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 a b s t r a c t

We develop in this paper an adaptive time-stepping approach for gradient flows with distinct 
treatments for conservative and non-conservative dynamics. For the non-conservative gradient 
flows in Lagrangian coordinates, we propose a modified formulation augmented by auxiliary 
terms to guarantee positivity of the determinant, and prove that the corresponding adaptive 
second-order Backward Difference Formulas (BDF2) scheme preserves energy stability and the 
maximum principle under the time-step ratio constraint 0 < 𝑟𝑛 ≤ 𝑟max ≤

3
2
. On the other hand, for 

the conservative Wasserstein gradient flows in Lagrangian coordinates, we propose an adaptive 
BDF2 scheme which is shown to be energy dissipative, and positivity preserving under the time-
step ratio constraint 0 < 𝑟𝑛 ≤ 𝑟max ≤

3+
√

17
2

 in 1D and 0 < 𝑟𝑛 ≤ 𝑟max ≤
5
4
 in 2D, respectively. We also 

present ample numerical simulations in 1D and 2D to validate the efficiency and accuracy of the 
proposed schemes.

1.  Introduction

We consider in this paper adaptive time-stepping Lagrangian approaches for gradient flows with conservative and non-conservative 
dynamics. Specifically, the non-conservative models require the enforcement of determinant positivity through auxiliary operators, 
while the conservative systems need mechanisms for mass conservation.

For the non-conservative system characterized by energy functional 𝐸(𝜌) and positive mobility (𝜌) > 0, the governing equation 
takes the form:

𝜕𝑡𝜌 = −(𝜌) 𝛿𝐸
𝛿𝜌

, (1.1)

where the total mass of 𝜌 is usually not conserved, i.e., d
d𝑡 ∫Ω 𝜌(𝑥, 𝑡)d𝑥 ≠ 0. Notable examples include the Allen-Cahn equation [1], 

Burgers-Huxley and Burgers-Fisher equations [2]. Through the non-conservative transport framework [3] 
𝜌𝑡 + 𝒗 ⋅ ∇𝜌 = 0, (1.2)
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$0<r_n\le r_{\max }\le \frac {3}{2}$


$0<r_n\le r_{\max }\le \frac {3+\sqrt {17}}{2}$


$0<r_n\le r_{\max }\le \frac {5}{4}$


$E(\rho )$


$\mathcal {M}(\rho ) > 0$


\begin {equation}\label {eq:non} \partial _t\rho = -\mathcal {M}(\rho )\frac {\delta E}{\delta \rho },\end {equation}


$\rho $


$\frac {\mathrm {d}}{\mathrm {d}t}\int _{\Omega }\rho (x,t)\mathrm {d}x \neq 0$


\begin {align}\label {eq:non flow} \rho _t + \bm {v}\cdot \nabla \rho = 0,\end {align}


\begin {align}\label {eq:ac eu} \bm {v}\cdot \nabla \rho = \mathcal {M}(\rho )\frac {\delta E}{\delta \rho }.\end {align}


\begin {equation}\label {eq:wd} \partial _t\rho = \nabla \cdot \left (\mathcal {M}(\rho )\nabla \frac {\delta E}{\delta \rho }\right ),\end {equation}


$\frac {\mathrm {d}}{\mathrm {d}t}\int _{\Omega }\rho (x,t)\mathrm {d}x = 0$


\begin {align}\label {eq:con flow} \partial _t\rho + \nabla \cdot (\rho \bm {v}) = 0,\end {align}


\begin {align}\rho \bm {v} = -\mathcal {M}(\rho )\nabla \frac {\delta E}{\delta \rho }.\end {align}


$\mathcal {M}(\rho )=\rho $


$\frac {1}{2}$


$0 < r_n \leq r_{\max } \leq \frac {3}{2}$


$0 < r_n \leq r_{\max } \leq \frac {3+\sqrt {17}}{2}$


$0 < r_n \leq r_{\max } \leq \frac {5}{4}$


$\bm X$


$\bm v$


${\bm x}({\bm X},t)$


\begin {align}& \frac {\mathrm {d}{\bm x}({\bm X},t)}{\mathrm {d} t}={\bm v}({\bm x}({\bm X},t),t),\label {flow}\\ & {\bm x}({\bm X},0)={\bm X},\label {flow1}\end {align}


$\bm x$


$\bm X$


$\frac {\partial {\bm x}}{\partial {\bm X}}$


$\bm v$


\begin {equation}\label {transport} \rho _t+({\bm v}\cdot \Grad _{\bx })\rho =0.\end {equation}


\begin {equation}\label {essential} \rho (\bx (\bX ,t),t)=\rho (\bx ,0)=\rho _0(\bx ) \quad \forall t,\end {equation}


$\rho _0(\bx )$


$\bx (\bX ,0)=\bX $


$\rho _0(\bx )=\rho _0(\bX )$


\begin {equation}\rho (\bx (\bX ,t),t)=\rho \circ \bx (\bX ) = \rho _0(\bX ). \label {Xeqn6-2.12}\end {equation}


$\bx (\bX ,t)$


$\phi (\bX ;t)=\bx (\bX ,t)$


$t$


$\phi ^{-1}$


$\phi $


$\rho (\bx (\bX ,t),t)=\rho (\bX ,0)$


$t$


$0<a\le \rho (\bX ,0)\le b$


$t$


$a\le \rho (\bx ,t)\le b$


\begin {equation}\label {eq:ac ori} \partial _t\rho =-\mathcal {M}(\rho )(-\epsilon ^2\Delta \rho +F'(\rho )),\qquad (x,t)\in \Omega \times (0,T],\end {equation}


$|\rho (\bx ,0)|\le 1$


$\bx \in \Omega $


$|\rho (\bx ,t)|\le 1$


$(\bx ,t)\in \Omega \times (0,T]$


$L^2$


$L^2$


$\rho $


$\epsilon >0$


$T$


$\mathcal {M}(\rho )> 0$


$\mathcal {M}(\rho )\equiv 1$


$\mathcal {M}(\rho )=1-\rho ^2$


$F(\rho )=\frac {1}{4}(\rho ^2-1)^2$


$F(\rho )=\frac {1}{4}(\rho ^2-1)^2$


$L^2$


\begin {equation}\label {diss:law:0} \frac {\mathrm {d}}{\mathrm {d}t}E(\rho )=-\int _{\Omega }\mathcal {M}(\rho )|\rho _t|^2\mathrm {d}x,\end {equation}


$E(\rho )=\int _{\Omega }\frac {\epsilon ^2}{2}|\nabla \rho |^2+F(\rho )\ \mathrm {d}x$


\begin {align}\label {diss:law:1} \frac {\mathrm {d}}{\mathrm {d}t}E(\rho )=-\int _{\Omega }\mathcal {M}(\rho )|({\bm v}\cdot \Grad _{\bx })\rho |^2\mathrm {d}x,\end {align}


$\rho _t=-({\bm v}\cdot \Grad _{\bx })\rho $


\begin {align}\label {traj} {\bm v}\cdot \nabla \rho =\mathcal {M}(\rho )(-\epsilon ^2\Delta \rho +F'(\rho )).\end {align}


\begin {align}x_t(X,t)\rho _0^{\prime }(X)\left (\frac {\partial x}{\partial X}\right )^{-1}{\frac {1}{\mathcal {M}(\rho _0(X))}}=-\epsilon ^2\partial _X\left (\rho _0^{\prime }(X)\left (\frac {\partial x}{\partial X}\right )^{-1}\right )\left (\frac {\partial x}{\partial X}\right )^{-1}+F'(\rho _0(X)),\label {ac:tra1}\end {align}


\begin {align}x|_{\partial \Omega }=X|_{\partial \Omega },\qquad x(X,0)=X,\ X\in \Omega .\end {align}


$\frac {\partial x}{\partial X}(X,t)>0$


$\forall X\in \Omega $


$\eta _0\partial _X\left (\frac {\mathrm {d}}{\mathrm {d}t}\log (\frac {\partial x}{\partial X})\right )$


$0<\eta _0 \ll 1$


$\frac {\partial x}{\partial X}(X,t)$


\begin {equation}\label {ac:regularied tra1} \begin {aligned} & x_t(X,t)(\rho _0^{\prime }(X))^2\left (\frac {\partial x}{\partial X}\right )^{-1}{\frac {1}{\mathcal {M}(\rho _0(X))}}-\eta _0\partial _X\left (\frac {\mathrm {d}}{\mathrm {d}t}\log \left (\frac {\partial x}{\partial X}\right )\right )\\=&-\frac {\epsilon ^2}{2}\partial _X\left (\rho _0^{\prime }(X)\left (\frac {\partial x}{\partial X}\right )^{-1}\right )^2+\partial _XF(\rho _0(X)). \end {aligned}\end {equation}


$\mathcal {M}(\rho )>0$


\begin {align}\label {eq: ac 1} \frac {\mathrm {d}E_{ac}}{\mathrm {d}t}=-\int _{\Omega ^0_{\bm X}}\left |x_t(X,t)\rho _0^{\prime }(X)\left (\frac {\partial x}{\partial X}\right )^{-1}\right |^2\frac {1}{\mathcal {M}(\rho _0(X))}\frac {\partial x}{\partial X}\mathrm {d}X-\int _{\Omega ^0_{\bm X}} \eta _0|\partial _Xx_t|^2\left (\frac {\partial x}{\partial X}\right )^{-1}\mathrm {d}X,\end {align}


\begin {align*}E_{ac}=\int _{\Omega ^0_{\bm X}}\left (\frac {\epsilon ^2}{2}\left |\rho _0^{\prime }(X)\left (\frac {\partial x}{\partial X}\right )^{-1}\right |^2+F(\rho _0(X))\right )\frac {\partial x}{\partial X}\mathrm {d}X.\end {align*}


$-x_t$


\begin {equation*}\begin {aligned} &-\int _{\Omega ^0_{\bm X}}\left |x_t\rho _0^{\prime }(X)\left (\frac {\partial x}{\partial X}\right )^{-1}\right |^2\frac {\partial _{X}x}{\mathcal {M}(\rho _0(X))}\mathrm {d}X+\eta _0\int _{\Omega ^0_{\bm X}}\partial _{X}\left (\frac {\mathrm {d}}{\mathrm {d}t}\log \left (\frac {\partial x}{\partial X}\right )\right )x_t\mathrm {d}X\\ =&\frac {\epsilon ^2}{2}\int _{\Omega ^0_{\bm X}}\partial _X\left (\rho _0^{\prime }(X)\left (\frac {\partial x}{\partial X}\right )^{-1}\right )^2x_t-\partial _XF(\rho _0(X))x_t\mathrm {d}X\\ =&-\frac {\epsilon ^2}{2}\int _{\Omega ^0_{\bm X}}\left (\rho _0^{\prime }(X)\left (\frac {\partial x}{\partial X}\right )^{-1}\right )^2\partial _Xx_t+F(\rho _0(X))\partial _Xx_t\mathrm {d}X\\ =&\frac {\mathrm {d}}{\mathrm {d}t}\int _{\Omega ^0_{\bm X}}\left (\frac {\epsilon ^2}{2}\left |\rho _0^{\prime }(X)\left (\frac {\partial x}{\partial X}\right )^{-1}\right |^2+F(\rho _0(X))\right )\frac {\partial x}{\partial X}\mathrm {d}X. \end {aligned}\end {equation*}


\begin {equation*}\begin {aligned} \int _{\Omega ^0_{\bm X}}\partial _{X}\left (\frac {\mathrm {d}}{\mathrm {d}t}\log \left (\frac {\partial x}{\partial X}\right )\right )x_t\mathrm {d}X=-\int _{\Omega ^0_{\bm X}}\frac {\mathrm {d}}{\mathrm {d}t}\log \left (\frac {\partial x}{\partial X}\right )\partial _{X}x_t\mathrm {d}X=\int _{\Omega ^0_{\bm X}} |\partial _Xx_t|^2\left (\frac {\partial x}{\partial X}\right )^{-1}\mathrm {d}X. \end {aligned}\end {equation*}


$\tau _{n}:=t^{n}-t^{n-1}>0$


$r_{n+1}:=\frac {\tau _{n+1}}{\tau _{n}}>0$


$n\ge 1$


$\{r_n\}_n$


$r_{\max }$


$r_n\le r_{\max }$


$\forall n$


$T>0$


$T=\sum _{n=1}^N\tau _{n}$


${ x}^n$


${ x}(\cdot , t^n)$


$\rho _0^{\prime }(X)\left (\frac {\partial x}{\partial X}\right )^{-1}\frac {1}{\mathcal {M}(\rho _0(X))}$


$\ell _n:=\frac {\partial x^n}{\partial X}\mathcal {M}(\rho _0(X))$


$\forall n\ge 1$


${ x}^{n-1},\ { x}^n$


$\rho ({X},0)$


$({ x}^{n+1},\rho ^{n+1})$


\begin {equation}\begin {aligned} &\frac {(2r_{n+1}+1)(\rho _0^{\prime }(X))^2}{2\tau _{n+1}(r_{n+1}+1)}(\ell _{n+1}^{-1}+\ell _n^{-1})(x^{n+1}-x^n) -\eta \tau _{n+1}\partial _X\left (\log \frac {\partial x^{n+1}}{\partial X}-\log \frac {\partial x^{n}}{\partial X}\right )\\ &-\frac {r_{n+1}^2(\rho _0^{\prime }(X))^2}{\tau _{n+1}(r_{n+1}+1)}\left (\left (1+\frac {1}{2r_{n+1}}\right )\ell _{n}^{-\frac {1}{2}}-\frac {1}{2r_{n+1}}\ell _{n+1}^{-\frac {1}{2}}\right )\left (\frac {1}{2}\ell _{n-1}^{-\frac {1}{2}}+\frac {1}{2}\ell _{n}^{-\frac {1}{2}}\right )(x^{n}-x^{n-1})\\ =&-\frac {\epsilon ^2}{2}\partial _X\left (\rho _0^{\prime }(X)\left (\frac {\partial x^{n+1}}{\partial X}\right )^{-1}\right )^2+\partial _XF(\rho _0(X)).\label {scheme:bdf2 modified variable} \end {aligned}\end {equation}


$\frac {1}{2\tau _{n+1}}(\ell _{n+1}^{-1}+\ell _n^{-1})(x^{n+1}-x^n)$


$\frac {1}{\tau _n}\left (\left (1+\frac {1}{2r_{n+1}}\right )\ell _{n}^{-\frac {1}{2}}-\frac {1}{2r_{n+1}}\ell _{n+1}^{-\frac {1}{2}}\right )\left (\frac {1}{2}\ell _{n-1}^{-\frac {1}{2}}+\frac {1}{2}\ell _{n}^{-\frac {1}{2}}\right )(x^{n}-x^{n-1})$


$\ell _{n+\frac {1}{2}}^{-1}x_t|_{n+\frac {1}{2}}$


$\ell ^{-1}_{n-\frac {1}{2}}x_t|_{n-\frac {1}{2}}$


$\frac {2r_{n+1}+1}{r_{n+1}+1}\ell ^{-1}_{n+\frac {1}{2}}x_t|_{n+\frac {1}{2}}-\frac {r_{n+1}}{r_{n+1}+1}\ell ^{-1}_{n-\frac {1}{2}}x_t|_{n-\frac {1}{2}}$


$\ell ^{-1}_{n+1}x_t|_{n+1}$


$-\eta \tau _{n+1}\partial _X\left (\log \frac {\partial x^{n+1}}{\partial X}-\log \frac {\partial x^{n}}{\partial X}\right )$


$\eta \ge 0$


$\frac {\partial x^{n+1}}{\partial X}$


$x^{n+1}$


$\rho (x^{n+1}(X))=\rho _0(X)$


$\mathcal {M}(\rho )>0$


$0<r_{\max }\le \frac {3}{2}$


\begin {equation}\begin {aligned} &E^{n+1}+\frac {r_{\max }}{2\tau _{n+1}(r_{\max }+1)}\left ((\rho _0^{\prime }(X))^2(\ell _{n+1}^{-1}+\ell _{n}^{-1})(x^{n+1}-x^{n}),x^{n+1}-x^{n}\right )\\ &+\eta \tau _{n+1}\left (\log \frac {\partial x^{n+1}}{\partial X}-\log \frac {\partial x^{n}}{\partial X},\frac {\partial x^{n+1}}{\partial X}-\frac {\partial x^{n}}{\partial X}\right )\\ \le &E^{n}+\frac {r_{\max }}{2\tau _{n}(r_{\max }+1)}\left ((\rho _0^{\prime }(X))^2(\ell _{n-1}^{-1}+\ell _{n}^{-1})(x^{n}-x^{n-1}),x^{n}-x^{n-1}\right ), \end {aligned} \label {Xeqn12-2.23}\end {equation}


$E^n=\int _{\Omega ^0_{\bm X}}\left (\frac {\epsilon ^2}{2}\left |\rho _0^{\prime }(X)\left (\frac {\partial x^n}{\partial X}\right )^{-1}\right |^2+F(\rho _0(X))\right )\frac {\partial x^n}{\partial X}\mathrm {d}X$


$-(x^{n+1}-x^n)$


\begin {equation}\label {energy,eq1} \begin {aligned} &\sum _{i=1}^3L_i:=-\frac {2r_{n+1}+1}{2\tau _{n+1}(r_{n+1}+1)}\left ((\rho _0^{\prime }(X))^2(\ell _{n+1}^{-1}+\ell _n^{-1})(x^{n+1}-x^n),x^{n+1}-x^n\right )\\ &+\left (\eta \tau _{n+1}\partial _X\left (\log \frac {\partial x^{n+1}}{\partial X}-\log \frac {\partial x^{n}}{\partial X}\right ),x^{n+1}-x^n\right )+\frac {r_{n+1}^2}{\tau _{n+1}(r_{n+1}+1)}\\ &\times \left ((\rho _0^{\prime }(X))^2\left (\left (\frac {2r_{n+1}+1}{2r_{n+1}}\right )\ell _{n}^{-\frac {1}{2}}-\frac {1}{2r_{n+1}}\ell _{n+1}^{-\frac {1}{2}}\right )\left (\frac {1}{2}\ell _{n-1}^{-\frac {1}{2}}+\frac {1}{2}\ell _{n}^{-\frac {1}{2}}\right )(x^{n}-x^{n-1}),x^{n+1}-x^{n}\right )\\ =&\frac {\epsilon ^2}{2}\left (\partial _{\bm X}\left |\rho _0^{\prime }(X)\left (\frac {\partial x^{n+1}}{\partial X}\right )^{-1}\right |^2,x^{n+1}-x^{n}\right )-\left (\partial _XF(\rho _0(X)),x^{n+1}-x^{n}\right ):=\sum _{i=1}^2R_i. \end {aligned}\end {equation}


$L_3$


\begin {align*}&\left ((\rho _0^{\prime }(X))^2\left (\left (1+\frac {1}{2r_{n+1}}\right )\ell _{n}^{-\frac {1}{2}}-\frac {1}{2r_{n+1}}\ell _{n+1}^{-\frac {1}{2}}\right )\left (\frac {1}{2}\ell _{n-1}^{-\frac {1}{2}}+\frac {1}{2}\ell _{n}^{-\frac {1}{2}}\right )(x^{n}-x^{n-1}),x^{n+1}-x^{n}\right )\\ \le & \frac {1}{4}\left ((\rho _0^{\prime }(X))^2\left (\left (1+\frac {1}{2r_{n+1}}\right )\ell _{n}^{-\frac {1}{2}}-\frac {1}{2r_{n+1}}\ell _{n+1}^{-\frac {1}{2}}\right )^2(x^{n+1}-x^{n}),x^{n+1}-x^{n}\right )\\ &+\left ((\rho _0^{\prime }(X))^2\left (\frac {1}{2}\ell _{n-1}^{-\frac {1}{2}}+\frac {1}{2}\ell _{n}^{-\frac {1}{2}}\right )^2(x^{n}-x^{n-1}),x^{n}-x^{n-1}\right )\\ \le &\frac {1}{4}\left ((\rho _0^{\prime }(X))^2\left (\frac {(2r_{n+1}+1)^2+2r_{n+1}+1}{4r_{n+1}^2}\ell _{n}^{-1}+\frac {2r_{n+1}+2}{4r_{n+1}^2}\ell _{n+1}^{-1}\right )(x^{n+1}-x^{n}),x^{n+1}-x^{n}\right )\\ &+\frac {1}{2}\left ((\rho _0^{\prime }(X))^2(\ell _{n-1}^{-1}+\ell _{n}^{-1})(x^{n}-x^{n-1}),x^{n}-x^{n-1}\right )\\ = &\frac {1}{4}\frac {(2r_{n+1}+1)^2+2r_{n+1}+1}{4r_{n+1}^2}\left ((\rho _0^{\prime }(X))^2(\ell _{n}^{-1}+\ell _{n+1}^{-1})(x^{n+1}-x^{n}),x^{n+1}-x^{n}\right )\\ &-\frac {1}{4}\frac {(2r_{n+1}+1)^2-1}{4r_{n+1}^2}\left ((\rho _0^{\prime }(X))^2\ell _{n+1}^{-1}(x^{n+1}-x^{n}),x^{n+1}-x^{n}\right )\\ &+\frac {1}{2}\left ((\rho _0^{\prime }(X))^2(\ell _{n-1}^{-1}+\ell _{n}^{-1})(x^{n}-x^{n-1}),x^{n}-x^{n-1}\right ).\end {align*}


$(2r_{n+1}+1)^2-1>0$


$\forall r_{n+1}>0$


\begin {equation}\label {energy,eql1} \begin {aligned} L_1+L_3 \le &-\frac {2r_{n+1}+1}{2\tau _{n+1}(r_{n+1}+1)}\left ((\rho _0^{\prime }(X))^2(\ell _{n+1}^{-1}+\ell _n^{-1})(x^{n+1}-x^n),x^{n+1}-x^n\right )\\ &+\frac {(2r_{n+1}+1)^2+2r_{n+1}+1}{16\tau _{n+1}(r_{n+1}+1)}\left ((\rho _0^{\prime }(X))^2(\ell _{n}^{-1}+\ell _{n+1}^{-1})(x^{n+1}-x^{n}),x^{n+1}-x^{n}\right )\\ &+\frac {r_{n+1}^2}{2\tau _{n+1}(r_{n+1}+1)}\left ((\rho _0^{\prime }(X))^2(\ell _{n-1}^{-1}+\ell _{n}^{-1})(x^{n}-x^{n-1}),x^{n}-x^{n-1}\right )\\ =&-\frac {(2r_{n+1}+1)(3-r_{n+1})}{8\tau _{n+1}(r_{n+1}+1)}\left ((\rho _0^{\prime }(X))^2(\ell _{n+1}^{-1}+\ell _n^{-1})(x^{n+1}-x^n),x^{n+1}-x^n\right )\\ &+\frac {r_{n+1}^2}{2\tau _{n+1}(r_{n+1}+1)}\left ((\rho _0^{\prime }(X))^2(\ell _{n-1}^{-1}+\ell _{n}^{-1})(x^{n}-x^{n-1}),x^{n}-x^{n-1}\right ). \end {aligned}\end {equation}


$L_2$


\begin {equation}\begin {aligned} L_2&=-\eta \tau _{n+1}\left (\log \frac {\partial x^{n+1}}{\partial X}-\log \frac {\partial x^{n}}{\partial X},\frac {\partial x^{n+1}}{\partial X}-\frac {\partial x^{n}}{\partial X}\right )\\ &=-\eta \tau _{n+1}\left (\left (\frac {\partial \xi }{\partial X}\right )^{-1},\left (\frac {\partial x^{n+1}}{\partial X}-\frac {\partial x^{n}}{\partial X}\right )^2\right )\le 0, \end {aligned} \label {Xeqn15-2.26}\end {equation}


$\xi $


$x^n$


$x^{n+1}$


$\frac {1}{y}$


$y$


$y>0$


\begin {equation}\begin {aligned} R_1=&-\frac {\epsilon ^2}{2}\left (\left |\rho _0^{\prime }(X)\left (\frac {\partial x^{n+1}}{\partial X}\right )^{-1}\right |^2,\partial _{\bm X}(x^{n+1}-x^{n})\right )\\ \ge &\ \frac {\epsilon ^2}{2}\int _{\Omega ^0_{\bm X}}(\rho _0^{\prime }(X))^2\left (\frac {\partial x^{n+1}}{\partial X}\right )^{-1}\mathrm {d} X-\frac {\epsilon ^2}{2}\int _{\Omega ^0_{\bm X}}(\rho _0^{\prime }(X))^2\left (\frac {\partial x^{n}}{\partial X}\right )^{-1}\mathrm {d} X. \end {aligned} \label {Xeqn16-2.27}\end {equation}


\begin {equation}\label {energy,eqr2} \begin {aligned} R_2 =-\int _{\Omega ^0_{\bm X}}\partial _{\bm X}F(\rho _0(X))(x^{n+1}-x^{n})\mathrm {d} X =\int _{\Omega ^0_{\bm X}}F(\rho _0(X))\partial _{\bm X}(x^{n+1}-x^{n})\mathrm {d} X. \end {aligned}\end {equation}


\begin {align*}&E^{n+1}+\frac {(2r_{n+1}+1)(3-r_{n+1})}{8\tau _{n+1}(r_{n+1}+1)}\left ((\rho _0^{\prime }(X)(\ell _{n+1}^{-1}+\ell _n^{-1})(x^{n+1}-x^n),\rho _0^{\prime }(X)(x^{n+1}-x^n)\right )\\ &+\eta \tau _{n+1}\left (\log \frac {\partial x^{n+1}}{\partial X}-\log \frac {\partial x^{n}}{\partial X},\frac {\partial x^{n+1}}{\partial X}-\frac {\partial x^{n}}{\partial X}\right )\\ \le &E^{n}+\frac {r_{n+1}^2}{2\tau _{n+1}(r_{n+1}+1)}\left ((\rho _0^{\prime }(X))^2(\ell _{n-1}^{-1}+\ell _{n}^{-1})(x^{n}-x^{n-1}),(x^{n}-x^{n-1})\right )\\ \le & E^{n}+\frac {r_{\max }}{2\tau _{n}(r_{\max }+1)}\left ((\rho _0^{\prime }(X))^2(\ell _{n-1}^{-1}+\ell _{n}^{-1})(x^{n}-x^{n-1}),(x^{n}-x^{n-1})\right ).\end {align*}


\begin {align*}\frac {(2r_{n+1}+1)(3-r_{n+1})}{8(r_{n+1}+1)}\ge \frac {r_{\max }}{2(r_{\max }+1)},\end {align*}


$h(s)=\frac {(2s+1)(3-s)}{8(s+1)}$


$0<s<3$


$h(s)$


$0<s<-1+\sqrt {2}$


$-1+\sqrt {2}<s\le r_{\max }<3$


$0<r_{\max }\le \frac {3}{2}$


$2r_{\max }^2-r_{\max }-3\le 0$


\begin {align*}h(s)\ge \min \{h(0),h(r_{\max })\}=\min \left \{\frac {3}{8}, \frac {(2r_{\max }+1)(3-r_{\max })}{8(r_{\max }+1)}\right \}\ge \frac {r_{\max }}{2(r_{\max }+1)},\end {align*}


$r_{n}\equiv 1$


$\forall n$


\begin {align*}&E^{n+1}+\frac {3}{8\tau }\left ((\rho _0^{\prime }(X))^2(\ell _{n+1}^{-1}+\ell _n^{-1})(x^{n+1}-x^n),(x^{n+1}-x^n)\right )\\ \le &E^{n}+\frac {1}{4\tau }\left ((\rho _0^{\prime }(X))^2(\ell _{n-1}^{-1}+\ell _n^{-1})(x^{n}-x^{n-1}),(x^{n}-x^{n-1})\right ).\end {align*}


\begin {equation}\begin {aligned} &\frac {(1+2r_{n+1})x^{n+1}-(1+r_{n+1})^2x^{n}+r_{n+1}^2x^{n-1}}{\tau _{n+1}(1+r_{n+1})}\rho _0^{\prime }(X)\left (\frac {\partial x^{n+1}_\star }{\partial X}\right )^{-1}\\ =&-\epsilon ^2\partial _X\left (\rho _0^{\prime }(X)\left (\frac {\partial x^{n+1}}{\partial X}\right )^{-1}\right )\left (\frac {\partial x^{n+1}}{\partial X}\right )^{-1}+F'(\rho _0(X)),\label {scheme:ac 2nd} \end {aligned}\end {equation}


$\frac {\partial x_{\star }^{n+1}}{\partial X}$


\begin {equation*}\frac {\partial x_{\star }^{n+1}}{\partial X}=\begin {cases} \frac {\partial ((1+r_{n+1})x^{n}-r_{n+1}x^{n-1})}{\partial X},&\ \text {if}\ \frac {\partial x^n}{\partial X}\ge \frac {\partial x^{n-1}}{\partial X},\\ \frac {1}{(1+r_{n+1})/\frac {\partial x^n}{\partial X} -r_{n+1}/\frac {\partial x^{n-1}}{\partial X}},&\ \text {if}\ \frac {\partial x^n}{\partial X}<\frac {\partial x^{n-1}}{\partial X}. \end {cases}\end {equation*}


$\frac {\partial x^{n+1}}{\partial X}$


$(\frac {\partial x^{n+1}_\star }{\partial X})^{-1}$


$\left (\frac {\partial x}{\partial X}\right )^{-1}$


$\tilde {\ell }_{n+1}^{-1}$


\begin {equation*}\tilde {\ell }_{n+1}^{-1} := \begin {cases} \left (\frac {\partial ((1+r_{n+1})x^{n}-r_{n+1}x^{n-1})}{\partial X}\right )^{-1}\left (\mathcal {M}(\rho _0(X))\right )^{-1}, & \text {if } \frac {\partial x^n}{\partial X} \geq \frac {\partial x^{n-1}}{\partial X}, \\ \left ((1+r_{n+1})\left (\frac {\partial x^n}{\partial X}\right )^{-1}-r_{n+1}\left (\frac {\partial x^{n-1}}{\partial X}\right )^{-1}\right )\left (\mathcal {M}(\rho _0(X))\right )^{-1}, & \text {if } \frac {\partial x^n}{\partial X} < \frac {\partial x^{n-1}}{\partial X}. \end {cases}\end {equation*}


$\ell _{K}^{-1}$


$\tilde {\ell }_{K}^{-1}$


$K=n-1,n,n+1$


$\rho $


$\mathcal {M}(\rho )=\rho $


\begin {align}\label {eq:wasserstein} \partial _t\rho =\nabla \cdot (\rho {\bm v}),\quad \bm {v}=\nabla \frac {\delta E}{\delta \rho },\end {align}


$E(\rho )=\int _{\Omega }F(\rho )\mathrm {d}{\bm x} =\int _{\Omega }U(\rho ({\bm x}))+V({\bm x})\rho ({\bm x})\mathrm {d}{\bm x}+\frac {1}{2}\int _{\Omega \times \Omega }W({\bm x}-{\bm y})\rho ({\bm x})\rho ({\bm y})\mathrm {d}{\bm x}\mathrm {d}{\bm y}$


$F(\rho )$


$U(\rho )$


$V({\bm x})$


$W({\bm x},{\bm y})=W({\bm y},{\bm x})$


\begin {align*}\rho {\bm v} = - \rho \Grad \frac {\delta E}{\delta \rho },\end {align*}


\begin {equation}\label {vis:force:0} \begin {split} &\rho _0({\bm X})\frac {\mathrm {d} {\bm x}}{\mathrm {d}t}+\rho _0(\bm X)\Grad _{\bm x}\frac {\delta E}{\delta \rho } =0,\\ & \rho (\bx ,t)=\frac {\rho _0({\bm X})}{\text {det}\frac {\partial \bm x}{\partial {\bm X}}}. \end {split}\end {equation}


\begin {equation}\label {vis:force} \begin {split} & \rho _0({\bm X})\frac {\mathrm {d} {\bm x}}{\mathrm {d}t}-\varepsilon \Delta _{\bm X} \frac {\mathrm {d}{\bm x}}{\mathrm {d}t} +\rho _0(\bm X)\Grad _{\bm x}\frac {\delta E}{\delta \rho } =0,\\ &\rho (\bx ,t)=\frac {\rho _0({\bm X})}{\text {det}\frac {\partial \bm x}{\partial {\bm X}}}. \end {split}\end {equation}


${\bm x}^{n+1}|_{\partial \Omega }={\bm X}|_{\partial \Omega }$


$\Omega ^0_{\bm x}=\Omega ^0_{\bm X}$


$\varepsilon \Delta _{\bm X} \frac {\mathrm {d}{\bm x}}{\mathrm {d}t}$


$\varepsilon \ge 0$


$n\ge 1$


${\bm x}^{n-1},\ {\bm x}^{n}$


$\tau _{n+1}$


$r_{n+1}$


$\rho _0({\bm X})$


$({\bm x}^{n+1},\rho ^{n+1})$


\begin {align}&\rho _0({\bm X})\frac {(1+2r_{n+1}){\bm x}^{n+1}-(1+r_{n+1})^2{\bm x}^{n}+r_{n+1}^2{\bm x}^{n-1}}{\tau _{n+1}(1+r_{n+1})}-\tau _{n+1}\Delta _{\bm X} ({\bm x}^{n+1}-{\bm x}^{n})+\rho _0({\bm X})\nabla _{\bm x}F'\left (\frac {\rho _0({\bm X})}{\text {det}\frac {\partial {\bm x}^{n+1}}{\partial {\bm X}}}\right )=0,\label {eq:jko_2}\\ &\rho ^{n+1}=\frac {\rho _0({\bm X})}{\text {det}\frac {\partial {\bm x}^{n+1}}{\partial {\bm X}}}, \label {eq:jko_11}\end {align}


${\bm x}^{n+1}|_{\partial \Omega }={\bm X}|_{\partial \Omega }$


$\Omega ^0_{\bm x}=\Omega ^0_{\bm X}$


${\bm x}^0$


${\bm x}^1$


${\bm x}^0={\bm X}$


${\bm x}^1$


$\rho _0({\bm X})>0$


$E({\bm x})$


$\bm x$


$U(s)=s\log s$


$1\leq n\leq N$


$\rho ^{n+1}({\bm x})$


$\int _{\Omega ^t_{\bm x}}\rho ^{n+1}({\bm x})\mathrm {d}{\bm x}=\int _{\Omega ^0_{\bm X}}\rho _0({\bm X})\mathrm {d}{\bm X}$


\begin {equation}\label {eq:jko_semi} {\bm x}^{k+1}:=\arg \min _{\bm x}\Bigg \{\frac {1}{2\tau _{n+1}}\int _{\Omega ^0_{\bm X}}\rho _0({\bm X})\frac {|(1+2r_{n+1}){\bm x}-(1+r_{n+1})^2{\bm x}^{n}+r_{n+1}^2{\bm x}^{n-1}|^2}{(1+r_{n+1})(1+2r_{n+1})}\mathrm {d}{\bm X}+E({\bm x})+\frac {\tau _{n+1}}{2}\int _{\Omega ^0_{\bm X}}|\nabla _{\bm X}({\bm x}-{\bm x}^k)|^2\mathrm {d}{\bm X}\Bigg \}.\end {equation}


$\bm x$


$E({\bm x})$


$U(s)=s\log s$


$\frac {\rho _0({\bm X})}{\text {det}\frac {\partial {\bm x}^{n+1}}{\partial {\bm X}}}$


$\text {det}\frac {\partial {\bm x}^{n+1}}{\partial {\bm X}}\ge 0$


$\text {det}\frac {\partial {\bm x}^{n+1}}{\partial {\bm X}}=0$


${\bm x}^{n+1}$


$+\infty $


$\rho ^{n+1}>0$


$\text {det}\frac {\partial {\bm x}}{\partial {\bm X}}\mathrm {d}{\bm X}=\mathrm {d}{\bm x}$


\begin {align*}\int _{\Omega ^t_{\bm x}}\rho ^{n+1}({\bm x})\mathrm {d}{\bm x}=\int _{\Omega ^t_{\bm x}}\frac {\rho _0({\bm X})}{\text {det}\frac {\partial {\bm x}^{n+1}}{\partial {\bm X}}}\mathrm {d}{\bm x}=\int _{\Omega ^0_{\bm X}}\frac {\rho _0({\bm X})}{\text {det}\frac {\partial {\bm x}^{n+1}}{\partial {\bm X}}}\text {det}\frac {\partial {\bm x}^{n+1}}{\partial {\bm X}}\mathrm {d}{\bm X}=\int _{\Omega ^0_{\bm X}}\rho _0({\bm X})\mathrm {d}{\bm X}.\end {align*}


$\rho _0({\bm X})>0$


$0<r_{\max }\le \frac {3+\sqrt {17}}{2}$


$E({\bm x})$


$\bm x$


\begin {equation}\begin {aligned} &E({\bm x}^{n+1})+\frac {r_{\max }}{2\tau _{n+1}(1+r_{\max })}\int _{\Omega ^0_{\bm X}}\rho _0({\bm X})|{\bm x}^{n+1}-{\bm x}^{n}|^2\mathrm {d}{\bm X}\\ \le & E({\bm x}^{n})+\frac {r_{\max }}{2\tau _{n}(1+r_{\max })}\int _{\Omega ^0_{\bm X}}\rho _0({\bm X})|{\bm x}^{n}-{\bm x}^{n-1}|^2\mathrm {d}{\bm X}. \end {aligned} \label {Xeqn30-3.36}\end {equation}


${\bm x}^{n+1}-{\bm x}^{n}$


\begin {align*}&\frac {1+2r_{n+1}}{\tau _{n+1}(1+r_{n+1})}\int _{\Omega ^0_{\bm X}}\rho _0({\bm X})\left (|{\bm x}^{n+1}-{\bm x}^{n}|^2-\frac {r_{n+1}^2}{1+2r_{n+1}}({\bm x}^{n+1}-{\bm x}^{n})({\bm x}^{n}-{\bm x}^{n-1})\right )\mathrm {d}{\bm X}\nonumber \\ +&\tau _{n+1}\|\partial _{\bm X}({\bm x}^{n+1}-{\bm x}^{n})\|^2+\left (\frac {\delta E}{\delta {\bm x}}({\bm x}^{n+1}),({\bm x}^{n+1}-{\bm x}^{n})\right )=0,\end {align*}


$E({\bm x})$


$\bm x$


\begin {equation}\label {eq:energy1} \begin {aligned} &\frac {1+2r_{n+1}}{\tau _{n+1}(1+r_{n+1})}\int _{\Omega ^0_{\bm X}}\rho _0({\bm X})\left (|{\bm x}^{n+1}-{\bm x}^{n}|^2-\frac {r_{n+1}^2}{1+2r_{n+1}}({\bm x}^{n+1}-{\bm x}^{n})({\bm x}^{n}-{\bm x}^{n-1})\right )\mathrm {d}{\bm X}\\ +&\tau _{n+1}\|\partial _{\bm X}({\bm x}^{n+1}-{\bm x}^{n})\|^2+E({\bm x}^{n+1})\le E({\bm x}^{n}). \end {aligned}\end {equation}


\begin {equation*}\begin {aligned} &\int _{\Omega ^0_{\bm X}}\rho _0({\bm X})\left (|{\bm x}^{n+1}-{\bm x}^{n}|^2-\frac {r_{n+1}^2}{1+2r_{n+1}}({\bm x}^{n+1}-{\bm x}^{n})({\bm x}^{n}-{\bm x}^{n-1})\right )\mathrm {d}{\bm X}\\ \ge &\int _{\Omega ^0_{\bm X}}\rho _0({\bm X})\left (\frac {2+4r_{n+1}-r_{n+1}^2}{2(1+2r_{n+1})}|{\bm x}^{n+1}-{\bm x}^{n}|^2-\frac {r_{n+1}^2}{2(1+2r_{n+1})}|{\bm x}^{n}-{\bm x}^{n-1}|^2\right )\mathrm {d}{\bm X}. \end {aligned}\end {equation*}


\begin {align*}&\int _{\Omega ^0_{\bm X}}\rho _0({\bm X})\left (\frac {2+4r_{n+1}-r_{n+1}^2}{2\tau _{n+1}(1+r_{n+1})}|{\bm x}^{n+1}-{\bm x}^{n}|^2-\frac {r_{n+1}^2}{2\tau _{n+1}(1+r_{n+1})}|{\bm x}^{n}-{\bm x}^{n-1}|^2\right )\mathrm {d}{\bm X}\nonumber \\ +&\tau _{n+1}\|\partial _{\bm X}({\bm x}^{n+1}-{\bm x}^{n})\|^2+E({\bm x}^{n+1})\le E({\bm x}^{n}),\end {align*}


$r_{n+1}=\frac {\tau _{n+1}}{\tau _{n}}$


\begin {align*}&\frac {2+4r_{n+1}-r_{n+1}^2}{2\tau _{n+1}(1+r_{n+1})}\int _{\Omega ^0_{\bm X}}\rho _0({\bm X})|{\bm x}^{n+1}-{\bm x}^{n}|^2\mathrm {d}{\bm X}+\tau _{n+1}\|\partial _{\bm X}({\bm x}^{n+1}-{\bm x}^{n})\|^2+E({\bm x}^{n+1})\\ \le &E({\bm x}^{n})+\frac {r_{n+1}}{2\tau _{n}(1+r_{n+1})}\int _{\Omega ^0_{\bm X}}\rho _0({\bm X})|{\bm x}^{n}-{\bm x}^{n-1}|^2\mathrm {d}{\bm X}\\ \le & E({\bm x}^{n})+\frac {r_{\max }}{2\tau _{n}(1+r_{\max })}\int _{\Omega ^0_{\bm X}}\rho _0({\bm X})|{\bm x}^{n}-{\bm x}^{n-1}|^2\mathrm {d}{\bm X}.\end {align*}


$g(r_{n+1}):=\frac {2+4r_{n+1}-r_{n+1}^2}{1+r_{n+1}}\ge \frac {r_{\max }}{1+r_{\max }}$


$g(r)=\frac {2+4r-r^2}{1+r}$


$r\in (0,-1+\sqrt {3})$


$r\in (-1+\sqrt {3},r_{\max })$


$g(r)\ge \min \{g(0),g(r_{\max })\}$


$0<r\le r_{\max }$


\begin {align*}g(r_{\max })\ge \frac {r_{\max }}{1+r_{\max }},\end {align*}


$2+3r_{\max }-r_{\max }^2\ge 0$


$0<r_{\max }\le \frac {3+\sqrt {17}}{2}$


$\bm x$


$0<r_{\max }\le \frac {3+\sqrt {17}}{2}$


$\Omega _0^X=[-L,L]$


$\Omega _0^x=[-L,L]$


$-L=X_0<X_1<\cdots <X_{M_x}=L$


$h=\frac {2L}{M_x}$


$x_{j+\frac {1}{2}}:=\frac {1}{2}(x_j+x_{j+1})$


\begin {align*}(D_hx)_{j+\frac {1}{2}}:=\frac {1}{h}(x_{j+1}-x_j),\end {align*}


$j=0,1,\cdots ,M_x-1$


\begin {align*}(d_hx)_j:=\frac {1}{h}(x_{j+\frac {1}{2}}-x_{j-\frac {1}{2}}),\end {align*}


$j=1,\cdots ,M_x-1$


\begin {align*}(u,v)_h:=\sum _{j=0}^{M_x-1}(uv)_{j+\frac {1}{2}}h,\end {align*}


\begin {align*}[u,v]_h=\sum _{j=1}^{M_x-1}(uv)_jh+\frac {h}{2}(u_0v_0+u_{M_x}v_{M_x}).\end {align*}


$v$


$v_0=v_{M_x}=0$


$(D_hu,v)_h=-[u,d_hv]_h$


$n\ge 1$


$x^{n-1}$


$x^n$


$\tau _{n+1}$


$r_{n+1}$


$(x^{n+1},\rho ^{n+1})$


\begin {equation}\label {scheme:ac fully discrete} \begin {aligned} &\frac {(2r_{n+1}+1)(\rho _0^{\prime }(X_{j+\frac {1}{2}}))^2}{2\tau _{n+1}(r_{n+1}+1)M(\rho _0(X_{j+\frac {1}{2}}))}\left ((D_hx^{n+1})_{j+\frac {1}{2}}^{-1}+(D_hx^{n})_{j+\frac {1}{2}}^{-1}\right )(x_{j+\frac {1}{2}}^{n+1}-x_{j+\frac {1}{2}}^{n})\\ &-\eta \tau _{n+1}D_h\left (\log (d_hx^{n+1}) -\log (d_hx^{n})\right )_{j+\frac {1}{2}}\\&-\frac {r_{n+1}^2(\rho _0^{\prime }(X_{j+\frac {1}{2}}))^2}{2\tau _{n+1}(r_{n+1}+1)M(\rho _0(X_{j+\frac {1}{2}}))}\left (\left (1+\frac {1}{2r_{n+1}}\right )(D_hx^n)_{j+\frac {1}{2}}^{-\frac {1}{2}}-\frac {1}{2r_{n+1}}(D_hx^{n+1})_{j+\frac {1}{2}}^{-\frac {1}{2}}\right )\\ &\times \left ((D_hx^{n-1})_{j+\frac {1}{2}}^{-\frac {1}{2}}-(D_hx^n)_{j+\frac {1}{2}}^{-\frac {1}{2}}\right )(x_{j+\frac {1}{2}}^{n}-x_{j+\frac {1}{2}}^{n-1})\\ =&-\frac {\epsilon ^2}{2}D_h(\rho _0^{\prime }(X)(d_hx^{n+1})^{-1})^2_{j+\frac {1}{2}}+D_hF(\rho _0(X))_{j+\frac {1}{2}}, \end {aligned}\end {equation}


$\rho ^{n+1}_{j+\frac {1}{2}}=\rho _0(X_{j+\frac {1}{2}})$


$j=0$


$1$


$\cdots $


$M_x-1$


\begin {align}(x_0^0,x_1^0,\cdots ,x_{M_x}^0)=(X_0,X_1,\cdots ,X_{M_x}),\quad x^{n+1}_0=X_0,\ x^{n+1}_{M_x}=X_{M_x}.\end {align}


$\eta \tau _{n+1}D_h\left (\log (d_hx^{n+1}) -\log (d_hx^{n})\right )$


$\eta \ge 0$


$d_hx^{n+1}$


$-(x^{n+1}-x^n)$


$\mathcal {M}(\rho )>0$


$0<r_{\max }\le \frac {3}{2}$


\begin {equation}\label {eq: ac energy discrete} \begin {aligned} &E_h^{n+1}+\frac {r_{\max }}{2\tau _{n+1}(r_{\max }+1)}\left (\frac {(\rho _0^{\prime })^2}{\mathcal {M}(\rho _0)}((D_hx^{n+1})^{-1}+(D_hx^{n})^{-1})(x^{n+1}-x^{n}),(x^{n+1}-x^{n})\right )_h\\ &+\eta \tau _{n+1} [\log (d_hx^{n+1}) -\log (d_hx^{n}),d_h(x^{n+1}-x^n)]_h\\\le &E_h^{n}+\frac {r_{\max }}{2\tau _{n}(r_{\max }+1)}\left (\frac {(\rho _0^{\prime })^2}{\mathcal {M}(\rho _0)}((D_hx^{n-1})^{-1}+(D_hx^{n})^{-1})(x^{n}-x^{n-1}),(x^{n}-x^{n-1})\right )_h, \end {aligned}\end {equation}


\begin {align*}E_h^n=\frac {\epsilon ^2}{2}\left [|\rho _0^{\prime }(X)(d_hx^n)^{-1}|^2,d_hx^n\right ]_h+\left [F(\rho _0(X)),d_hx^n\right ]_h.\end {align*}


$-(x^{n+1}-x^n)$


\begin {equation}\begin {aligned} &-\frac {2r_{n+1}+1}{2\tau _{n+1}(r_{n+1}+1)}\left (\frac {(\rho _0^{\prime }(X))^2}{\mathcal {M}(\rho _0(X))}\left ((D_hx^{n+1})^{-1}+(D_hx^{n})^{-1}\right )(x^{n+1}-x^{n}),x^{n+1}-x^n\right )_h\\ &+\eta \tau _{n+1}\left (D_h\left (\log (d_hx^{n+1}) -\log (d_hx^{n})\right ),x^{n+1}-x^n\right )_h\\&+\frac {r_{n+1}^2}{2\tau _{n+1}(r_{n+1}+1)}\left (\frac {(\rho _0^{\prime }(X))^2}{\mathcal {M}(\rho _0(X))}\left (\left (1+\frac {1}{2r_{n+1}}\right )(D_hx^n)^{-\frac {1}{2}}-\frac {1}{2r_{n+1}}(D_hx^{n+1})^{-\frac {1}{2}}\right )\right .\\ &\times \left .\left ((D_hx^{n-1})^{-\frac {1}{2}}-(D_hx^n)^{-\frac {1}{2}}\right )(x^{n}-x^{n-1}),x^{n+1}-x^n\right )_h\\ =&\frac {\epsilon ^2}{2}(D_h(\rho _0^{\prime }(X)(d_hx^{n+1})^{-1})^2,x^{n+1}-x^n)-(D_hF(\rho _0(X)),x^{n+1}-x^n)_h. \end {aligned} \label {Xeqn34-4.41}\end {equation}


$\frac {1}{y}$


$y$


\begin {equation}\label {eq: discrete ac 1} \begin {aligned} &-\frac {2r_{n+1}+1}{2\tau _{n+1}(r_{n+1}+1)}\left (\frac {(\rho _0^{\prime }(X))^2}{\mathcal {M}(\rho _0(X))}\left ((D_hx^{n+1})^{-1}+(D_hx^{n})^{-1}\right )(x^{n+1}-x^{n}),x^{n+1}-x^n\right )_h\\ &-\eta \tau _{n+1}\left [\log (d_hx^{n+1}) -\log (d_hx^{n}),d_h(x^{n+1}-x^n)\right ]_h\\&+\frac {r_{n+1}^2}{2\tau _{n+1}(r_{n+1}+1)}\left (\frac {(\rho _0^{\prime }(X))^2}{\mathcal {M}(\rho _0(X))}\left (\left (1+\frac {1}{2r_{n+1}}\right )(D_hx^n)^{-\frac {1}{2}}-\frac {1}{2r_{n+1}}(D_hx^{n+1})^{-\frac {1}{2}}\right )\right .\\ &\times \left .\left ((D_hx^{n-1})^{-\frac {1}{2}}-(D_hx^n)^{-\frac {1}{2}}\right )(x^{n}-x^{n-1}),x^{n+1}-x^n\right )_h\\ =&-\frac {\epsilon ^2}{2}[(\rho _0^{\prime }(X)(d_hx^{n+1})^{-1})^2,d_h(x^{n+1}-x^n)]_h+[F(\rho _0(X)),d_h(x^{n+1}-x^n)]_h\\ \ge &\frac {\epsilon ^2}{2}[(\rho _0^{\prime }(X)(d_hx^{n+1})^{-1})^2,d_hx^{n+1}]_h-\frac {\epsilon ^2}{2}[(\rho _0^{\prime }(X)(d_hx^{n})^{-1})^2,d_hx^{n}]_h\\ &+[F(\rho _0(X)),d_h(x^{n+1}-x^n)]_h. \end {aligned}\end {equation}


$D_hx^n\mathcal {M}(\rho _0)=\ell _{h^n}$


\begin {align*}&\left ((\rho _0^{\prime }(X))^2((1+\frac {1}{2r_{n+1}})\ell _{h^n}^{-\frac {1}{2}}-\frac {1}{2r_{n+1}}\ell _{h^{n+1}}^{-\frac {1}{2}})(\frac {1}{2}\ell _{h^{n-1}}^{-\frac {1}{2}}+\frac {1}{2}\ell _{h^{n}}^{-\frac {1}{2}})(x^{n}-x^{n-1}),x^{n+1}-x^{n}\right )_h\\ \le &\frac {1}{4}\left ((\rho _0^{\prime }(X))^2(\frac {(2r_{n+1}+1)^2+2r_{n+1}+1}{4r_{n+1}^2}\ell _{h^{n}}^{-1}+\frac {2r_{n+1}+2}{4r_{n+1}^2}\ell _{h^{n+1}}^{-1})(x^{n+1}-x^{n}),x^{n+1}-x^{n}\right )_h\\ &+\frac {1}{2}\left ((\rho _0^{\prime }(X))^2(\ell _{h^{n-1}}^{-1}+\ell _{h^n}^{-1})(x^{n}-x^{n-1}),x^{n}-x^{n-1}\right )_h\\ \le &\frac {1}{4}\frac {(2r_{n+1}+1)^2+2r_{n+1}+1}{4r_{n+1}^2}\left ((\rho _0^{\prime }(X))^2(\ell _{h^n}^{-1}+\ell _{h^{n+1}}^{-1})(x^{n+1}-x^{n}),x^{n+1}-x^{n}\right )_h\\ &+\frac {1}{2}\left ((\rho _0^{\prime }(X))^2(\ell _{h^{n-1}}^{-1}+\ell _{h^n}^{-1})(x^{n}-x^{n-1}),x^{n}-x^{n-1}\right )_h.\end {align*}


\begin {align*}&-\frac {2r_{n+1}+1}{2\tau _{n+1}(r_{n+1}+1)}\left (\frac {(\rho _0^{\prime }(X))^2}{\mathcal {M}(\rho _0(X))}\left ((D_hx^{n+1})^{-1}+(D_hx^{n})^{-1}\right )(x^{n+1}-x^{n}),x^{n+1}-x^n\right )_h\\ &+\frac {r_{n+1}^2}{2\tau _{n+1}(r_{n+1}+1)}\left (\frac {(\rho _0^{\prime }(X))^2}{\mathcal {M}(\rho _0(X))}\left ((1+\frac {1}{2r_{n+1}})(D_hx^n)^{-\frac {1}{2}}-\frac {1}{2r_{n+1}}(D_hx^{n+1})^{-\frac {1}{2}}\right )\right .\\ &\times \left .\left ((D_hx^{n-1})^{-\frac {1}{2}}-(D_hx^n)^{-\frac {1}{2}}\right )(x^{n}-x^{n-1}),x^{n+1}-x^n\right )_h\\ \le &-\frac {2r_{n+1}+1}{2\tau _{n+1}(r_{n+1}+1)}\left (\frac {(\rho _0^{\prime }(X))^2}{\mathcal {M}(\rho _0(X))}\left ((D_hx^{n+1})^{-1}+(D_hx^{n})^{-1}\right )(x^{n+1}-x^{n}),x^{n+1}-x^n\right )_h\\ &+\frac {(2r_{n+1}+1)^2+2r_{n+1}+1}{16\tau _{n+1}(r_{n+1}+1)}\left (\frac {(\rho _0^{\prime }(X))^2}{\mathcal {M}(\rho _0(X))}((D_hx^n)^{-1}+(D_hx^{n+1})^{-1})(x^{n+1}-x^{n}),x^{n+1}-x^{n}\right )_h\\ &+\frac {r_{n+1}^2}{2\tau _{n+1}(r_{n+1}+1)}\left (\frac {(\rho _0^{\prime }(X))^2}{\mathcal {M}(\rho _0(X))}((D_hx^{n-1})^{-1}+(D_hx^n)^{-1})(x^{n}-x^{n-1}),x^{n}-x^{n-1}\right )_h\\ =&-\frac {(2r_{n+1}+1)(3-r_{n+1})}{8\tau _{n+1}(r_{n+1}+1)}\left (\frac {(\rho _0^{\prime }(X))^2}{\mathcal {M}(\rho _0(X))}((D_hx^n)^{-1}+(D_hx^{n+1})^{-1})(x^{n+1}-x^{n}),x^{n+1}-x^{n}\right )_h\\ &+\frac {r_{n+1}^2}{2\tau _{n+1}(r_{n+1}+1)}\left (\frac {(\rho _0^{\prime }(X))^2}{\mathcal {M}(\rho _0(X))}((D_hx^{n-1})^{-1}+(D_hx^n)^{-1})(x^{n}-x^{n-1}),x^{n}-x^{n-1}\right )_h,\end {align*}


\begin {equation*}\begin {aligned} &E_h^{n+1}+\frac {(2r_{n+1}+1)(3-r_{n+1})}{8\tau _{n+1}(r_{n+1}+1)}\left (\frac {(\rho _0^{\prime }(X))^2}{\mathcal {M}(\rho _0(X))}((D_hx^n)^{-1}+(D_hx^{n+1})^{-1})(x^{n+1}-x^{n}),x^{n+1}-x^{n}\right )_h\\ &+\eta \tau _{n+1}\left [\log (d_hx^{n+1}) -\log (d_hx^{n}),d_h(x^{n+1}-x^n)\right ]_h\\ \le &E_h^n+\frac {r_{\max }}{2\tau _{n}(r_{\max }+1)}\left (\frac {(\rho _0^{\prime }(X))^2}{\mathcal {M}(\rho _0(X))}((D_hx^{n-1})^{-1}+(D_hx^n)^{-1})(x^{n}-x^{n-1}),x^{n}-x^{n-1}\right )_h. \end {aligned}\end {equation*}


\begin {align*}h(r_{n+1})=\frac {(2r_{n+1}+1)(3-r_{n+1})}{8(r_{n+1}+1)}\ge \frac {r_{\max }}{2(r_{\max }+1)},\end {align*}


$0<r_{\max }\le \frac {3}{2}$


$(\tilde {D}_hx^{n+1})^{-1}$


\begin {equation*}(\tilde {D}_h x^{n+1})^{-1} := \begin {cases} \left ((1+r_{n+1})D_h x^n - r_{n+1}D_h x^{n-1}\right )^{-1}, & \text {if } D_hx^n \geq D_hx^{n-1}, \\ (1+r_{n+1})(D_h x^n)^{-1} - r_{n+1}(D_h x^{n-1})^{-1}, & \text {if } D_hx^n < D_hx^{n-1}. \end {cases}\end {equation*}


$({D}_h x^{K})^{-1}$


$(\tilde {D}_h x^{K})^{-1}$


$K=n-1,n,n+1$


$S_{ad}:=\{{\bm x}: \ x_{j+1}>x_{j}\ \text {for}\ j=0, 1, \cdots , M_x-1, \ \text {and} \ x_0=X_0,\ x_{M_x}=X_{M_x}\}$


${\bm x}^{n-1}$


${\bm x}^{n}$


$\tau _{n+1}$


$r_{n+1}$


$\rho _0({\bm X})$


$({\bm x}^{n+1},\rho ^{n+1})$


\begin {equation}\label {eq:discre optim11} \begin {cases} &\displaystyle {\bm x}^{n+1}:=\arg \inf _{{\bm x}\in S_{ad}}\frac {1+2r_{n+1}}{2\tau _{n+1}(1+r_{n+1})}\left (\rho _0({\bm X}),|{\bm x}-\hat {\bm x}^{n}|^2\right )_h+E_h({\bm x})\\ &\qquad \qquad \qquad \qquad \qquad \displaystyle +\frac {\tau _{n+1}}{2}\left (|D_h( {\bm x}- {\bm x}^{n})|^2,1\right )_h,\\ &\displaystyle \rho _{j+\frac {1}{2}}^{n+1}:=\frac {\rho _0(X_{j+\frac {1}{2}})}{(D_hx^{n+1})_{j+\frac {1}{2}}},\qquad j=0, 1, \cdots , M_x-1, \end {cases}\end {equation}


${\bm x}=(x_0,x_1,\ldots ,x_{M_x-1},x_{M_x})$


${x}_{j+\frac {1}{2}}:=\frac {1}{2}(x_{j+1}+x_{j})$


$\hat {\bm x}^{n}=\frac {(1+r_{n+1})^2}{1+2r_{n+1}}{\bm x}^{n}-\frac {r_{n+1}^2}{1+2r_{n+1}}{\bm x}^{n-1}$


$E_h({\bm x}):=\left (F\left (\frac {\rho _0({\bm X})}{D_h{\bm x}}\right ),D_h{\bm x}\right )_h$


$\bm x$


${\bm x}={\bm x}^{n+1}$


\begin {equation}\label {eq:weak formula} \begin {aligned} &\dfrac {1+2r_{n+1}}{\tau _{n+1}(1+r_{n+1})}\left (\rho _0({\bm X})({\bm x}^{n+1}-\hat {\bm x}^{n}),\delta {\bm x}\right )_h+\tau _{n+1}\left (D_h({\bm x}^{n+1}-{\bm x}^{n}),D_h\delta {\bm x}\right )_h\\ &\quad +\left (\frac {\delta E_h}{\delta {\bm x}}({\bm x}^{n+1}),\delta {\bm x}\right )_h=0. \end {aligned}\end {equation}


$\delta {\bm x}=(\delta x_0,\delta x_1,\cdots ,\delta x_{M_x-1},\delta x_{M_x})$


$\delta x_i= \delta _{ij}$


$i,j=0,1\cdots ,M_x-1$


\begin {align}&\dfrac {1+2r_{n+1}}{2\tau _{n+1}(1+r_{n+1})}\rho _0(X_{j+\frac {1}{2}})(x_{j+\frac {1}{2}}^{n+1}-\hat {x}_{j+\frac {1}{2}}^{n})h+\dfrac {1+2r_{n+1}}{2\tau _{n+1}(1+r_{n+1})}\rho _0(X_{j-\frac {1}{2}})(x_{j-\frac {1}{2}}^{n+1}-\hat {x}_{j-\frac {1}{2}}^{n})h\nonumber \\ &-\tau _{n+1}\frac {(x_{j+1}^{n+1}-x_{j+1}^{n})-2(x_j^{n+1}-x_{j}^{n})+x_{j-1}^{n+1}-x_{j-1}^{n}}{h^2}h+\frac {\delta E_h}{\delta x_j}({\bm x}^{n+1})=0,\label {eq:scheme bdf2}\\ &\rho _{j+\frac {1}{2}}^{n+1}:=\frac {\rho _0(X_{j+\frac {1}{2}})}{(D_hx^{n+1})_{j+\frac {1}{2}}},\qquad j=0, 1, \cdots , M_x-1,\label {schem:2-1}\end {align}


\begin {align}{\bm x}^0=(X_0,X_1,\cdots ,X_{M_x})\quad \text {and}\quad x_{0}^{n+1}=X_0,\quad x_{M_x}^{n+1}=X_{M_x}.\label {schem:1-3}\end {align}


${\bm x}^1$


$\rho ^1$


$\rho _0(X)>0$


$X\in \Omega _0^X$


$F(s)$


$F(s)\ge 0$


$s\ge 0$


$\lim \limits _{s\rightarrow 0}F(\frac {1}{s})s=\infty $


$\bm {x}^{n+1}\in S_{ad}$


$\frac {\delta ^2 E_h}{\delta {\bm x}^2}>0$


$\rho _{j+\frac {1}{2}}^{n+1}>0$


$j=0, 1, \cdots , M_x-1$


$0<r_{n+1}\le r_{\max }\le \frac {3+\sqrt {17}}{2}$


\begin {equation}\begin {split} &E_h({\bm x}^{n+1})+\dfrac {r_{\max }}{2\tau _{n+1}(1+r_{\max })}\left (\rho _0({\bm X})({\bm x}^{n+1}-{\bm x}^{n})^2,1\right )_h\\ \le & E_h({\bm x}^{n})+\dfrac {r_{\max }}{2\tau _{n}(1+r_{\max })}\left (\rho _0({\bm X})({\bm x}^{n}-{\bm x}^{n-1})^2,1\right )_h. \end {split} \label {Xeqn38-4.48}\end {equation}


$\delta {\bm x}={\bm x}^{n+1}-{\bm x}^{n}$


\begin {align*}&\dfrac {1+2r_{n+1}}{\tau _{n+1}(1+r_{n+1})}\left (\rho _0({\bm X})({\bm x}^{n+1}-{\bm x}^{n})^2,1\right )_h- \dfrac {r_{n+1}^2}{\tau _{n+1}(1+r_{n+1})}\left (\rho _0({\bm X})({\bm x}^{n}-{\bm x}^{n-1}),{\bm x}^{n+1}-{\bm x}^{n}\right )_h\\ & +\tau _{n+1}(|D_h({\bm x}^{n+1}-{\bm x}^{n})|^2,1)_h+\left (\frac {\delta E_h}{\delta {\bm x}}({\bm x}^{n+1}),{\bm x}^{n+1}-{\bm x}^{n}\right )_h=0,\end {align*}


$E({\bm x})$


$\bm x$


\begin {align*}&\dfrac {2+4r_{n+1}-r_{n+1}^2}{2\tau _{n+1}(1+r_{n+1})}\left (\rho _0({\bm X})({\bm x}^{n+1}-{\bm x}^{n})^2,1\right )_h- \dfrac {r_{n+1}^2}{2\tau _{n+1}(1+r_{n+1})}\left (\rho _0({\bm X})({\bm x}^{n}-{\bm x}^{n-1})^2,1\right )_h\\ +&\tau _{n+1}(|\nabla _h({\bm x}^{n+1}-{\bm x}^{n})|^2,1)_h+E_h({\bm x}^{n+1})\le E_h({\bm x}^{n}),\end {align*}


\begin {align*}&E_h({\bm x}^{n+1})+\dfrac {2+4r_{n+1}-r_{n+1}^2}{2\tau _{n+1}(1+r_{n+1})}\left (\rho _0({\bm X})({\bm x}^{n+1}-{\bm x}^{n})^2,1\right )_h\\ \le & E_h({\bm x}^{n})+ \dfrac {r_{\max }}{2\tau _{n}(1+r_{\max })}\left (\rho _0({\bm X})({\bm x}^{n}-{\bm x}^{n-1})^2,1\right )_h.\end {align*}


$g(r_{\max })\ge \frac {r_{\max }}{1+r_{\max }}$


$0<r_{\max }\le \frac {3+\sqrt {17}}{2}$


$E_h(\bm {x})$


$\bm {x}$


$F(s)=\frac {1}{m-1}s^m$


$m>1$


$F(s)=s\log s+sV(x)$


$s \geq 0$


$\lim \limits _{s\to 0} F\left (\frac {1}{s}\right )s = \infty $


${\bm x}=(x,y)$


${\bm X}=(X,Y)$


$\frac {\partial {\bm x}}{\partial {\bm X}}=\frac {\partial (x,y)}{\partial (X,Y)}$


$\Omega _0^X=[-L_x,L_x]\times [-L_y,L_y]$


$L_x$


$L_y>0$


$\Omega _0^x=\Omega _0^X$


$M_x$


$M_y\in \mathbb {N}$


$h_x=\frac {2L_x}{M_x}$


$h_y=\frac {2L_y}{M_y}$


$X_{ij}=X_0+jh_x$


$Y_{ij}=Y_0+ih_y$


$0\le j\le M_x$


$0\le i\le M_y$


$\rho _{ij}^0=\rho (X_{ij},Y_{ij},0)\ge 0$


${\bm x}^0={\bm X}$


$\rho _0({\bm X})$


${\bm x}^1$


$\forall n\ge 1$


${\bm x}^{n-1}$


${\bm x}^{n}$


$\tau _{n+1}$


$r_{n+1}$


$(x^{n+1},y^{n+1})$


\begin {align}&\rho _{ij}^0D_2x_{ij}^{n+1}-\varepsilon \tau _{n+1}\Delta _{\bm X}(x^{n+1}_{ij}-x^{n}_{ij}) +\frac {\delta \tilde {E}_{h,2}}{\delta x}({\bm x}_{ij}^{n+1})=0,\label {eq:wasserstein 2d-1}\\ &\rho _{ij}^0D_2y_{ij}^{n+1}-\varepsilon \tau _{n+1}\Delta _{\bm X}(y^{n+1}_{ij}-y^{n}_{ij}) +\frac {\delta \tilde {E}_{h,2}}{\delta y}({\bm x}_{ij}^{n+1})=0,\label {eq:wasserstein 2d-2}\end {align}


$D_2a_{ij}^{n+1}:=\frac {(1+2r_{n+1})a_{ij}^{n+1}-(1+r_{n+1})^2a_{ij}^n+r_{n+1}^2a_{ij}^{n-1}}{\tau _{n+1}(1+r_{n+1})}$


$\tilde {E}_{h,2}({\bm x}):=\sum _{i,j}F(\frac {\rho _{ij}^0}{\text {det}\frac {\partial {\bm x}}{\partial {\bm X}}|_{ij}})\text {det}\frac {\partial {\bm x}}{\partial {\bm X}}|_{ij}$


${\bm x }^{n+1}|_{\partial \Omega }={\bm X}|_{\partial \Omega }$


$\rho _{ij}^{n+1}$


\begin {align}\label {eq:rho in 2d} \rho _{ij}^{n+1}=\frac {\rho _{ij}^0}{\mathcal {F}_{ij}^{n+1}}\quad \text {with}\quad \mathcal {F}_{ij}^{n+1}=\left |\begin {array}{cc} \frac {\partial x_{ij}^{n+1}}{\partial X} &\frac {\partial y_{ij}^{n+1}}{\partial X} \\ \frac {\partial x_{ij}^{n+1}}{\partial Y} &\frac {\partial y_{ij}^{n+1}}{\partial Y} \\ \end {array}\right |=\left |\begin {array}{cc} \frac { x_{i,j+1}^{n+1}-x_{i,j-1}^{n+1}}{2h_x} &\frac { y_{i,j+1}^{n+1}-y_{i,j-1}^{n+1}}{2h_x} \\ \frac { x_{i+1,j}^{n+1}-x_{i-1,j}^{n+1}}{2h_y} &\frac {y_{i+1,j}^{n+1}-y_{i-1,j}^{n+1}}{2h_y} \\ \end {array}\right |.\end {align}


$E_{ad}=\{{\bm x}:\ \text {det}\frac {\partial {\bm x}}{\partial {\bm X}}|_{ij}>0 \ \text {for all}\ i,j\in \mathbb {N}, \ {\bm x}|_{\partial \Omega } ={\bm X}|_{\partial \Omega }\}$


\begin {align}\label {min:2d} {\bm x}^{n+1}:=\arg \inf _{\bm {x}\in E_{ad}}J_{n+1}({\bm x}),\end {align}


$J_{n+1}({\bm x}):=E_{h,2}({\bm x})+\sum _{i,j}\frac {1+2r_{n+1}}{2\tau _{n+1}(1+r_{n+1})}\rho _{ij}^0|{\bm x}_{ij}-\hat {\bm x}_{ij}^{n}|^2h_xh_y+\frac {\varepsilon \tau _{n+1}}{2}\sum _{i,j}(|\frac {{\bm x}_{i,j+1}-{\bm x}_{i,j+1}^{n}-{\bm x }_{i,j}+{\bm x}_{i,j}^{n}}{h_x}|^2+|\frac {{\bm x}_{i+1,j}-{\bm x}_{i+1,j}^{n}-{\bm x}_{i,j}+{\bm x}_{i,j}^{n}}{h_y}|^2)h_xh_y$


$E_{h,2}({\bm x}):=\tilde {E}_{h,2}({\bm x})h_xh_y$


$F(s)\ge 0$


$s\ge 0$


$\lim \limits _{s\rightarrow 0}F(\frac {1}{s})s=\infty $


${\bm x}^{n+1}\in E_{ad}$


$0<r_{n+1}\le r_{\max }\le \frac {5}{4}$


\begin {equation}\begin {aligned} &E_{h,2}({\bm x}^{n+1})+\sum _{i,j}\frac {r_{\max }^3}{\tau _{n+1}(1+r_{\max })(1+2r_{\max })}\rho _{ij}^0|{\bm x}_{ij}^{n+1}-{\bm x}_{ij}^{n}|^2h_xh_y\\ \le & E_{h,2}({\bm x}^{n})+\sum _{i,j}\frac {r_{\max }^3}{\tau _{n}(1+r_{\max })(1+2r_{\max })}\rho _{ij}^0|{\bm x}_{ij}^{n}-{\bm x}_{ij}^{n-1}|^2h_xh_y. \end {aligned} \label {Xeqn39-4.53}\end {equation}


$J_{n+1}({\bm x})$


$E_{ad}$


${\bm x}\in \partial E_{ad}$


$J_{n+1}({\bm x})=\infty $


\begin {align*}\mathcal {S}:=\Big \{{\bm x}\in E_{ad}:\ J_{n+1}({\bm x})\le E_{h,2}({\bm x}^{n})+\sum _{i,j}\frac {r_{n+1}^4}{2\tau _{n+1}(1+r_{n+1})(1+2r_{n+1})}\rho _{ij}^0|{\bm x}_{ij}^{n}-{\bm x}_{ij}^{n-1}|^2h_xh_y:=\gamma \Big \}\end {align*}


$\mathbb {R}^2$


${\bm x}^{n}\in \mathcal {S}$


$\mathcal {S}$


$\mathcal {S}$


$\mathbb {R}^2$


${\bm x}^{n+1}\in \mathcal {S}$


\begin {equation}\label {eq:energy2d} \begin {aligned} &E_{h,2}({\bm x}^{n+1})+\sum _{i,j}\frac {1+2r_{n+1}}{2\tau _{n+1}(1+r_{n+1})}\rho _{ij}^0|{\bm x}_{ij}^{n+1}-\hat {\bm x}_{ij}^{n}|^2h_xh_y\\ \le & E_{h,2}({\bm x}^{n})+\sum _{i,j}\frac {r_{n+1}^4}{2\tau _{n+1}(1+r_{n+1})(1+2r_{n+1})}\rho _{ij}^0|{\bm x}_{ij}^{n}-{\bm x}_{ij}^{n-1}|^2h_xh_y. \end {aligned}\end {equation}


$|a-b|^2\ge \frac {1}{2}|a|^2-|b|^2$


$a={\bm x}^{n+1}_{ij}-{\bm x}^{n}_{ij}$


$b=\frac {r_{n+1}^2}{1+2r_{n+1}}({\bm x}^{n}_{ij}-{\bm x}^{n-1}_{ij})$


$\frac {1}{2}|{\bm x}_{ij}^{n+1}-{\bm x}_{ij}^{n}|^2-\frac {r_{n+1}^4}{(1+2r_{n+1})^2}|{\bm x}_{ij}^{n}-{\bm x}_{ij}^{n-1}|^2\le |{\bm x}_{ij}^{n+1}-\hat {\bm x}_{ij}^{n}|^2$


\begin {align*}&E_{h,2}({\bm x}^{n+1})+\sum _{i,j}\frac {1+2r_{n+1}}{4\tau _{n+1}(1+r_{n+1})}\rho _{ij}^0|{\bm x}_{ij}^{n+1}-{\bm x}_{ij}^{n}|^2h_xh_y\nonumber \\ \le & E_{h,2}({\bm x}^{n})+\sum _{i,j}\frac {r_{n+1}^4}{\tau _{n+1}(1+r_{n+1})(1+2r_{n+1})}\rho _{ij}^0|{\bm x}_{ij}^{n}-{\bm x}_{ij}^{n-1}|^2h_xh_y\nonumber \\ \le & E_{h,2}({\bm x}^{n})+\sum _{i,j}\frac {r_{\max }^3}{\tau _{n}(1+r_{\max })(1+2r_{\max })}\rho _{ij}^0|{\bm x}_{ij}^{n}-{\bm x}_{ij}^{n-1}|^2h_xh_y.\nonumber \end {align*}


$\frac {1+2r_{n+1}}{4(1+r_{n+1})}>\frac {1}{4}\ge \frac {r_{\max }^3}{(1+r_{\max })(1+2r_{\max })}$


$0<r_{n+1}\le r_{\max }\le \frac {5}{4}$


$\frac {5}{4}$


${\bm x}^0={\bm X}$


$\rho _0({\bm X})$


$({\bm x}^1,\rho ^1)$


$(x^{n},y^{n})$


$\forall n\ge 1$


$(x^{n+1},y^{n+1})$


\begin {align}&\rho _{ij}^0D_2x_{ij}^{n+1}-\varepsilon \tau _{n+1}\Delta _{\bm X}(x^{n+1}_{ij}-x^{n}_{ij})+\frac {\delta \tilde {E}_{h,2}}{\delta x}((1+r_{n+1}){\bm x}_{ij}^{n}-r_{n+1}{\bm x}_{ij}^{n-1})=0,\label {scheme:2d explicit1}\\ &\rho _{ij}^0D_2y_{ij}^{n+1}-\varepsilon \tau _{n+1}\Delta _{\bm X}(y^{n+1}_{ij}-y^{n}_{ij})+\frac {\delta \tilde {E}_{h,2}}{\delta y}((1+r_{n+1}){\bm x}_{ij}^{n}-r_{n+1}{\bm x}_{ij}^{n-1})=0,\label {scheme:2d explicit2}\end {align}


${\bm x }^{n+1}|_{\partial \Omega }={\bm X}|_{\partial \Omega }$


$\frac {\delta \tilde {E}_{h,2}}{\delta {\bm x}}$


$\rho ^{n+1}$


$\gamma $


$\beta $


$\bm x(\bm X,t)$


$t$


$\bm x(\bm X,t)$


$\Omega ^0_{\bm X}$


$\Omega ^t_{\bm x}$


$\bm X$


$\bm x$


$F(\bm X,t)=\frac {\partial \bm x(\bm X,t)}{\partial \bm X}$


$\rho _0(X)=1-X^2$


$X\in [-1,1]$


$\epsilon =0.01$


$\mathcal {M}(\rho )\equiv 1$


$\mathcal {M}(\rho )=1-\rho ^2$


$M_x=16\times 2^{i-1}$


$N=625\times 2^{i-1}$


$i=1$


$4$


$i=7$


$\tau =\frac {T}{N}$


$\delta X=\frac {2}{M_x}$


$\text {Order}(i)=\ln \left (\frac {\text {error}(i)}{\text {error}(i-1)}\right )/\ln \left (\frac {M_x(i)}{M_x(i-1)}\right )$


$\tau _n=\frac {\sigma _nT}{\sum _{k=1}^{N}\sigma _k}$


$\sigma _n\in (0,1)$


$\forall n$


$\text {Order}(i)=\ln \left (\frac {\text {error}(i)}{\text {error}(i-1)}\right )/\ln \left (\frac {\tau (i)}{\tau (i-1)}\right )$


$\tau (i)$


$\rho _0(X)=1-X^2$


$X\in [-1,1]$


$\epsilon =0.01$


$\eta =0$


$T=0.5$


$\tau _n = \frac {\sigma _n T}{\sum _{k=1}^{N} \sigma _k}$


$\sigma _n \in (0,1)$


$\forall n$


$T=20$


$\epsilon =0.01$


$M_x=100$


$N=2000$


$\tau _n=\frac {\sigma _nT}{\sum _{k=1}^{N}\sigma _k}$


$\beta =1e5$


$r_{\text {user}}=1.5$


$\tau _{\max }=0.1$


$\tau _{\min }=1e-3$


$\epsilon = 0.01$


$\mathcal {M}(\rho ) \equiv 1$


$E(\rho )=\int _{\Omega }\frac {1}{m-1}\rho ^m\mathrm {d}x$


\begin {align}\rho _0(x)=\cos \left (\frac {\pi x}{2}\right ),\qquad x\in [-1,1],\end {align}


$x|_{\partial \Omega }=X|_{\partial \Omega }$


$M_x=10000$


$N=20000$


$m=2$


$T=0.5$


$m=2$


$T=0.5$


$r_{\max }$


\begin {align}\partial _tx=-\frac {m}{m-1}\frac {\partial _X(\rho (X,0))^{m-1}}{(\partial _Xx)^{m}},\end {align}


$\partial _tx\neq 0$


\begin {align}\label {initial:wt} \rho _0(x)=\left (\frac {m-1}{m}\left ((1-\theta )\sin ^2(x)+\theta \sin ^4(x)\right )\right )^{1/(m-1)},\qquad x\in [-\pi ,0],\end {align}


$\theta \in [0,0.25]$


$t_{w,e}:=\frac {1}{2(m+1)(1-\theta )}$


$r_{\text {user}}=1.4$


$\tau _{\min }=1e-6$


$\tau _{\max }=1e-2$


$r_{\text {user}}=1.4$


$\tau _{\min }=1e-6$


$\tau _{\max }=5\times 1e-3$


$\gamma =0.1,\ 1,\ 10,\ 100$


$\beta =0.1,\ 1,\ 10,\ 100$


$m=2$


$\theta =0.25$


$M_x=800$


$\theta =0.25$


$\theta =0.25$


$M_x=800$


$\delta t=\frac {1}{800}$


$\gamma =10$


$\tau _{\max }=5\times 1e-3$


$m=2$


$0<t\le 0.22$


$t=0.22$


$t=0.19$


$m=2.5$


$E(u)=\int _{\Omega } u\ln u\mathrm {d}x+\frac {1}{2\pi }\int _{\Omega \times \Omega }\ln |x-y| u(x)u(y)\mathrm {d}x\mathrm {d}y$


\begin {align}u_0(x)=\frac {C}{\sqrt {2\pi }}\exp ^{-\frac {x^2}{2}}+10^{-8},\quad x\in [-15,15],\end {align}


$C=5\pi $


$M_x=800$


$M_x=800$


$\beta =1e-2$


$\tau _{\min }=1e-4$


$\tau _{\max }=1e-2$


$r_{\text {user}}=3.5$


$u(x, y, 0)$


\begin {align}\label {barenblatt} u(x,y,t) = \max \left ( 0.1 - \frac {\kappa (m-1)}{4m} \frac {x^2 + y^2}{(t+1)^{\kappa }}, 0 \right )^{\frac {1}{m-1}},\end {align}


$\kappa = \frac {1}{m}$


$M_x = M_y = 64$


$\varepsilon \tau _{n+1}^2 \Delta _{\bm {X}} {\bm {x}}^{n+1}$


$\varepsilon = 0.5$


$\tau _{\min } = 1e-4$


$\tau _{\max } = 1e-2$


$r_{\text {user}} = 1.25$


$\beta = 1e-2$


$m=2$


$M_x=M_y=64$


$T=2$


$\varepsilon =0.5$


$\tau _{\min }=1e-4$


$\tau _{\max }=1e-2$


$r_{\text {user}}=1.25$


$\beta =1e-2$


$T=2$


$m=5$


$M_x=M_y=64$


$T=4$


$\varepsilon =40$


$\tau _{\min }=1e-4$


$\tau _{\max }=1e-2$


$r_{\text {user}}=1.25$


$\beta =1e-2$


$T=4$


$m=2$


$T = 2$


$m=5$


$T = 4$


\begin {equation}\label {ini:nonradial} \rho _0(x,y)=\begin {cases} 25(0.25^2-(\sqrt {x^2+y^2}-0.75)^2)^{\frac {3}{2}}, &\sqrt {x^2+y^2}\in [0.5,1]\ \text {and}\ (x<0\ \text {or}\ y<0),\\ 25(0.25^2-x^2-(y-0.75)^2)^{\frac {3}{2}}, &x^2+(y-0.75)^2\le 0.25^2\ \text {and}\ x\ge 0,\\ 25(0.25^2-(x-0.75)^2-y^2)^{\frac {3}{2}}, &(x-0.75)^2+y^2\le 0.25^2\ \text {and}\ y\ge 0,\\ 0,\ &\text {otherwise}, \end {cases}\end {equation}


$\varepsilon \tau _{n+1}^2\Delta _{\bm X}{\bm x}^{n+1}$


$\varepsilon =100$


$m=3$


$M_x=M_y=128$


$\tau =1e-3$


$\varepsilon =100$


\begin {align*}\partial _t \rho = \nabla \cdot (\rho \nabla W * \rho ) + \nu \Delta \rho ^m, \quad m \ge 1,\end {align*}


$W(x) = \frac {1}{2\pi } \ln |x|$


$\nu = 1$


$m = 1$


$m = 2$


$\varepsilon \tau _{n+1}^2 \Delta _{\bm {X}} {\bm {x}}^{n+1}$


$C = 1$


$C = 5\pi $


\begin {align}\label {initial value} u_0(x,y) = C e^{-x^2 - y^2}, \quad (x,y) \in [-5,5] \times [-5,5].\end {align}


$C=1$


$M_x=M_y=64$


$\beta =1e-2$


$\tau _{\min }=1e-4$


$\tau _{\max }= 1e-2$


$r_{\text {user}}=1.5$


$m=1$


$\varepsilon =0.1$


$m=2$


$\varepsilon =0.01$


$C=5\pi $


$M_x=M_y=64$


$\varepsilon =10$


$\beta =1e-2$


$\tau _{\min }=5\times 1e-4$


$\tau _{\max }=5\times 1e-2$


$r_{\text {user}}=1.5$


$m = 1$


$m = 2$
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the original model (1.1) can be reformulated in Eulerian coordinates as: 

𝒗 ⋅ ∇𝜌 = (𝜌) 𝛿𝐸
𝛿𝜌

. (1.3)

This Eulerian formulation will subsequently be transformed into an equivalent Lagrangian representation.
On the other hand, a conservative system is governed by

𝜕𝑡𝜌 = ∇ ⋅
(

(𝜌)∇ 𝛿𝐸
𝛿𝜌

)

, (1.4)

which preserves mass, i.e., d
d𝑡 ∫Ω 𝜌(𝑥, 𝑡)d𝑥 = 0. This class of gradient flows includes well-known models such as the Cahn-Hilliard 

equation [4], Porous-Medium equation (PME) [5], Poisson-Nernst-Planck system [6], and Keller-Segel equation [7]. The conservative 
model (1.4) can be cast as a continuity equation in the Eulerian framework [8–10]: 

𝜕𝑡𝜌 + ∇ ⋅ (𝜌𝒗) = 0, (1.5)

with 
𝜌𝒗 = −(𝜌)∇ 𝛿𝐸

𝛿𝜌
. (1.6)

This conservative formulation will likewise be transformed into its Lagrangian counterpart in subsequent analysis.
A typical example of a non-conservative phase-field model is the Allen-Cahn equation. Extensive research has been dedicated to 

developing numerical schemes in the Eulerian framework that preserve its key physical properties, especially the energy dissipation 
law and the maximum bound principle (MBP) [11–21]. In contrast to Eulerian methods, Lagrangian approaches offer distinct advan-
tages in interface tracking. The variational Lagrangian framework developed in [9] allows for efficient computation of equilibrium 
states in Allen-Cahn type models while maintaining sharp interfaces and addressing free boundary problems, while the work [3] 
introduced a Lagrangian formulation via a non-conservative transport equation, and rigorously demonstrated the preservation of 
energy dissipation and MBP.

On the other hand, if (𝜌) = 𝜌, the conservative model (1.4) reduces to a Wasserstein gradient flow. Recent advancements in direct 
numerical methods for Wasserstein gradient flows emphasize the preservation of three fundamental properties: mass conservation, 
positivity preservation, and energy dissipation [10,22–24]. These methods have been successfully applied to various physical systems, 
including the porous media equation [25–27], the Fokker-Planck equation [28,29], the Poisson-Nernst-Planck system [22,30,31], 
and the Keller-Segel model [32–34]. On the other hand, numerical methods based on the celebrated Jordan-Kinderlehrer-Otto (JKO) 
scheme [35] have been extensively studied in the literature [36–42]. A recent study by [43] introduces an innovative flow dynamic 
approach that reformulates the constrained minimization problem into an unconstrained framework. This transformation facilitates 
a first-order Lagrangian scheme while preserving the essential properties of the original problem.

Since dynamics of gradient flows often behave very differently at different times. Significant progress has been made in developing 
adaptive strategies tailored to enhance computational efficiency across a range of gradient flows [21,44–49]. A key advancement is 
presented in [50,51], where a novel kernel recombination technique enables the design of nonuniform BDF2 schemes for the Allen-
Cahn model in Eulerian coordinates, successfully preserving the MBP property under mild time-step ratio constraints. Within the 
Wasserstein gradient flow framework, [52] introduces a variational BDF2 method with proven 12 -order convergence. This approach 
is further extended in [53], which applies geometric extrapolation techniques in Wasserstein space to construct BDF2 numerical 
methods, with numerical experiments confirming second-order accuracy. However, to the best of the authors’ knowledge, there is no 
second-order structure-preserving method with variable time steps for gradient flows in Lagrangian coordinates.

In this work, we employ distinct flow dynamic approaches introduced in [3,43] to develop second-order Lagrangian numerical 
schemes with adaptive temporal discretization for both non-conservative and conservative systems. Specifically, novel numerical 
methods for the Allen-Cahn equation and Wasserstein gradient flows are formulated using the non-conservative continuity Eq. (1.2) 
and the conservative continuity Eq. (1.5), respectively. These schemes are shown to preserve the intrinsic properties of the original 
systems, while the constraints on maximum time-step ratios are rigorously analyzed across various application scenarios. Compared 
to conventional Eulerian approaches, the proposed Lagrangian framework offers significant advantages in resolving sharp-interface 
phenomena and addressing problems involving singularities and free boundaries. The main contributions of this study include:
(i) For non conservative models such as the Allen-Cahn equation, we construct a modified BDF2 scheme with variable time steps in 

Lagrangian coordinates via a regularized flow dynamics framework. This novel strategy introduces a new regularization operator 
to ensure positive-definite Jacobian determinants. The scheme is rigorously proven to preserve the energy dissipation law and 
the MBP property under the condition 0 < 𝑟𝑛 ≤ 𝑟max ≤

3
2 .

(ii) For conservative models written as Wasserstein gradient flows, we develop an adaptive BDF2 scheme in Lagrangian coordinates, 
which preserves the system’s original properties when the time-step ratio satisfies 0 < 𝑟𝑛 ≤ 𝑟max ≤

3+
√

17
2  in 1D and 0 < 𝑟𝑛 ≤ 𝑟max ≤

5
4  in 2D.

(iii) An effective adaptive time-stepping algorithm is implemented for numerical validation. The proposed schemes demonstrate 
enhanced capabilities in capturing sharp interfaces in the Allen-Cahn system, simulating trajectory evolution, and maintaining 
determinant positivity through rigorous regularization mechanisms.
The remainder of the paper is organized as follows. In Section 2, we introduce the non-conservative model and present the 

modified BDF2 scheme with variable time steps for the Allen-Cahn equation, which is both energy-dissipative and MBP-preserving. 
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Section 3 details and analyzes BDF2 schemes with adaptive time steps for Wasserstein gradient flows, establishing corresponding 
energy dissipation laws. Numerical experiments in Section 6 validate the theoretical results, utilizing the strategy outlined in Section 5.

2.  Non-conservative models

We shall first consider the adaptive time-stepping method based on the flow dynamic approach for non-conservative models in 
the section.

2.1.  Flow map

Given an initial position or a reference configuration 𝑿, and a velocity field 𝒗, recall the flow map 𝒙(𝑿, 𝑡):

d𝒙(𝑿, 𝑡)
d𝑡

= 𝒗(𝒙(𝑿, 𝑡), 𝑡), (2.7)

𝒙(𝑿, 0) = 𝑿, (2.8)

where 𝒙 represents the Eulerian coordinates and 𝑿 denotes the Lagrangian coordinates, 𝜕𝒙
𝜕𝑿  represents the deformation associated 

with the flow map. We assume that 𝒗 is the velocity such that
𝜌𝑡 + (𝒗 ⋅ ∇𝒙)𝜌 = 0. (2.9)

2.2.  Maximum bounds preserving

Then, the above transport equation and the flow map defined in (2.7)–(2.8) determine the following kinematic relationship 
between Eulerian and Lagrangian coordinates, see also [3,43] 

d
d𝑡
𝜌(𝒙(𝑿, 𝑡), 𝑡) = 𝜌𝑡 + (𝒗 ⋅ ∇𝒙)𝜌 = 0, (2.10)

which leads to
𝜌(𝒙(𝑿, 𝑡), 𝑡) = 𝜌(𝒙, 0) = 𝜌0(𝒙) ∀𝑡, (2.11)

where 𝜌0(𝒙) is the initial condition in the Lagrangian coordinates. Since 𝒙(𝑿, 0) = 𝑿, we have 𝜌0(𝒙) = 𝜌0(𝑿).
Then we obtain from (2.11)

𝜌(𝒙(𝑿, 𝑡), 𝑡) = 𝜌◦𝒙(𝑿) = 𝜌0(𝑿). (2.12)

Once we have the flow map 𝒙(𝑿, 𝑡), we set 𝜙(𝑿; 𝑡) = 𝒙(𝑿, 𝑡) for each 𝑡. Then, we derive from (2.10) that the solution of (2.9) is 
given by 

𝜌(𝒙, 𝑡) = 𝜌0◦𝜙
−1(𝒙, 𝑡) = 𝜌0(𝜙−1(𝒙, 𝑡)), (2.13)

where 𝜙−1 is the inverse function of 𝜙, see [3,43].
Then 𝜌(𝒙(𝑿, 𝑡), 𝑡) = 𝜌(𝑿, 0) for all 𝑡. This indicates that the method preserves the maximum principle, i.e., if the initial value satisfies 

0 < 𝑎 ≤ 𝜌(𝑿, 0) ≤ 𝑏, then for any time 𝑡, we have 𝑎 ≤ 𝜌(𝒙, 𝑡) ≤ 𝑏. It is also well-known that the Allen-Cahn Eq. (2.14) with variable 
mobility possesses the maximum principle-preserving property [54], which implies that if the initial value satisfies |𝜌(𝒙, 0)| ≤ 1 for 
all 𝒙 ∈ Ω, then the solution satisfies |𝜌(𝒙, 𝑡)| ≤ 1 for all (𝒙, 𝑡) ∈ Ω × (0, 𝑇 ].

2.3. 𝐿2 Gradient flow in Lagrangian coordinate

We shall take the Allen-Cahn equation with Dirichlet boundary condition as an example of non-conservative model in this section. 
The Allen-Cahn equation which is a 𝐿2 gradient flow, originally introduced by Allen and Cahn in [1] to describe the motion of 
anti-phase boundaries in crystalline solids, takes the following form:

𝜕𝑡𝜌 = −(𝜌)(−𝜖2Δ𝜌 + 𝐹 ′(𝜌)), (𝑥, 𝑡) ∈ Ω × (0, 𝑇 ], (2.14)

where 𝜌 represents the concentration of one of the two metallic components of the alloy, 𝜖 > 0 is a small parameter reflecting the width 
of the transition regions, and 𝑇  is the final time, (𝜌) > 0 is a general mobility function, which can be (𝜌) ≡ 1 or (𝜌) = 1 − 𝜌2, 
see [20]. 𝐹 (𝜌) = 1

4 (𝜌
2 − 1)2 is the Ginzburg-Landau double-well potential 𝐹 (𝜌) = 1

4 (𝜌
2 − 1)2 [12]. Eq. (2.14) can be regarded as a 𝐿2

gradient flow, in the sense that
d
d𝑡
𝐸(𝜌) = −∫Ω

(𝜌)|𝜌𝑡|2d𝑥, (2.15)

in which the energy is defined by 𝐸(𝜌) = ∫Ω
𝜖2

2 |∇𝜌|
2 + 𝐹 (𝜌) d𝑥. By introducing the flow map (2.9), we can reformulate the energy 

dissipative law (2.15) into 
d
d𝑡
𝐸(𝜌) = −∫Ω

(𝜌)|(𝒗 ⋅ ∇𝒙)𝜌|2d𝑥, (2.16)
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where we used the equality 𝜌𝑡 = −(𝒗 ⋅ ∇𝒙)𝜌. By using the least action principle, and Newton’s force balance law [3,9], we can derive 
the following trajectory equation in Eulerian coordinates: 

𝒗 ⋅ ∇𝜌 = (𝜌)(−𝜖2Δ𝜌 + 𝐹 ′(𝜌)). (2.17)

We rewrite the trajectory Eq. (2.17) into Lagrangian coordinates 

𝑥𝑡(𝑋, 𝑡)𝜌′0(𝑋)
( 𝜕𝑥
𝜕𝑋

)−1 1
(𝜌0(𝑋))

= −𝜖2𝜕𝑋

(

𝜌′0(𝑋)
( 𝜕𝑥
𝜕𝑋

)−1)( 𝜕𝑥
𝜕𝑋

)−1
+ 𝐹 ′(𝜌0(𝑋)), (2.18)

with the following boundary and initial conditions: 
𝑥|𝜕Ω = 𝑋|𝜕Ω, 𝑥(𝑋, 0) = 𝑋, 𝑋 ∈ Ω. (2.19)

Notice that the determinant 𝜕𝑥𝜕𝑋 (𝑋, 𝑡) > 0 should be positive, ∀𝑋 ∈ Ω, see [3]. In the following adaptive time-stepping Lagrangian 
schemes, we introduce an extra logarithmic term 𝜂0𝜕𝑋

(

d
d𝑡 log(

𝜕𝑥
𝜕𝑋 )

)

 with 0 < 𝜂0 ≪ 1 to preserve the positivity of the determinant 
𝜕𝑥
𝜕𝑋 (𝑋, 𝑡). Then a modified trajectory equation in Lagrangian coordinates for the Allen-Cahn equation with variable mobility is proposed 
as follows:

𝑥𝑡(𝑋, 𝑡)(𝜌′0(𝑋))2
( 𝜕𝑥
𝜕𝑋

)−1 1
(𝜌0(𝑋))

− 𝜂0𝜕𝑋
( d
d𝑡

log
( 𝜕𝑥
𝜕𝑋

))

= − 𝜖2

2
𝜕𝑋

(

𝜌′0(𝑋)
( 𝜕𝑥
𝜕𝑋

)−1)2
+ 𝜕𝑋𝐹 (𝜌0(𝑋)).

(2.20)

Based on the modified trajectory Eq. (2.20), we can derive the following modified energy dissipative law for the Allen-Cahn 
equation in Lagrangian coordinate.

Lemma 2.1. For the Allen-Cahn Eq. (2.14) with a general mobility (𝜌) > 0, the trajectory Eq. (2.20) is energy dissipative in the sense 
that 

d𝐸𝑎𝑐
d𝑡

= −∫Ω0
𝑿

|

|

|

|

|

𝑥𝑡(𝑋, 𝑡)𝜌′0(𝑋)
( 𝜕𝑥
𝜕𝑋

)−1|
|

|

|

|

2
1

(𝜌0(𝑋))
𝜕𝑥
𝜕𝑋

d𝑋 − ∫Ω0
𝑿

𝜂0|𝜕𝑋𝑥𝑡|
2
( 𝜕𝑥
𝜕𝑋

)−1
d𝑋, (2.21)

where 

𝐸𝑎𝑐 = ∫Ω0
𝑿

(

𝜖2

2

|

|

|

|

|

𝜌′0(𝑋)
( 𝜕𝑥
𝜕𝑋

)−1|
|

|

|

|

2

+ 𝐹 (𝜌0(𝑋))

)

𝜕𝑥
𝜕𝑋

d𝑋.

Proof.  Multiplying both sides of (2.20) by −𝑥𝑡 and using integration by parts leads to

− ∫Ω0
𝑿

|

|

|

|

|

𝑥𝑡𝜌
′
0(𝑋)

( 𝜕𝑥
𝜕𝑋

)−1|
|

|

|

|

2 𝜕𝑋𝑥
(𝜌0(𝑋))

d𝑋 + 𝜂0 ∫Ω0
𝑿

𝜕𝑋
( d
d𝑡

log
( 𝜕𝑥
𝜕𝑋

))

𝑥𝑡d𝑋

= 𝜖2

2 ∫Ω0
𝑿

𝜕𝑋

(

𝜌′0(𝑋)
( 𝜕𝑥
𝜕𝑋

)−1)2
𝑥𝑡 − 𝜕𝑋𝐹 (𝜌0(𝑋))𝑥𝑡d𝑋

= − 𝜖2

2 ∫Ω0
𝑿

(

𝜌′0(𝑋)
( 𝜕𝑥
𝜕𝑋

)−1)2
𝜕𝑋𝑥𝑡 + 𝐹 (𝜌0(𝑋))𝜕𝑋𝑥𝑡d𝑋

= d
d𝑡 ∫Ω0

𝑿

(

𝜖2

2

|

|

|

|

|

𝜌′0(𝑋)
( 𝜕𝑥
𝜕𝑋

)−1|
|

|

|

|

2

+ 𝐹 (𝜌0(𝑋))

)

𝜕𝑥
𝜕𝑋

d𝑋.

The second term on the left hand side of above equality can be rewritten by

∫Ω0
𝑿

𝜕𝑋
( d
d𝑡

log
( 𝜕𝑥
𝜕𝑋

))

𝑥𝑡d𝑋 = −∫Ω0
𝑿

d
d𝑡

log
( 𝜕𝑥
𝜕𝑋

)

𝜕𝑋𝑥𝑡d𝑋 = ∫Ω0
𝑿

|𝜕𝑋𝑥𝑡|
2
( 𝜕𝑥
𝜕𝑋

)−1
d𝑋.

Then a combination of above estimations yields the energy dissipation law (2.21). ∎

2.4.  Adaptive time-stepping Lagrangian scheme

Given time-step 𝜏𝑛 ∶= 𝑡𝑛 − 𝑡𝑛−1 > 0, and define the time-step ratio 𝑟𝑛+1 ∶= 𝜏𝑛+1
𝜏𝑛

> 0, 𝑛 ≥ 1, assume that the time-step ratio {𝑟𝑛}𝑛
is uniformly bounded with an upper bound 𝑟max such that 𝑟𝑛 ≤ 𝑟max, ∀𝑛. For any given final time 𝑇 > 0, 𝑇 =

∑𝑁
𝑛=1 𝜏𝑛. Denote 𝑥𝑛 the 

numerical approximation to 𝑥(⋅, 𝑡𝑛).
The primary challenge lies in approximating the non-constant mobility term 𝜌′0(𝑋)

(

𝜕𝑥
𝜕𝑋

)−1 1
(𝜌0(𝑋))  in (2.20) for variable time-

stepping methods that can also preserve energy stability in the discrete level. By introducing 𝓁𝑛 ∶= 𝜕𝑥𝑛

𝜕𝑋 (𝜌0(𝑋)), we propose the 
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following second-order adaptive time-stepping scheme for (2.20): ∀𝑛 ≥ 1, given 𝑥𝑛−1, 𝑥𝑛 and 𝜌(𝑋, 0), solve (𝑥𝑛+1, 𝜌𝑛+1) from
(2𝑟𝑛+1 + 1)(𝜌′0(𝑋))2

2𝜏𝑛+1(𝑟𝑛+1 + 1)
(𝓁−1

𝑛+1 + 𝓁−1
𝑛 )(𝑥𝑛+1 − 𝑥𝑛) − 𝜂𝜏𝑛+1𝜕𝑋

(

log 𝜕𝑥𝑛+1

𝜕𝑋
− log 𝜕𝑥𝑛

𝜕𝑋

)

−
𝑟2𝑛+1(𝜌

′
0(𝑋))2

𝜏𝑛+1(𝑟𝑛+1 + 1)

((

1 + 1
2𝑟𝑛+1

)

𝓁
− 1

2
𝑛 − 1

2𝑟𝑛+1
𝓁
− 1

2
𝑛+1

)(

1
2
𝓁
− 1

2
𝑛−1 +

1
2
𝓁
− 1

2
𝑛

)

(𝑥𝑛 − 𝑥𝑛−1)

= − 𝜖2

2
𝜕𝑋

(

𝜌′0(𝑋)
(

𝜕𝑥𝑛+1

𝜕𝑋

)−1
)2

+ 𝜕𝑋𝐹 (𝜌0(𝑋)).

(2.22)

Remark 2.1. Notice that 1
2𝜏𝑛+1

(𝓁−1
𝑛+1 + 𝓁−1

𝑛 )(𝑥𝑛+1 − 𝑥𝑛) and 1
𝜏𝑛

(

(

1 + 1
2𝑟𝑛+1

)

𝓁
− 1

2
𝑛 − 1

2𝑟𝑛+1
𝓁
− 1

2
𝑛+1

)(

1
2𝓁

− 1
2

𝑛−1 +
1
2𝓁

− 1
2

𝑛

)

(𝑥𝑛 − 𝑥𝑛−1) are second-

order approximations to 𝓁−1
𝑛+ 1

2

𝑥𝑡|𝑛+ 1
2
 and 𝓁−1

𝑛− 1
2

𝑥𝑡|𝑛− 1
2
, respectively. Then the linear combination 2𝑟𝑛+1+1𝑟𝑛+1+1

𝓁−1
𝑛+ 1

2

𝑥𝑡|𝑛+ 1
2
− 𝑟𝑛+1

𝑟𝑛+1+1
𝓁−1
𝑛− 1

2

𝑥𝑡|𝑛− 1
2

is a second-order approximation to 𝓁−1
𝑛+1𝑥𝑡|𝑛+1, see [34]. 

The artificial regularization term −𝜂𝜏𝑛+1𝜕𝑋
(

log 𝜕𝑥𝑛+1

𝜕𝑋 − log 𝜕𝑥𝑛

𝜕𝑋

)

 with 𝜂 ≥ 0 is introduced in (2.22) to preserve the positivity of 𝜕𝑥𝑛+1𝜕𝑋
at the next time step. Once the trajectory 𝑥𝑛+1 is determined from (2.22), the solution to Allen-Cahn equation can be obtained from 
𝜌(𝑥𝑛+1(𝑋)) = 𝜌0(𝑋).

We prove below that the scheme (2.22) is energy stable with variable time steps.

Theorem 2.1. For the Allen-Cahn Eq. (2.14) with a general mobility (𝜌) > 0, if the maximum time-step ratio satisfies 0 < 𝑟max ≤
3
2 , then 

the second-order scheme (2.22) is energy dissipative in the sense that

𝐸𝑛+1 +
𝑟max

2𝜏𝑛+1(𝑟max + 1)
(

(𝜌′0(𝑋))2(𝓁−1
𝑛+1 + 𝓁−1

𝑛 )(𝑥𝑛+1 − 𝑥𝑛), 𝑥𝑛+1 − 𝑥𝑛
)

+ 𝜂𝜏𝑛+1

(

log 𝜕𝑥𝑛+1

𝜕𝑋
− log 𝜕𝑥𝑛

𝜕𝑋
, 𝜕𝑥

𝑛+1

𝜕𝑋
− 𝜕𝑥𝑛

𝜕𝑋

)

≤𝐸𝑛 +
𝑟max

2𝜏𝑛(𝑟max + 1)
(

(𝜌′0(𝑋))2(𝓁−1
𝑛−1 + 𝓁−1

𝑛 )(𝑥𝑛 − 𝑥𝑛−1), 𝑥𝑛 − 𝑥𝑛−1
)

,

(2.23)

where the energy is defined by 𝐸𝑛 = ∫Ω0
𝑿

(

𝜖2

2

|

|

|

|

𝜌′0(𝑋)
(

𝜕𝑥𝑛

𝜕𝑋

)−1
|

|

|

|

2
+ 𝐹 (𝜌0(𝑋))

)

𝜕𝑥𝑛

𝜕𝑋 d𝑋.

Proof.  We take inner product of (2.22) with respect to −(𝑥𝑛+1 − 𝑥𝑛), and then estimate each term of the following equality:
3
∑

𝑖=1
𝐿𝑖 ∶= −

2𝑟𝑛+1 + 1
2𝜏𝑛+1(𝑟𝑛+1 + 1)

(

(𝜌′0(𝑋))2(𝓁−1
𝑛+1 + 𝓁−1

𝑛 )(𝑥𝑛+1 − 𝑥𝑛), 𝑥𝑛+1 − 𝑥𝑛
)

+
(

𝜂𝜏𝑛+1𝜕𝑋

(

log 𝜕𝑥𝑛+1

𝜕𝑋
− log 𝜕𝑥𝑛

𝜕𝑋

)

, 𝑥𝑛+1 − 𝑥𝑛
)

+
𝑟2𝑛+1

𝜏𝑛+1(𝑟𝑛+1 + 1)

×
(

(𝜌′0(𝑋))2
(( 2𝑟𝑛+1 + 1

2𝑟𝑛+1

)

𝓁
− 1

2
𝑛 − 1

2𝑟𝑛+1
𝓁
− 1

2
𝑛+1

)(

1
2
𝓁
− 1

2
𝑛−1 +

1
2
𝓁
− 1

2
𝑛

)

(𝑥𝑛 − 𝑥𝑛−1), 𝑥𝑛+1 − 𝑥𝑛
)

= 𝜖2

2

(

𝜕𝑿
|

|

|

|

|

𝜌′0(𝑋)
(

𝜕𝑥𝑛+1

𝜕𝑋

)−1
|

|

|

|

|

2

, 𝑥𝑛+1 − 𝑥𝑛
)

−
(

𝜕𝑋𝐹 (𝜌0(𝑋)), 𝑥𝑛+1 − 𝑥𝑛
)

∶=
2
∑

𝑖=1
𝑅𝑖.

(2.24)

By repeatedly applying the Cauchy-Schwarz inequality to estimate 𝐿3, it can be shown that
(

(𝜌′0(𝑋))2
((

1 + 1
2𝑟𝑛+1

)

𝓁
− 1

2
𝑛 − 1

2𝑟𝑛+1
𝓁
− 1

2
𝑛+1

)(

1
2
𝓁
− 1

2
𝑛−1 +

1
2
𝓁
− 1

2
𝑛

)

(𝑥𝑛 − 𝑥𝑛−1), 𝑥𝑛+1 − 𝑥𝑛
)

≤1
4

(

(𝜌′0(𝑋))2
((

1 + 1
2𝑟𝑛+1

)

𝓁
− 1

2
𝑛 − 1

2𝑟𝑛+1
𝓁
− 1

2
𝑛+1

)2
(𝑥𝑛+1 − 𝑥𝑛), 𝑥𝑛+1 − 𝑥𝑛

)

+

(

(𝜌′0(𝑋))2
(

1
2
𝓁
− 1

2
𝑛−1 +

1
2
𝓁
− 1

2
𝑛

)2
(𝑥𝑛 − 𝑥𝑛−1), 𝑥𝑛 − 𝑥𝑛−1

)

≤1
4

(

(𝜌′0(𝑋))2
(

(2𝑟𝑛+1 + 1)2 + 2𝑟𝑛+1 + 1
4𝑟2𝑛+1

𝓁−1
𝑛 +

2𝑟𝑛+1 + 2
4𝑟2𝑛+1

𝓁−1
𝑛+1

)

(𝑥𝑛+1 − 𝑥𝑛), 𝑥𝑛+1 − 𝑥𝑛
)

+ 1
2
(

(𝜌′0(𝑋))2(𝓁−1
𝑛−1 + 𝓁−1

𝑛 )(𝑥𝑛 − 𝑥𝑛−1), 𝑥𝑛 − 𝑥𝑛−1
)

=1
4
(2𝑟𝑛+1 + 1)2 + 2𝑟𝑛+1 + 1

4𝑟2𝑛+1

(

(𝜌′0(𝑋))2(𝓁−1
𝑛 + 𝓁−1

𝑛+1)(𝑥
𝑛+1 − 𝑥𝑛), 𝑥𝑛+1 − 𝑥𝑛

)
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− 1
4
(2𝑟𝑛+1 + 1)2 − 1

4𝑟2𝑛+1

(

(𝜌′0(𝑋))2𝓁−1
𝑛+1(𝑥

𝑛+1 − 𝑥𝑛), 𝑥𝑛+1 − 𝑥𝑛
)

+ 1
2
(

(𝜌′0(𝑋))2(𝓁−1
𝑛−1 + 𝓁−1

𝑛 )(𝑥𝑛 − 𝑥𝑛−1), 𝑥𝑛 − 𝑥𝑛−1
)

.

Since (2𝑟𝑛+1 + 1)2 − 1 > 0 ∀𝑟𝑛+1 > 0, we have

𝐿1 + 𝐿3 ≤ −
2𝑟𝑛+1 + 1

2𝜏𝑛+1(𝑟𝑛+1 + 1)
(

(𝜌′0(𝑋))2(𝓁−1
𝑛+1 + 𝓁−1

𝑛 )(𝑥𝑛+1 − 𝑥𝑛), 𝑥𝑛+1 − 𝑥𝑛
)

+
(2𝑟𝑛+1 + 1)2 + 2𝑟𝑛+1 + 1

16𝜏𝑛+1(𝑟𝑛+1 + 1)
(

(𝜌′0(𝑋))2(𝓁−1
𝑛 + 𝓁−1

𝑛+1)(𝑥
𝑛+1 − 𝑥𝑛), 𝑥𝑛+1 − 𝑥𝑛

)

+
𝑟2𝑛+1

2𝜏𝑛+1(𝑟𝑛+1 + 1)
(

(𝜌′0(𝑋))2(𝓁−1
𝑛−1 + 𝓁−1

𝑛 )(𝑥𝑛 − 𝑥𝑛−1), 𝑥𝑛 − 𝑥𝑛−1
)

= −
(2𝑟𝑛+1 + 1)(3 − 𝑟𝑛+1)

8𝜏𝑛+1(𝑟𝑛+1 + 1)
(

(𝜌′0(𝑋))2(𝓁−1
𝑛+1 + 𝓁−1

𝑛 )(𝑥𝑛+1 − 𝑥𝑛), 𝑥𝑛+1 − 𝑥𝑛
)

+
𝑟2𝑛+1

2𝜏𝑛+1(𝑟𝑛+1 + 1)
(

(𝜌′0(𝑋))2(𝓁−1
𝑛−1 + 𝓁−1

𝑛 )(𝑥𝑛 − 𝑥𝑛−1), 𝑥𝑛 − 𝑥𝑛−1
)

.

(2.25)

Using the integration by parts and the mean value theorem yields the following estimate for 𝐿2:

𝐿2 = −𝜂𝜏𝑛+1

(

log 𝜕𝑥𝑛+1

𝜕𝑋
− log 𝜕𝑥𝑛

𝜕𝑋
, 𝜕𝑥

𝑛+1

𝜕𝑋
− 𝜕𝑥𝑛

𝜕𝑋

)

= −𝜂𝜏𝑛+1

(

(

𝜕𝜉
𝜕𝑋

)−1
,
(

𝜕𝑥𝑛+1

𝜕𝑋
− 𝜕𝑥𝑛

𝜕𝑋

)2
)

≤ 0,
(2.26)

where 𝜉 lies between 𝑥𝑛 and 𝑥𝑛+1. The first term on the right hand side of (2.24) can be estimated by applying the integration by 
parts and the convexity of 1𝑦  with respect to 𝑦 with 𝑦 > 0:

𝑅1 = − 𝜖2

2

(

|

|

|

|

|

𝜌′0(𝑋)
(

𝜕𝑥𝑛+1

𝜕𝑋

)−1
|

|

|

|

|

2

, 𝜕𝑿 (𝑥𝑛+1 − 𝑥𝑛)

)

≥ 𝜖2

2 ∫Ω0
𝑿

(𝜌′0(𝑋))2
(

𝜕𝑥𝑛+1

𝜕𝑋

)−1
d𝑋 − 𝜖2

2 ∫Ω0
𝑿

(𝜌′0(𝑋))2
( 𝜕𝑥𝑛

𝜕𝑋

)−1
d𝑋.

(2.27)

Similarly, the last term on the right hand side of (2.24) can be rewritten as follows

𝑅2 = −∫Ω0
𝑿

𝜕𝑿𝐹 (𝜌0(𝑋))(𝑥𝑛+1 − 𝑥𝑛)d𝑋 = ∫Ω0
𝑿

𝐹 (𝜌0(𝑋))𝜕𝑿 (𝑥𝑛+1 − 𝑥𝑛)d𝑋. (2.28)

Substituting (2.25)–(2.28) into (2.24) shows that

𝐸𝑛+1 +
(2𝑟𝑛+1 + 1)(3 − 𝑟𝑛+1)

8𝜏𝑛+1(𝑟𝑛+1 + 1)
(

(𝜌′0(𝑋)(𝓁−1
𝑛+1 + 𝓁−1

𝑛 )(𝑥𝑛+1 − 𝑥𝑛), 𝜌′0(𝑋)(𝑥𝑛+1 − 𝑥𝑛)
)

+ 𝜂𝜏𝑛+1

(

log 𝜕𝑥𝑛+1

𝜕𝑋
− log 𝜕𝑥𝑛

𝜕𝑋
, 𝜕𝑥

𝑛+1

𝜕𝑋
− 𝜕𝑥𝑛

𝜕𝑋

)

≤𝐸𝑛 +
𝑟2𝑛+1

2𝜏𝑛+1(𝑟𝑛+1 + 1)
(

(𝜌′0(𝑋))2(𝓁−1
𝑛−1 + 𝓁−1

𝑛 )(𝑥𝑛 − 𝑥𝑛−1), (𝑥𝑛 − 𝑥𝑛−1)
)

≤𝐸𝑛 +
𝑟max

2𝜏𝑛(𝑟max + 1)
(

(𝜌′0(𝑋))2(𝓁−1
𝑛−1 + 𝓁−1

𝑛 )(𝑥𝑛 − 𝑥𝑛−1), (𝑥𝑛 − 𝑥𝑛−1)
)

.

Then the energy dissipation law will be derived once the following inequality holds: 
(2𝑟𝑛+1 + 1)(3 − 𝑟𝑛+1)

8(𝑟𝑛+1 + 1)
≥

𝑟max
2(𝑟max + 1)

,

Denote function ℎ(𝑠) = (2𝑠+1)(3−𝑠)
8(𝑠+1)  for 0 < 𝑠 < 3, since ℎ(𝑠) is increasing in the range 0 < 𝑠 < −1 +

√

2, and decreasing in the range 
−1 +

√

2 < 𝑠 ≤ 𝑟max < 3. Then if the maximum time-step ratio satisfies 0 < 𝑟max ≤
3
2 , we have 2𝑟2max − 𝑟max − 3 ≤ 0 and 

ℎ(𝑠) ≥ min{ℎ(0), ℎ(𝑟max)} = min
{

3
8
,
(2𝑟max + 1)(3 − 𝑟max)

8(𝑟max + 1)

}

≥
𝑟max

2(𝑟max + 1)
,

which completes the proof. ∎
Remark 2.2. If we set the time-step ratio 𝑟𝑛 ≡ 1, ∀𝑛, the scheme (2.22) reduces to a second-order numerical scheme with a fixed 
time step. In this case, the energy dissipation law will also hold

𝐸𝑛+1 + 3
8𝜏

(

(𝜌′0(𝑋))2(𝓁−1
𝑛+1 + 𝓁−1

𝑛 )(𝑥𝑛+1 − 𝑥𝑛), (𝑥𝑛+1 − 𝑥𝑛)
)
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≤𝐸𝑛 + 1
4𝜏

(

(𝜌′0(𝑋))2(𝓁−1
𝑛−1 + 𝓁−1

𝑛 )(𝑥𝑛 − 𝑥𝑛−1), (𝑥𝑛 − 𝑥𝑛−1)
)

.

Remark 2.3. The standard BDF2 numerical scheme with variable time steps can also be proposed:

(1 + 2𝑟𝑛+1)𝑥𝑛+1 − (1 + 𝑟𝑛+1)2𝑥𝑛 + 𝑟2𝑛+1𝑥
𝑛−1

𝜏𝑛+1(1 + 𝑟𝑛+1)
𝜌′0(𝑋)

(

𝜕𝑥𝑛+1⋆
𝜕𝑋

)−1

= − 𝜖2𝜕𝑋

(

𝜌′0(𝑋)
(

𝜕𝑥𝑛+1

𝜕𝑋

)−1
)

(

𝜕𝑥𝑛+1

𝜕𝑋

)−1
+ 𝐹 ′(𝜌0(𝑋)),

(2.29)

where 𝜕𝑥
𝑛+1
⋆
𝜕𝑋  is a second-order extrapolation term defined by

𝜕𝑥𝑛+1⋆
𝜕𝑋

=

⎧

⎪

⎨

⎪

⎩

𝜕((1+𝑟𝑛+1)𝑥𝑛−𝑟𝑛+1𝑥𝑛−1)
𝜕𝑋 , if 𝜕𝑥𝑛

𝜕𝑋 ≥ 𝜕𝑥𝑛−1

𝜕𝑋 ,
1

(1+𝑟𝑛+1)∕
𝜕𝑥𝑛
𝜕𝑋 −𝑟𝑛+1∕

𝜕𝑥𝑛−1
𝜕𝑋

, if 𝜕𝑥𝑛

𝜕𝑋 < 𝜕𝑥𝑛−1

𝜕𝑋 .

The scheme (2.29) is positivity-preserving for 𝜕𝑥𝑛+1𝜕𝑋  and MBP-preserving, a proof of which follows similarly from previous works [3]. 
This idea has also been applied to the Keller-Segel equation [34], the Cahn-Hilliard equation [55] and the PME [26,56]. However, 
as discussed in [33,34], the energy stability of (2.29) is not easy to be proved due to the non-constant term ( 𝜕𝑥

𝑛+1
⋆
𝜕𝑋 )−1. The advantage 

of the proposed scheme (2.22) is that its energy stability can be theoretically established, in contrast to (2.29). 

Remark 2.4. The unique solvability of the proposed scheme (2.22) is not established above due to the implicit treatment of 
(

𝜕𝑥
𝜕𝑋

)−1
, 

which introduces nonlinearity and prevents direct derivation of the scheme’s energy functional. To address this issue, we introduce 
𝓁−1
𝑛+1 using an explicit extrapolation method:

𝓁−1
𝑛+1 ∶=

⎧

⎪

⎨

⎪

⎩

(

𝜕((1+𝑟𝑛+1)𝑥𝑛−𝑟𝑛+1𝑥𝑛−1)
𝜕𝑋

)−1
(

(𝜌0(𝑋))
)−1, if 𝜕𝑥𝑛𝜕𝑋 ≥ 𝜕𝑥𝑛−1

𝜕𝑋 ,
(

(1 + 𝑟𝑛+1)
(

𝜕𝑥𝑛

𝜕𝑋

)−1
− 𝑟𝑛+1

(

𝜕𝑥𝑛−1

𝜕𝑋

)−1
)

(

(𝜌0(𝑋))
)−1, if 𝜕𝑥𝑛𝜕𝑋 < 𝜕𝑥𝑛−1

𝜕𝑋 .

By replacing 𝓁−1
𝐾  with 𝓁−1

𝐾 , 𝐾 = 𝑛 − 1, 𝑛, 𝑛 + 1 in scheme (2.22), the unique solvability can be established through the convexity of the 
energy functional [3]. The energy dissipation law can then be derived following the analysis in Theorem 2.1. Related methodology 
can be found in reference [3,34].

3.  Mass conservative models

In this section, we explore adaptive time-stepping methods for mass-conservative models, using Wasserstein gradient flows as 
illustrative examples. If the variable 𝜌 satisfies the conservative transport Eq. (1.5), the mass conservation law is inherently fulfilled.

3.1.  Wasserstein gradient flows in Lagrangian coordinate

The conservative model (1.4) with (𝜌) = 𝜌 can be written as Wasserstein gradient flows [40,57] 

𝜕𝑡𝜌 = ∇ ⋅ (𝜌𝒗), 𝒗 = ∇ 𝛿𝐸
𝛿𝜌

, (3.30)

where the energy is defined by 𝐸(𝜌) = ∫Ω 𝐹 (𝜌)d𝒙 = ∫Ω 𝑈 (𝜌(𝒙)) + 𝑉 (𝒙)𝜌(𝒙)d𝒙 + 1
2 ∫Ω×Ω 𝑊 (𝒙 − 𝒚)𝜌(𝒙)𝜌(𝒚)d𝒙d𝒚. 𝐹 (𝜌) is the energy density, 

𝑈 (𝜌) is an internal energy density, 𝑉 (𝒙) is a drift potential and 𝑊 (𝒙, 𝒚) = 𝑊 (𝒚,𝒙) is an interaction potential . The solution to (3.30) 
satisfies the nice properties, positivity-preserving, mass conservative and energy dissipative. As discussed in [43], a combination of
(1.5) and Wasserstein gradient flows (3.30) leads to the constitutive relation: 

𝜌𝒗 = −𝜌∇ 𝛿𝐸
𝛿𝜌

,

which can be rewritten into the following Lagrangian form [43]:

𝜌0(𝑿) d𝒙
d𝑡

+ 𝜌0(𝑿)∇𝒙
𝛿𝐸
𝛿𝜌

= 0,

𝜌(𝒙, 𝑡) =
𝜌0(𝑿)

det 𝜕𝒙𝜕𝑿
.

(3.31)

We can readily demonstrate that the Lagrangian formulation (3.31) is equivalent to the original system (1.4) at the continuous level. 
We propose adaptive time-stepping schemes to solve (1.4) based on (3.31), rather than directly utilizing (1.4).
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We note that (3.31) constitutes a highly nonlinear system. To solve (3.31) efficiently, we introduce a regularization term to (3.31), 
resulting in the following modified system:

𝜌0(𝑿) d𝒙
d𝑡

− 𝜀Δ𝑿
d𝒙
d𝑡

+ 𝜌0(𝑿)∇𝒙
𝛿𝐸
𝛿𝜌

= 0,

𝜌(𝒙, 𝑡) =
𝜌0(𝑿)

det 𝜕𝒙𝜕𝑿
.

(3.32)

We use the Dirichlet boundary condition 𝒙𝑛+1|𝜕Ω = 𝑿|𝜕Ω, and Ω0
𝒙 = Ω0

𝑿 . Notice that 𝜀Δ𝑿
d𝒙
d𝑡  is an artificial viscosity term and 𝜀 ≥ 0 is 

a small constant. Below we shall propose adaptive time-stepping methods to solve the modified system (3.32).

3.2.  Adaptive time-stepping method

A second-order semi-discrete scheme with variable time steps for (3.32) can be constructed as follows: for any 𝑛 ≥ 1, given 𝒙𝑛−1, 𝒙𝑛, 
𝜏𝑛+1, 𝑟𝑛+1 and the initial value 𝜌0(𝑿), the solution (𝒙𝑛+1, 𝜌𝑛+1) can be obtained by solving

𝜌0(𝑿)
(1 + 2𝑟𝑛+1)𝒙𝑛+1 − (1 + 𝑟𝑛+1)2𝒙𝑛 + 𝑟2𝑛+1𝒙

𝑛−1

𝜏𝑛+1(1 + 𝑟𝑛+1)
− 𝜏𝑛+1Δ𝑿 (𝒙𝑛+1 − 𝒙𝑛) + 𝜌0(𝑿)∇𝒙𝐹

′
⎛

⎜

⎜

⎝

𝜌0(𝑿)

det 𝜕𝒙
𝑛+1

𝜕𝑿

⎞

⎟

⎟

⎠

= 0, (3.33)

𝜌𝑛+1 =
𝜌0(𝑿)

det 𝜕𝒙
𝑛+1

𝜕𝑿

, (3.34)

with the Dirichlet boundary condition 𝒙𝑛+1|𝜕Ω = 𝑿|𝜕Ω, and Ω0
𝒙 = Ω0

𝑿 . Since (3.33) requires initial values 𝒙0 and 𝒙1, we choose 𝒙0 = 𝑿
and use the first-order scheme in [43] to solve 𝒙1.

Now we will prove that the scheme (3.33)–(3.34) preserves properties of Wasserstein gradient flows.

Lemma 3.1. Assume initial value 𝜌0(𝑿) > 0, if the energy 𝐸(𝒙) is convex with respect to 𝒙, then there exists a unique solution to scheme
(3.33)–(3.34). Moreover, if the internal energy density is of the form 𝑈 (𝑠) = 𝑠 log 𝑠, then for any 1 ≤ 𝑛 ≤ 𝑁 , the solution 𝜌𝑛+1(𝒙) to numerical 
scheme (3.33)–(3.34) is positive and mass conservative in the sense that ∫Ω𝑡

𝒙
𝜌𝑛+1(𝒙)d𝒙 = ∫Ω0

𝑿
𝜌0(𝑿)d𝑿.

Proof.  The solution to scheme (3.33) is the minimizer of the following variational problem:

𝒙𝑘+1 ∶= argmin
𝒙

{

1
2𝜏𝑛+1 ∫Ω0

𝑿

𝜌0(𝑿)
|(1 + 2𝑟𝑛+1)𝒙 − (1 + 𝑟𝑛+1)2𝒙𝑛 + 𝑟2𝑛+1𝒙

𝑛−1
|

2

(1 + 𝑟𝑛+1)(1 + 2𝑟𝑛+1)
d𝑿 + 𝐸(𝒙) +

𝜏𝑛+1
2 ∫Ω0

𝑿

|∇𝑿 (𝒙 − 𝒙𝑘)|2d𝑿

}

. (3.35)

Since the above variational problem is convex with respect to 𝒙 due to the convexity of 𝐸(𝒙), the scheme (3.33) admits a unique 
solution. In addition, If the internal energy density is of the form 𝑈 (𝑠) = 𝑠 log 𝑠, then the term 𝜌0(𝑿)

det 𝜕𝒙
𝑛+1
𝜕𝑿

 should stay in the domain of the 

logarithmic function. This implies that det 𝜕𝒙𝑛+1𝜕𝑿 ≥ 0. If det 𝜕𝒙𝑛+1𝜕𝑿 = 0, then the variational energy functional in (3.35) at 𝒙𝑛+1 becomes 
+∞, which contradicts the minimizer. Then the solution satisfies 𝜌𝑛+1 > 0. Using the equality (3.34) and det 𝜕𝒙𝜕𝑿 d𝑿 = d𝒙, we have 

∫Ω𝑡
𝒙

𝜌𝑛+1(𝒙)d𝒙 = ∫Ω𝑡
𝒙

𝜌0(𝑿)

det 𝜕𝒙
𝑛+1

𝜕𝑿

d𝒙 = ∫Ω0
𝑿

𝜌0(𝑿)

det 𝜕𝒙
𝑛+1

𝜕𝑿

det 𝜕𝒙
𝑛+1

𝜕𝑿
d𝑿 = ∫Ω0

𝑿

𝜌0(𝑿)d𝑿.

Hence, the scheme (3.33)–(3.34) is mass conservative. ∎
The energy dissipation law will hold under a mild condition on the maximum time-step ratio.

Theorem 3.1.  Assume the initial value 𝜌0(𝑿) > 0, and the maximum time-step ratio satisfies 0 < 𝑟max ≤
3+

√

17
2 . If energy 𝐸(𝒙) is convex 

with respect to 𝒙, then scheme (3.33) is energy dissipative in the sense that

𝐸(𝒙𝑛+1) +
𝑟max

2𝜏𝑛+1(1 + 𝑟max) ∫Ω0
𝑿

𝜌0(𝑿)|𝒙𝑛+1 − 𝒙𝑛|2d𝑿

≤𝐸(𝒙𝑛) +
𝑟max

2𝜏𝑛(1 + 𝑟max) ∫Ω0
𝑿

𝜌0(𝑿)|𝒙𝑛 − 𝒙𝑛−1|2d𝑿.
(3.36)

Proof.  Taking inner product with 𝒙𝑛+1 − 𝒙𝑛 of (3.33) leads to

1 + 2𝑟𝑛+1
𝜏𝑛+1(1 + 𝑟𝑛+1) ∫Ω0

𝑿

𝜌0(𝑿)

(

|𝒙𝑛+1 − 𝒙𝑛|2 −
𝑟2𝑛+1

1 + 2𝑟𝑛+1
(𝒙𝑛+1 − 𝒙𝑛)(𝒙𝑛 − 𝒙𝑛−1)

)

d𝑿

+𝜏𝑛+1‖𝜕𝑿 (𝒙𝑛+1 − 𝒙𝑛)‖2 +
( 𝛿𝐸
𝛿𝒙

(𝒙𝑛+1), (𝒙𝑛+1 − 𝒙𝑛)
)

= 0,
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an application of the convexity of 𝐸(𝒙) with respect to 𝒙 implies that
1 + 2𝑟𝑛+1

𝜏𝑛+1(1 + 𝑟𝑛+1) ∫Ω0
𝑿

𝜌0(𝑿)

(

|𝒙𝑛+1 − 𝒙𝑛|2 −
𝑟2𝑛+1

1 + 2𝑟𝑛+1
(𝒙𝑛+1 − 𝒙𝑛)(𝒙𝑛 − 𝒙𝑛−1)

)

d𝑿

+𝜏𝑛+1‖𝜕𝑿 (𝒙𝑛+1 − 𝒙𝑛)‖2 + 𝐸(𝒙𝑛+1) ≤ 𝐸(𝒙𝑛).

(3.37)

For the first term on the left hand side of (3.37), using the Cauchy-Schwarz inequality shows that

∫Ω0
𝑿

𝜌0(𝑿)

(

|𝒙𝑛+1 − 𝒙𝑛|2 −
𝑟2𝑛+1

1 + 2𝑟𝑛+1
(𝒙𝑛+1 − 𝒙𝑛)(𝒙𝑛 − 𝒙𝑛−1)

)

d𝑿

≥∫Ω0
𝑿

𝜌0(𝑿)

(

2 + 4𝑟𝑛+1 − 𝑟2𝑛+1
2(1 + 2𝑟𝑛+1)

|𝒙𝑛+1 − 𝒙𝑛|2 −
𝑟2𝑛+1

2(1 + 2𝑟𝑛+1)
|𝒙𝑛 − 𝒙𝑛−1|2

)

d𝑿.

Substituting above estimate into (3.37) leads to

∫Ω0
𝑿

𝜌0(𝑿)

(

2 + 4𝑟𝑛+1 − 𝑟2𝑛+1
2𝜏𝑛+1(1 + 𝑟𝑛+1)

|𝒙𝑛+1 − 𝒙𝑛|2 −
𝑟2𝑛+1

2𝜏𝑛+1(1 + 𝑟𝑛+1)
|𝒙𝑛 − 𝒙𝑛−1|2

)

d𝑿

+𝜏𝑛+1‖𝜕𝑿 (𝒙𝑛+1 − 𝒙𝑛)‖2 + 𝐸(𝒙𝑛+1) ≤ 𝐸(𝒙𝑛),

then the following inequality holds by using 𝑟𝑛+1 = 𝜏𝑛+1
𝜏𝑛
:

2 + 4𝑟𝑛+1 − 𝑟2𝑛+1
2𝜏𝑛+1(1 + 𝑟𝑛+1) ∫Ω0

𝑿

𝜌0(𝑿)|𝒙𝑛+1 − 𝒙𝑛|2d𝑿 + 𝜏𝑛+1‖𝜕𝑿 (𝒙𝑛+1 − 𝒙𝑛)‖2 + 𝐸(𝒙𝑛+1)

≤𝐸(𝒙𝑛) +
𝑟𝑛+1

2𝜏𝑛(1 + 𝑟𝑛+1) ∫Ω0
𝑿

𝜌0(𝑿)|𝒙𝑛 − 𝒙𝑛−1|2d𝑿

≤𝐸(𝒙𝑛) +
𝑟max

2𝜏𝑛(1 + 𝑟max) ∫Ω0
𝑿

𝜌0(𝑿)|𝒙𝑛 − 𝒙𝑛−1|2d𝑿.

The energy dissipation law will hold under the condition that 𝑔(𝑟𝑛+1) ∶=
2+4𝑟𝑛+1−𝑟2𝑛+1

1+𝑟𝑛+1
≥ 𝑟max

1+𝑟max
. It can be easily verified that the function 

𝑔(𝑟) = 2+4𝑟−𝑟2
1+𝑟  is increasing within 𝑟 ∈ (0,−1 +

√

3) and decreasing with 𝑟 ∈ (−1 +
√

3, 𝑟max), then we have 𝑔(𝑟) ≥ min{𝑔(0), 𝑔(𝑟max)} for 
0 < 𝑟 ≤ 𝑟max. The energy dissipation law will be derived once the maximum time-step ratio satisfies: 

𝑔(𝑟max) ≥
𝑟max

1 + 𝑟max
,

that is 2 + 3𝑟max − 𝑟2max ≥ 0, then the energy dissipation law holds when 0 < 𝑟max ≤
3+

√

17
2 . ∎

Remark 3.1. In above Theorem, we assume that the energy is convex with respect to 𝒙. In fact, the PME and Fokker-Planck equation 
satisfy such assumption in one dimension. 
Remark 3.2. Similar to the adaptive time-stepping BDF2 scheme proposed for the Cahn-Hilliard equation in [47], which has been 
proved to be energy stable when the maximum time-step ratio satisfies 0 < 𝑟max ≤

3+
√

17
2 . The restriction can be relaxed by using the 

discrete convolution kernel in [58] and the scalar auxiliary variable approach in [21]. It would be interesting to investigate whether 
the scheme (3.33) remains energy stable under a milder restriction on the maximum time-step ratio. 

4.  Fully discrete schemes

In this section, we shall construct adaptive time-stepping with standard finite difference in space for non-conservative models and 
conservative models.

4.1.  Non-conservative models

For simplicity, we use the Allen-Cahn Eq. (2.18) as an example.
Let Ω𝑋

0 = [−𝐿,𝐿] and Ω𝑥
0 = [−𝐿,𝐿] represent the computational domain in Lagrangian and Eulerian coordinates, respectively. 

The spatial grids are defined as −𝐿 = 𝑋0 < 𝑋1 < ⋯ < 𝑋𝑀𝑥
= 𝐿, with the grid spacing given by ℎ = 2𝐿

𝑀𝑥
. We define the midpoints 

𝑥𝑗+ 1
2
∶= 1

2 (𝑥𝑗 + 𝑥𝑗+1), and the discrete differential operators as follows:

(𝐷ℎ𝑥)𝑗+ 1
2
∶= 1

ℎ
(𝑥𝑗+1 − 𝑥𝑗 ),

for 𝑗 = 0, 1,⋯ ,𝑀𝑥 − 1, and 

(𝑑ℎ𝑥)𝑗 ∶=
1
ℎ
(𝑥𝑗+ 1

2
− 𝑥𝑗− 1

2
),
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for 𝑗 = 1,⋯ ,𝑀𝑥 − 1. The discrete inner product is defined by 

(𝑢, 𝑣)ℎ ∶=
𝑀𝑥−1
∑

𝑗=0
(𝑢𝑣)𝑗+ 1

2
ℎ,

and 

[𝑢, 𝑣]ℎ =
𝑀𝑥−1
∑

𝑗=1
(𝑢𝑣)𝑗ℎ + ℎ

2
(𝑢0𝑣0 + 𝑢𝑀𝑥

𝑣𝑀𝑥
).

If the test function 𝑣 satisfies the boundary conditions 𝑣0 = 𝑣𝑀𝑥
= 0, the summation by parts formula holds: (𝐷ℎ𝑢, 𝑣)ℎ = −[𝑢, 𝑑ℎ𝑣]ℎ.

The fully discrete, adaptive time stepping scheme for the Allen-Cahn equation is given as follows: for any 𝑛 ≥ 1, given 𝑥𝑛−1, 𝑥𝑛, 
𝜏𝑛+1 and 𝑟𝑛+1, solve (𝑥𝑛+1, 𝜌𝑛+1) from:

(2𝑟𝑛+1 + 1)(𝜌′0(𝑋𝑗+ 1
2
))2

2𝜏𝑛+1(𝑟𝑛+1 + 1)𝑀(𝜌0(𝑋𝑗+ 1
2
))

(

(𝐷ℎ𝑥
𝑛+1)−1

𝑗+ 1
2
+ (𝐷ℎ𝑥

𝑛)−1
𝑗+ 1

2

)

(𝑥𝑛+1
𝑗+ 1

2

− 𝑥𝑛
𝑗+ 1

2
)

− 𝜂𝜏𝑛+1𝐷ℎ
(

log(𝑑ℎ𝑥𝑛+1) − log(𝑑ℎ𝑥𝑛)
)

𝑗+ 1
2

−
𝑟2𝑛+1(𝜌

′
0(𝑋𝑗+ 1

2
))2

2𝜏𝑛+1(𝑟𝑛+1 + 1)𝑀(𝜌0(𝑋𝑗+ 1
2
))

((

1 + 1
2𝑟𝑛+1

)

(𝐷ℎ𝑥
𝑛)

− 1
2

𝑗+ 1
2

− 1
2𝑟𝑛+1

(𝐷ℎ𝑥
𝑛+1)

− 1
2

𝑗+ 1
2

)

×
(

(𝐷ℎ𝑥
𝑛−1)

− 1
2

𝑗+ 1
2

− (𝐷ℎ𝑥
𝑛)

− 1
2

𝑗+ 1
2

)

(𝑥𝑛
𝑗+ 1

2
− 𝑥𝑛−1

𝑗+ 1
2
)

= − 𝜖2

2
𝐷ℎ(𝜌′0(𝑋)(𝑑ℎ𝑥𝑛+1)−1)2𝑗+ 1

2
+𝐷ℎ𝐹 (𝜌0(𝑋))𝑗+ 1

2
,

(4.38)

then the solution to the Allen-Cahn equation will be obtained by 𝜌𝑛+1
𝑗+ 1

2

= 𝜌0(𝑋𝑗+ 1
2
) for 𝑗 = 0, 1, ⋯, 𝑀𝑥 − 1. The following initial and 

boundary conditions will be considered: 
(𝑥00, 𝑥

0
1,⋯ , 𝑥0𝑀𝑥

) = (𝑋0, 𝑋1,⋯ , 𝑋𝑀𝑥
), 𝑥𝑛+10 = 𝑋0, 𝑥

𝑛+1
𝑀𝑥

= 𝑋𝑀𝑥
. (4.39)

The term 𝜂𝜏𝑛+1𝐷ℎ
(

log(𝑑ℎ𝑥𝑛+1) − log(𝑑ℎ𝑥𝑛)
) with 𝜂 ≥ 0 is introduced to ensure the positivity of 𝑑ℎ𝑥𝑛+1.

Similar to the semi-discrete case, taking a discrete inner product of (4.38) with −(𝑥𝑛+1 − 𝑥𝑛) will lead to the energy dissipation 
law in Lagrangian coordinate.

Theorem 4.1.  For the Allen-Cahn Eq. (2.14) with (𝜌) > 0, if the maximum time-step ratio satisfies 0 < 𝑟max ≤
3
2 , then the fully discrete 

numerical scheme (4.38) is energy dissipative in the sense that

𝐸𝑛+1
ℎ +

𝑟max
2𝜏𝑛+1(𝑟max + 1)

(

(𝜌′0)
2

(𝜌0)
((𝐷ℎ𝑥

𝑛+1)−1 + (𝐷ℎ𝑥
𝑛)−1)(𝑥𝑛+1 − 𝑥𝑛), (𝑥𝑛+1 − 𝑥𝑛)

)

ℎ

+ 𝜂𝜏𝑛+1[log(𝑑ℎ𝑥𝑛+1) − log(𝑑ℎ𝑥𝑛), 𝑑ℎ(𝑥𝑛+1 − 𝑥𝑛)]ℎ

≤𝐸𝑛
ℎ +

𝑟max
2𝜏𝑛(𝑟max + 1)

(

(𝜌′0)
2

(𝜌0)
((𝐷ℎ𝑥

𝑛−1)−1 + (𝐷ℎ𝑥
𝑛)−1)(𝑥𝑛 − 𝑥𝑛−1), (𝑥𝑛 − 𝑥𝑛−1)

)

ℎ

,

(4.40)

where the discrete energy is defined by 

𝐸𝑛
ℎ = 𝜖2

2
[

|𝜌′0(𝑋)(𝑑ℎ𝑥𝑛)−1|2, 𝑑ℎ𝑥𝑛
]

ℎ +
[

𝐹 (𝜌0(𝑋)), 𝑑ℎ𝑥𝑛
]

ℎ.

Proof.  Taking a discrete inner product of (4.38) with −(𝑥𝑛+1 − 𝑥𝑛) leads to

−
2𝑟𝑛+1 + 1

2𝜏𝑛+1(𝑟𝑛+1 + 1)

(

(𝜌′0(𝑋))2

(𝜌0(𝑋))
(

(𝐷ℎ𝑥
𝑛+1)−1 + (𝐷ℎ𝑥

𝑛)−1
)

(𝑥𝑛+1 − 𝑥𝑛), 𝑥𝑛+1 − 𝑥𝑛
)

ℎ

+ 𝜂𝜏𝑛+1
(

𝐷ℎ
(

log(𝑑ℎ𝑥𝑛+1) − log(𝑑ℎ𝑥𝑛)
)

, 𝑥𝑛+1 − 𝑥𝑛
)

ℎ

+
𝑟2𝑛+1

2𝜏𝑛+1(𝑟𝑛+1 + 1)

(

(𝜌′0(𝑋))2

(𝜌0(𝑋))

((

1 + 1
2𝑟𝑛+1

)

(𝐷ℎ𝑥
𝑛)−

1
2 − 1

2𝑟𝑛+1
(𝐷ℎ𝑥

𝑛+1)−
1
2

)

×
(

(𝐷ℎ𝑥
𝑛−1)−

1
2 − (𝐷ℎ𝑥

𝑛)−
1
2
)

(𝑥𝑛 − 𝑥𝑛−1), 𝑥𝑛+1 − 𝑥𝑛
)

ℎ

= 𝜖2

2
(𝐷ℎ(𝜌′0(𝑋)(𝑑ℎ𝑥𝑛+1)−1)2, 𝑥𝑛+1 − 𝑥𝑛) − (𝐷ℎ𝐹 (𝜌0(𝑋)), 𝑥𝑛+1 − 𝑥𝑛)ℎ.

(4.41)
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By applying summation by parts and utilizing the convexity of 1𝑦  with respect to 𝑦, we have

−
2𝑟𝑛+1 + 1

2𝜏𝑛+1(𝑟𝑛+1 + 1)

(

(𝜌′0(𝑋))2

(𝜌0(𝑋))
(

(𝐷ℎ𝑥
𝑛+1)−1 + (𝐷ℎ𝑥

𝑛)−1
)

(𝑥𝑛+1 − 𝑥𝑛), 𝑥𝑛+1 − 𝑥𝑛
)

ℎ

− 𝜂𝜏𝑛+1
[

log(𝑑ℎ𝑥𝑛+1) − log(𝑑ℎ𝑥𝑛), 𝑑ℎ(𝑥𝑛+1 − 𝑥𝑛)
]

ℎ

+
𝑟2𝑛+1

2𝜏𝑛+1(𝑟𝑛+1 + 1)

(

(𝜌′0(𝑋))2

(𝜌0(𝑋))

((

1 + 1
2𝑟𝑛+1

)

(𝐷ℎ𝑥
𝑛)−

1
2 − 1

2𝑟𝑛+1
(𝐷ℎ𝑥

𝑛+1)−
1
2

)

×
(

(𝐷ℎ𝑥
𝑛−1)−

1
2 − (𝐷ℎ𝑥

𝑛)−
1
2
)

(𝑥𝑛 − 𝑥𝑛−1), 𝑥𝑛+1 − 𝑥𝑛
)

ℎ

= − 𝜖2

2
[(𝜌′0(𝑋)(𝑑ℎ𝑥𝑛+1)−1)2, 𝑑ℎ(𝑥𝑛+1 − 𝑥𝑛)]ℎ + [𝐹 (𝜌0(𝑋)), 𝑑ℎ(𝑥𝑛+1 − 𝑥𝑛)]ℎ

≥ 𝜖2

2
[(𝜌′0(𝑋)(𝑑ℎ𝑥𝑛+1)−1)2, 𝑑ℎ𝑥𝑛+1]ℎ −

𝜖2

2
[(𝜌′0(𝑋)(𝑑ℎ𝑥𝑛)−1)2, 𝑑ℎ𝑥𝑛]ℎ

+ [𝐹 (𝜌0(𝑋)), 𝑑ℎ(𝑥𝑛+1 − 𝑥𝑛)]ℎ.

(4.42)

Denote 𝐷ℎ𝑥𝑛(𝜌0) = 𝓁ℎ𝑛 , similar to the semi-discrete case, repeatedly applying the Cauchy-Schwarz inequality leads to
(

(𝜌′0(𝑋))2((1 + 1
2𝑟𝑛+1

)𝓁
− 1

2
ℎ𝑛 − 1

2𝑟𝑛+1
𝓁
− 1

2
ℎ𝑛+1

)( 1
2
𝓁
− 1

2
ℎ𝑛−1

+ 1
2
𝓁
− 1

2
ℎ𝑛 )(𝑥𝑛 − 𝑥𝑛−1), 𝑥𝑛+1 − 𝑥𝑛

)

ℎ

≤1
4

(

(𝜌′0(𝑋))2(
(2𝑟𝑛+1 + 1)2 + 2𝑟𝑛+1 + 1

4𝑟2𝑛+1
𝓁−1
ℎ𝑛 +

2𝑟𝑛+1 + 2
4𝑟2𝑛+1

𝓁−1
ℎ𝑛+1

)(𝑥𝑛+1 − 𝑥𝑛), 𝑥𝑛+1 − 𝑥𝑛
)

ℎ

+ 1
2

(

(𝜌′0(𝑋))2(𝓁−1
ℎ𝑛−1

+ 𝓁−1
ℎ𝑛 )(𝑥

𝑛 − 𝑥𝑛−1), 𝑥𝑛 − 𝑥𝑛−1
)

ℎ

≤1
4
(2𝑟𝑛+1 + 1)2 + 2𝑟𝑛+1 + 1

4𝑟2𝑛+1

(

(𝜌′0(𝑋))2(𝓁−1
ℎ𝑛 + 𝓁−1

ℎ𝑛+1
)(𝑥𝑛+1 − 𝑥𝑛), 𝑥𝑛+1 − 𝑥𝑛

)

ℎ

+ 1
2

(

(𝜌′0(𝑋))2(𝓁−1
ℎ𝑛−1

+ 𝓁−1
ℎ𝑛 )(𝑥

𝑛 − 𝑥𝑛−1), 𝑥𝑛 − 𝑥𝑛−1
)

ℎ
.

Then we obtain the following estimate for the first and third terms on the left hand side of (4.42):

−
2𝑟𝑛+1 + 1

2𝜏𝑛+1(𝑟𝑛+1 + 1)

(

(𝜌′0(𝑋))2

(𝜌0(𝑋))
(

(𝐷ℎ𝑥
𝑛+1)−1 + (𝐷ℎ𝑥

𝑛)−1
)

(𝑥𝑛+1 − 𝑥𝑛), 𝑥𝑛+1 − 𝑥𝑛
)

ℎ

+
𝑟2𝑛+1

2𝜏𝑛+1(𝑟𝑛+1 + 1)

(

(𝜌′0(𝑋))2

(𝜌0(𝑋))

(

(1 + 1
2𝑟𝑛+1

)(𝐷ℎ𝑥
𝑛)−

1
2 − 1

2𝑟𝑛+1
(𝐷ℎ𝑥

𝑛+1)−
1
2

)

×
(

(𝐷ℎ𝑥
𝑛−1)−

1
2 − (𝐷ℎ𝑥

𝑛)−
1
2
)

(𝑥𝑛 − 𝑥𝑛−1), 𝑥𝑛+1 − 𝑥𝑛
)

ℎ

≤ −
2𝑟𝑛+1 + 1

2𝜏𝑛+1(𝑟𝑛+1 + 1)

(

(𝜌′0(𝑋))2

(𝜌0(𝑋))
(

(𝐷ℎ𝑥
𝑛+1)−1 + (𝐷ℎ𝑥

𝑛)−1
)

(𝑥𝑛+1 − 𝑥𝑛), 𝑥𝑛+1 − 𝑥𝑛
)

ℎ

+
(2𝑟𝑛+1 + 1)2 + 2𝑟𝑛+1 + 1

16𝜏𝑛+1(𝑟𝑛+1 + 1)

(

(𝜌′0(𝑋))2

(𝜌0(𝑋))
((𝐷ℎ𝑥

𝑛)−1 + (𝐷ℎ𝑥
𝑛+1)−1)(𝑥𝑛+1 − 𝑥𝑛), 𝑥𝑛+1 − 𝑥𝑛

)

ℎ

+
𝑟2𝑛+1

2𝜏𝑛+1(𝑟𝑛+1 + 1)

(

(𝜌′0(𝑋))2

(𝜌0(𝑋))
((𝐷ℎ𝑥

𝑛−1)−1 + (𝐷ℎ𝑥
𝑛)−1)(𝑥𝑛 − 𝑥𝑛−1), 𝑥𝑛 − 𝑥𝑛−1

)

ℎ

= −
(2𝑟𝑛+1 + 1)(3 − 𝑟𝑛+1)

8𝜏𝑛+1(𝑟𝑛+1 + 1)

(

(𝜌′0(𝑋))2

(𝜌0(𝑋))
((𝐷ℎ𝑥

𝑛)−1 + (𝐷ℎ𝑥
𝑛+1)−1)(𝑥𝑛+1 − 𝑥𝑛), 𝑥𝑛+1 − 𝑥𝑛

)

ℎ

+
𝑟2𝑛+1

2𝜏𝑛+1(𝑟𝑛+1 + 1)

(

(𝜌′0(𝑋))2

(𝜌0(𝑋))
((𝐷ℎ𝑥

𝑛−1)−1 + (𝐷ℎ𝑥
𝑛)−1)(𝑥𝑛 − 𝑥𝑛−1), 𝑥𝑛 − 𝑥𝑛−1

)

ℎ

,

a combination of above inequality with (4.42) shows

𝐸𝑛+1
ℎ +

(2𝑟𝑛+1 + 1)(3 − 𝑟𝑛+1)
8𝜏𝑛+1(𝑟𝑛+1 + 1)

(

(𝜌′0(𝑋))2

(𝜌0(𝑋))
((𝐷ℎ𝑥

𝑛)−1 + (𝐷ℎ𝑥
𝑛+1)−1)(𝑥𝑛+1 − 𝑥𝑛), 𝑥𝑛+1 − 𝑥𝑛

)

ℎ

+ 𝜂𝜏𝑛+1
[

log(𝑑ℎ𝑥𝑛+1) − log(𝑑ℎ𝑥𝑛), 𝑑ℎ(𝑥𝑛+1 − 𝑥𝑛)
]

ℎ

≤𝐸𝑛
ℎ +

𝑟max
2𝜏𝑛(𝑟max + 1)

(

(𝜌′0(𝑋))2

(𝜌0(𝑋))
((𝐷ℎ𝑥

𝑛−1)−1 + (𝐷ℎ𝑥
𝑛)−1)(𝑥𝑛 − 𝑥𝑛−1), 𝑥𝑛 − 𝑥𝑛−1

)

ℎ

.
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then the energy dissipation law will hold once the following inequality holds: 

ℎ(𝑟𝑛+1) =
(2𝑟𝑛+1 + 1)(3 − 𝑟𝑛+1)

8(𝑟𝑛+1 + 1)
≥

𝑟max
2(𝑟max + 1)

,

which implies that if the maximum time-step ratio satisfies 0 < 𝑟max ≤
3
2 , the energy dissipation law (4.40) holds. ∎

Remark 4.1.  For the fully discrete scheme (4.38), we extend the approach developed for the semi-discrete case in Remark 2.4 by 
redefining the discrete operator (𝐷̃ℎ𝑥𝑛+1)−1 as:

(𝐷̃ℎ𝑥
𝑛+1)−1 ∶=

{

(

(1 + 𝑟𝑛+1)𝐷ℎ𝑥𝑛 − 𝑟𝑛+1𝐷ℎ𝑥𝑛−1
)−1, if 𝐷ℎ𝑥𝑛 ≥ 𝐷ℎ𝑥𝑛−1,

(1 + 𝑟𝑛+1)(𝐷ℎ𝑥𝑛)−1 − 𝑟𝑛+1(𝐷ℎ𝑥𝑛−1)−1, if 𝐷ℎ𝑥𝑛 < 𝐷ℎ𝑥𝑛−1.

By replacing (𝐷ℎ𝑥𝐾 )−1 with (𝐷̃ℎ𝑥𝐾 )−1, 𝐾 = 𝑛 − 1, 𝑛, 𝑛 + 1 in scheme (4.38), we can establish both unique solvability and the energy 
dissipation law. The analysis follows analogous arguments to those for the semi-discrete scheme.

4.2.  Conservative models

We construct below a full discrete numerical scheme for the Wasserstein gradient flows (3.30).
Define the admissible set 𝑆𝑎𝑑 ∶= {𝒙 ∶ 𝑥𝑗+1 > 𝑥𝑗 for 𝑗 = 0, 1,⋯ ,𝑀𝑥 − 1, and 𝑥0 = 𝑋0, 𝑥𝑀𝑥

= 𝑋𝑀𝑥
}. Given 𝒙𝑛−1, 𝒙𝑛, 𝜏𝑛+1, 𝑟𝑛+1 and 

the initial value 𝜌0(𝑿), solving (𝒙𝑛+1, 𝜌𝑛+1) from the following finite dimensional minimization problem:
⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝒙𝑛+1 ∶= arg inf
𝒙∈𝑆𝑎𝑑

1 + 2𝑟𝑛+1
2𝜏𝑛+1(1 + 𝑟𝑛+1)

(

𝜌0(𝑿), |𝒙 − 𝒙̂𝑛|2
)

ℎ + 𝐸ℎ(𝒙)

+
𝜏𝑛+1
2

(

|𝐷ℎ(𝒙 − 𝒙𝑛)|2, 1
)

ℎ,

𝜌𝑛+1
𝑗+ 1

2

∶=
𝜌0(𝑋𝑗+ 1

2
)

(𝐷ℎ𝑥𝑛+1)𝑗+ 1
2

, 𝑗 = 0, 1,⋯ ,𝑀𝑥 − 1,

(4.43)

where 𝒙 = (𝑥0, 𝑥1,… , 𝑥𝑀𝑥−1, 𝑥𝑀𝑥
), 𝑥𝑗+ 1

2
∶= 1

2 (𝑥𝑗+1 + 𝑥𝑗 ), 𝒙̂𝑛 = (1+𝑟𝑛+1)2

1+2𝑟𝑛+1
𝒙𝑛 −

𝑟2𝑛+1
1+2𝑟𝑛+1

𝒙𝑛−1, and the discrete energy is defined by 𝐸ℎ(𝒙) ∶=
(

𝐹
(

𝜌0(𝑿)
𝐷ℎ𝒙

)

, 𝐷ℎ𝒙
)

ℎ
.

Taking the variational of (4.43) with respect to 𝒙 leads to the weak formulation with 𝒙 = 𝒙𝑛+1:

1 + 2𝑟𝑛+1
𝜏𝑛+1(1 + 𝑟𝑛+1)

(

𝜌0(𝑿)(𝒙𝑛+1 − 𝒙̂𝑛), 𝛿𝒙
)

ℎ + 𝜏𝑛+1
(

𝐷ℎ(𝒙𝑛+1 − 𝒙𝑛), 𝐷ℎ𝛿𝒙
)

ℎ

+
(

𝛿𝐸ℎ
𝛿𝒙

(𝒙𝑛+1), 𝛿𝒙
)

ℎ
= 0.

(4.44)

Taking the test function 𝛿𝒙 = (𝛿𝑥0, 𝛿𝑥1,⋯ , 𝛿𝑥𝑀𝑥−1, 𝛿𝑥𝑀𝑥
) with 𝛿𝑥𝑖 = 𝛿𝑖𝑗 (Dirac function) for 𝑖, 𝑗 = 0, 1⋯ ,𝑀𝑥 − 1, we obtain the fol-

lowing second-order scheme with variable time steps:
1 + 2𝑟𝑛+1

2𝜏𝑛+1(1 + 𝑟𝑛+1)
𝜌0(𝑋𝑗+ 1

2
)(𝑥𝑛+1

𝑗+ 1
2

− 𝑥̂𝑛
𝑗+ 1

2
)ℎ +

1 + 2𝑟𝑛+1
2𝜏𝑛+1(1 + 𝑟𝑛+1)

𝜌0(𝑋𝑗− 1
2
)(𝑥𝑛+1

𝑗− 1
2

− 𝑥̂𝑛
𝑗− 1

2
)ℎ

− 𝜏𝑛+1
(𝑥𝑛+1𝑗+1 − 𝑥𝑛𝑗+1) − 2(𝑥𝑛+1𝑗 − 𝑥𝑛𝑗 ) + 𝑥𝑛+1𝑗−1 − 𝑥𝑛𝑗−1

ℎ2
ℎ +

𝛿𝐸ℎ
𝛿𝑥𝑗

(𝒙𝑛+1) = 0, (4.45)

𝜌𝑛+1
𝑗+ 1

2

∶=
𝜌0(𝑋𝑗+ 1

2
)

(𝐷ℎ𝑥𝑛+1)𝑗+ 1
2

, 𝑗 = 0, 1,⋯ ,𝑀𝑥 − 1, (4.46)

with the initial and boundary conditions 
𝒙0 = (𝑋0, 𝑋1,⋯ , 𝑋𝑀𝑥

) and 𝑥𝑛+10 = 𝑋0, 𝑥𝑛+1𝑀𝑥
= 𝑋𝑀𝑥

. (4.47)

We can use the first-order numerical scheme proposed in [43] to calculate 𝒙1 and 𝜌1.
Theorem 4.2. Assume the initial value 𝜌0(𝑋) > 0 for 𝑋 ∈ Ω𝑋

0 , the energy density 𝐹 (𝑠) satisfies 𝐹 (𝑠) ≥ 0 for 𝑠 ≥ 0, and lim
𝑠→0

𝐹 ( 1𝑠 )𝑠 = ∞, 

then the scheme (4.45)–(4.46) has a unique solution 𝒙𝑛+1 ∈ 𝑆𝑎𝑑 when 𝛿
2𝐸ℎ
𝛿𝒙2 > 0, the solution is positive 𝜌𝑛+1

𝑗+ 1
2

> 0 for 𝑗 = 0, 1,⋯ ,𝑀𝑥 − 1, 

and mass conservative. Moreover, if the time-step ratio satisfies 0 < 𝑟𝑛+1 ≤ 𝑟max ≤
3+

√

17
2 , the energy is dissipative:

𝐸ℎ(𝒙𝑛+1) +
𝑟max

2𝜏𝑛+1(1 + 𝑟max)
(

𝜌0(𝑿)(𝒙𝑛+1 − 𝒙𝑛)2, 1
)

ℎ

≤𝐸ℎ(𝒙𝑛) +
𝑟max

2𝜏𝑛(1 + 𝑟max)
(

𝜌0(𝑿)(𝒙𝑛 − 𝒙𝑛−1)2, 1
)

ℎ.
(4.48)
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Proof.  The first two properties can be derived using similar technique in [3], the proof of which is omitted here. To prove the energy 
dissipation law, we set 𝛿𝒙 = 𝒙𝑛+1 − 𝒙𝑛 in (4.44) and obtain

1 + 2𝑟𝑛+1
𝜏𝑛+1(1 + 𝑟𝑛+1)

(

𝜌0(𝑿)(𝒙𝑛+1 − 𝒙𝑛)2, 1
)

ℎ −
𝑟2𝑛+1

𝜏𝑛+1(1 + 𝑟𝑛+1)
(

𝜌0(𝑿)(𝒙𝑛 − 𝒙𝑛−1),𝒙𝑛+1 − 𝒙𝑛
)

ℎ

+ 𝜏𝑛+1(|𝐷ℎ(𝒙𝑛+1 − 𝒙𝑛)|2, 1)ℎ +
(

𝛿𝐸ℎ
𝛿𝒙

(𝒙𝑛+1),𝒙𝑛+1 − 𝒙𝑛
)

ℎ
= 0,

using the Cauchy-Schwarz inequality and the convexity of 𝐸(𝒙) with respect to 𝒙 shows that
2 + 4𝑟𝑛+1 − 𝑟2𝑛+1
2𝜏𝑛+1(1 + 𝑟𝑛+1)

(

𝜌0(𝑿)(𝒙𝑛+1 − 𝒙𝑛)2, 1
)

ℎ −
𝑟2𝑛+1

2𝜏𝑛+1(1 + 𝑟𝑛+1)
(

𝜌0(𝑿)(𝒙𝑛 − 𝒙𝑛−1)2, 1
)

ℎ

+𝜏𝑛+1(|∇ℎ(𝒙𝑛+1 − 𝒙𝑛)|2, 1)ℎ + 𝐸ℎ(𝒙𝑛+1) ≤ 𝐸ℎ(𝒙𝑛),

then we have

𝐸ℎ(𝒙𝑛+1) +
2 + 4𝑟𝑛+1 − 𝑟2𝑛+1
2𝜏𝑛+1(1 + 𝑟𝑛+1)

(

𝜌0(𝑿)(𝒙𝑛+1 − 𝒙𝑛)2, 1
)

ℎ

≤𝐸ℎ(𝒙𝑛) +
𝑟max

2𝜏𝑛(1 + 𝑟max)
(

𝜌0(𝑿)(𝒙𝑛 − 𝒙𝑛−1)2, 1
)

ℎ.

Similar to the semi-discrete case discussed above, the energy dissipation law can be derived under the condition that 𝑔(𝑟max) ≥
𝑟max

1+𝑟max
, 

which holds for 0 < 𝑟max ≤
3+

√

17
2 . ∎

Remark 4.2. The convexity of the energy 𝐸ℎ(𝒙) with respect to 𝒙 is crucial for both the unique solvability and the discrete energy 
dissipative law of our proposed schemes. In fact, the energy densities of the Porous Medium equation and Fokker-Planck equation are 
𝐹 (𝑠) = 1

𝑚−1 𝑠
𝑚, 𝑚 > 1 and 𝐹 (𝑠) = 𝑠 log 𝑠 + 𝑠𝑉 (𝑥) which will satisfy the following two key assumptions: F(s) can be made non-negative 

by adding an appropriate positive constant for all 𝑠 ≥ 0, and lim
𝑠→0

𝐹
(

1
𝑠

)

𝑠 = ∞. 

Remark 4.3. For several Lagrangian coordinate-based models, convergence analysis and error estimates have been established for 
various numerical schemes in the existing literature [20,21,24,50]. The convergence properties of our proposed schemes can be 
analyzed by adapting the techniques from these previous works. We will investigate this issues in future work.

4.3.  Adaptive time-stepping methods in 2D

Now we generalize adaptive time-stepping, Lagrangian methods based on flow dynamic approach into two-dimensional case.
Denote 𝒙 = (𝑥, 𝑦), 𝑿 = (𝑋, 𝑌 ), and the Jacobian matrix 𝜕𝒙𝜕𝑿 = 𝜕(𝑥,𝑦)

𝜕(𝑋,𝑌 ) . Set Ω𝑋
0 = [−𝐿𝑥, 𝐿𝑥] × [−𝐿𝑦, 𝐿𝑦] with 𝐿𝑥, 𝐿𝑦 > 0, and Ω𝑥

0 = Ω𝑋
0 . 

Given 𝑀𝑥, 𝑀𝑦 ∈ ℕ, and define the spatial grid size ℎ𝑥 = 2𝐿𝑥
𝑀𝑥

, ℎ𝑦 =
2𝐿𝑦
𝑀𝑦
. Let 𝑋𝑖𝑗 = 𝑋0 + 𝑗ℎ𝑥, 𝑌𝑖𝑗 = 𝑌0 + 𝑖ℎ𝑦 for 0 ≤ 𝑗 ≤ 𝑀𝑥, 0 ≤ 𝑖 ≤ 𝑀𝑦, 

and 𝜌0𝑖𝑗 = 𝜌(𝑋𝑖𝑗 , 𝑌𝑖𝑗 , 0) ≥ 0.
Given 𝒙0 = 𝑿 and the initial value 𝜌0(𝑿), the first step 𝒙1 is calculated by the first-order scheme in [43]. Then the fully implicit 

BDF2 scheme with variable time steps can be proposed:
Implicit numerical scheme. ∀𝑛 ≥ 1, given 𝒙𝑛−1, 𝒙𝑛, 𝜏𝑛+1, 𝑟𝑛+1, solving (𝑥𝑛+1, 𝑦𝑛+1) from

𝜌0𝑖𝑗𝐷2𝑥
𝑛+1
𝑖𝑗 − 𝜀𝜏𝑛+1Δ𝑿 (𝑥𝑛+1𝑖𝑗 − 𝑥𝑛𝑖𝑗 ) +

𝛿𝐸̃ℎ,2

𝛿𝑥
(𝒙𝑛+1𝑖𝑗 ) = 0, (4.49)

𝜌0𝑖𝑗𝐷2𝑦
𝑛+1
𝑖𝑗 − 𝜀𝜏𝑛+1Δ𝑿 (𝑦𝑛+1𝑖𝑗 − 𝑦𝑛𝑖𝑗 ) +

𝛿𝐸̃ℎ,2

𝛿𝑦
(𝒙𝑛+1𝑖𝑗 ) = 0, (4.50)

where 𝐷2𝑎𝑛+1𝑖𝑗 ∶=
(1+2𝑟𝑛+1)𝑎𝑛+1𝑖𝑗 −(1+𝑟𝑛+1)2𝑎𝑛𝑖𝑗+𝑟

2
𝑛+1𝑎

𝑛−1
𝑖𝑗

𝜏𝑛+1(1+𝑟𝑛+1)
 and 𝐸̃ℎ,2(𝒙) ∶=

∑

𝑖,𝑗 𝐹 (
𝜌0𝑖𝑗

det 𝜕𝒙𝜕𝑿 |𝑖𝑗
)det 𝜕𝒙𝜕𝑿 |𝑖𝑗 . The Dirichlet boundary condition is consid-

ered: 𝒙𝑛+1|𝜕Ω = 𝑿|𝜕Ω.
Then 𝜌𝑛+1𝑖𝑗  is derived by 

𝜌𝑛+1𝑖𝑗 =
𝜌0𝑖𝑗
𝑛+1
𝑖𝑗

with 𝑛+1
𝑖𝑗 =

|

|

|

|

|

|

|

𝜕𝑥𝑛+1𝑖𝑗
𝜕𝑋

𝜕𝑦𝑛+1𝑖𝑗
𝜕𝑋

𝜕𝑥𝑛+1𝑖𝑗
𝜕𝑌

𝜕𝑦𝑛+1𝑖𝑗
𝜕𝑌

|

|

|

|

|

|

|

=

|

|

|

|

|

|

|

|

𝑥𝑛+1𝑖,𝑗+1−𝑥
𝑛+1
𝑖,𝑗−1

2ℎ𝑥

𝑦𝑛+1𝑖,𝑗+1−𝑦
𝑛+1
𝑖,𝑗−1

2ℎ𝑥
𝑥𝑛+1𝑖+1,𝑗−𝑥

𝑛+1
𝑖−1,𝑗

2ℎ𝑦

𝑦𝑛+1𝑖+1,𝑗−𝑦
𝑛+1
𝑖−1,𝑗

2ℎ𝑦

|

|

|

|

|

|

|

|

. (4.51)

The scheme (4.49)–(4.50) should be solved in the admissible set 𝐸𝑎𝑑 = {𝒙 ∶ det 𝜕𝒙𝜕𝑿 |𝑖𝑗 > 0 for all 𝑖, 𝑗 ∈ ℕ, 𝒙|𝜕Ω = 𝑿|𝜕Ω}, and the 
solution to which is the minimizer of the following minimization problem: 

𝒙𝑛+1 ∶= arg inf
𝒙∈𝐸𝑎𝑑

𝐽𝑛+1(𝒙), (4.52)

where 𝐽𝑛+1(𝒙) ∶= 𝐸ℎ,2(𝒙) +
∑

𝑖,𝑗
1+2𝑟𝑛+1

2𝜏𝑛+1(1+𝑟𝑛+1)
𝜌0𝑖𝑗 |𝒙𝑖𝑗 − 𝒙̂𝑛𝑖𝑗 |

2ℎ𝑥ℎ𝑦 +
𝜀𝜏𝑛+1
2

∑

𝑖,𝑗 (|
𝒙𝑖,𝑗+1−𝒙𝑛𝑖,𝑗+1−𝒙𝑖,𝑗+𝒙

𝑛
𝑖,𝑗

ℎ𝑥
|

2 + |

𝒙𝑖+1,𝑗−𝒙𝑛𝑖+1,𝑗−𝒙𝑖,𝑗+𝒙
𝑛
𝑖,𝑗

ℎ𝑦
|

2)ℎ𝑥ℎ𝑦, and 
𝐸ℎ,2(𝒙) ∶= 𝐸̃ℎ,2(𝒙)ℎ𝑥ℎ𝑦. We obtain the following result for the scheme (4.49)–(4.50).

Journal of Computational Physics 546 (2026) 114499 

13 



Q. Liu, W. Chen, J. Shen et al.

Theorem 4.3.  Assume the energy density 𝐹 (𝑠) ≥ 0 for 𝑠 ≥ 0, and satisfies lim
𝑠→0

𝐹 ( 1𝑠 )𝑠 = ∞. Then there exists a solution 𝒙𝑛+1 ∈ 𝐸𝑎𝑑 to the 
nonlinear numerical scheme (4.49)–(4.50), and the following energy dissipation law holds under the condition that 0 < 𝑟𝑛+1 ≤ 𝑟max ≤

5
4 :

𝐸ℎ,2(𝒙𝑛+1) +
∑

𝑖,𝑗

𝑟3max
𝜏𝑛+1(1 + 𝑟max)(1 + 2𝑟max)

𝜌0𝑖𝑗 |𝒙
𝑛+1
𝑖𝑗 − 𝒙𝑛𝑖𝑗 |

2ℎ𝑥ℎ𝑦

≤𝐸ℎ,2(𝒙𝑛) +
∑

𝑖,𝑗

𝑟3max
𝜏𝑛(1 + 𝑟max)(1 + 2𝑟max)

𝜌0𝑖𝑗 |𝒙
𝑛
𝑖𝑗 − 𝒙𝑛−1𝑖𝑗 |

2ℎ𝑥ℎ𝑦.

(4.53)

Proof.  The existence of the solution to scheme (4.49)–(4.50) is equivalent to the existence of the minimizer of 𝐽𝑛+1(𝒙) in the admissible 
set 𝐸𝑎𝑑 . Then we turn to prove the existence of the minimizer of the minimization problem (4.52). If the minimizer lies on the boundary 
of the admissible set, that is 𝒙 ∈ 𝜕𝐸𝑎𝑑 , we have 𝐽𝑛+1(𝒙) = ∞, which is a contradiction. Following the proof in [10,38], the claim of 
the theorem will be derived once we show that the sub-level set 

 ∶=
{

𝒙 ∈ 𝐸𝑎𝑑 ∶ 𝐽𝑛+1(𝒙) ≤ 𝐸ℎ,2(𝒙𝑛) +
∑

𝑖,𝑗

𝑟4𝑛+1
2𝜏𝑛+1(1 + 𝑟𝑛+1)(1 + 2𝑟𝑛+1)

𝜌0𝑖𝑗 |𝒙
𝑛
𝑖𝑗 − 𝒙𝑛−1𝑖𝑗 |

2ℎ𝑥ℎ𝑦 ∶= 𝛾
}

is a non-empty compact subset of ℝ2. Clearly, 𝒙𝑛 ∈ , so it is non-empty. Similar to [10,43], the boundedness and closedness of 
can be established. Consequently,  is a non-empty compact subset of ℝ2.

If 𝒙𝑛+1 ∈  is a minimizer of the minimization problem (4.52), we have

𝐸ℎ,2(𝒙𝑛+1) +
∑

𝑖,𝑗

1 + 2𝑟𝑛+1
2𝜏𝑛+1(1 + 𝑟𝑛+1)

𝜌0𝑖𝑗 |𝒙
𝑛+1
𝑖𝑗 − 𝒙̂𝑛𝑖𝑗 |

2ℎ𝑥ℎ𝑦

≤𝐸ℎ,2(𝒙𝑛) +
∑

𝑖,𝑗

𝑟4𝑛+1
2𝜏𝑛+1(1 + 𝑟𝑛+1)(1 + 2𝑟𝑛+1)

𝜌0𝑖𝑗 |𝒙
𝑛
𝑖𝑗 − 𝒙𝑛−1𝑖𝑗 |

2ℎ𝑥ℎ𝑦.

(4.54)

Using the inequality |𝑎 − 𝑏|2 ≥ 1
2 |𝑎|

2 − |𝑏|2 with 𝑎 = 𝒙𝑛+1𝑖𝑗 − 𝒙𝑛𝑖𝑗 and 𝑏 =
𝑟2𝑛+1

1+2𝑟𝑛+1
(𝒙𝑛𝑖𝑗 − 𝒙𝑛−1𝑖𝑗 ) shows that 12 |𝒙

𝑛+1
𝑖𝑗 − 𝒙𝑛𝑖𝑗 |

2 −
𝑟4𝑛+1

(1+2𝑟𝑛+1)2
|𝒙𝑛𝑖𝑗 −

𝒙𝑛−1𝑖𝑗 |

2 ≤ |𝒙𝑛+1𝑖𝑗 − 𝒙̂𝑛𝑖𝑗 |
2, substituting which into (4.54) leads to

𝐸ℎ,2(𝒙𝑛+1) +
∑

𝑖,𝑗

1 + 2𝑟𝑛+1
4𝜏𝑛+1(1 + 𝑟𝑛+1)

𝜌0𝑖𝑗 |𝒙
𝑛+1
𝑖𝑗 − 𝒙𝑛𝑖𝑗 |

2ℎ𝑥ℎ𝑦

≤𝐸ℎ,2(𝒙𝑛) +
∑

𝑖,𝑗

𝑟4𝑛+1
𝜏𝑛+1(1 + 𝑟𝑛+1)(1 + 2𝑟𝑛+1)

𝜌0𝑖𝑗 |𝒙
𝑛
𝑖𝑗 − 𝒙𝑛−1𝑖𝑗 |

2ℎ𝑥ℎ𝑦

≤𝐸ℎ,2(𝒙𝑛) +
∑

𝑖,𝑗

𝑟3max
𝜏𝑛(1 + 𝑟max)(1 + 2𝑟max)

𝜌0𝑖𝑗 |𝒙
𝑛
𝑖𝑗 − 𝒙𝑛−1𝑖𝑗 |

2ℎ𝑥ℎ𝑦.

The energy dissipation law will hold under the condition that the maximum time-step ratio satisfies 1+2𝑟𝑛+1
4(1+𝑟𝑛+1)

> 1
4 ≥ 𝑟3max

(1+𝑟max)(1+2𝑟max)
.

If the time-step ratio is chosen such that 0 < 𝑟𝑛+1 ≤ 𝑟max ≤
5
4 , where 

5
4  is computed numerically, then the proof is complete. ∎

Explicit numerical scheme. Given 𝒙0 = 𝑿 and the initial value 𝜌0(𝑿), the first step (𝒙1, 𝜌1) is solved by the first-order scheme 
proposed in [43]. Given (𝑥𝑛, 𝑦𝑛), ∀𝑛 ≥ 1, (𝑥𝑛+1, 𝑦𝑛+1) can be solved by the linear scheme:

𝜌0𝑖𝑗𝐷2𝑥
𝑛+1
𝑖𝑗 − 𝜀𝜏𝑛+1Δ𝑿 (𝑥𝑛+1𝑖𝑗 − 𝑥𝑛𝑖𝑗 ) +

𝛿𝐸̃ℎ,2

𝛿𝑥
((1 + 𝑟𝑛+1)𝒙𝑛𝑖𝑗 − 𝑟𝑛+1𝒙𝑛−1𝑖𝑗 ) = 0, (4.55)

𝜌0𝑖𝑗𝐷2𝑦
𝑛+1
𝑖𝑗 − 𝜀𝜏𝑛+1Δ𝑿 (𝑦𝑛+1𝑖𝑗 − 𝑦𝑛𝑖𝑗 ) +

𝛿𝐸̃ℎ,2

𝛿𝑦
((1 + 𝑟𝑛+1)𝒙𝑛𝑖𝑗 − 𝑟𝑛+1𝒙𝑛−1𝑖𝑗 ) = 0, (4.56)

with the Dirichlet boundary condition 𝒙𝑛+1|𝜕Ω = 𝑿|𝜕Ω, and the last term 𝛿𝐸̃ℎ,2
𝛿𝒙  is an second-order extrapolation term. Then the solution 

𝜌𝑛+1 will be derived by (4.51).

5.  Adaptive time-stepping strategy

In this section, we describe our adaptive time-step strategy in Algorithm 1 which determines time steps based on the changes of 
trajectory and energy [21,48]. To be specific, the parameter 𝛾 in (5.57) reflects the sensitivity of the time step with respect to changes 
of trajectory, and 𝛽 in (5.58) represents the sensitivity of the time step with respect to changes of energy.

6.  Numerical experiments

We present in this section some numerical experiments to validate the accuracy and stability of the proposed numerical schemes.
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Algorithm 1 Adaptive time-stepping algorithm related to energy and trajectory changes.
1: Initialize 𝜏𝑛, 𝒙𝑛−1, 𝒙𝑛, 𝐸𝑛−1, 𝐸𝑛, 𝜏min, 𝜏max, 𝑟user
2: Set tolerances tol
3: Compute the next time-step by the following strategy with 𝛿𝜏𝑎𝑛 ∶= 𝑎𝑛−𝑎𝑛−1

𝜏𝑛
:

𝜏𝑛+1 = min

(

max

(

𝜏min,
𝜏max

√

1 + 𝛾‖𝛿𝜏𝒙𝑛‖2

)

, 𝑟user𝜏𝑛

)

, (5.57)

or 𝜏𝑛+1 = min

⎛

⎜

⎜

⎜

⎝

max

⎛

⎜

⎜

⎜

⎝

𝜏min,
𝜏max

√

1 + 𝛽|𝛿𝜏𝐸𝑛
ℎ|

2

⎞

⎟

⎟

⎟

⎠

, 𝑟user𝜏𝑛

⎞

⎟

⎟

⎟

⎠

(5.58)

4: Compute 𝒙𝑛+12nd and 𝜌𝑛+12nd by solving scheme (4.45)-(4.47) with time-step size 𝜏𝑛+1
5: Compute the Jacobian determinant det 𝜕𝒙𝑛+1𝜕𝑿

6: if det 𝜕𝒙𝑛+1𝜕𝑿 > 0 then
7: Accept step: 𝒙𝑛+1 ← 𝒙𝑛+12nd, 𝜌𝑛+1 ← 𝜌𝑛+12nd
8: else
9: Reject step and decrease time-step: 𝜏𝑛+1 = 1

2 𝜏𝑛+1 and return to step 4
10: end if
11: return 𝒙𝑛+1, 𝜌𝑛+1, 𝐸𝑛+1 and 𝜏𝑛+1

Fig. 1. A schematic illustration of a flow map 𝒙(𝑿, 𝑡) at a fixed time 𝑡: 𝒙(𝑿, 𝑡) maps Ω0
𝑿 to Ω𝑡

𝒙. 𝑿 is the Lagrangian coordinate while 𝒙 is the Eulerian 
coordinate, and 𝐹 (𝑿, 𝑡) = 𝜕𝒙(𝑿,𝑡)

𝜕𝑿
 represents the deformation associated with the flow map.

6.1.  Non-conservative models in one dimension

We first present numerical experiments for non-conservative models in one-dimension (Fig. 1).

6.1.1.  Allen-Cahn equation
We will take the initial value 𝜌0(𝑋) = 1 −𝑋2, 𝑋 ∈ [−1, 1], 𝜖 = 0.01, choose (𝜌) ≡ 1 and (𝜌) = 1 − 𝜌2 to solve numerical solutions 

using scheme (4.38).
convergence test. Set 𝑀𝑥 = 16 × 2𝑖−1 and 𝑁 = 625 × 2𝑖−1 for 𝑖 = 1, 2, 3, 4, the reference numerical solution is computed with 𝑖 = 7. 

For the fixed time-step case, we set the time step 𝜏 = 𝑇
𝑁  and spatial size 𝛿𝑋 = 2

𝑀𝑥
, and compute the convergence order by Order(𝑖) =

ln
(

error(𝑖)
error(𝑖−1)

)

∕ ln
(

𝑀𝑥(𝑖)
𝑀𝑥(𝑖−1)

)

. For the variable time-step case, the time step is chosen by 𝜏𝑛 = 𝜎𝑛𝑇
∑𝑁

𝑘=1 𝜎𝑘
 with uniformly distributed random 

values 𝜎𝑛 ∈ (0, 1), ∀𝑛, the convergence order is calculated by Order(𝑖) = ln
(

error(𝑖)
error(𝑖−1)

)

∕ ln
(

𝜏(𝑖)
𝜏(𝑖−1)

)

, where 𝜏(𝑖) represents the maximum 
time step. Numerical results displayed in Fig. 2 show that the convergence order of (4.38) is second order.

Interface capture. We first choose the time steps by 𝜏𝑛 = 𝜎𝑛𝑇
∑𝑁

𝑘=1 𝜎𝑘
, with uniformly distributed random values 𝜎𝑛 ∈ (0, 1), ∀𝑛. The 

numerical results are shown in diagrams (a) to (f) in Fig. 3. The interface width and particle positions are captured, and the discrete 
energy is also dissipative. Furthermore, we use strategy (5.58) to solve the scheme (4.38) with 𝜖 = 0.01 and (𝜌) ≡ 1. The energy 
plot is displayed in diagrams (g) in Fig. 3. The time steps (blue line) and the corresponding time-step ratios (red line) are plotted in 
diagrams (h) in Fig. 3. It can be observed that the time step increases as the energy decreases slowly, which improves the efficiency.

6.2.  Conservative models in one dimension

Now, we present numerical experiments for conservative models in one-dimension.

6.2.1.  Porous medium equation
The PME is a Wasserstein gradient flow with energy 𝐸(𝜌) = ∫Ω

1
𝑚−1𝜌

𝑚d𝑥.
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Fig. 2. Convergence order for (4.38) with 𝜌0(𝑋) = 1 −𝑋2, 𝑋 ∈ [−1, 1], 𝜖 = 0.01, 𝜂 = 0, 𝑇 = 0.5.

Fig. 3. Numerical solution solved by scheme (4.38) at 𝑇 = 20 with 𝜖 = 0.01, 𝑀𝑥 = 100, 𝑁 = 2000. (a-f): 𝜏𝑛 = 𝜎𝑛𝑇
∑𝑁

𝑘=1 𝜎𝑘
. (g-h): strategy (5.58) with 

𝛽 = 1𝑒5, 𝑟user = 1.5, 𝜏max = 0.1 and 𝜏min = 1𝑒 − 3.

Table 1 
Convergence order for the PME with 𝑚 = 2 at 𝑇 = 0.5 under fixed time-step.
𝑀𝑥 𝛿𝑡 𝐿2

ℎ error (𝑥)  order 𝐿∞ error (𝑥)  order 𝐿2
ℎ error (𝑢)  order

 100  1/200  8.7715e-05  1.2351e-04  3.8165e-05
 200  1/400  2.1936e-05  1.9995  3.0882e-05  1.9998  9.5315e-06  2.0015
 400  1/800  5.4852e-06  1.9997  7.7083e-06  2.0023  2.3792e-06  2.0023
 800  1/1600  1.3715e-06  1.9998  1.9271e-06  2.0000  5.9187e-07  2.0071

Convergence test. Consider the following smooth initial value: 
𝜌0(𝑥) = cos

(𝜋𝑥
2

)

, 𝑥 ∈ [−1, 1], (6.59)

with the Dirichlet boundary condition 𝑥|𝜕Ω = 𝑋|𝜕Ω. To calculate the convergence order, we choose the reference solution computed 
under a much fine mesh with 𝑀𝑥 = 10000, 𝑁 = 20000.

The convergence order of the scheme (4.45)–(4.47) with both fixed and variable time steps are displayed in Table 1 and Table 2, 
both of which are clearly second order. It can be observed that even when the maximum time-step ratio exceeds the theoretical 
value 𝑟max, the numerical results remain stable and accurate. This suggests that the limitation on the maximum time-step ratio in the 
theoretical analysis is most likely pessimistic.

Waiting time. The propagation speed at the boundary for PME can be calculated by 

𝜕𝑡𝑥 = − 𝑚
𝑚 − 1

𝜕𝑋 (𝜌(𝑋, 0))𝑚−1

(𝜕𝑋𝑥)𝑚
, (6.60)
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Table 2 
Convergence order for the PME with 𝑚 = 2 at 𝑇 = 0.5 under variable time steps.
𝑀𝑥  max time-step  max time-ratio 𝐿2

ℎ error (𝑥)  order 𝐿∞ error (𝑥)  order 𝐿2
ℎ error (𝑢)  order

 100  0.0051  73.7835  8.8319e-05  1.2351e-04  3.7623e-05
 200  0.0025  971.0994  2.2082e-05  1.9179  3.0882e-05  1.9179  9.4009e-06  1.9188
 400  0.0013  369.4026  5.5279e-06  2.0927  7.7084e-06  2.0970  2.3422e-06  2.0999
 800  6.2751e-04  4.1802e+03  1.3816e-06  1.9586  1.9271e-06  1.9582  5.8307e-07  1.9642

Fig. 4. Numerical results solved by scheme (4.45)–(4.47) using the Algorithm 1. Initial value (6.61) with 𝑚 = 2, 𝜃 = 0.25, 𝑀𝑥 = 800.

Fig. 5. Numerical results for PME solved by (4.45)–(4.47) with (6.61), 𝜃 = 0.25, 𝑀𝑥 = 800, 𝛿𝑡 = 1
800
.

see [26,29,56]. The numerical waiting time can be calculated as the first instance such that 𝜕𝑡𝑥 ≠ 0, see the related works [26,43]. 
We set the initial value to be 

𝜌0(𝑥) =
(𝑚 − 1

𝑚
(

(1 − 𝜃) sin2(𝑥) + 𝜃 sin4(𝑥)
)

)1∕(𝑚−1)
, 𝑥 ∈ [−𝜋, 0], (6.61)

where 𝜃 ∈ [0, 0.25]. The waiting time for (6.61) is given in [59] by 𝑡𝑤,𝑒 ∶=
1

2(𝑚+1)(1−𝜃) .
We apply the Algorithm 1 with different time-adaptive strategies, (5.57) and (5.58), in the following numerical experiments 

with 𝑟user = 1.4, 𝜏min = 1𝑒 − 6 and 𝜏max = 1𝑒 − 2 in (5.57), and 𝑟user = 1.4, 𝜏min = 1𝑒 − 6 and 𝜏max = 5 × 1𝑒 − 3 in (5.58). We take 𝛾 =
0.1, 1, 10, 100 and 𝛽 = 0.1, 1, 10, 100, and display the results in Fig. 4. It can be noticed that the time-step increases after the waiting 
time, and the efficiency is improved compared to the scheme with a fixed time-step.

Next, we use a fixed time-step to carry out numerical experiments with (6.61) and 𝜃 = 0.25, the results are displayed in Fig. 5. The 
strategy (5.57) is applied with 𝛾 = 10, 𝜏max = 5 × 1𝑒 − 3. In the case where 𝑚 = 2, the free boundaries remain static during 0 < 𝑡 ≤ 0.22, 
and they begin to move at a finite speed after 𝑡 = 0.22. The waiting time is approximately 𝑡 = 0.19 when 𝑚 = 2.5.

6.2.2.  Keller-Segel model
We simulate the Keller-Segel model with 𝐸(𝑢) = ∫Ω 𝑢 ln 𝑢d𝑥 + 1

2𝜋 ∫Ω×Ω ln |𝑥 − 𝑦|𝑢(𝑥)𝑢(𝑦)d𝑥d𝑦, and choose the following initial value: 

𝑢0(𝑥) =
𝐶

√

2𝜋
exp−

𝑥2
2 +10−8, 𝑥 ∈ [−15, 15], (6.62)

with 𝐶 = 5𝜋. We take 𝑀𝑥 = 800 to compute numerical solution using scheme (4.38) with time-step strategy (5.58), numerical results 
are shown in Fig. 6. It can be observed that the proposed scheme is both energy stable and mass conservative. The time steps (blue 
line) and the corresponding time-step ratios (red line) are plotted in diagram (c) in Fig. 6. Specifically, the numerical solution exhibits 
a blow-up in finite time when the initial mass is large, reflecting the blow-up phenomenon.
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Fig. 6. Numerical results for Keller-Segel equation solved by (4.45)–(4.47) using strategy (5.58), 𝑀𝑥 = 800, 𝛽 = 1𝑒 − 2, 𝜏min = 1𝑒 − 4, 𝜏max = 1𝑒 − 2, 
𝑟user = 3.5.

Fig. 7. Numerical solution for PME solved by (4.55)–(4.56) with (6.63) using strategy (5.58), 𝑚 = 2, 𝑀𝑥 = 𝑀𝑦 = 64, 𝑇 = 2, 𝜀 = 0.5, 𝜏min = 1𝑒 − 4, 
𝜏max = 1𝑒 − 2, 𝑟user = 1.25, 𝛽 = 1𝑒 − 2. The blue dashed circle is the exact interface for (6.63) at 𝑇 = 2. (For interpretation of the references to colour 
in this figure legend, the reader is referred to the web version of this article.)

6.3.  Conservative models in two dimension

Below we shall use the explicit scheme (4.55)–(4.56) to simulate various conservative models.

6.3.1.  Porous medium equation
Barenblatt Solution. We consider the initial value 𝑢(𝑥, 𝑦, 0) given by the Barenblatt solution: 

𝑢(𝑥, 𝑦, 𝑡) = max
(

0.1 −
𝜅(𝑚 − 1)

4𝑚
𝑥2 + 𝑦2

(𝑡 + 1)𝜅
, 0
)

1
𝑚−1

, (6.63)

where 𝜅 = 1
𝑚 . For the numerical simulations, we set 𝑀𝑥 = 𝑀𝑦 = 64. The simulations are performed using the scheme (4.55)–(4.56), 

with both fixed time steps and variable time steps. The regularization term 𝜀𝜏2𝑛+1Δ𝑿𝒙𝑛+1 with 𝜀 = 0.5 is used. For the variable time-step 
case, we apply the strategy (5.58) with 𝜏min = 1𝑒 − 4, 𝜏max = 1𝑒 − 2, 𝑟user = 1.25, and 𝛽 = 1𝑒 − 2.

We plot in Fig. 7 and Fig. 8 the numerical solutions for 𝑚 = 2 at 𝑇 = 2 and 𝑚 = 5 at 𝑇 = 4. The time steps (blue line) and the 
corresponding time-step ratios (red line) are plotted in diagram (f) in Fig. 7. It can be observed that the scheme (4.55)–(4.56) 
effectively captures the trajectory movements and free boundaries.
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Fig. 8. Numerical solution for PME solved by (4.55)–(4.56) with (6.63) using strategy (5.58), 𝑚 = 5, 𝑀𝑥 = 𝑀𝑦 = 64, 𝑇 = 4, 𝜀 = 40, 𝜏min = 1𝑒 − 4, 
𝜏max = 1𝑒 − 2, 𝑟user = 1.25, 𝛽 = 1𝑒 − 2. The blue dashed circle is the exact interface for (6.63) at 𝑇 = 4. (For interpretation of the references to colour 
in this figure legend, the reader is referred to the web version of this article.)

Fig. 9. Numerical results for PME solved by (4.55)–(4.56) with fixed time step. Initial value (6.64), 𝑚 = 3, 𝑀𝑥 = 𝑀𝑦 = 128, 𝜏 = 1𝑒 − 3, 𝜀 = 100.

Non-radial case. We now consider the following non-radial initial value:

𝜌0(𝑥, 𝑦) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

25(0.252 − (
√

𝑥2 + 𝑦2 − 0.75)2)
3
2 ,

√

𝑥2 + 𝑦2 ∈ [0.5, 1] and (𝑥 < 0 or 𝑦 < 0),

25(0.252 − 𝑥2 − (𝑦 − 0.75)2)
3
2 , 𝑥2 + (𝑦 − 0.75)2 ≤ 0.252 and 𝑥 ≥ 0,

25(0.252 − (𝑥 − 0.75)2 − 𝑦2)
3
2 , (𝑥 − 0.75)2 + 𝑦2 ≤ 0.252 and 𝑦 ≥ 0,

0, otherwise,

(6.64)

which has a partial donut-shaped support [10]. We conduct numerical experiments using the scheme (4.55)–(4.56) with the fixed time 
step and the regularization term 𝜀𝜏2𝑛+1Δ𝑿𝒙𝑛+1 where 𝜀 = 100. The numerical results are shown in Fig. 9, which displays the evolution 
of solution and trajectory movements. It can be observed that the proposed method performs well for solutions with complex support.

6.3.2.  Keller-Segel model
Consider the Keller-Segel model given by 

𝜕𝑡𝜌 = ∇ ⋅ (𝜌∇𝑊 ∗ 𝜌) + 𝜈Δ𝜌𝑚, 𝑚 ≥ 1,
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Fig. 10. Numerical results for Keller-Segel equation solved by (4.55)–(4.56) with (6.65) using strategy (5.58), 𝐶 = 1, 𝑀𝑥 = 𝑀𝑦 = 64, and 𝛽 = 1𝑒 − 2, 
𝜏min = 1𝑒 − 4, 𝜏max = 1𝑒 − 2, 𝑟user = 1.5. 𝑚 = 1: 𝜀 = 0.1; 𝑚 = 2: 𝜀 = 0.01.

Fig. 11. Numerical results for Keller-Segel solved by (4.55)–(4.56) with (6.65) using strategy (5.58), 𝐶 = 5𝜋, 𝑀𝑥 = 𝑀𝑦 = 64, 𝜀 = 10, 𝛽 = 1𝑒 − 2, 
𝜏min = 5 × 1𝑒 − 4, 𝜏max = 5 × 1𝑒 − 2, 𝑟user = 1.5.
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where 𝑊 (𝑥) = 1
2𝜋 ln |𝑥| and 𝜈 = 1. We choose 𝑚 = 1 and 𝑚 = 2 and use the scheme (4.55)–(4.56) with the regularization term 

𝜀𝜏2𝑛+1Δ𝑿𝒙𝑛+1 and adaptive time step strategy in (5.58).
The following initial conditions, with 𝐶 = 1 or 𝐶 = 5𝜋, are considered: 

𝑢0(𝑥, 𝑦) = 𝐶𝑒−𝑥
2−𝑦2 , (𝑥, 𝑦) ∈ [−5, 5] × [−5, 5]. (6.65)

The numerical results are presented in Figs. 10 and 11. The time steps (blue line) and the corresponding time-step ratios (red line) 
are plotted in diagram (c) and diagram (f) in Figs. 10 and 11. We observe in particular that the trajectory movements are consistent 
with the interface positions. The results also indicate that, when 𝑚 = 1, a blow-up phenomenon occurs if the initial mass is large, 
while diffusion prevails when the initial mass is small. In contrast, for 𝑚 = 2, the solution eventually converges to a bump with both 
initial conditions.

7.  Concluding remarks

We developed in this paper two adaptive time-stepping Lagrangian methods for gradient flows based on different flow dynamic 
approaches. For the non-conservative models, we designed a modified second-order scheme which naturally preserves the MBP and 
ensures energy dissipation under a mild condition on the maximum time-step ratio. For the conservative models written as Wasserstein 
gradient flows, we constructed a mass-conservative method which is proved to be energy dissipative and positivity-preserving under a 
mild condition on the maximum time-step ratio. The proposed Lagrangian methods offer several advantages, including the enhanced 
ability to capture sharp interfaces, simulate trajectory movements, and address problems involving singularities and free boundaries.

It should be noted that the condition on the time-step ratio is sufficient for the theoretical analysis, but not necessarily optimal in 
the practice. An interesting question for further exploration is whether these schemes can maintain stability under a less restrictive 
condition on the time-step ratio.
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