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ENERGY STABILITY AND CONVERGENCE OF SAV
BLOCK-CENTERED FINITE DIFFERENCE METHOD
FOR GRADIENT FLOWS

XIAOLI LI, JIE SHEN, AND HONGXING RUI

ABSTRACT. We present in this paper construction and analysis of a block-
centered finite difference method for the spatial discretization of the scalar
auxiliary variable Crank-Nicolson scheme (SAV/CN-BCFD) for gradient flows,
and show rigorously that the scheme is second-order in both time and space
in various discrete norms. When equipped with an adaptive time strategy,
the SAV/CN-BCFD scheme is accurate and extremely efficient. Numerical
experiments on typical Allen-Cahn and Cahn-Hilliard equations are presented
to verify our theoretical results and to show the robustness and accuracy of
the SAV/CN-BCFD scheme.

1. INTRODUCTION

Gradient flows are widely used in mathematical models for problems in many
fields of science and engineering, particularly in materials science and fluid dy-
namics; cf. [I,[2L[18,27] and the references therein. Therefore it is important to
develop efficient and accurate numerical schemes for their simulation. There exists
an extensive literature on the numerical analysis of gradient flows; see for instance
[BL6H8LTTLI2L20] and the references therein.

In the algorithm design of gradient flows, an important goal is to guarantee
the energy stability at the discrete level, in order to capture the correct long-time
dynamics of the system and provide enough flexibility for dealing with the stiffness
problem induced by the thin interface. Many schemes for gradient flows are based
on the traditional fully-implicit or explicit discretization for the nonlinear term,
which may suffer from harsh time step constraint due to the thin interfacial width
[O19]. In order to deal with this problem, the convex splitting approach [I3L1521]
and linear stabilization approach [141[19,[24,29] have been widely used to construct
unconditionally energy stable schemes. However, the convex splitting approach
usually leads to nonlinear schemes and the linear stabilization approach is usually
limited to first-order accuracy.
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Recently, a novel numerical method, the so-called invariant energy quadratiza-
tion (IEQ), was proposed in [25}[2628]. This method is a generalization of the
method of Lagrange multipliers or of auxiliary variable. The IEQ approach is
remarkable as it permits us to construct linear, unconditionally stable, and second-
order unconditionally energy stable schemes for a large class of gradient flows.
However, it leads to coupled systems with variable coefficients that may be difficult
or expensive to solve. The scalar auxiliary variable (SAV) approach [I7,[18] was
inspired by the IEQ approach, which inherits its main advantages but overcomes
many of its shortcomings. In particular, in a recent paper [I6], the authors es-
tablished the first-order convergence and error estimates for the semidiscrete SAV
scheme.

In this paper, we construct a SAV/CN scheme with block-centered finite dif-
ferences for gradient flows, carry out a rigorous stability and error analysis, and
implement an adaptive time stepping strategy so that the time step is only dictated
by accuracy rather than by stability. The block-centered finite difference method
can be thought of as the lowest order Raviart-Thomas mixed element method with
a suitable quadrature. Its main advantage over using a regular finite difference
method is that it can approximate both the phase function and chemical potential
with Neumann boundary conditions in the mixed formulation to second-order ac-
curacy, and it guarantees local mass conservation. Our approach for error estimates
here is very different from that in [16] which is based on deriving H? bounds for
the numerical solution. However, this approach cannot be used in the fully discrete
case with finite-differences in space. The essential tools used in the proof are the
summation-by-parts formulae both in space and time to derive energy stability,
and an induction process to show that the discrete L> norm of the numerical solu-
tion is uniformly bounded, without assuming a uniform Lipschitz condition on the
nonlinear potential. To the best of the authors’ knowledge, this is the first paper
with rigorous proof of second-order convergence both in time and space for a linear
scheme to a class of gradient flows without assuming a uniform Lipschitz condition
for the nonlinear potential.

The paper is organized as follows. In Section 2, we describe our numerical
scheme, including the temporal discretization and spacial discretization. In Section
3, we demonstrate the energy stability for our SAV/CN-BCFD scheme. In Section
4, we carry out error estimates for the SAV/CN-BCFD schemes. In Section 5, we
present some numerical experiments to verify the energy stability and accuracy of
the proposed schemes.

Throughout the paper we use C, with or without subscript, to denote a positive
constant, which could have different values at different places.

2. Tue SAV/CN-BCFD SCHEME

Assume given a typical energy functional [16]
A 1
(21) BO) = [ (G0 +5IVol)x + Bi(o),

where Q is a rectangular domain in R?, X > 0, and Ey(¢) = [, F(¢)dx > —cq for
some co > 0, i.e., it is bounded from below. We consider the following gradient flow:

¢ .
(2.2) { E:Mgu, in Q x J,
p=—A¢p+Ap+ F'(¢), in Qx J.
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J = (0,T], and T denotes the final time M is the mobility constant which is

positive. The chemical potential yu = 5 7 G = —1 for the L? gradient flow and

G = A for the H~! gradient flow. F' ((;5) is the nonlinear free energy density and we

focus on, as an example, when E (¢ fQ (1 — ¢?)2dx, the L? and H~! gradient

flows are the well-known Allen—Cahn and Cahn-Hilliard equations, respectively.
The boundary and initial conditions are

Ondloa =0, Onptlon =0,
2.3
( ) { ¢|t:0 = ¢o,

where n is the unit outward normal vector of the domain 2. The equation satisfies
the following energy dissipation law:

dE [ 0¢

(2.4) dt q Ot

udx—M/ pGudx < 0.

2.1. The semidiscrete SAV /CN scheme. We recall the SAV/CN scheme intro-
duced in [I§] first.

Let Cy > ¢ so that Ei(¢) + Cy > 0. Without loss of generality, we substitute
Fy with E7 + Cy without changing the gradient flow. Then E; has a positive lower
bound C’O = Cy — ¢p, which we still denote as Cy for simplicity.

In the SAV approach, a scalar variable r(t) = \/E1(¢) is introduced, and the
system (2.2]) can be transformed into
99
2.5 — =M
(2:5) T gu,
r
(2.6) p=—0¢+ A+ ——=F"(9),
Ei(¢)

(2.7) T = F'(¢)pydx.

vl

Then, the SAV/CN scheme is given as

n+l _ n
n+1/2 _ n+1/2 n+1/2 /2 /¢ Tn+1/2
(2.9) P = AT gt (g,
E1(¢n+1/2)
(2.10) - - ! / F/(ggwrlﬂ)mdx7
At 2 /El ((&n+1/2) Q At

where ¢" /2 = L(¢" + ¢ntl), pnFY2 = L 4 pnHY)and ¢"t/2 can be any
explicit approximation of ¢(t"+1/2) with an error of O(At?). For instance, we may
let ¢"11/2 be the extrapolation by

(2.11) G = (37— ).

2.2. Spacial discretization. We apply the BCFD method on the staggered grids
for the spacial discretization.
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First we give some preliminaries. Let L™ (2) be the standard Banach space with

norm
1/m
ol ey = (/ |v|'”dsz) .

(f,9) = (f,9) 20 :/Qfg dQ

denote the L?() inner product, [[v]s = [|v]|1=(q). Let W*?(Q) be the standard
Sobolev space

For simplicity, let

WEP(Q) = {9 lgllwg ) < oo}

where
1/p
(2.12) lgllww.p ) = Z 1091175 c)
|| <Kk
The grid points are denoted by
(Tiy1/2:Yjr1/2), 0 =0, Nuy j=0,..., Ny,

and the notation similar to that in [22] is used:
T; = (xi_% +xi+%)/2, 1=1,...,N,,
hm :xl—Jr% —:cl;%, = 1,...,Nm,
Y; = (yj—l +yj+1)/2 j=1 "'7Ny,
hy:yj+1 Y-t J=1,. - Ny,
where h, and h, are grid spacings in x and y directions, and N, and N, are the
number of grids along the x and y coordinates, respectively.
Let gij, 9iv 15 941 denote g(xi,y;), 9(xip1,9;), 9(@i,y;41). Define the dis-
crete inner products and norms as:

N, Ny
(fs9)m = ZZ hahy fi9i.5,

i=1 j=1
Ny—1 Ny

(£:9)e = D D hahyfiss i9it3

i=1 j=1
N, Ny—1

(fa :Z Z h hyf,]-‘rlgzj-i-z

=1 j=1
(v, 1) = (V1,71)a + (V2,72)y-

For simplicity, from now on we always omit the superscript n (the time level) if the

omission does not cause conflicts. Define
[dmg]iJré,j = (9i+1,j - gi,j)/hx,
[d yg]1j+1 = (gzg+1 giJ)/hyv
[Dagli; = (v = 9i-15)/has
[D yg] ij = (9i,j+% _gz‘,jfg)/hyv
[digl?; = (97 — g5 ")/ At
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The following discrete-integration-by-part lemma [22] plays an important role in
the analysis.
Lemma 1. Let g; j, w1 i41/2,5, and wa; ji1/2 be any values such that wy /2 =
Wi N, +1/2,5 = W2,i,172 = W2 N, +1/2 = 0. Then

(¢, Dow1)m = —(dzq, w1)a,

(¢, Dyw2)m = —(dyq, w2)y.
2.2.1. SAV/CV-BCFD scheme for H=' gradient ﬂow Let us denote the BCFD

approximations to {¢", u™, r"}_, by {Z", W, R*}_,. The scheme for the H~*
gradient flow is as follows: for 1 <t <N, 1<5< Ny,

(2.13) [d: 2] 5" = M[Dypdo W + Dyd, Wi T2,
(2.14) W = [D,d, Z + Dyd, 2]} 4 Az
+L1/2F (Zn+1/2)
Bh(znizy
1 .
(215) dtRn+1 = —~(F’(Z"H/2),dtZ"“)m,
2\/ Bl (Zn+1/2)

where Z"+1/2 is an approximation of é"*l/Z and

MZn?) = ZZh hyF(Z]T?).

=1 j=1
The boundary and initial approximations are
]1/23*[dZ]71§/+1/2]:O 1<j< Ny,
dyZ)i1 2 = [dyZ]in, 412 =0, 1<i< Ny,
dW]1/2] [da W1y, 41725 =0, 1<j <Ny,
dW]zl/z—[dW]zNH/Q—O 1<i< N,
¢01J,1<2<Nz,1<3<N

(dz
[
(2.16) [
[

Remark. The solutlon procedure of the above scheme is described in detail in [I7]
[18], and hence is omitted here.

2.2.2. SAV/CV-BCFD scheme for L? gradient ﬂow Let us denote the BCFD ap-

proximations to {¢", u™, r"}N_, by {Z", W™, R"}N_ . The scheme for the L? gra-
dient flow is as follows: for 1 < 1< N, 1<5< Ny,
2.17 427 = —Mw]

0J
(2.18) W’;“/ = —[DudoZ + Dyd, Z)} T 4 A2

Rn+1/2 o
P,
Bz

1 .

(2.19) AR = e (F/(Z2""'/?),d, 2" ),
2 /E{L(Z"+1/2)

where Z"1/2 is an approximation of (;NS”“/ 2. The boundary and initial conditions

are given in (2.14)).
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3. UNCONDITIONAL ENERGY STABILITY
We demonstrate below that the full discrete SAV/CN-BCFD schemes are un-
conditionally energy stable with the discrete energy functional
(31) B 2") = 512" B, + 5 142" g + (R
where dZ = (d,Z,d,2).
3.1. H~! gradient flow.

Theorem 2. The scheme 2I3)—(2.13) is unconditionally stable and the following
discrete energy law holds for any At:

(3:2) CIBAZ) — Ba(27)] = MWy > 0.

Proof. Multiplying equation (2I3]) by Wf;rl/ thhy, and making summation on i, j
for 1 <i < N, 1 <5 <N, we have

(3.3) (de 2™, WrHY2) = M(Dyd, W2 4 Dyd, WnHY/2 wntt/2)
Using Lemma [I], equation (B3] can be transformed into the following:

(deZ" 1 W) = — M| W23 4 |l W23

3.4
o4 = — M||dW"™ 2|3,

Multiplying equation (ZI4) by dtZZjlhwhy, and making summation on 4,5 for
1<7< N, 1 <5 <N, we have
(dth+1, Wn+1/2)m — _ (Dmdmzn+l/2 + DydyZn+1/27 dth+1)m

Rn+1/2 1 on+1/2 n+1
(3.5) +——F'(Z ), e Z" ) m
B2 11?)

+ )\(277,—‘,-1/2’ dth+1)m~

Using Lemma [ again, the first term on the right-hand side of equation (3.3 can

be written as
— (Dpd Z"Y? 4 Dyd, 272 dy zn Y,

(3.6) =(d, 2"V, dyd, 27 Y, + (dy 27 Y2, dydy 27T,
1 dZm Gy — 1427 |13
2At :
Multiplying equation (Z.I5) by R"*' + R" leads to
(Rn+1)2 _ (Rn)Q Rn+1/2

7n+1/2 n+1
3.7 = (F/(Z™Y2), dy 2" )
o - Bp(Z0 1)

Combining equation B with equations (34)—(3.0) gives that

(B)? = (B2 127, — 127

At 2At
35) L 14z By, — a7 3,
2At
=~ M|ldw" /2|3y, <o,
which implies the desired results (32)). O
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3.2. L? gradient flow. For the L? gradient flow, we shall only state the result, as
its proof is essentially the same as for the H~! gradient flow.

Theorem 3. The scheme 2IT)—(2.19) is unconditionally stable and the following
discrete energy law holds for any At:

1

(3.9) Al

Ba(Z"") = Ea(2™)] = ~M[W™|12, ¥n > 0.

4. ERROR ESTIMATES

In this section, we derive our main results of this paper, i.e., error estimates for
the fully discrete SAV/CN-BCFD schemes.
For simplicity, we set

ep=2" =", e =W"—pu", ey =R" —1r".

T

4.1. H~! gradient flow. We shall first derive error estimates for the case of the
H~! gradient flow.

Theorem 4. Assume F(¢) € C3(R), ¢ € WHee(J; W4 (Q))NW3>°(J; W2 (Q)),
and p € L*°(J;Wh>(Q)). Let At < C(hy + hy). Then for the discrete scheme
(ZI3)-2I5), there exists a positive constant C' independent of hy, hy, and At such
that

12540 = 6+ [ AZE — 6 g + [REF =

X 1/2
+ (Z At||de+1/2 _ dun+1/2”%M>

n=0

(4.1) k 1/2
+ (Z At||Wn+1/2 _un+1/2||?n>

n=0
<CIgllwroe (r;waee @) + 1l Lo (rwaee @) (B3 + hy)
+ C||¢||W3v°°(J;W1voo(Q))At2.

We shall split the proof of the above results into three lemmas below.

Lemma 5. Under the conditions of Theorem [, there exists a positive constant C
independent of hy, hy, and At such that

k
1 A M .
(572 4 ek [y + S5 2 + 5 D Adlldet /2y
n=0

k+1 M k+1
<C> At||dep |7 + - > Atflert ),
n=0 n=0
(4.2) k+1 k1
+ O Ate]Z, +C> At(er)?
n=0 n=0

+ C(||¢||{2/V1,00(J;W4=00(Q)) + \|M||2Lm(J;W4,w(Q)))(hi + h;)
+ C||¢H12/V3100(J;W1,oo(Q))At4.
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Proof. Denote

5.(6) = dut — 52, 8,(6) = dyo— 50,
ou ou

6z (p) = dopp — P by(p) = dyp — 8_y
Subtracting equation (23] from equation ([2I3)), we obtain

[dieg)itt =MDy (dyey + 05(1)) + Dy(dye, + 0, ()75

(4.3) v
+1/2 +1/2

+ TP Ty

where
n n+1/2 n
(4.4) TR | P ]t < Cllllws iz () A,
12 = i, 2y p, Qe

(4.5) o gz~ "oy v

< CM(h: + h?;)”NHL"O(J;W‘LN(Q))-

Subtracting equation ([2.6]) from equation (2I4]) leads to

2 = = [Da(dues + 6.(0)) + Dy(dyeq + 0y(9))]15 2
Rn+1/2
. +aef e (21T
(4.6) EM(Zn+1/2)
rrtl/2 n+1/2 n+1/2
RCCECECEA
where
n+1/2 n+1/2 ad) ad) n+1/2
(4.7) Taig " = 800~ e + Dy b

< C(h2 + Wl oo (rwa ))-
Subtracting equation ([27)) from equation ([2I5) gives that
dten+1 _ 1

(4.8) 2y Eh(ZNnH/Q)
2 /E1 ¢n+1/2 /Q

(F/(Zn+1/2)’ dth+1)m
¢n+1/2 n+1/2d +Tn+1/2

where

(4.9) TP = T2t < Ol () A
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Multiplying equation (3] by er;lj/ 2

1 < Ngy, 1 <5 <Ny, we have

hzhy, and making summation on 4, j for 1 <

(dteg'H, 6Z+1/2)m
(4.10) =M (Dz(dmeu + 8,())" 2+ Dy (dye, + 8, ()", 62“/2)

(T2 (T )

m

Using Lemma [II we can write the first term on the right-hand side of equation

@I0) as
(4.11)

M <Dz(dm6p +5m(M))n+1/2 +Dy(dy6u _’_5y(M))n+1/2,ez+1/2>

m

=-M ((dweu + 5w(ﬂ))n+1/2a dweZJrl/z) -M ((dyeu + 5y(/*))n+1/27 dy€Z+1/2)

= — M| dep 2 [Far — M (8o ()™, daet /%),
- M(‘Sy(#)mrl/?a dyez+1/2)y~

x Yy

Thanks to the Cauchy-Schwarz inequality, the last two terms on the right-hand side
of equation ([{IT]) can be transformed into

M8, () e ), — M, () ),
(4.12) M 1 , ) )

Multiplying equation (@Gl by dtegfjhmhy, and making summation on 4, j for
1<i< N, 1 <5 <Ny, we have
(4.13)
(et 72, duef ™ )m = —(Da(daeg + 0:(9))" /2 + Dy (dyey + 8,(8))" /2, dyef ™ )m

Rn+1/2 Fnt1/2

S - -
+ ( liE{l(Z"*l/z) [E1(¢n+172)

+ )\(ez+1/2’ dteg—i_l)m + (T§l+1/27 dte$+1)m-

/(Zn+l/2) _ FI(¢n+l/2)7dte;rg+1)m

Similar to the estimate of equation (B3.6]), the first term on the right-hand side of
equation ([@I3) can be transformed into the following:

— (Da(dues + 02(0))" 2 + Dy (dyes + 8,(6)" /2, dyey ™),

:(dxez+l/2’ dtdmeg+1)z + (dyeZ"'l/z’ dtdyeg+1)y

(4.14) + (Go(0) V2, iy ), 4 (8,(0)" T2, didye TR,
_lldel ™ [Fay — e 3y

- 2At
+ (0,(0)" 2, dydy ),

+ (6m(¢)n+1/27 dtdmeZJrl/Q)m
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The second term on the right-hand side of equation ([@I3]) can be rewritten as
follows:

Rn+1/2 B ,rn+1/2
( F/(Zn+1/2) _ F/(¢n+1/2), dteg-i-l)m
El(Zn+1/2) Ey(¢n+1/2)
F(Zn+1/2 F(n+1/2
:Tn+1/2 ( ) _ (¢ ) ,dtez-i-l)m

\/E{I(Zn+1/2) \/E{L(q;n-i-l/Q)

o o W ol i) WS

+ ,’,n+1/2 ,dse m
(\/E{L(anJrl/?) VE(gm7) Y )
+ e?+1/2( F/(Zn+1/2) 7dt€n+1)m-
Bz )

Recalling equation (43)), the first term on the right-hand side of equation ([{.I5)
can be transformed into the following;:

Tn+1/2( F/(ZnJrl/Q) - F’((;BnJrl/Q) gont
~ — , At€ )m
VENZm2) (BN
F(Znt1/2 F(pn+1/2
:M’I“n+1/2( ( - ) _ (¢~ ) aDw(da;eu"‘(sw(M))n—H/Q)m
(4.16) VENZ2) B
’ F/(Zn+1/2 ' én+1/2
+M,,,n+1/2( ( — ) _ ( : ) 7Dy(dy€p+6y(ﬂ))n+l/2)m
VENZ ) B G
1 7n+1/2 1(an+1/2
_+_,’,n+1/2( F(Z ) _ F(¢ ) ,T1n+1/2+T2"+1/2)m.

\/E{L(Zn+l/2) \/E{z((gnﬂ/z)

Next, we shall first make the hypothesis that there exists a positive constant C.,
such that

(4.17) 12" s < C..

This hypothesis will be verified in Lemma [7] using a bootstrap argument.
Since F(¢) € C3(R), we have

d,F'(Z"H1%)  d,F(§"H1/?)
\/E{I(Z”“/Q) \/Ef(g)nﬂﬂ)
(4.18) =dF' (") _ E{L(dz"“/?) - E{‘EZ"H/?) ~
\/Efl(Z"““)E{L(W“/Q)(E{L(Znﬂ/z) - Eb(Gnr2))
d, F'(Zm1/2) — d, F'(gT1/2)
! El(Zn+1/2) '
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Using the above and the Cauchy-Schwartz inequality, we can deduce that
F'(Zn+1/2) F'(gn+1/2)
\/E{L(Znﬂ/z) - \/E{z(qgnﬂ/z)

— M2 d F'(Z7+1/2) ~ d, F'(¢"1/2)
(4.19) \/E{”(Z"H/?) \/E{L(én-‘rlﬂ)

M _
< lldeel 21 + Cllrl ey Uleg I + e ™ 1)

MTnJrl/z( aDz(dzeu +5r(ﬂ))n+1/2)m

) (dweu + 5m(ﬂ))n+1/2)x

+ Cllrl17 e oy (ldaellZ + lldzel ™ 112)
+ C||N\|%w(‘1;w3ww(g))(hi + ).

Similarly we can obtain
F/(ZnJrl/Q) F/(d;nJrl/Q)
VENZr) B Gr)

M, N _
(4.20) SFH%BHH/?HZ+c\|r||2Loo(J)(||e¢llfn+IIGZ Hiz)

MT”+1/2( s Dy(dye, + 5y(ﬂ))n+1/2)m

+ Ol ) ldyeg I} + lldy el I13)
+ CH/J'H%N(J;W&OO(Q))(hi + hy).

Then equation ([@I6]) can be estimated by

Tn+1/2( F/(Zn+l/2) B F/(an+l/2) p i
~ ~ , A€ )m
\/E{L(Zn+1/2) \/E{L(¢n+1/2)
M n n n—
(421) <5 19 2 s + Cllrll o oy eIz, + lleg ™ 1)

+ Olrl| oy (e[ + lIdel ™ [Far)
+ C||/~L||%°°(J;W4v°°(ﬂ))(hi + hi) + C||¢‘|I24/SvW(J;L°°((l))At4'

Similar to ([@.I6]), the second term on the right-hand side of equation (£I0]) can be
controlled by

2 Tn+1/2 F n+1/2
,’,n+1/2( (¢ ) _ (¢ ) , teerl)m

\/E?($"+1/2) VEi(9m+1/2)

(122 <12 g+ Ol s o (1 + 1)
+ Clll e (rweoe 2y (B + Biy)
+ Cll@lfs.00 (o100 () AL
The third term on the right-hand side of equation (LI3]) can be estimated by
n+1

(4.23) )\(en+1/2 dye™1),, = )\H% 7 = gl
¢ » Pt m AL .

This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.



2058 XIAOLI LI, JIE SHEN, AND HONGXING RUI

Multiplying equation [8) by e?! + e leads to

n+1\2 _ n\2 n+1/2 N
(er ) (er) — er (F/(Zn+1/2)’dtzn+1)m
At Eh(Zn+1/2)
(4.24) /2

(g2 1 2 dx

- /E1(¢n+1/2) Q

F TR (et ey,

The first and second terms on the right-hand side of equation [@24)) can be trans-
formed into

(4.25)
6n-&-1/2 B en+1/2
T%(F/(Z'nﬁ’l/Q)?dth‘i’l)m T F/(¢n+1/2)¢?+1/2dx
E{I(ZnJrl/Q) E1(¢n+1/2) Q
n+1/2 y
:W ((F1(¢"+1/2),dt¢"+1)m _AF/(¢n+1/2)¢?+ / dx)
1
n+1/2
b (P2 )
E{L(Zn+1/2)
Zn+1/2 1/2
+€:‘L+1/2( FI(ZnJr / ) F’(¢n+ / ) dt¢"+1)m.

\/ El(Zn+1/2) VE(R)

Since F(¢) € C3(R), we have that

F/(Z"+1/2) F/(¢n+1/2)

e’,?"L-‘rl/Q( _ adt¢n+1)m
\/E{I(Z"Jrl/Q) VE(¢"H1/2)
7n 2 n+1/2
/2 F/(Z~+1/ ) F(¢ ~+ /2) ),
(4.26) VEREm2) BNz
+e?+1/2 F/(¢n+1/2) - FI(¢n+1/2) ,dtqﬁ"“)m

JEr@me) VER@ET)
<C(E Y22 + Ol g oy G2 + 15 2):

Recalling the midpoint approximation property of the rectangle quadrature for-
mula, we can obtain that

e71-&-1/2
_r ((F(pmT1/2 n4-1 . (12 n-+1/2 )
(4.27) Er(¢n+1/2) <( (¢ ), drd" ") o (¢ )b, dx

SC(€?+1/2)2 + CHQSH%/[/I,OO(J,WL’,OO(Q))(}’I/;% + h;)
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Combining equation (£24) with equations ([@LI0)-(.27) and using the Cauchy-
Schwarz inequality results in

(ent1)2 — (en)2 . el 120 — el
At 2At
leg ™ 115, — llef n
(4.28) oA + Milde 2|7

IN

%IIdEZ“/QII%M + Cllr 12y leg |7 + e 1)
Ol ey (11 Zar + el 1 7ar)

—(0a (@) T2 dydyel TP — (8,(0)" V2, dydyely ),
+(T§L+1/2,dtez+l)m _ (T1n+1/2,eﬁ+1/2)m

(T e Py e T (e )
O + IR e sy N + e ™2
+O(H¢||%/VLOO(J;W2’°°(Q)) + ”/‘H%OC(J;W‘*’DO(Q)))(hi + hi)
+C|Bl[Fy3.00 (11,00 (62)) AL

From the discrete-integration-by-parts,

k k
ALS™ g™ = = S AL(dof™, g™
(420 Ezjo (f", deg™™™) ; (def™, ")
+ (50" + (10,99,
we find
k
ST AUTTY dyen ™
n=0
k
(4.30) == 3 AT en) + (T2 b (1372 €9)
nk 1 .
<CY Atfegllz, + Tles™ I + Cliglivns s @y (ha + hy)-
n=1

Similarly we have

k k
_ Z At(5, ()12, dtda:eg+1/2)x _ Z At(éy(¢)n+l/27dtdyez+1/2)y
(4.31) =0 n=0

n A
§CZ A15||d€¢||2TM + lee’;“\lfn + C||¢||%A/l»oc(J;W3»w(Q))(hi + h3)~

n=1

Multiplying equation (28] by At, summing over n, n =0, 1,...,k, and combining

with equations [@30) and ([@3Tl), we can obtain (£2). O
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Lemma 6. Under the conditions of Theorem [, there exists a positive constant C
independent of hy, hy, and At such that

k
leg ™ 15, + MY Atllep ™27,

n=0

k k
<CY AUt +C Y Atfell?,
(4.32) =0 n=0

k k
M n n+1/2
+ 7 D At 2 G + O Adlldey ™y,

n=0 n=0

+C(HM”2L°°(J;W4»°C(Q)) + Hd)H%OO(J;W‘*»W(Q)))(hi +h3)
+C||¢||%/V3»w(J;Loo(Q))At4~

Proof. Multiplying equation (L3) by ez’t’lj/ 2hwhy, and making summation on i, j
for 1 <i < N, 1 <5 <N, we have

(diey™, eZH/Q)m

(4.33) M (Dw(dxeu + 8o ()" T2 + Dy (dye, + 8, (1)) T2, eg+1/2)

m

+ (T171+1/27eg+1/2)m + (T;+1/2,€$+1/2)m.

Using Lemma [T the first term on the right-hand side of equation ([£33) can be
transformed into the following:

M (Dac(dxeu + 5w(u))n+1/2 + Dy(dye, + 5y(#))n+1/2762+1/2)

m

(438) == M ((daey+5:(0)" " dye ™)

x

-M ((dyeu + 5y(ﬂ))n+1/2a dyezH/Q)y

The first term on the right-hand side of equation ([@34]) can be estimated as

- M ((dmep + 6m(M))n+l/27dz€Z+1/2)

x

= = M (doe "2, (does + 02(0)" %)

+ M(doef 2, 6,(0)" %), — M (S, (0)" 2, dpely ™),

(435) <M n+1/2 D.(d 5 n+1/2
S €n y Dy ( x€¢ t+ 2(9)) m

M n
+ el 2 4 Clldaey ™12

+ C(||N||%°°(J;W3v°°(ﬂ)) + ||¢H%°°(J;W3v°°(ﬂ)))(hi + hy).
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In the y direction, we have similar estimates. Then the left-hand side in ([@34]) can
be bounded by

M (Dgg(dg,;eH +(5x(ﬂ))n+1/2 + D, (dye, +5y(ﬂ))n+1/27eg+1/2)

m

<M (7172, Dy(daeg +6:(6))" /2 + Dy (dyeq +8,(6))"/2)

m

(4.36)
M n n+1/2
+ T ||d€u+1/2||%r1\/1 4'C'||d€¢;r / [ERY;

+ C(H#HQLM(J;W&w(Q)) + H¢||2L°°(J;W3’°°(Q)))(hi + hi)-

Thanks to (A6 and (@IH]), the first term on the right-hand side of ([@30]) can be
estimated as follows:

M (67172, D, (dyes +8,(6))" /2 + Dy(dyes + 6,(0)" /%)

m
n-41/2 n+1/2
-M eZ+1/2’ R/ F/(ZnJrl/Q) _ et/ F/(¢n+1/2)
- n+1/2
\/ ER(Zn+1/2) Eq(¢mt1/2)
(4.37) m

+ M(€Z+1/27>\ez+1/2)m + M(eZ“/Q,T;H/Q)m - MHeerl/Q”?n

M
<l 215 + et + ) + Clllegllm + leg™ 1)

= Ml 25, 4 Ol (ryawa e sy (B + hy).

Combining equation ([@33]) with equations (£36]) and (£37) and multiplying equa-
tion ([{.28) by 2At, summing over n, n =0,1,...,k, leads to (d32). O

Lemma 7. Under the conditions of Theorem [, there exists a positive constant C
independent of hy, hy, and At such that

1Z™ o < Cy for all n.
Proof. We proceed in two steps.

Step 1 (Definition of C.). Using the scheme [213)—(ZI5]) for n = 0 and applying the
inverse assumption, we can get the approximation Z! with the following property:

1Zloo SNZ" = ¢ loo + 110" lso < 12" = o [loo + [Hne" — ' |oo + (|6 [loo
<Ch (12" = ¢l + 16" = i@ [[m) + Hag" — ' loc + [0 [loo
<C(h+h 'At?) 4+ ||¢! |l < C,

where h = max{h,, h, } and II; is a bilinear interpolant operator with the following
estimate [5]:

(4.38) MIr¢" — ¢l < Ch2.
Thus we can choose the positive constant C, independent of h and At such that
Cy > max{[|Z |, 2] 6" | }-

Step 2 (Induction). By the definition of C,, it is trivial that hypothesis (ZIT])
holds true for [ = 1. Supposing that ||Z'7!||oc < C. holds true for an integer
l=1,...,k+ 1, with the aid of the estimate (£41I]), we have that

12" = ¢ < C(AL? + ).
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Next we prove that || Z||o, < C, holds true. We have
12400 <I1Z" = ¢ loo + 8" loe < 112" = Mn¢[loo + [Thd" — ¢'[loo + | [|so
(4.39) <Ch M (|IZ" = ¢Mlm + (18" = T m) + MTnd" — &[0 + [|6' [l
<Cy(h+h T A) + (|9 oo

Let At < C5h and let a positive constant hq be small enough to satisty

Ci1(1+C3h < %

Then for h € (0, hy], we derive from [@39) that
1Z oo <Ci(h+ R~ AE) + 16|
<Ci(h1 + C3h1) + % < C..
This completes the induction. O

We are now in position to prove our main results.

Proof of Theorem . Thanks to the above three lemmas, we can obtain

1
(er™)? + Sl deg™ 7r + lleg™ 17

M & M &
+ > Atdel 27, + 5 > Atleptt2 2,

n=0 n=0
(4.40) k41 k+1 k+1
<C> At|depl|7a +C D Atflep|ls, + C > At(er)?
n=0 n=0 n=0

+ C(||¢||%/I/170C(J;W470C(Q)) + H/LHQLOO(J;W‘*’OO(Q)))(hi + h;)
+ Ol 011,00 (w100 () A
Finally applying the discrete Gronwall’s inequality, we arrive at the desired result:

(ext)? + lldeg ™ 17 + llegt 117,

k k
+ D Atldep T2y + ) Atllep 7,

(4.41) 2 2
<C(lloll; . [l e . V(R + bt
= Wleo(J; W40 (Q)) BT oe (g;wae0 ()) ) g Y
+ CH¢||‘2/V3:°C(J;Wl,ac(Q))At4.
Thus, the proof of Theorem 4 is complete. 0

4.2. IL? gradient flow. For the L? gradient flow, we shall only state the error
estimates below, as their proofs are essentially the same as for the H—! gradient
flow.

Theorem 8. Assume F(¢) € C3(R), ¢ € WHee(J; W (Q))NW3°(J; W (Q)),
and At < C(hy + hy). Then for the discrete scheme (ZI7)-(219), there exists a
positive constant C' independent of hy, hy, and At such that

12550 = @l + [ AZEH =A@ rag + |REFE — o

(4.42) , .
<O @llws.o (1w () AL + Cl[@llwr.e (.o () (b + hy)-
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5. NUMERICAL SIMULATIONS

We present in this section various numerical experiments to verify the energy
stability and accuracy of the proposed numerical schemes.

5.1. Accuracy test for Allen-Cahn and Cahn-Hilliard equations. We con-
sider the free energy

6.1 B0) = [ (51708 + (- ?) ix.

and for better accuracy rewrite it as

B2 +2ﬂ> ix

e 3 1
62 Bo)= [ (5IVer+ Lo+ qate-1-92 - 2L

2¢2

where (3 is a positive number to be chosen. To apply our schemes (ZI3)-2I5)
or ZTI7)—(ZI9) to the system (22), we drop the constant in the free energy and
specify the operator G, the energy E1(¢), and \ as follows:

1
:@/gz(¢2—1—5)2dx, /\:g.

(5.3) G=—(-4), Ei9)
The system (2.2)) becomes the standard Allen-Cahn equation with s = 0, and the

standard Cahn-Hilliard equation with s = 1.
We denote

_ — n+q _ ,n+tq
1 = glloo2 = max. {[lf g lxys

X 1/2
mn n 2
u—mu—(QAWfﬂ—gﬂh> |

— — n+1 _ .n+l
12 = 7lloo = max {R"T —r"H,

where ¢ = %, land X =m, TM.
In the following simulations, we choose 2 = (0,1) x (0,1) and Cy = 0.

5.1.1. Convergence rates of the SAV/CN-BCFD scheme for the Allen-Cahn equa-
tion.

Example 1. We take T'=0.5, G = -1, =0, M =0.01, e =0.08, At =5F —4,
and the initial solution ¢y = cos(mx) cos(wy). To get around the fact that we do
not have possession of an exact solution, we measure Cauchy error, which is similar
to [A[6,23]. Specifically, the error between two different grid spacings h and % is
caleulated by [lec|| = ¢ — Gzl

The numerical results are listed in Table [[l We observe the second-order con-
vergence predicted by the error estimates in Theorem [§
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TABLE 1. Errors and convergence rates of Example [Il

h llez|loo,2 Rate lleazll,2  Rate llew oo Rate
1/10 6.36E-3 — 5.96E-2 — 5.93E-3 —
1/20 1.59E-3 2.00 1.57E-2 1.93 1.47E-3 2.01
1/40 3.98E-4 2.00 3.98E-3 1.98 3.69E-4 2.00
1/80 9.96E-5 2.00 9.98E-4 1.99 9.23E-5 2.00

5.1.2. Convergence rates of SAV/CN-BCFD scheme for the Cahn-Hilliard equation.

Example 2. We take T =0.5, G=A, =0, M =0.01, e =0.2, At =5E — 4,
with the same initial solution as in Example[Il The numerical results are listed in
Tables 2l and Bl Again, we observe the expected second-order convergence rate in
various discrete norms.

TABLE 2. Errors and convergence rates of Example 2.

h llez|loo,2 Rate |leazloo,2 Rate |ler]|oo Rate
1/10 5.49E-3 — 2.78E-2 — 4.88E-3 —

1/20 1.36E-3 2.01 6.91E-3 2.01 1.20E-3 2.02
1/40 3.41E-4 2.00 1.73E-3 2.00 3.00E-4 2.00
1/80 8.51E-5 2.00 4.31E-4 2.00 T7.49E-5 2.00

TABLE 3. Errors and convergence rates of Example 2.

h Hew”z,g Rate ||€dw||2,2 Rate
1/10 2.50E-2 — 2.18E-1 —

1/20 6.11E-3 2.03 5.46E-2 2.00
1/40 1.52E-3 2.01 1.37E-2 2.00
1/80 3.79E-4 2.00 3.42E-3 2.00

5.2. Coarsening dynamics and adaptive time stepping.

Example 3. In this example, we simulate the coarsening dynamics of the Cahn-
Hilliard equation.

Since the scheme (ZI3)—(2TH) is unconditionally energy stable, we can choose
time steps according to accuracy only with an adaptive time stepping. Actually in
many situations, the energy and solution of gradient flows can vary drastically in
certain time intervals, but only slightly elsewhere. In order to maintain the desired
accuracy, we adjust the time sizes based on an adaptive time-stepping strategy
below ([LO,17]). We update the time step size by using the formula

tol\ /2
(5.4) Agpe, At) =p (—) At,
e
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Algorithm 1 Adaptive time stepping procedure
Given: Z" and At".

1: Computer Z%‘g; using a first order SAV-BCFD scheme and At™.
2: Computer Z" ™! using the SAV/CN-BCFD scheme Z.13)-(Z15) and At™.
3: Calculate e" ! = ||Z’];er} — Z"TL|| /|| 2.
4: If e"*1 > tol then

Recalculate time step At™ < max{At,,i,, min{ Ag, ("1, At"), Atyaz }}-
5. goto 1
6: else

Update time step At" !« max{At,,in, min{Ag, (e, At"), Atpaz }}-
7. endif

where p is a default safety coefficient, tol is a reference tolerance, and e is the
relative error at each time level. In this simulation, we take

G=A, Atyae = 1072, Atin = 107°, tol = 1073,
M =0.002, e =0.01, 3=6, p=0.9,

with a random initial condition with values in [—0.05,0.05], and the initial time
step is taken as At,in.

To demonstrate the effectivity of the SAC/CN-BCFD scheme with adaptive
time stepping, we compute the reference solutions with a small uniform time step
At = 107° and a large uniform time step At = 1073, respectively. Characteristic
evolutions of the phase functions are presented in Figure [l We also present in
Figure 2 the energy evolutions and the roughness of interface, where the roughness
measure function R(t) is defined as follows:

(5.5) R(t) - ¢ 7 (0= dpra

with ¢ = ﬁ fQ @df). One observes that the solution obtained with adaptive time
steps is consistent with the reference solution obtained with a small time step, while
the solution with large time step deviates from the reference solution. This is also
verified by both the energy evolutions and roughness measure function R(t). We
present in Figure [ the adaptive time steps for different ¢ = 0.02, 0.01, 0.005. We
observe that there are about two orders of magnitude variation in the time steps
with the adaptive time stepping, which indicates that the adaptive time stepping
for the SAV/CN-BCFD scheme is very efficient.

This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.



2066 XIAOLI LI, JIE SHEN, AND HONGXING RUI
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FIGURE 1. Snapshots of the phase function among small time
steps, adaptive time steps and large time steps in Example 3.
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FIGURE 2. Numerical comparisons of discrete scaled surface en-
ergy and roughness for the simulation of spinodal decomposition
in Example 3.
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FIGURE 3. Adaptive time steps for different e: (a) e = 0.02, (b)
e =0.01, (c) e = 0.005
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