schematic illustration of a flow map x(X,¢) at a fixed time #: x(X, ) maps Q‘;( to Q. X is the Lagrangian coordinate while x is the Eulerian

coordinate, and F(X,f) = %};') represents the deformation associated with the flow map.

6.1. Non-conservative models in one dimension
We first present numerical experiments for non-conservative models in one-dimension (Fig. 1).

6.1.1. Allen-Cahn equation

We will take the initial value py(X) = 1 — X2, X € [~1, 1], ¢ = 0.01, choose M(p) = 1 and M(p) = 1 — p? to solve numerical solutions
using scheme (4.38).

convergence test. Set M, = 16 x 2'~! and N = 625 x 2/~! for i = 1, 2, 3, 4, the reference numerical solution is computed with i = 7.
For the fixed time-step case, we set the time step r = % and spatial size 6 X = Mix, and compute the convergence order by Order(i) =

n ( error(D ) /In ( M, ) For the variable time-step case, the time step is chosen by 7, = —22— with uniformly distributed random
error(i—1) M, (i-1) k=1 Ok

values o, € (0, 1), Vn, the convergence order is calculated by Order(i) = In (&m) ) /In ( (D)

error(i—1) 7(i—1)
time step. Numerical results displayed in Fig. 2 show that the convergence order of (4.38) is second order.
Interface capture. We first choose the time steps by 7, = Z‘,{,”T , with uniformly distributed random values o, € (0, 1), Vn. The

), where (i) represents the maximum

—1 0}
numerical results are shown in diagrams (a) to (f) in Fig. 3. The kiﬁltekrface width and particle positions are captured, and the discrete
energy is also dissipative. Furthermore, we use strategy (5.58) to solve the scheme (4.38) with ¢ = 0.01 and M(p) = 1. The energy
plot is displayed in diagrams (g) in Fig. 3. The time steps (blue line) and the corresponding time-step ratios (red line) are plotted in
diagrams (h) in Fig. 3. It can be observed that the time step increases as the energy decreases slowly, which improves the efficiency.

6.2. Conservative models in one dimension
Now, we present numerical experiments for conservative models in one-dimension.

6.2.1. Porous medium equation
The PME is a Wasserstein gradient flow with energy E(p) = [, ﬁp’"dx.
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(h) Time step with (5.2)

Z(‘:‘HT . (g-h): strategy (5.58) with

B =165, ryer = 1.5, 10 = 0.1 and 7,,;,, = le — 3.

Table 1

Convergence order for the PME with m = 2 at T = 0.5 under fixed time-step.
M, ot Li error (x) order L* error (x) order Li error (u) order
100 1/200 8.7715e-05 1.2351e-04 3.8165e-05
200 1/400 2.1936e-05 1.9995 3.0882e-05 1.9998 9.5315e-06 2.0015
400 1/800 5.4852e-06 1.9997 7.7083e-06 2.0023 2.3792e-06 2.0023
800 1/1600 1.3715e-06 1.9998 1.9271e-06 2.0000 5.9187e-07 2.0071

Convergence test. Consider the following smooth initial value:

po(x) = cos (% )

x € [-1,1],

(6.59)

with the Dirichlet boundary condition x|, = X|,q. To calculate the convergence order, we choose the reference solution computed

under a much fine mesh with M, = 10000, N = 20000.

The convergence order of the scheme (4.45)—(4.47) with both fixed and variable time steps are displayed in Table 1 and Table 2,
both of which are clearly second order. It can be observed that even when the maximum time-step ratio exceeds the theoretical

value r ..,

theoretical analysis is most likely pessimistic.
Waiting time. The propagation speed at the boundary for PME can be calculated by

0 x =—

m—1 (@xx)m

m_ Ox(p(X,0)""!

B

16

the numerical results remain stable and accurate. This suggests that the limitation on the maximum time-step ratio in the

(6.60)
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Table 2

Convergence order for the PME with m = 2 at T = 0.5 under variable time steps.
M, max time-step max time-ratio Li error (x) order L*> error (x) order Lf, error (u) order
100  0.0051 73.7835 8.8319e-05 1.2351e-04 3.7623e-05
200 0.0025 971.0994 2.2082e-05 1.9179 3.0882e-05 1.9179 9.4009e-06 1.9188
400  0.0013 369.4026 5.5279e-06 2.0927  7.7084e-06 2.0970  2.3422e-06 2.0999
800  6.2751e-04 4.1802e+03 1.3816e-06 1.9586  1.9271e-06 1.9582  5.8307e-07 1.9642

time-step

(a) Time-step with (5.1)

08
0 005 01 015 02 025 03 035 04 045 05
time

(b) Time-step ratio, (5.1)

time step

0 005 01 015 02 025 03 035 04 045 05
time

(¢) Time-step with (5.2)

time-step ratio

0 005 01 015 02 025 03 035 04 045 05

[

(d) Time-step ratio, (5.2)

Fig. 4. Numerical results solved by scheme (4.45)-(4.47) using the Algorithm 1. Initial value (6.61) with m = 2, 6 = 0.25, M, = 800.
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Fig. 5. Numerical results for PME solved by (4.45)-(4.47) with (6.61), 8 = 0.25, M, = 800, 6t = ﬁ.

see [26,29,56]. The numerical waiting time can be calculated as the first instance such that 9,x # 0, see the related works [26,43].
We set the initial value to be

>l/<m—1>

po(x) = ("’T_l ((1 = 0)sin®(x) + O sin*(x)) . x€[-m0] (6.61)

where 6 € [0,0.25]. The waiting time for (6.61) is given in [59] by ¢,,, := 2(rn++)(l—9>'
We apply the Algorithm 1 with different time-adaptive strategies, (5.57) and (5.58), in the following numerical experiments
with ryee, = 1.4, 7, = le — 6 and 7, = le —2 in (5.57), and ryg, = 1.4, 71, = le — 6 and 7, =5 X le — 3 in (5.58). We take y =
0.1, 1, 10, 100 and g = 0.1, 1, 10, 100, and display the results in Fig. 4. It can be noticed that the time-step increases after the waiting
time, and the efficiency is improved compared to the scheme with a fixed time-step.

Next, we use a fixed time-step to carry out numerical experiments with (6.61) and = 0.25, the results are displayed in Fig. 5. The
strategy (5.57) is applied with y = 10, z,,,, = 5 X le — 3. In the case where m = 2, the free boundaries remain static during 0 < r < 0.22,

and they begin to move at a finite speed after + = 0.22. The waiting time is approximately 7 = 0.19 when m = 2.5.

6.2.2. Keller-Segel model
We simulate the Keller-Segel model with E(u) = fQ ulnudx + i fQXQ In |x — y|u(x)u(y)dxdy, and choose the following initial value:

(6.62)

x2
up(x) = exp”Z +107%,  x e [-15,15],

2r
with C = 5z. We take M, = 800 to compute numerical solution using scheme (4.38) with time-step strategy (5.58), numerical results
are shown in Fig. 6. It can be observed that the proposed scheme is both energy stable and mass conservative. The time steps (blue
line) and the corresponding time-step ratios (red line) are plotted in diagram (c) in Fig. 6. Specifically, the numerical solution exhibits
a blow-up in finite time when the initial mass is large, reflecting the blow-up phenomenon.

17



Q. Liu, W. Chen, J. Shen et al. Journal of Computational Physics 546 (2026) 114499

150 2

8
-

time step

numerical solution
mass
i
i

15 10 5 [) 5 10 15 102 107 100 0 02 04 06 08 I
time time time

(a) Numerical solution (b) Mass and energy (c¢) Time step
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Fig. 7. Numerical solution for PME solved by (4.55)-(4.56) with (6.63) using strategy (5.58), m=2, M, = M, =64, T =2,e=05, 1, = le— 4,
Tax = 1€ — 2, ryeer = 1.25, p = le — 2. The blue dashed circle is the exact interface for (6.63) at T = 2. (For interpretation of the references to colour
in this figure legend, the reader is referred to the web version of this article.)

6.3. Conservative models in two dimension
Below we shall use the explicit scheme (4.55)-(4.56) to simulate various conservative models.

6.3.1. Porous medium equation
Barenblatt Solution. We consider the initial value u(x, y,0) given by the Barenblatt solution:

1
_ k(m—1) x% + )2 m=T
u(x,y,t) = max <O.1 I G 0 ) (6.63)

where k = # For the numerical simulations, we set M, = M, = 64. The simulations are performed using the scheme (4.55)-(4.56),
with both fixed time steps and variable time steps. The regularization term ”3+1 Ayx™! with e = 0.5 is used. For the variable time-step
case, we apply the strategy (5.58) with 7.,;, = le — 4, 7., = le = 2, ryger = 1.25, and f = le — 2.

We plot in Fig. 7 and Fig. 8 the numerical solutions for m =2 at T =2 and m =5 at T = 4. The time steps (blue line) and the
corresponding time-step ratios (red line) are plotted in diagram (f) in Fig. 7. It can be observed that the scheme (4.55)-(4.56)
effectively captures the trajectory movements and free boundaries.

18
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Fig. 8. Numerical solution for PME solved by (4.55)-(4.56) with (6.63) using strategy (5.58), m =5, M, = M, =64, T =4, ¢ = 40, 7,
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time
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= le =2, ryer = 1.25, p = le — 2. The blue dashed circle is the exact interface for (6.63) at T = 4. (For interpretation of the references to colour
in this figure legend, the reader is referred to the web version of this article.)

(f) Trajectory at t = 0.6

Fig. 9. Numerical results for PME solved by (4.55)-(4.56) with fixed time step. Initial value (6.64), m =3, M, = M, = 128, 7 = le - 3, ¢ = 100.

Non-radial case. We now consider the following non-radial initial value:

3
25(0.252 - (\/x2 + 2 = 07512, /x2+y? €[0.5,1] and (x < 0 or y < 0),
x2 +(y—0.75)> <0.25% and x > 0,
(x —0.75)> +y* < 0.25% and y > 0,

otherwise,

3
25(0.25% = x2 = (y = 0.75)2,

3
25(0.25% — (x — 0.75)% — y*)2,

po(x,y) =

0,

(6.64)

which has a partial donut-shaped support [10]. We conduct numerical experiments using the scheme (4.55)—(4.56) with the fixed time
step and the regularization term 673+1A xx"+! where & = 100. The numerical results are shown in Fig. 9, which displays the evolution
of solution and trajectory movements. It can be observed that the proposed method performs well for solutions with complex support.

6.3.2. Keller-Segel model

Consider the Keller-Segel model given by

0,p =V - (pVW % p)+vAp",
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where W(x) = i In|x| and v=1. We choose m =1 and m =2 and use the scheme (4.55)-(4.56) with the regularization term

”3+1 A Xx”+l and adaptive time step strategy in (5.58).
The following initial conditions, with C = 1 or C = 5z, are considered:

up(x,y) = Ce™ Y (x,y) € [-5,5] X [5,5]. (6.65)

The numerical results are presented in Figs. 10 and 11. The time steps (blue line) and the corresponding time-step ratios (red line)
are plotted in diagram (c) and diagram (f) in Figs. 10 and 11. We observe in particular that the trajectory movements are consistent
with the interface positions. The results also indicate that, when m = 1, a blow-up phenomenon occurs if the initial mass is large,
while diffusion prevails when the initial mass is small. In contrast, for m = 2, the solution eventually converges to a bump with both
initial conditions.

7. Concluding remarks

We developed in this paper two adaptive time-stepping Lagrangian methods for gradient flows based on different flow dynamic
approaches. For the non-conservative models, we designed a modified second-order scheme which naturally preserves the MBP and
ensures energy dissipation under a mild condition on the maximum time-step ratio. For the conservative models written as Wasserstein
gradient flows, we constructed a mass-conservative method which is proved to be energy dissipative and positivity-preserving under a
mild condition on the maximum time-step ratio. The proposed Lagrangian methods offer several advantages, including the enhanced
ability to capture sharp interfaces, simulate trajectory movements, and address problems involving singularities and free boundaries.

It should be noted that the condition on the time-step ratio is sufficient for the theoretical analysis, but not necessarily optimal in
the practice. An interesting question for further exploration is whether these schemes can maintain stability under a less restrictive
condition on the time-step ratio.
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