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This article is devoted to wavenumber explicit analysis of the electric field satisfying the second-order
time-harmonic Maxwell equations in a spherical shell and, hence, for variant scatterers with ε-perturbation
of the inner ball radius. The spherical shell model is obtained by assuming that the forcing function
is zero outside a circumscribing ball and replacing the radiation condition with a transparent boundary
condition involving the capacity operator. Using the divergence-free vector spherical harmonic expansions
for two components of the electric field, the Maxwell system is reduced to two sequences of decoupled
one-dimensional boundary value problems in the radial direction. The reduced problems naturally allow
for truncated vector spherical harmonic spectral approximation of the electric field and one-dimensional
global polynomial approximation of the boundary value problems. We analyse the error in the resulting
spectral approximation for the spherical shell model. Using a perturbation transformation, we generalize
the approach for ε-perturbed nonspherical scatterers by representing the resulting field in ε-power series
expansion with coefficients being spherical shell electric fields.

Keywords: Maxwell equations; Helmholtz equation; wavenumber explicit analysis; Dirichlet-to-Neumann
boundary conditions; divergence-free vector spherical harmonic expansions.

1. Introduction

This article is concerned with wavenumber explicit analysis and spectral-Galerkin approximation of the
time-harmonic Maxwell equations:

∇ × ∇ × Ea,b − k2Ea,b = Fa,b, in Ω = B \ D̄ ; (1.1)

Ea,b × er = 0, on ∂D; (∇ × Ea,b)× er − ikTb[Ea,b
S ] = h at r = b, (1.2)

whereΩ = {a < r = |r| < b} is the spherical shell formed by two concentric spheres D and B of radii a
and b, respectively, Ea,b is the electric field, Ea,b

S = −Ea,b × er × er (with er = r/r) is the tangential field,
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MAXWELL EQUATIONS 811

k > 0 is the wavenumber, i = √−1 and Tb is the capacity operator (see Nédélec, 2001, (5.3.88) and
(3.13) below). Here, the source term Fa,b is assumed to be compactly supported in Ω , and the function
h in (1.2) is added for potentially inhomogeneous boundary conditions.

We also consider (1.1) and (1.2) with the spherical shellΩ being replaced with B \ D̄, where D is an
ε-perturbation of the inner ball of radius a:

D = {
(r, θ ,φ) : 0 < r < a + εf (θ ,φ), θ ∈ [0,π ], φ ∈ [0, 2π)

}
. (1.3)

Based on the transformed field expansion (TFE) (David & Fernando, 2004), the electric field in Ω̂ =
{a + εf (θ ,φ) < r < b} can be represented as an ε-power series with the expansion coefficients being
spherical shell electric fields. Therefore, the spectral algorithm and analysis for the Maxwell equations
in the spherical shell are essential for such a variant.

The study of the above model problems is motivated by the exterior Maxwell system:

− iωμH + ∇×E = 0, −iωεE − ∇×H = J, in R
3\D̄;

(E × n)|∂D = 0; lim
r→∞ r

(√
μ/εH × x̂ − E

) = 0, (1.4)

where the scatterer D is a simply connected, bounded, perfect conductor, E, H are respectively the electric
and magnetic fields,μ is the magnetic permeability, ε is the electric permittivity, ω is the frequency of the
harmonic wave, n is the outward normal and x̂ = x/|x|. The boundary condition at infinity in (1.4) is known
as the Silver–Müller radiation condition. Typically, the electric current density J is localized in space; for
example, it is restricted to flow on an antenna (cf. Orfanidis, 2002). The Maxwell system (1.4) plays an
important role in many scientific and engineering applications, including in particular electromagnetic
wave scattering, and is also of mathematical interest (see, e.g., Nédélec, 2001; Monk, 2003; Colton &
Kress, 2013b). Despite its seeming simplicity, the system (1.4) is notoriously difficult to solve numerically.
Some of the main challenges include (i) the indefiniteness when ω is not sufficiently small; (ii) highly
oscillatory solutions when ω is large; (iii) the incompressibility (i.e., div(μH) = div(εE) = 0), which
is implicitly implied by (1.4) and (iv) the unboundedness of the domain. On the one hand, one needs
to construct approximation spaces such that the discrete problems are well posed and lead to good
approximations for a wide range of wavenumbers. On the other hand, one needs to develop efficient
algorithms for solving the indefinite linear system, particularly for large wavenumber, resulted from a
given discretization. We refer to Monk (2003) and the references therein for various contributions with
respect to numerical approximations of the time-harmonic Maxwell equations. The methods of choice
for dealing with unbounded domains include the perfectly matched layer technique (Berenger, 1994),
boundary integral method (Jin et al., 1991; Lin et al., 2009; Sauter & Schwab, 2011; Chandler-Wilde et al.,
2012; Colton & Kress, 2013a; Kirsch & Hettlich, 2015) and the artificial boundary condition (Engquist
& Majda, 1977; Grote & Keller, 1995; Hagstrom, 1999). The last approach is to enclose the obstacles and
inhomogeneities (and nonlinearities at times) with an artificial boundary. A suitable boundary condition
is then imposed, leading to a numerically solvable boundary value problem (BVP) in a finite domain. The
artificial boundary condition is known as a transparent (or nonreflecting) boundary condition (TBC), if
the solution of the reduced problem coincides with the solution of the original problem restricted to the
finite domain.

The TBC characterized by the capacity operator Tb (cf. Nédélec, 2001) can reduce the exterior
Maxwell equations to an equivalent BVP. With this, we obtain the second-order problems (1.1) and
(1.2) by eliminating the magnetic field H and adding h in (1.2) to deal with potentially inhomogeneous
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boundary conditions. Note that the wavenumber k = ω
√
με and we denote η = √

μ/ε. In Nédélec
(2001) and other related works (e.g., Ma et al., 2015), the usual vector spherical harmonics (VSH) are
used to expand the electric field Ea,b. Then the problems (1.1) and (1.2) can be reduced to a coupled
system of two components of Ea,b, whereas the other component satisfies the same equation reduced
from the Helmholtz equation (cf. Ma et al., 2015):

−ΔUa,b − k2Ua,b = Fa,b, in Ω = B\D̄, (1.5)

Ua,b|∂D = 0; ∂rU
a,b − Tb[Ua,b] = H, at r = b, (1.6)

where Tb is the Dirichlet-to-Neumann (DtN) operator (Nédélec, 2001) (see (2.1) below). The wavenumber
explicit analysis for the above Helmholtz equation has been carried out in Shen & Wang (2007) (also
see Chandler-Wilde & Monk, 2008 for starlike scatterers), but the analysis for two coupled components
appears very difficult. In fact, only the result on well posedness of (1.1) and (1.2) was obtained in Ma
et al. (2015). However, if we use divergence-free vector spherical harmonics (Morse & Feshbach, 1953;
Bullard & Gellman, 1954), the Maxwell systems (1.1) and (1.2), in the case D is a sphere, can be reduced
to two sequences of one-dimensional problems, which are completely decoupled and the same as those
obtained from the Helmholtz equations (1.5) (note: one sequence is with the boundary conditions (1.6),
but the other is with a slightly different boundary condition at r = a). Therefore, we can carry out
wavenumber explicit analysis for these decoupled problems, leading to wavenumber explicit estimates
for the Maxwell equations in a spherical shell with exact TBC.

There has been a longstanding research interest in wavenumber explicit estimates for the Helmholtz
and Maxwell equations. In particular, much effort has been devoted to the Helmholtz problems (see, e.g.,
Douglas et al., 1993; Ihlenburg & Babuška, 1995; Babuška & Sauter, 2000; Demkowicz & Ihlenburg,
2001; Ainsworth, 2004; Shen & Wang, 2005; Cummings & Feng, 2006; Hetmaniuk, 2007; Shen & Wang,
2007; Chandler-Wilde & Monk, 2008; Ganesh & Hawkins, 2008, 2009; Feng & Wu, 2011; Melenk &
Sauter, 2011; Moiola & Spence, 2014; Spence, 2014; Baskin et al., 2016 as a partial list of literature). The
Rellich identities played an essential role in obtaining wavenumber explicit estimates for the Helmholtz
equation in a star-shaped domain (cf. Melenk, 1995; Shen & Wang, 2005; Cummings & Feng, 2006;
Hetmaniuk, 2007; Shen & Wang, 2007; Chandler-Wilde & Monk, 2008; Melenk & Sauter, 2011). In
this article, we shall also use a Rellich-type identity on one-dimensional equations reduced from the
Helmholtz or Maxwell equations to derive wavenumber explicit estimates.

It is noteworthy that most of the results were established for the Helmholtz equation with an approxi-
mate boundary condition: ∂rU−ikU = 0. However, as shown in Shen & Wang (2007) and Chandler-Wilde
& Monk (2008), the presence of the exact DtN boundary condition brought about significant challenges
for the analysis. It is also important to point out that some new estimates for more general settings were
recently obtained in Moiola & Spence (2014), Spence (2014) and Baskin et al. (2016). On the other
hand, Hiptmair et al. (2011) (and Feng, 2011 independently) extended the argument based on the Rellich
identities to the time-harmonic Maxwell equations and derived for the first time the wavenumber explicit
estimates, but with the approximate boundary condition: (∇ × E)× er − ikES = h.

The main purposes of this article are to extend the analysis in Shen & Wang (2007) to the Maxwell
equations (1.1) and (1.2), and in the meantime, provide an essential improvement, which is critical to
obtaining the desired estimate for the Maxwell equations, to an estimate for the Helmholtz equation in
Shen & Wang (2007). We demonstrate that the spectral algorithm and analysis for the Maxwell equations
in the spherical shell are essential for dealing with the perturbed scattering problem by using the TFE
approach (David & Fernando, 2004).
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MAXWELL EQUATIONS 813

The rest of the article is organized as follows. In Section 2, we conduct a delicate study of the DtN
kernel in (2.2) and use the new estimates to improve the estimates for the Helmholtz equation (cf. Lemma
2.3 and Theorem 2.4), by removing the factor k1/3 in Shen & Wang (2007, Theorem 3.1). Using the
divergence-free VSH expansion of the electric field, we reduce in Section 3 the Maxwell systems (1.1) and
(1.2) in the spherical shell to two sequences of decoupled one-dimensional BVPs in the radial direction.
This is essential to derive the wavenumber explicit bounds in Theorem 3.10. In Section 4, we study a
spectral approximation of the reduced Maxwell equations and derive the corresponding wavenumber
explicit error estimates for the one-dimensional problems (cf. Lemmas 4.3 and 4.5), which finally lead
to the wavenumber explicit error estimates for the Maxwell system (cf. Theorem 4.6). In Section 5, we
apply the TFE (David & Fernando, 2004) to deal with an ε-perturbed scatterer, and using the general
framework derived in Nicholls & Shen (2009), we obtain rigorous wavenumber explicit error estimates
for the complete algorithm. Some concluding remarks are presented in the last section.

2. Improved wavenumber explicit estimates for the Helmholtz equation

In this section, we improve the a priori estimates for the Helmholtz equations (1.5) and (1.6) in Shen &
Wang (2007, Theorem 3.1), where the DtN operator is defined by

Tb[Ua,b] =
∞∑

l=1

l∑
|m|=0

k
h(1)l

′
(kb)

h(1)l (kb)
Ûm

l Y m
l , where Ûm

l =
∫

S
Ua,b

∣∣
r=b

Y m
l dS, (2.1)

and {Y m
l } are spherical harmonics (SPH) defined on the unit spherical surface S (cf. Appendix A).

2.1 Properties of the DtN kernel

The key is to conduct a delicate analysis of the DtN kernel:

Tl,κ =:
h(1)l

′
(κ)

h(1)l (κ)
l ≥ 1, κ > 0. (2.2)

Recall that (cf. Shen & Wang, 2007, (2.16))

Re(Tl,κ) = − 1

2κ
+ Jν(κ)J ′

ν(κ)+ Yν(κ)Y ′
ν(κ)

J2
ν (κ)+ Y 2

ν (κ)
, Im(Tl,κ) = 2

πκ

1

J2
ν (κ)+ Y 2

ν (κ)
(2.3)

for ν = l + 1/2, where Jν and Yν are Bessel functions of the first and second kinds, respectively, of order
ν (cf. Abramowitz & Stegun, 1964). Alternatively, we can formulate

Re(Tl,κ) = l

κ
− Yν+1(κ)

Yν(κ)
− Im(Tl,κ)

Jν(κ)

Yν(κ)
= − 1

2κ
+ Y ′

ν(κ)

Yν(κ)
− Im(Tl,κ)

Jν(κ)

Yν(κ)
, (2.4)

which can be derived from (2.3) and the properties of Bessel functions. Recall that (see Nédélec, 2001,
Page 87):

− l + 1

κ
≤ Re(Tl,κ) < − 1

κ
, 0 < Im(Tl,κ) < 1. (2.5)
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In what follows, let 0 < θ0 < 1 be a prescribed constant, and let

κ0 = √
θ0/2 (1 − θ0)

−3/2 (e.g., κ0 ≈ 21.21, if θ0 = 0.9). (2.6)

On the basis of asymptotic properties of Bessel functions, we shall carry out the analysis separately for
four cases (note: in the course of the analysis, we shall show how these arise (see (B.10))):

ρ := ν

κ
∈ (0, θ0) ∪ [θ0,ϑ1] ∪ (ϑ1,ϑ2) ∪ [ϑ2, ∞) for ν = l + 1/2, l ≥ 1, (2.7)

where κ > κ0 is fixed, and

ϑ1 := ϑ1(κ) = 1

2

⎛⎝ 3

√
1 +

√
1 + 2

27κ2
+ 3

√
1 −

√
1 + 2

27κ2

⎞⎠3

,

ϑ2 := ϑ2(κ) = 1

2

⎛⎝ 3

√
1 +

√
1 − 2

27κ2
+ 3

√
1 −

√
1 − 2

27κ2

⎞⎠3

. (2.8)

Lemma 2.1 Let θ0, κ0,ϑ1 and ϑ2 be the same as in (2.6) and (2.8). Then we have

0 < ϑ1 < 1 < ϑ2, ∀ κ > √
2/27, (2.9)

and

ϑ1 = 1 − 1
3
√

2 κ2/3
+ O(κ−4/3), ϑ2 = 1 + 1

3
√

2 κ2/3
+ O(κ−4/3). (2.10)

Moreover, if κ > κ0 then we have θ0 < ϑ1.

Proof. We examine the function f (t) := 3
√

1 + t + 3
√

1 − t, t ≥ 0, associated with (2.8). One verifies
readily that f ′(t) < 0 for all t > 0, t �= 1. Thus, f (t) is monotonically decreasing, and

3
√

2ϑ1 = f
(√

1 + 2/(27κ2)
)
< f (1) < f

(√
1 − 2/(27κ2)

) = 3
√

2ϑ2, (2.11)

which implies (2.9). It is evident that

t1 :=
√

1 + 2

27κ2
= 1 + 1

27κ2
+ O(κ−4). (2.12)
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MAXWELL EQUATIONS 815

A direct calculation from (2.8) yields

2ϑ1 = 2 + 3
{
(1 + t1)

2/3(1 − t1)
1/3 + (1 + t1)

1/3(1 − t1)
2/3
} = 2 −

3
√

2

κ2/3

(
3
√

1 + t1 + 3
√

1 − t1

)
= 2 −

3
√

2

κ2/3

(
3

√
2 + 1

27κ2
− 1

3κ2/3

)
+ O(κ−2) = 2 −

3
√

2

κ2/3

(
3
√

2 − 1

3κ2/3
+ O(κ−2)

)
+ O(κ−2),

which implies the asymptotic estimate of ϑ1 in (2.10). Similarly, we can derive the estimate of ϑ2.
We now show that θ0 < ϑ1, for all κ > κ0 with κ0 given by (2.6). Observe from (2.11)–(2.12) that

3
√

2ϑ1 = f (t1), so it suffices to show 3
√

2ϑ0 <
3
√

2ϑ1 = f (t1). Using the monotonic decreasing property
of f , we just require f −1( 3

√
2θ0) > t1 = √

1 + 2/(27κ2), so working out f −1, we can obtain κ0 in (2.6). �

In what follows, the expression ‘A � B’ means that there exists a positive constant C, only depending
on the domain (but independent of k and the related unknowns or functions), such that A ≤ CB. As with
Abramowitz & Stegun (1964) and Olver et al. (2010), the notation ‘A∼B’ stands for A(ν) = B(ν)+LH(ν)
or A(ν) = B(ν)(1+LH(ν)), where for sufficiently small or large parameter ν, LH(ν) is some insignificant
lower-order or higher-order term to be dropped in the bound or estimate.

We have the following estimates of Re(Tl,κ) and the refined estimates of Im(Tl,κ) in Shen & Wang
(2007, (2.35)).

Theorem 2.2 Let θ0,ϑ1,ϑ2 and κ0 be the same as in (2.6) and (2.8). Denote ν = l + 1/2 and ρ = ν/κ .
Then for any κ > κ0, we have the approximation

Re(Tl,κ) ∼ ER
l,κ , Im(Tl,κ) ∼ EI

l,κ ∀ l ≥ 1, (2.13)

where

(i) for ρ = ν/κ ∈ (0, θ0),

ER
l,κ = − 1

2κ

(
1 + 1

1 − ρ2

)
, EI

l,κ =
√

1 − ρ2 ; (2.14)

(ii) for ρ = ν/κ ∈ [θ0,ϑ1],

ER
l,κ = − 1

2κ

(
1 + 1

2(1 − ρ)

)
, EI

l,κ = √
2ρ(1 − ρ) ; (2.15)

(iii) for ρ = ν/κ ∈ (ϑ1,ϑ2),

ER
l,κ = − 1

c1

(
2

ν

)1/3 (
1 + 2c1t + c2t2

) − 1

2κ
, EI

l,κ = √
3c1ρ

(
1 − 2c1t

) (2

ν

)1/3

, (2.16)

where t = − 3
√

2 (κ − ν)/ 3
√
ν (note: |t| < 1), and

c1 = 3
1
3

2

Γ ( 2
3 )

Γ ( 1
3 )

≈ 0.3645, c2 = 1 − 16c3
1

2c1
≈ 0.3088; (2.17)
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816 L. MA ET AL.

(a) (b) (c) (d)

Fig. 1. (a,b) Real and imaginary parts of Tl,κ with various samples (l, κ) ∈ [0, 120]× [1, 100]. (c) Re(Tl,κ ) (solid line) against ER
l,κ .

(d) Im(Tl,κ ) (solid line) against EI
l,κ with κ = 30, 50, 70, 90 (note in (c–d), ‘+’ for ρ = ν/κ ∈ (0, θ0), ‘�’ for ρ ∈ [θ0,ϑ1], ‘◦’ for

ρ ∈ (ϑ1,ϑ2) and ‘∗’ for ρ ∈ [ϑ2, ∞)).

(iv) for ρ = ν/κ ∈ [ϑ2, ∞),

ER
l,κ = −

√
ρ2 − 1 − 1

2κ

(
1 − 1

ρ2 − 1

)
, EI

l,κ =
√
ρ2 − 1 e−2νΨ , where (2.18)

Ψ = ln(ρ +
√
ρ2 − 1)−

√
ρ2 − 1

ρ
ρ > 1. (2.19)

We provide the proof of this theorem in Appendix B. In Fig. 1, we depict in (a,b) the graphs of Re(Tl,κ)

and Im(Tl,κ) for various l and κ , and in (c,d), the exact value and approximations in Theorem 2.2 for
various samples of κ .

2.2 Improved estimates for the Helmholtz equation

We first introduce some notation. Let I := (a, b) and ω > 0 be a generic weight function defined on a
generic domain Λ. The weighted Sobolev space Hs

ω(Λ) with s ≥ 0 is defined as usual in Adams (1975).
In particular, L2

ω(Λ) is the weighted L2-space with the inner product and norm:

(u, v)ω,Λ =
∫
Λ

u · v̄ω dx ‖u‖ω,Λ = (u, u)
1
2
ω,Λ,

which also apply to vector-valued functions. If ω ≡ 1 orΛ = I = (a, b), we drop ω orΛ in the notation.
The inner product of L2(S) is defined as

〈U, V〉S =
∫ 2π

0

∫ π

0
uv̄ sin θ dθ dϕ.

We also use the anisotropic Sobolev spaces, e.g., Hs′
p (S; Hs

ω(I)) (where ‘p’ stands for the periodicity) with
the norm characterized by the spherical harmonic expansion coefficients Ûm

l of U (cf. Shen & Wang,
2007, (1.8)).
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MAXWELL EQUATIONS 817

Denote 0H1(I) = {v ∈ H1(I) : v(a) = 0} and � = r2. A weak form of (1.5)–(1.6) is to find
Ua,b ∈ H1

p (S; 0H1(I)) such that (cf. Shen & Wang, 2007, (3.9)):

B(Ua,b, V) = (∂rU
a,b, ∂rV)� ,Ω + (∇SUa,b, ∇SV)Ω − k2(Ua,b, V)� ,Ω − b2〈TbUa,b, V〉S

= (Fa,b, V)� ,Ω + 〈H, V〉S ∀ V ∈ H1
p (S; 0H1(I)). (2.20)

We expand Ua,b, Fa,b, H in SPH series as

{
Ua,b, Fa,b, H

} =
∞∑

l=1

l∑
|m|=0

{
Ûm

l (r), F̂m
l (r), Ĥm

l

}
Y m

l (θ ,ϕ). (2.21)

Taking V = V̂ m′
l′ (r)Y

m′
l′ in (2.20) and using the property of SPH (cf. Appendix A), we obtain the

corresponding weak form for each mode (l, m) : find u = Ûm
l ∈ 0H1(I) such that

B
m
l (u, v) := (u′, v′)� + βl(u, v)− k2(u, v)� − kb2Tl,kbu(b)v̄(b)

= (f , v)� + b2hv̄(b) ∀v ∈ 0H1(I), (2.22)

where βl = l(l + 1), f = F̂m
l and h = Ĥm

l . Here, we drop the weight function� in the space 0H1(I) as it
is uniformly bounded below away from 0 on I .

We have the following improved estimate in the sense that k1/3 is removed from Shen & Wang (2007,
Lemma 3.1).

Lemma 2.3 Let u be the solutions of (2.22). If f ∈ L2(I) then we have that for all k ≥ k0 > 0 (for some
fixed constant k0) and for l ≥ 1, 0 ≤ |m| ≤ l,

‖u′‖2
� + βl‖u‖2 + k2‖u‖2

� � ‖f ‖2
� + |h|2. (2.23)

Proof. Taking v = u in (2.22), we obtain

‖u′‖2
� + βl‖u‖2 − k2‖u‖2

� − kb2 Re(Tl,kb)|u(b)|2 = Re(f , u)� + b2 Re(hū(b)), (2.24a)

−kb2 Im(Tl,kb)|u(b)|2 = Im(f , u)� + b2 Im(hū(b)). (2.24b)

Next taking v = 2(r−a)u′ in (2.22) and following the derivations in (Shen & Wang, 2007, (3.26)–(3.28)),
we obtain

b2|I||u′(b)|2 + βl|I||u(b)|2 + 2a‖√ru′‖2 + k2

∫ b

a

(
3 − 2a

r

)
|u|2r2 dr

= ‖u′‖2
� + βl‖u‖2 + k2b2|I||u(b)|2 + 2 Re(f , (r − a)u′)�

+ 2b2|I| Re
(
hū′(b)

) + 2kb2|I| Re
{
Tl,kb u(b)ū′(b)

}
, (2.25)
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where |I| = b − a. Substituting ‖u′‖2
� + βl‖u‖2 in the identity (2.24a) into the above and collecting the

terms, we obtain

b2|I||u′(b)|2 + {
βl|I| − kb2 Re(Tl,kb)

}|u(b)|2 + 2a‖√ru′‖2 + 2k2

∫ b

a

(
1 − a

r

)
|u|2r2 dr

= k2b2|I||u(b)|2 + 2kb2|I| Re
{
Tl,kb u(b) ū′(b)

} + 2b2|I| Re
(
hū′(b)

)
+ 2 Re(f , (r − a)u′)� + b2 Re(hū(b))+ Re(f , u)� . (2.26)

Hereafter, let C and {Ci, εi} be generic constants independent of k, l, m, and any function. Using the
Cauchy–Schwarz inequality, we obtain

2kb2|I| ∣∣Re
{
Tl,kb u(b) ū′(b)

}∣∣ ≤ ε1b2|I||u′(b)|2 + ε−1
1 k2b2|I||Tl,kb|2|u(b)|2;

2b2|I| ∣∣Re
(
hū′(b)

)∣∣ ≤ ε2b2|I||u′(b)|2 + ε−1
2 b2|I||h|2;

b2
∣∣Re(hū(b))

∣∣ ≤ ε3kb2 |Re(Tl,kb)||u(b)|2 + b2

ε3k |Re(Tl,kb)| |h|2;

2
∣∣Re(f , (r − a)u′)�

∣∣ ≤ ε4‖
√

ru′‖2 + ε−1
4 b|I|2‖f ‖2

� ;∣∣Re(f , u)�
∣∣ ≤ ε5‖u‖2

� + (4ε5)
−1‖ f ‖2

� . (2.27)

Thus, by choosing suitable {εi}, we obtain from (2.26)–(2.27) that

C1b2|I||u′(b)|2 + Dl,k|I||u(b)|2 + C2a‖√ru′‖2 + C3k2‖u‖2
� � ‖ f ‖2

� +
(

1 + 1

k |Re(Tl,kb)|
)

|h|2,

(2.28)

where C1 = 1 − (ε1 + ε2), C2 = 2 − ε4, C3 = 2(1 − a/ξ)− ε5/k2 with ξ ∈ (a, b) and

Dl,k = βl − (1 − ε3)kb2|I|−1 Re(Tl,kb)− k2b2
(
1 + ε−1

1 |Tl,kb|2
)
. (2.29)

It remains to estimate Dl,k , which can be negative for small l. According to the estimates in Theorem 2.2,
we conduct the analysis for four different cases as in (2.7).

(i) If ρ = ν

kb ∈ (0, θ0] for fixed 0 < θ0 < 1, we obtain from (2.24b) that

k2b2 |u(b)|2 ≤ k

|Im(Tl,kb)|
{|Im(f , u)� | + b2 |Im(hu(b))|}

≤ ε7

2
k2‖u‖2

� + ‖ f ‖2
�

2ε7|Im(Tl,kb)|2 + k2b2

2
|u(b)|2 + |h|2

2|Im(Tl,kb)|2 . (2.30)

By (2.14), Im(Tl,kb) in this range behaves like a constant, so (2.30) implies

k2b2 |u(b)|2 ≤ ε7k2‖u‖2
� + C

(‖ f ‖2
� + |h|2). (2.31)
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MAXWELL EQUATIONS 819

By (2.14), |Tl,kb|2 ≤ C, so Dl,k ≤ −Ck2b2. Therefore, using (2.28) and (2.31) leads to

‖√ru′‖2 + k2‖u‖2
� + k2|u(b)|2 ≤ C

(‖ f ‖2
� + |h|2). (2.32)

Thus, we derive the desired estimate in this case from (2.24a) and (2.32).

(ii) For ρ = ν

kb ∈ (θ0,ϑ1], we first show that for any c̄0 ∈ (1 − θ0, 1/ 3
√

2) and kb > 1, there exists a
unique γ0 ∈ [1/3, 1) such that

ρ = 1 − c̄0(kb)γ0−1, i.e., γ0 = 1 + ln((1 − ρ)/c̄0)

ln(kb)
. (2.33)

Apparently, γ0 decreases with respect to ρ, so by (2.10),

1

3
− ln( 3

√
2c̄0)

ln(kb)
+ ln(1 + O((kb)−2/3)

ln(kb)
= 1 + ln((1 − ϑ1)/c̄0)

ln(kb)
≤ γ0 < 1 + ln((1 − θ0)/c̄0)

ln(kb)
. (2.34)

Then one verifies readily that for c̄0 ∈ (1 − θ0, 1/ 3
√

2), we have γ0 ∈ [1/3, 1). In view of (2.33), we can
write

ν = kb − c̄0(kb)γ0 . (2.35)

Thus, by (2.15),

Re(Tl,kb) ∼ − 1

2c̄0
(kb)−γ0 , Im(Tl,kb) ∼ √

2c̄0(kb)(γ0−1)/2 |Tl,kb|2 ∼ 2c̄0(kb)γ0−1, (2.36)

which implies

Dl,k ∼ ν2 − 1

4
+ (1 − ε3)

b

2|I|c̄0
(kb)1−γ0 − k2b2

(
1 + ε−1

1 2c̄0(kb)γ0−1
) ∼ −2c̄0(1 + ε−1

1 )(kb)γ0+1.

(2.37)

By (2.24b) and the Cauchy–Schwarz inequality,

(kb)γ0+1|u(b)|2 ≤ (kb)γ0

|Im(Tl,kb)|
{|Im(f , u)� | + b2 |Im(hū(b))|}

≤ ε7

2
k2‖u‖2

� + (kb)2γ0−2

2ε7|Im(Tl,kb)|2 ‖ f ‖2
� + (kb)γ0+1

2
|u(b)|2 + (kb)γ0−1

2|Im(Tl,kb)|2 |h|2. (2.38)

Then by (2.36) and (2.38),

(kb)γ0+1 |u(b)|2 ≤ ε7k2‖u‖2
� + C

(
(kb)γ0−1‖ f ‖2

� + |h|2). (2.39)
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820 L. MA ET AL.

Thus, we derive from (2.28) that

‖√ru′‖2 + k2‖u‖2
� + (kb)γ0+1|u(b)|2 ≤ C

(‖ f ‖2
� + |h|2). (2.40)

Therefore, we obtain (2.23) from (2.24a) and (2.40).

(iii) If ρ = ν

kb ∈ (ϑ1,ϑ2], we find from (2.10) that

kb − 3

√
kb

2
+ O(k−1/3) < ν ≤ kb + 3

√
kb

2
+ O(k−1/3). (2.41)

By (2.16),

Re(Tl,kb) ∼ −c̄1(kb)−1/3, Im(Tl,kb) ∼ c̄2(kb)−1/3 |Tl,kb|2 ∼ c̄3(kb)−2/3, (2.42)

where {c̄i} are some positive constants independent of k, l. We can follow the same procedure as for Case
(ii) (but with γ0 = 1/3) to derive

‖√ru′‖2 + k2‖u‖2
� + (kb)4/3|u(b)|2 ≤ C

(‖ f ‖2
� + |h|2). (2.43)

Similarly, (2.23) follows from (2.24a) and (2.43).

(iv) If ρ = ν

kb ∈ (ϑ2, ∞), we find from (2.18) that Im(Tl,kb) decays exponentially with respect to l,
so we cannot get a useful bound of |u(b)| from (2.24b). We therefore consider two cases:

(a) ν = kb + c̄5(kb)γ1 with 1/3 < γ1 < 1; (b) ν ≥ η kb, (2.44)

for constant c̄5 ∈ (η − 1, 1/ 3
√

2) and 1 < η < 1 + 1/ 3
√

2. Here, we show that Case (a) can cover
ρ ∈ (ϑ2, η). Indeed, similar to (2.33)–(2.34), we have ρ = 1 + c̄5(kb)γ1−1, and

1

3
− ln( 3

√
2c̄5)

ln(kb)
+ ln(1 + O((kb)−2/3)

ln(kb)
= 1 + ln((ϑ2 − 1)/c̄5)

ln(kb)
< γ1 < 1 + ln((η − 1)/c̄5)

ln(kb)
. (2.45)

This implies if c̄5 ∈ (η− 1, 1/ 3
√

2) and 1 < η < 1 + 1/ 3
√

2, then 1/3 < γ1 < 1 and we can write ν in the
form of (a).

In the first case, we derive from (2.18) that

Re(Tl,kb) ∼ √
2c̄5(kb)(γ1−1)/2 |Tl,kb|2 ∼ 2c̄5(kb)γ1−1, Dl,k ∼ −2c̄5(ε

−1
1 − 1)(kb)γ1+1, (2.46)

where we recall that ε1 < 1. Noticing that

βl‖u‖2 − k2‖u‖2
� ≥ (βl − k2b2)‖u‖2 ≥ 0 (2.47)

and Re(Tl,kb) < 0, we deduce from (2.24a) that

−kb2 Re(Tl,kb)|u(b)|2 ≤ |Re(f , u)� | + b2 |Re(hū(b))|. (2.48)
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MAXWELL EQUATIONS 821

Using (2.46), (2.48) and following the derivation of (2.38), we can get

(kb)γ1+1 |u(b)|2 ≤ ε8k2‖u‖2
� + C

(
(kb)γ1−1‖ f ‖2

� + |h|2). (2.49)

We then derive from (2.28) that

‖√ru′‖2 + k2‖u‖2
� + (kb)γ1+1|u(b)|2 ≤ C

(‖ f ‖2
� + |h|2). (2.50)

Thus, we derive (2.23) for this case from (2.24a) and (2.50).
In the second case of (2.44), we observe from (2.18) that

Re(Tl,kb) ∼ − ν

kb
|Tl,kb|2 ∼ ν2

k2b2
, (2.51)

which implies

Dl,k ∼ ν2 − 1

4
+ (1 − ε3)

bν

|I| − k2b2 − ε−1
1 ν

2 ∼ −c̄6 βl. (2.52)

Then, by (2.51) and (2.48),

βl|u(b)|2 ≤ ε8βl‖u‖2 + C
(‖ f ‖2

� + |h|2). (2.53)

We then derive from (2.28) that

‖√ru′‖2 + k2‖u‖2
� + βl|u(b)|2 ≤ C

(‖ f ‖2
� + |h|2). (2.54)

Finally, we obtain (2.23) from (2.24a) and (2.54). �

Thanks to the above lemma and the orthogonality of SPH, one can easily derive the following improved
result, where a factor of k1/3 is removed from the upper bound of Shen & Wang (2007, Theorem 3.1).

Theorem 2.4 Let Ua,b be the solution of (2.20). If Fa,b ∈ L2(Ω) and H ∈ L2(S) then we have

‖∇Ua,b‖Ω + k‖Ua,b‖Ω � ‖ Fa,b‖Ω + ‖H‖L2(S). (2.55)

Remark 2.5 Similar wavenumber explicit estimate was derived by Chandler-Wilde & Monk (2008,
Lemma 3.8) for general starlike scatterers and H = 0, together with an explicit constant in the upper
bound. However, the result therein does not imply the mode-by-mode estimate in Lemma 2.3. The analysis
in this article essentially relies on the estimates bounded by the corresponding mode of the data.

3. A priori estimates for the reduced Maxwell equations

In this section, we perform the wavenumber explicit a priori estimates for the Maxwell equations (1.1)
and (1.2). The key is to employ a divergence-free vector harmonic expansion of the fields and reduce
the problem of interest into two sequences of decoupled one-dimensional Helmholtz problems. This
decoupling not only leads to a more efficient numerical algorithm, but also greatly simplifies its analysis.
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3.1 Dimension reduction via divergence-free VSH expansions

Introduce the spaces

H(div;Ω) = {
E ∈ L2(Ω) : divE ∈ L2(Ω)

}
, H(div0;Ω) = {

E ∈ H(div;Ω) : divE = 0
}
, (3.1)

where H(div;Ω) is equipped with the graph norm as defined in Monk (2003, p. 52).
Built upon the SPH {Y m

l }, the VSH
{
Y m

l er , ∇SY m
l , Tm

l = ∇SY m
l × er

}
forms a complete, orthogonal

system of (L2(S))3 and refer to Appendix A for some relevant properties. The following VSH expansion
of a solenoidal (or divergence free) field plays an important role in our analysis and spectral algorithm.

Proposition 3.1 For any E ∈ (L2(Ω))3, we expand it as

E = v0
2,0 Y 0

0 er +
∞∑

l=1

l∑
|m|=0

{
vm

1,l Tm
l + vm

2,l Y m
l er + vm

3,l ∇SY m
l

}
, (3.2)

where

vm
1,l = β−1

l 〈E, Tm
l 〉S, vm

2,l = 〈E, Y m
l er〉S, vm

3,l = β−1
l 〈E, ∇SY m

l 〉S, βl = l(l + 1). (3.3)

If E ∈ H(div0;Ω) then we have(
d

dr
+ 2

r

)
v0

2,0 = 0,
r

βl

(
d

dr
+ 2

r

)
vm

2,l = vm
3,l, (3.4)

and we can write

E = u0
0 Y 0

0 er +
∞∑

l=1

l∑
|m|=0

{
um

1,l Tm
l + ∇ × (

um
2,l Tm

l

)}
, (3.5)

where

u0
0 = v0

2,0 = c

r2
, um

1,l = vm
1,l, um

2,l = β−1
l rvm

2,l, (3.6)

with c being an arbitrary constant.

Proof. Since div(vm
1,l Tm

l ) = 0 (cf. (A.4)), we obtain from (4.8) and (A.6)–(A.7) that

div E =
(

d

dr
+ 2

r

)
v0

2,0 +
∞∑

l=1

l∑
|m|=0

{(
d

dr
+ 2

r

)
vm

2,l − βl

r
vm

3,l

}
Y m

l . (3.7)

Then the identities in (3.4) follow from div E = 0 immediately.
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MAXWELL EQUATIONS 823

Note that the equation of v0
2,0 in (3.4) has the general solution: v0

2,0 = c/r2. To derive (3.5) under (3.6),
it suffices to show that

β−1
l ∇ × (

rvm
2,l Tm

l

) = vm
2,l Y m

l er + vm
3,l ∇SY m

l . (3.8)

It follows from a direct calculation using (A.4), that is,

β−1
l ∇ × (

rvm
2,l Tm

l

) = vm
2,l Y m

l er + β−1
l ∂̂r(rvm

2,l)∇SY m
l = vm

2,l Y m
l er + r

βl

(
d

dr
+ 2

r

)
vm

2,l ∇SY m
l . (3.9)

Therefore, the expansion (3.5) is a direct consequence of (3.2), (3.4) and (3.6). �

Remark 3.2 Equivalently, we can reformulate (3.5) as

E = u0
0 Y 0

0 er +
∞∑

l=1

l∑
|m|=0

{
um

1,l Tm
l + ∂̂ru

m
2,l ∇SY m

l + βl

r
um

2,l Y m
l er

}
∂̂r = d

dr
+ 1

r
, (3.10)

which allows for exact imposition of the divergence-free condition. Such a VSH expansion turns out to
be a very useful analytic and numerical tool for, e.g., Maxwell equations and Navier–Stokes equations
in spherical geometry (see, e.g., Morse & Feshbach, 1953; Bullard & Gellman, 1954; Nédélec, 2001;
Monk, 2003; Ganesh et al., 2011; Colton & Kress, 2013b).

Denote by L2
T (S) the space of tangential components of vector fields in (L2(S))3. Then we can expand

Ea,b
S ∈ L2

T (S) as

Ψ = Ea,b
S |r=b =

∞∑
l=1

l∑
|m|=0

{
ψm

T ,l Tm
l + ψm

Y ,l∇SY m
l

}
, (3.11)

where the expansion coefficients

ψm
T ,l = β−1

l

〈
Ψ , Tm

l

〉
S
, ψm

Y ,l = β−1
l

〈
Ψ , ∇SY m

l

〉
S
. (3.12)

Recall that the capacity operator in (1.2) is defined by (cf. Nédélec, 2001, (5.3.88)):

Tb[Ψ ] := ηH × er

∣∣
r=b

=
∞∑

l=1

l∑
|m|=0

{
− i
∂̂rh

(1)
l (kb)

h(1)l (kb)
ψm

T ,l Tm
l + i

h(1)l (kb)

∂̂rh
(1)
l (kb)

ψm
Y ,l ∇SY m

l

}
, (3.13)

where η = √
μ/ε, h(1)l is the spherical Bessel function of the first kind (cf. Abramowitz & Stegun, 1964),

and

∂̂rh
(1)
l (kb) =

(
d

dr
+ 1

r

)
h(1)l (r)

∣∣∣
r=kb

. (3.14)
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824 L. MA ET AL.

As Fa,b in (1.1) is a solenoidal field, we can expand it as (3.5) with the coefficients f 0
0 and {f m

1,l, f m
2,l}.

We also expand the data h ∈ L2
T (S) in (1.6) as

h =
∞∑

l=1

l∑
|m|=0

{
hm

T ,l Tm
l + hm

Y ,l ∇SY m
l

}
, (3.15)

where the expansion coefficients are given by (3.12) with h in place of Ψ .

Proposition 3.3 Denote

u1 = um
1,l, u2 = um

2,l, f1 = f m
1,l, f2 = f m

2,l, h1 = hm
T ,l, h2 = k−1

(
Tl,kb + (kb)−1

)
hm

Y ,l, (3.16)

for l ≥ 1. Then the Maxwell equations (1.1) and (1.2) reduce to −k2u0
0 = f 0

0 , and the following two
sequences of one-dimensional problems:

− 1

r2
(r2u′

i)
′ + βl

r2
ui − k2ui = fi r ∈ I = (a, b); u′

i(b)− k Tl,kb ui(b) = hi i = 1, 2, (3.17)

but with different boundary conditions at r = a:

u1(a) = 0, u′
2(a)+ a−1u2(a) = 0. (3.18)

Proof. We first consider (1.1). Recall that if div u = 0 then we have ∇ × ∇ × u = −Δu. Since
div

(∇ × (f Tm
l )
) = 0 (cf. (A.4)), we derive from (3.5) and (A.4)–(A.5) that

∇ × ∇ × (
um

1,lT
m
l

) = −Δ(um
1,lT

m
l

) = −Ll

(
um

1,l

)
Tm

l ,

∇ × ∇ × ∇ × (
um

2,lT
m
l

) = −∇ × (
Δ
(
um

2,lT
m
l

)) = −∇ × (
Ll

(
um

2,l

)
Tm

l

)
, (3.19)

where the Bessel operator Ll is given in (A.3). Thus, using the expansions (3.5), we can reduce (1.1) to

− (Ll + k2)w(r) = f (r) for {w, f } = {um
1,l, f m

1,l} or {um
2,l, f m

2,l}, (3.20)

for l ≥ 1 and r ∈ I . In addition, we have

−k2u0
0 = f 0

0 , as ∇ × (u0
0 Y 0

0 er) = ∇ × (f 0
0 Y 0

0 er) = 0, (3.21)

since Ea,b and Fa,b are solenoidal. This leads to the mode u0
0, so we only consider the modes with l ≥ 1

and 0 ≤ |m| ≤ l. A direct calculation using (A.2)–(A.3) and (A.4)–(A.5) leads to the reduction of the
boundary condition (1.2):

um
1,l(a) = 0, ∂̂ru

m
2,l(a) = 0, where ∂̂r := d

dr
+ 1

r
. (3.22)

We now turn to the DtN boundary condition (1.2). By (3.5) and (3.19),

∇ × Ea,b =
∞∑

l=1

l∑
|m|=0

{∇ × (
um

1,lT
m
l

) − Ll(u
m
2,l)T

m
l

}
. (3.23)

D
ow

nloaded from
 https://academ

ic.oup.com
/im

ajna/article-abstract/38/2/810/3844800 by Purdue U
niversity Libraries AD

M
N

 user on 23 January 2020



MAXWELL EQUATIONS 825

Again from (A.2)–(A.3) and (A.4)–(A.5), we derive

(∇ × Ea,b
) × er

∣∣
r=b

=
∞∑

l=1

l∑
|m|=0

{(
∂̂ru

m
1,l

)
Tm

l + Ll(u
m
2,l)∇SY m

l

} ∣∣∣
r=b

,

Ea,b
S

∣∣
r=b

=
∞∑

l=1

l∑
|m|=0

{
um

1,lT
m
l + ∂̂ru

m
2,l ∇SY m

l

} ∣∣∣
r=b

. (3.24)

Then, by (3.13) and (3.24),

−ikTb[Ea,b
S ] =

∞∑
l=1

l∑
|m|=0

{
− k

∂̂rh
(1)
l (kb)

h(1)l (kb)
um

1,l(b)Tm
l + k

h(1)l (kb)

∂̂rh
(1)
l (kb)

∂̂ru
m
2,l(b)∇SY m

l

}
. (3.25)

Consequently, by (3.15) and (3.24), the DtN boundary condition (1.2) reduces to

∂̂ru
m
1,l(b)− k

∂̂rh
(1)
l (kb)

h(1)l (kb)
um

1,l(b) = hm
T ,l; Ll(u

m
2,l)(b)+ k

h(1)l (kb)

∂̂rh
(1)
l (kb)

∂̂ru
m
2,l(b) = hm

Y ,l. (3.26)

By the equation (3.20) (note: f m
2,l(b) = 0 as the source field is assumed to be compact supported), we have

Ll(um
2,l)(b) = −k2um

2,l(b), so we can simplify (3.26) as

∂̂ru
m
2,l(b)− k

∂̂rh
(1)
l (kb)

h(1)l (kb)
um

2,l(b) = 1

k

∂̂rh
(1)
l (kb)

h(1)l (kb)
hm

Y ,l. (3.27)

This ends the derivation. �

3.2 A priori estimates for {um
1,l, um

2,l}
A weak form of (3.17)–(3.18) is to find u1 ∈ 0H1(I) such that

B
m
l (u1, w) = (f1, w)� + b2h1w̄(b) ∀ w ∈ 0H1(I), (3.28)

and to find u2 ∈ H1(I) such that

B
m
l (u2, w)− au2(a)w̄(a) = (f2, w)� + b2h2w̄(b) ∀ w ∈ H1(I), (3.29)

where the sesquilinear form B
m
l (·, ·) is defined in (2.22).

Observe that the weak form for u1 is the same as that of the Helmholtz equation in (2.22), whereas
(3.29) differ from (3.28) with an extra term −au2(a)w̄(a). As a result, we can obtain the a priori estimates
like Lemma 2.3 by using the same argument.

Theorem 3.4 Let u1 and u2 be solutions of (3.28) and (3.29), respectively. If f1, f2 ∈ L2(Λ) then for all
k ≥ k0 > 0 (for some fixed constant k0), and l ≥ 1, 0 ≤ |m| ≤ l, we have

‖u′
i‖2
� + βl‖ui‖2 + k2‖ui‖2

� � ‖ fi‖2
� + |hi|2 i = 1, 2. (3.30)
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Proof. The estimates in Lemma 2.3 carry over to u1, so it suffices to consider u2 and deal with the extra
term herein. Following the proof of Lemma 2.3, we take two test functions: w = u2 and w = 2(r − a)u′

2,
and note that the term ‘ − au2(a)w̄(a)’ vanishes for the second test function. Thus, we only need to deal
with the contribution from this extra term as follows:

‖u′
2‖2
� + βl‖u2‖2 + k2‖u2‖2

� − a|u2(a)|2 � ‖ f2‖2
� + |h2|2. (3.31)

Using the Sobolev inequality (see, e.g., Shen et al., 2011, (B.33)), we obtain

a|u2(a)|2 ≤ a

(
2 + 1

b − a

)
‖u2‖‖u2‖1 ≤ a

(
2 + 1

b − a

) (‖u2‖2 + ‖u2‖‖u′
2‖
)

≤ a−3

(
2 + 1

b − a

) (‖u2‖2
� + ‖u2‖�‖u′

2‖�
)
, (3.32)

where we used the simple inequality
√

A2 + B2 ≤ |A| + |B|, and the fact �/a2 ≥ 1. Thus,

a|u2(a)|2 ≤ 1

2
‖u′

2‖2
� + C‖u2‖2

� . (3.33)

Thus, by (3.31) and (3.33),

1

2
‖u′

2‖2
� + βl‖u2‖2 + k2

(
1 − Ck−1

)‖u2‖2
� � ‖ f2‖2

� + |h2|2. (3.34)

This leads to the desired estimate. �

It is important to point out that as the expansion in (3.10) involves {∂̂rum
2,l}, the direct use of Theorem

3.4 and the orthogonality of VSH only leads to an overly pessimistic estimate: ‖Ea,b‖Ω = O(1). However,
the expected optimal estimate should be ‖Ea,b‖Ω = O(k−1). In view of this, we next derive an ‘auxiliary’
equation of ∂̂rum

2,l and apply the analysis similar to that for {um
1,l, um

2,l} in the previous subsection.

3.3 A priori estimates for ∂̂rum
2,l

3.3.1 Equation of ∂̂rum
2,l. Denote

v2 = βlu
m
2,l/r = βlu2/r, v3 = ∂̂ru

m
2,l = ∂̂ru2, hY = −kSl,kbh2 = hm

Y ,l,

g2 = βl f
m

2,l/r = βl f2/r, g3 = ∂̂r f
m

2,l = ∂̂r f2, (3.35)

where the DtN kernel pertinent to (3.13) is defined by

Sl,κ := − h(1)l (κ)

∂̂rh
(1)
l (κ)

= − h(1)l (κ)

h(1)l

′
(κ)+ κ−1h(1)l (κ)

= − 1

Tl,κ + κ−1
l ≥ 1, κ > 0. (3.36)

Recall that Tl,κ is defined in (2.2).
From the equation of u2 in Proposition 3.3, we can derive the following ‘auxiliary’ equation.
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Proposition 3.5 Let v3 = ∂̂ru2. Then we have

− 1

r2
(r2v′

3)
′ + βl

r2
v3 − k2v3 − 2

r2
v2 = g3 r ∈ I ,

v3(a) = 0, v′
3(b)− k

(
Sl,kb − (kb)−1

)
v3(b)− b−1v2(b) = hY . (3.37)

Alternatively, we can replace the boundary condition at r = b in (3.37) by

v′
3(b)− σl,kb

b
v2(b) = hY

kb Sl,kb
= −h2

b
, (3.38)

where

σl,kb := 1 − k2b2

βl

(
1 − 1

kbSl,kb

)
= 1 − k2b2

βl

(
1 + Tl,kb

kb
+ 1

k2b2

)
. (3.39)

Proof. One verifies readily that ∂̂rv3 = ∂̂r(∂̂ru2) = r−2(r2u′
2)

′, so by (3.17),

−∂̂rv3 + βl

r2
u2 − k2u2 = f2 r ∈ I . (3.40)

Applying ∂̂r to both sides of the above equation, we obtain the first equation in (3.37) by a direct calculation.
Since v3(a) = ∂̂ru2(a), the boundary condition v3(a) = 0 is a direct consequence of (3.18
u′

2(b) = v3(b)− u2(b)/b, we obtain from (3.36) and the boundary condition in (3.17) that

u2(b)+ Sl,kb

k
v3(b) = Sl,kb

k
h2 = −hY

k2
. (3.41)

Taking r = b in (3.40) (note: f2(b) = 0), we obtain

u2(b) = −k−2
(
v′

3(b)+ b−1v3(b)− b−1v2(b)
)
. (3.42)

Inserting (3.42) into (3.41) yields the boundary condition at r = b in (3.37).
The alternative boundary condition (3.38) can be obtained by eliminating v3(b) in (3.37). More

precisely, solving out v3(b) from (3.41) and using the fact u2(b) = bv2(b)/βl, we can obtain (3.38)–(3.39)
from (3.37). �

3.3.2 Properties of the DtN kernel Sl,κ . By (3.36), we have that for integer l ≥ 1 and real κ > 0,

Re(Sl,κ) = − Re(Tl,κ)+ κ−1

(Re(Tl,κ)+ κ−1)2 + (Im(Tl,κ))2
; Im(Sl,κ) = Im(Tl,κ)

(Re(Tl,κ)+ κ−1)2 + (Im(Tl,κ))2
, (3.43)

which, together with (2.5), implies

Re(Sl,κ) > 0, Im(Sl,κ) > 0 for l ≥ 1, κ > 0. (3.44)
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(a) (b) (c) (d)

Fig. 2. (a,b) graphs of real and imaginary parts of Sl,κ for various (l, κ) ∈ [0, 120] × [1, 100]. (c) Re(Sl,κ ) (solid line) against
SR

l,κ . (d) Im(Sl,κ ) (solid line) against SI
l,κ with κ = 30, 50, 70, 90 (note: ‘+’ for ρ = ν/κ ∈ (0, θ0), ‘�’ for ρ ∈ [θ0,ϑ1], ‘◦’ for

ρ ∈ (ϑ1,ϑ2) and ‘∗’ for ρ ∈ [ϑ2, ∞)).

In Fig. 2 (a,b), we depict the graphs of Re(Sl,κ) and Im(Sl,κ) for various samples (l, κ) ∈ [0, 120]×[1, 100],
which shows a quite different behaviour, compared with that of Tl,κ in Fig. 1.

Thanks to (3.43) and the estimates in Theorem 2.2, we can analyse the behaviour of Sl,κ . In Fig. 2(c,d),
we plot the exact value and approximations in Theorem 3.6 below for various samples of κ .

Theorem 3.6 Let θ0,ϑ1,ϑ2 and κ0 be the same as in (2.6) and (2.8). Denote ν = l + 1/2 and ρ = ν/κ .
Then for any κ > κ0,

Re(Sl,κ) ∼ SR
l,κ , Im(Sl,κ) ∼ SI

l,κ ∀ l ≥ 1, where (3.45)

(i) for ρ = ν/κ ∈ (0, θ0),

SR
l,k = 1

2κ

(
ρ

1 − ρ2

)2

, SI
l,k = 1√

1 − ρ2
; (3.46)

(ii) for ρ = ν/κ ∈ [θ0,ϑ1],

SR
l,κ = 1

4ρ(1 − ρ)κ

(
1 + 1

2(1 − ρ)

)
, SI

l,κ = 1√
2ρ(1 − ρ)

; (3.47)

(iii) for ρ = ν/κ ∈ (ϑ1,ϑ2),

SR
l,κ = 1

4c1

(ν
2

)1/3
HR(t), SI

l,κ =
√

3

4c1

(ν
2

)1/3
HI(t), (3.48)
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where t = − 3
√

2 (κ − ν)/ 3
√
ν (note: |t| < 1) and

HR(t) = 1 + 2c1t + c2t2

1 − 2c1t + (4c2
1 + c2/2)t2 + c1c2t3 + c2

2t4/4
,

HI(t) = 1 − 2c1t

1 − 2c1t + (4c2
1 + c2/2)t2 + c1c2t3 + c2

2t4/4
, (3.49)

with c1, c2 given by (2.17);

(iv) for ρ = ν/κ ∈ [ϑ2, ∞),

SR
l,κ = 1√

ρ2 − 1

(
1 + 1

2κ
√
ρ2 − 1

(
1 + 1

ρ2 − 1

))
, (3.50)

SI
l,κ = e−2νΨ√

ρ2 − 1

(
1 + 1

κ
√
ρ2 − 1

(
1 + 1

ρ2 − 1

))
, (3.51)

where Ψ is defined in (2.19).

We postpone the derivation of the above estimates to Appendix C.

Remark 3.7 With some careful calculations, one can verify that for t ∈ [−1, 1],

min{HR(t)} = HR(t = −1) ≈ 0.2493, max{HR(t)} = HR(t ≈ 0.8004) ≈ 1.9291,

min{HI(t)} = HI(t = 1) ≈ 0.2479, max{HI(t)} = HI(t = 0) = 1.

Thus, we roughly have 0.2493 ≤ HR(t) ≤ 1.9291 and 0.2479 ≤ HI(t) ≤ 1 for t ∈ [−1, 1].

A weak form of (3.37) is to find v3 ∈ 0H1(I) such that

B̂
m
l (v3, w) = Gm

l (w) ∀ w ∈ 0H1(I), (3.52)

where

B̂
m
l (v3, w) = (v′

3, w′)� + βl(v3, w)− k2(v3, w)� − kb2
(
Sl,kb − (kb)−1

)
v3(b)w̄(b);

Gm
l (w) := b v2(b)w̄(b)+ 2(v2, w)+ b2hY w̄(b)+ (g3, w)� � = r2. (3.53)

Alternatively, we can use the equivalent boundary condition (3.38)–(3.39) and modify (3.53) as

B̂
m
l (v3, w) = (v′

3, w′)� + βl(v3, w)− k2(v3, w)� ;

Gm
l (w) = b σl,kbv2(b)w̄(b)+ 2(v2, w)+ (g3, w)� + b2 hY

k Sl,kb
w̄(b). (3.54)
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Theorem 3.8 Let θ0 and {ϑi}2
i=1 be the same as in (2.6) and (2.8). If g2, g3 ∈ L2(I) then we have that for

all k ≥ k0 > 0 (for some fixed constant k0) and l ≥ 1, 0 ≤ |m| ≤ l,

‖v′
3‖2
� + βl‖v3‖2 + k2‖v3‖2

� ≤ Cl,k

(
1

βl
‖g2‖2

� + ‖g3‖2
�

)
+ C

(
1 + β2

l

k4

)
|hY |2, (3.55)

where C is a generic positive constant independent of k, l, m and v3, and

Cl,k = C

{
1, if ρ = ν/(kb) ∈ (0, θ0] ∪ (ϑ2, ∞),

(kb)1−γ , if ρ = ν/(kb) ∈ (θ0,ϑ2].
(3.56)

Note that for ρ ∈ (θ0,ϑ2], we have ρ = 1 + ξ(kb)−γ or ν = l + 1/2 = kb + ξ(kb)γ−1, for some
γ ∈ [1/3, 1), and some constant ξ .

Proof. Taking w = v3 in (3.52), we obtain

‖v′
3‖2
� + βl‖v3‖2 − k2‖v3‖2

� − kb2 Re(Sl,kb)|v3(b)|2 + b|v3(b)|2
= b Re(v2(b)v̄3(b))+ 2Re(v2, v3)+ b2 Re(hY v̄3(b))+ Re(g3, v3)� , (3.57a)

−kb2 Im(Sl,kb)|v3(b)|2 = b Im(v2(b)v̄3(b))+ 2Im(v2, v3)+ b2 Im(hY v̄3(b))+ Im(g3, v3)� . (3.57b)

Next taking w = 2(r − a)v′
3 in (3.52) and following the derivation of (2.25)–(2.26), we can obtain

b2|I||v′
3(b)|2 + (βl|I| + b)|v3(b)|2 + 2a‖√rv′

3‖2 + 2k2

∫ b

a

[
1 − a

r

]
|v3|2r2 dr

= (
k2b2|I| + kb2 Re(Sl,kb)

)|v3(b)|2 + 2kb2|I|Re
{
(Sl,kb − (kb)−1)v3(v)v̄

′
3(b)

}
+ b Re(v2(b)v̄3(b))+ b2 Re(hY v̄3(b))+ 2Re(v2, v3)+ Re(g3, v3)� + 2b|I| Re

(
v2(b)v̄

′
3(b)

)
+ 2b2|I| Re

(
hY v̄′

3(b)
) + 4 Re(v2, (r − a)v′

3)+ 2 Re(g3, (r − a)v′
3)� .

(3.58)

Then we can derive the estimate similar to (2.28) (by noting that Sl,kb − (kb)−1 should be in place of Tl,kb

and the term of the left endpoint r = a is not involved):

b2|I||v′
3(b)|2 + Dl,k|I||v3(b)|2 + a‖√rv′

3‖2 + k2‖v3‖2
� ≤ C

(‖v2‖2
� + |v2(b)|2 + ‖g3‖2

� + |hY |2),
(3.59)

where

Dl,κ := βl − (1 − ε3)|I|−1 kb2 Re(Sl,kb)− k2b2
(
1 + ε−1

1

∣∣Sl,kb − (kb)−1
∣∣2). (3.60)

Thus, it remains to bound the term Dl,κ |I||v3(b)|2 (note: it is negative for some range of l) and to estimate
the terms of v2 by using that of u2 in Theorem 3.4 and its proof. Following the proof of Theorem 3.4, we
proceed with four cases.
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(i) If ρ = ν

kb ∈ (0, θ0) for fixed 0 < θ0 < 1, we find from (3.46) that both kbRe(Sl,kb) and Im(Sl,kb)

behave like constants. Thus, from (3.57b), we can obtain the bound like (2.31):

k2b2 |v3(b)|2 ≤ εk2‖v3‖2
� + C

(‖v2‖2
� + |v2(b)|2 + ‖g3‖2

� + |hY |2). (3.61)

Noting from (3.46) and (3.60) that

Dl,κ ∼ βl − Ck2b2, (3.62)

we infer from (3.59) that

b2|I||v′
3(b)|2 + βl|I||v3(b)|2 + a‖√rv′

3‖2 + k2‖v3‖2
� ≤ C

(‖v2‖2
� + |v2(b)|2 + ‖g3‖2

� + |hY |2). (3.63)

Recall from (3.35) that h2 = −hY/(k Sl,kb), u2 = rβ−1
l v2 and f2 = rβ−1

l g2. Then by (2.32),

‖v2‖2
� + |v2(b)|2 ≤ C

(
1

k2
‖g2‖2

� + β2
l

k4
|hY |2

)
≤ C

(
1

βl
‖g2‖2

� + β2
l

k4
|hY |2

)
. (3.64)

Thus, using (3.57a), (3.61), (3.63), (3.64) and the Cauchy–Schwarz inequality, we can obtain (3.55).

(ii) If ρ = ν

kb ∈ [θ0,ϑ1], we start with (2.35) and find from (3.47) that

Re(Sl,kb − (kb)−1) ∼ 1

8c̄2
0

(kb)1−2γ0 , Im(Sl,kb) ∼ 1√
2c̄0

(kb)(1−γ0)/2, (3.65)

where 1/3 ≤ γ0 < 1. Thus, by (3.62)–(3.65), Dl,k ∼ −C(kb)3−γ0 . As with (2.37)–(2.39), we can derive

(kb)3−γ0 |v3(b)|2 ≤ εk2‖v3‖2
� + C

(
(kb)1−γ0(‖v2‖2

� + ‖g3‖2
�)+ |v2(b)|2 + |hY |2). (3.66)

Therefore, we have

‖√rv′
3‖2 + k2‖v3‖2

� + (kb)3−γ0 |v3(b)|2 ≤ C
(
(kb)1−γ0(‖v2‖2

� + ‖g3‖2
�)+ |v2(b)|2 + |hY |2). (3.67)

Like (3.64), we derive from (2.40) (note: h2 = −hY/(k Sl,kb), u2 = rβ−1
l v2, f2 = rβ−1

l g2) and (3.65) that

k1−γ0‖v2‖2
� + |v2(b)|2 ≤ C

(
1

k1+γ0
‖g2‖2

� + β2
l

k4
|hY |2

)
≤ C

(
k1−γ0

βl
‖g2‖2

� + β2
l

k4
|hY |2

)
. (3.68)

Thus, as with the previous case, we can obtain the desired estimate.

(iii) If ρ = ν

kb ∈ (ϑ1,ϑ2), we have the range in (2.41). Using (3.48)–(3.49), we can show that in this
range, the bound is the same as (2.50) with γ0 = 1/3:

‖√rv′
3‖2 + k2‖v3‖2

� + (kb)8/3|v3(b)|2 ≤ C
(
(kb)2/3(‖v2‖2

� + ‖g3‖2
�)+ |v2(b)|2 + |hY |2). (3.69)

Similarly, we can bound the terms involving v2 by (3.68) with γ0 = 1/3.

D
ow

nloaded from
 https://academ

ic.oup.com
/im

ajna/article-abstract/38/2/810/3844800 by Purdue U
niversity Libraries AD

M
N

 user on 23 January 2020



(iv) If ρ = ν

kb ∈ [ϑ2, ∞), we find from (3.51) that Im(Sl,kb) decays exponentially with respect to l.
However, since Re(Sl,kb − (kb)−1) > 0, we do not have (2.48) to bound the term Dl,k|I||v3(b)|2 (note:
Dl,k < 0), as opposite to the estimate of u2 in Theorem 3.4. For this purpose, we use the equivalent
boundary condition (3.38)–(3.39). Correspondingly, we modify the weak form (3.52) as

(v′
3, w′)� + βl(v3, w)− k2(v3, w)� = bσl,kbv2(b)w̄(b)+ 2(v2, w)

+ (g3, w)� + b2 hY

k Sl,kb
w̄(b), ∀ w ∈ 0H1(Λ). (3.70)

Taking w = v3 in (3.70) leads to

‖v′
3‖2
� + βl‖v3‖2 − k2‖v3‖2

� = b Re(σl,kb v2(b)v̄3(b))

+ Re(g3, v3)� + 2Re(v2, v3)+ b2Re

(
hY

k Sl,kb
v̄3(b)

)
. (3.71)

Next taking w = 2(r − a)v′
3 and following the same procedure in deriving (2.25)–(2.26), we have

b2|I||v′
3(b)|2 + (βl − k2b2)|I||v3(b)|2 + 2a‖√rv′

3‖2 + 2k2

∫ b

a

(
1 − a

r

)
|v3|2r2 dr

= 2b|I|Re{σl,kb v2(b)v̄
′
3(b)} + bRe{σl,kbv2(b)v̄3(b)} + 4 Re(v2, (r − a)v′

3)+ 2Re(v2, v3)

+ 2Re(g3, (r − a)v′
3)� + Re(g3, v3)� + 2b2|I|Re

(
hY

k Sl,kb
v̄′

3(b)

)
+ b2Re

(
hY

k Sl,kb
v̄3(b)

)
. (3.72)

Using the Cauchy–Schwarz inequality, we can derive

|v′
3(b)|2 + (βl − k2b2)|v3(b)|2 + ‖√rv′

3‖2 + k2‖v3‖2
� ≤ C

{
|σl,kb|2

(
1 + (βl − k2b2)−1

)|v2(b)|2

+‖v2‖2
� + ‖g3‖2

� + 1

(kb)2 |Sl,kb|2
(
1 + (βl − k2b2)−1

)|hY |2
}

. (3.73)

We first consider the range (a) in (2.44), i.e., ν ∼ kb + c̄5(kb)γ1 for 1/3 ≤ γ1 < 1 and some constant
c̄5 > 0. From (3.39) and (3.50), one verifies

βl − k2b2 ∼ 2c̄5(kb)1+γ1 , |Sl,kb| ∼ |Re(Sl,kb)| ∼ 1√
2c̄5(kb)γ1−1

|σl,kb| ∼ 2c̄5(kb)γ1−1. (3.74)

Then we obtain from (3.73)–(3.74) that

k2‖v3‖2
� ≤ C

(
(kb)2(γ1−1)|v2(b)|2 + ‖v2‖2

� + ‖g3‖2
� + (kb)−(1+γ1)|hY |2). (3.75)

Recalling that h2 = −hY/(k Sl,kb), u2 = rβ−1
l v2 and f2 = rβ−1

l g2, we have from (2.50) and (3.74) that

‖v2‖2
� + (kb)2(γ1−1)|v2(b)|2 ≤ C

(
1

βl
‖g2‖2

� + β2
l

k4
|hY |2

)
. (3.76)
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As v3 ∈ 0H1(I), one verifies readily that

|v3(b)| ≤
∫ b

a
|v′

3(r)| dr ≤ C‖v′
3‖� . (3.77)

Thus, using (3.71) and the Cauchy–Schwarz inequality, we can obtain the same upper bound as (3.75)
for ‖v′

3‖2
� + βl‖v3‖2. This leads to the desired estimate for this case.

We then consider the range (b) in (2.44), i.e., ν > η kb with η > 1. Once again, by (3.39) and (3.50),

|Sl,kb| ∼ |Re(Sl,kb)| ∼ kb

ν
√

1 − η−2
, |σl,kb| ∼ 1 − η−2. (3.78)

It is evident that

βl‖v3‖2 − k2‖v3‖2
� ≥ (βl − k2b2)‖v3‖2 ≥ βl(1 − η−2)‖v3‖2. (3.79)

Using the Cauchy–Schwarz inequality and (3.77)–(3.79), we have from (3.71) that

‖v′
3‖2
� + βl‖v3‖2 ≤ C

(
|v2(b)|2 + β−1

l ‖v2‖ + β−1
l ‖g3‖2

� + βl

k4
|hY |2

)
. (3.80)

Then by (2.23), (2.54) and the fact that h2 = −hY/(k Sl,kb), u2 = rβ−1
l v2 and f2 = rβ−1

l g2, we obtain

|v2(b)|2 + β−1
l ‖v2‖2 ≤ C

(
1

βl
‖g2‖2

� + β2
l

k4
|hY |2

)
. (3.81)

Then we can derive the desired estimates. �

Remark 3.9 It is seen from (3.30) that ‖u′
2‖� = O(1), while by (3.55), ‖u′

2‖� = O(k−1
√

Cl,k) (note:

v3 = ∂̂ru2).

3.4 Main result on a priori estimates of Ea,b

We are in a position to derive a priori estimates for the Maxwell equations (1.1) and (1.2). Recall the
space H(div0;Ω) defined in (3.1). We further introduce

H(curl;Ω) = {
E ∈ (L2(Ω))3 : ∇ × E ∈ (L2(Ω))3

}
;

H0(curl;Ω) = {
E ∈ H(curl;Ω) : E × er|r=a = 0

}
, (3.82)

which are equipped with the graph norm as defined in Monk (2003).
A weak form of (1.1) and (1.2) is to find Ea,b ∈ V := H0(curl;Ω) ∩ H(div0;Ω) such that

B(Ea,b, Ψ ) := (∇ × Ea,b, ∇ × Ψ
)
Ω

− k2
(
Ea,b, Ψ

)
Ω

− ikb2
〈
TbEa,b

S , ΨS

〉
S

= (
Fa,b, Ψ

)
Ω

+ b2
〈
h, ΨS

〉
S

∀ Ψ ∈ V . (3.83)
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834 L. MA ET AL.

Its well posedness can be established using the property: Re〈TbEa,b
S , Ea,b

S 〉S > 0 (see, e.g., Nédélec, 2001,
Chapter 5 and Monk, 2003, Chapter 10).

By Nédélec (2001, (5.3.47)), the surface divergence of h (with the expansion (3.15)) can be expressed
as

divS h = −
∞∑

l=1

l∑
|m|=0

βl hm
Y ,l Y m

l , so ‖divS h‖2
L2(S)

=
∞∑

l=1

l∑
|m|=0

β2
l

∣∣hm
Y ,l

∣∣2. (3.84)

Theorem 3.10 Let Ea,b be the solution to (3.83). If Fa,b ∈ L2(Ω), h ∈ L2
T (S) and divS h ∈ L2(S) then

we have Ea,b ∈ H0(curl;Ω) and

‖∇ × Ea,b‖Ω + k‖Ea,b‖Ω ≤ C
(
k1/3‖Fa,b‖Ω + ‖h‖L2

T (S)
+ k−2‖divSh‖L2(S)

)
, (3.85)

for all k ≥ k0 > 0 (k0 is some positive constant), where C is independent of k, Ea,b, Fa,b and h.

Proof. With the notation in (3.35), we can rewrite the field Ea,b in (3.10) as

Ea,b = u0
0 Y 0

0 er +
∞∑

l=1

l∑
|m|=0

{
um

1,l Tm
l + vm

2,l Y m
l er + vm

3,l ∇SY m
l

}
, (3.86)

where we recall (cf. Proposition 3.3): −k2u0
0 = f 0

0 . Thus, by the orthogonality and (A.1),

‖Ea,b‖2
Ω = ‖u0

0‖2
� +

∞∑
l=1

l∑
|m|=0

βl

{‖um
1,l‖2

� + β−1
l ‖vm

2,l‖2
� + ‖vm

3,l‖2
�

}
. (3.87)

Working out ∇ × Ea,b via (3.86) and (A.4)–(A.5), we obtain from (A.1) that

‖∇ × Ea,b‖2
Ω =

∞∑
l=1

l∑
|m|=0

βl

{
‖∂̂ru

m
1,l‖2

� + βl‖um
1,l‖2 + ‖vm

2,l/r − ∂̂rv
m
3,l

∥∥2
}

. (3.88)

Noting that βl + 2 ≤ 2βl and ‖∂̂rum
1,l‖2

� ≤ 2
(∥∥(um

1,l)
′∥∥2

�
+ ‖um

1,l‖2
)
, we obtain from (3.87)–(3.88) that

‖∇ × Ea,b‖2
Ω + k2‖Ea,b‖2

Ω ≤ ‖u0
0‖2
� +

∞∑
l=1

l∑
|m|=0

βl

{
2
(‖(um

1,l)
′‖2
� + βl‖um

1,l‖2
) + k2‖um

1,l‖2
�

}
+

∞∑
l=1

l∑
|m|=0

βl

{
2‖vm

2,l‖2 + k2β−1
l ‖vm

2,l‖2
�

} +
∞∑

l=1

l∑
|m|=0

βl

{
4
(‖(vm

3,l)
′‖2
� + ‖vm

3,l‖2
) + k2‖vm

3,l‖2
�

}
.
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Similarly, using the orthogonality of VSH, we have

‖Fa,b‖2
Ω = ‖ f 0

0 ‖2
� +

∞∑
l=1

l∑
|m|=0

βl

{‖ f m
1,l‖2

� + β−1
l ‖gm

2,l‖2
� + ‖gm

3,l‖2
�

}
,

‖h‖2
L2

T (S)
=

∞∑
l=1

l∑
|m|=0

βl

{∣∣hm
T ,l

∣∣2 + ∣∣hm
Y ,l

∣∣2}. (3.89)

Recall from (3.35) that hm
2,l = −hm

Y ,l/(k Sl,kb), um
2,l = rβ−1

l vm
2,l and f m

2,l = rβ−1
l gm

2,l. Then by Theorem 3.4,

‖vm
2,l‖2 + k2β−1

l ‖vm
2,l‖2

� ≤ C
{
β−1

l ‖gm
2,l‖2

� + k−4β2
l |hm

Y ,l|2
}
, (3.90)

where we have used the fact |Sl,kb|−2 ≤ Cβl/k2 for all the ranges of l, k in the proof of Theorem 3.8. We
further derive from Theorems 3.4 to 3.8 and (3.90) that

‖∇ × Ea,b‖2
Ω + k2‖Ea,b‖2

Ω ≤ k−2‖ f 0
0 ‖2

� + C
∞∑

l=1

l∑
|m|=0

βl

{
‖ f m

1,l‖2
� + ∣∣hm

T ,l

∣∣2} + C
∞∑

l=1

l∑
|m|=0

βl

{
β−1

l ‖gm
2,l‖2

�

+k−4β2
l |hm

Y ,l|2
} +

∞∑
l=1

l∑
|m|=0

βl

{
Cl,k

(
β−1

l ‖gm
2,l‖2

� + ‖gm
3,l‖2

�

) + C
(
1 + k−4β2

l

)|hm
Y ,l|2

}
.

Finally, the desired estimate follows from (3.84), (3.89) and the above. �

Remark 3.11 We point out that the estimate in Theorem 3.10 is suboptimal due to the presence of the
factor k1/3. In the bound of the ‘auxiliary’ variable v3 in Theorem 3.8, we have Cl,k = O(k1/3), which
brings about this, but appears hard to be removed.

4. Spectral-Galerkin approximation and its wavenumber explicit analysis

In this section, we consider the analysis of spectral-Galerkin approximation to (3.83). We look for the
approximation of Ea,b in the form

EL
N = −k−2f 0

0 Y 0
0 er +

L∑
l=1

l∑
|m|=0

{
uN ,m

1,l Tm
l + ∇ × (

uN ,m
2,l Tm

l

)}
, (4.1)

where uN ,m
1,l =: uN

1 and uN ,m
2,l =: uN

2 are, respectively, the solutions of the spectral-Galerkin schemes:

(i) Find uN
1 ∈ 0PN := 0H1(I) ∩ PN (where PN is the space of polynomials of degree at most N) such

that

B
m
l (u

N
1 ,ϕ) = (f1,ϕ)� + b2h1ϕ̄(b) ∀ϕ ∈ 0PN . (4.2)

(ii) Find uN
2 ∈ PN such that

B
m
l (u

N
2 ,ψ)− auN

2 (a)ψ̄(a) = (f2,ψ)� + b2h2ψ̄(b) ∀ψ ∈ PN . (4.3)
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836 L. MA ET AL.

Here, the sesquilinear forms B
m
l is defined in (2.22). It is evident that by Proposition 3.1, the expansion

in (4.1) preserves the divergence-free property of the continuous field.

Theorem 4.1 Theorem 3.4 holds when uN
1 , uN

2 are in place of u1, u2 in (3.30), respectively.

Remark 4.2 The algorithm in the recent work (Ma et al., 2015) was based on the VSH expansion in
Nédélec (2001), so the divergence-free condition could only be fulfilled approximately. Moreover, one
had to deal three components where two were coupled. In a nutshell, the above algorithm is much more
efficient.

4.1 Error estimates

As before, we start with the schemes (4.2) and (4.3) in one dimension. To describe the errors more
precisely, we introduce the weighted Sobolev space

X
s(I) :=

{
u ∈ L2(I) : [(r − a)(b − r)] l−1

2 u(l) ∈ L2(I), 1 ≤ l ≤ s
}

s ∈ N := {1, 2, · · · , },

with the norm and seminorm

‖u‖Xs(I) =
(

‖u‖2 +
s∑

l=1

∥∥[(r − a)(b − r)] l−1
2 u(l)

∥∥2

)1/2

, |u|Xs(I) = ∥∥[(r − a)(b − r)] s−1
2 u(s)

∥∥.

Define X
0(I) = L2(I). Following the proof of Shen & Wang (2007, Theorem 4.2) (but using the improved

estimate in Theorem 3.4), we have the following error estimate for the scheme (4.2).

Lemma 4.3 Let u1 and uN
1 be the solution of (3.28) and (4.2), respectively, and define eu1

N = u1 − uN
1 . If

u1 ∈ 0H1(I) ∩ X
s(I) with integer s ≥ 1 then for all k ≥ k0 (where k0 is a certain constant ), we have∥∥(eu1

N )
′∥∥
�

+ √
βl‖eu1

N ‖ + k‖eu1
N ‖� �

(√
βl + k2N−1

)
N1−s|u1|Xs(I), (4.4)

where βl = l(l + 1) and � = r2 as before.

Now, we turn to (4.3). Consider the orthogonal projection π 1
N : H1(I) → PN defined by(

(π 1
N v − v)′,φ′)

�
+ (
π 1

N v − v,φ
)
�

= 0, ∀φ ∈ PN . (4.5)

Noting that the weight function � is uniformly bounded below and above, we follow the argument in
Shen et al. (2011, Chapter 3), and derive the following estimate.

Lemma 4.4 For any v ∈ X
s(I) with s ∈ N, we have

‖(π 1
N v − v)′‖� + N‖π 1

N v − v‖� � N1−s|v|Xs(I). (4.6)

Lemma 4.5 Let u2 and uN
2 be the solution of (3.29) and (4.3), respectively, and define eu2

N = u2 − uN
2 . If

u2 ∈ X
s(Λ) with s ∈ N then for all k ≥ k0 (where k0 is a certain constant ) the estimate (4.4) holds when

u2 and eu2
N are in place of u1 and eu1

N , respectively.
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Proof. Let êN = uN
2 − π 1

N u2 and ẽN = u2 − π 1
N u2. Then eu2

N = ẽN − êN . By (3.29) and (4.3),

B
m
l (e

u2
N ,ψ)− aeu2

N (a)ψ̄(a) = 0 = B
m
l (ẽN ,ψ)− aẽN(a)ψ̄(a)− B

m
l (êN ,ψ)+ aêN(a)ψ̄(a) ∀ψ ∈ PN .

Thus, by (4.5),

B
m
l (êN ,ψ)− aêN(a)ψ̄(a) = B

m
l (ẽN ,ψ)− aẽN(a)ψ̄(a)

= βl(ẽN ,ψ)− (k2 + 1)(ẽN ,ψ)� − a ẽN(a)ψ̄(a)− kb2Tl,kbẽN(b)ψ̄(b) ∀ψ ∈ PN . (4.7)

Compared with the analysis for (4.2), the only difference is the presence of the extra term ‘−a ẽN(a)ψ̄(a)’,
which is akin to the situation in the proof of Theorem 3.4. We omit the details, as one can refer to the
proofs of (Shen & Wang, 2007, Theorem 4.2) and Theorem 3.4. �

We now estimate the error between the electric field and its spectral approximation in (4.1)–(4.3).
We first introduce suitable functional spaces to characterize the regularity of the electric field. For any
Ea,b ∈ L2(Ω), we write

Ea,b = v0
2,0(r)Y 0

0 er +
∞∑

l=1

l∑
|m|=0

{
vm

1,l(r)Tm
l + vm

2,l(r)Y m
l er + vm

3,l(r)∇SY m
l

}
. (4.8)

We introduce the anisotropic Sobolev space Ht(S; Hs
�(I)) for t ≥ 0 and integer s ≥ 0 equipped with the

norm:

‖Ea,b‖Ht (S;Hs
� (I)) =

(
‖v0

2,0‖2
Hs
� (I)

+
∞∑

l=1

l∑
|m|=0

β1+t
l

{‖vm
1,l‖2

Hs
� (I)

+ β−1
l

∥∥vm
2,l

∥∥2

Hs
� (I)

+ ‖vm
3,l‖2

Hs
� (I)

}) 1
2

.

Note that H0(S; H0
�(I)) = L2(Ω). Here, we are interested in the divergence-free fields. In this case, like

Proposition 3.1, we can rewrite Ea,b ∈ H0(curl;Ω) in the divergence-free form:

Ea,b = c

r2
Y 0

0 er +
∞∑

l=1

l∑
|m|=0

{
um

1,l(r)Tm
l + ∇ × (

um
2,l(r)Tm

l

)}
, (4.9)

where c is an arbitrary constant, and for l ≥ 1,

vm
1,l(r) = um

1,l(r), vm
2,l(r) = βl

r
um

2,l(r), vm
3,l(r) =

(
d

dr
+ 1

r

)
um

2,l(r). (4.10)

Note that we can substitute (4.10) into (4.1) to express the norm in (4.1) in terms of {um
1,l, um

2,l}.
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838 L. MA ET AL.

Theorem 4.6 If Ea,b ∈ H0(curl;Ω) ∩ L2(S; Hs
�(I)) ∩ Hs(S; L2

�(I)) with s ∈ N, then

‖Ea,b − EL
N‖Ω � (1 + k−1N)(L + k2N−1)N−s

∥∥Ea,b
∥∥

L2(S;Hs
� (I))

+ L−s
∥∥Ea,b

∥∥
Hs(S;L2

� (I))
, (4.11)

for all k ≥ k0 with k0 being a positive constant.

Proof. By (3.5) and (4.1),

Ea,b − EL
N =

L∑
l=1

l∑
|m|=0

{
(um

1,l − uN ,m
1,l )Tm

l + ∇ × (
(um

2,l − uN ,m
2,l )Tm

l

)}
+

∞∑
l=L+1

l∑
|m|=0

{
um

1,l Tm
l + ∇ × (

um
2,l Tm

l

)} = S1 + S2, (4.12)

where S2 counts the error from truncating the VSH series. It is clear that by the orthogonality of VSH,
(4.1) and (4.10),

‖S2‖2
Ω =

∞∑
l=L+1

l∑
|m|=0

βl

{‖um
1,l‖2

� + ∥∥∂̂ru
m
2,l

∥∥2

�
+ βl‖um

2,l‖2
} ≤ L−2s

∥∥Ea,b
∥∥2

Hs(S;L2
� (I))

. (4.13)

Next, by (3.87), Lemma 4.3, Lemma 4.5 and (4.10),

‖S1‖2
Ω �

L∑
l=1

l∑
|m|=0

βl

{
‖um

1,l − uN ,m
1,l ‖2

� + ∥∥(um
2,l − uN ,m

2,l )
′∥∥2

�
+ βl

∥∥um
2,l − uN ,m

2,l

∥∥2
}

�
L∑

l=1

l∑
|m|=0

βl

(√
βl + k2N−1

)2
k−2N2−2s|um

1,l|2Xs(I)

+
L∑

l=1

l∑
|m|=0

βl

(√
βl + k2N−1

)2
N−2s|um

2,l|2Xs+1(I)
. (4.14)

By (4.10) and a direct calculation,

|um
2,l|2Xs+1(I)

� ‖∂ s+1
r um

2,l‖2
L2(I)

= ‖∂ s
r (∂̂ru

m
2,l)− ∂ s

r (u
m
2,l/r)‖2

L2(I)

� ‖∂ s
r (∂̂ru

m
2,l)‖2

L2(I)
+ ‖∂ s

r (u
m
2,l/r)‖2

L2(I)
= ‖∂ s

r vm
3,l‖2

L2(I)
+ β−2

l ‖∂ s
r vm

2,l‖2
L2(I)

. (4.15)

As the weight � is uniformly bounded below and above for r ∈ (a, b), we derive from (4.1), (4.10) and
(4.14)–(4.15) that

‖S1‖Ω � (1 + k−1N)(L + k2N−1)N−s
∥∥Ea,b

∥∥
L2(S;Hs

� (I))
. (4.16)

A combination of (4.13) and (4.16) leads to the desired estimate. �
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Note that the estimate in (4.11) is in the L2-norm not in the usual energy norm. For the continuous
problem, we were able to obtain the bound for the energy norm through a further estimate of ∂̂rum

2,l

in subsection 3.3. However, this approach does not carry over to the discrete problem, as the second
test function does not belong to the finite-dimensional space for the spectral-Galerkin approximation
of (3.52). We shall derive below a sub-optimal error estimate in the energy norm through a different
approach.

Theorem 4.7 If Ea,b ∈ L2(S; Hs
�(I)) ∩ Hs−1(S; H1

�(I)) ∩ Hs(S; L2
�(I)) with s ≥ 3, then∥∥∇ × (Ea,b − EL

N)
∥∥

w,Ω
�
(
N + (1 + kN−1)(L + k2N−1)

)
N1−s

∥∥Ea,b
∥∥

L2(S;Hs
� (I))

+ L1−s
{‖Ea,b‖Hs−1(S;H1

� (I))
+ ‖Ea,b‖Hs(S;L2

� (I))

}
, (4.17)

for all k ≥ k0 with k0 being a positive constant, where w = (b − r)(r − a).

Proof. For notational convenience, let eui
lm = um

i,l − uN ,m
i,l (i = 1, 2). By (4.12), (A.1) and (A.5)–(A.4),

∥∥∇ × (Ea,b − EL
N)
∥∥2

w,Ω
�

L∑
l=1

l∑
|m|=0

βl

{‖r∂̂re
u1
lm‖2

w + βl‖eu1
lm‖2

w + ‖rLl(e
u2
lm)‖2

w

}
+

∞∑
l=L+1

l∑
|m|=0

βl

{‖r∂̂ru
m
1,l‖2

w + βl‖um
1,l‖2

w + ‖rLl(u
m
2,l)‖2

w

} = T1 + T2. (4.18)

We first estimate T2. It is clear that by (4.1) and (4.10),

‖r∂̂ru
m
1,l‖2

w + βl‖um
1,l‖2

w � ‖vm
1,l‖2

H1
� (I)

+ βl‖vm
1,l‖2

L2
� (I)

,

‖rLl(u
m
2,l)‖2

w = ‖r∂̂2
r um

2,l − βlr
−1um

2,l‖2
w = ‖r∂̂2

r um
2,l − βlr

−1um
2,l‖2

w = ‖r∂̂rv
m
3,l − vm

2,l‖2
w

� ‖vm
3,l‖2

H1
� (I)

+ ‖vm
2,l‖2

L2
� (I)

, (4.19)

so we have

T2 ≤
∞∑

l=L+1

l∑
|m|=0

βl

{‖vm
1,l‖2

H1
� (I)

+ ‖vm
2,l‖2

L2
� (I)

+ ‖vm
3,l‖2

H1
� (I)

}
+

∞∑
l=L+1

l∑
|m|=0

β2
l ‖vm

1,l‖2
L2
� (I)

� β1−s
L+1

{‖Ea,b‖2
Hs−1(S;H1

� (I))
+ ‖Ea,b‖2

Hs(S;L2
� (I))

}
. (4.20)

We next turn to estimating T1. We see that it is necessary to obtain H2-estimate of eu2
lm . To simplify the

notation, we will drop l, m from the notations if no confusion may arise. Taking ψ = wê′′
N(∈ PN) with

w(r) = (r − a)(b − r) in (4.7), and using integration by parts, we obtain

B
m
l (êN , wê′′

N) = −((r2ê′
N)

′, wê′′
N)+ βl(êN , wê′′

N)− k2(r2êN , wê′′
N)

= βl(ẽN , wê′′
N)− (k2 + 1)(r2ẽN , wê′′

N). (4.21)
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Using integration by parts again, we derive from a direct calculation that

−Re
(
(r2ê′

N)
′, wê′′

N

) = −‖rê′′
N‖2

w − 2Re
(
rê′

N , wê′′
N

) = −‖rê′′
N‖2

w +
∫ b

a
|ê′

N |2(rw)′ dr;

Re(êN , wê′′
N) = −‖ê′

N‖2
w − Re

∫ b

a
êN ê′

N w′ dr = −‖ê′
N‖2

w − 1

2
|êN |2w′∣∣b

a
+ 1

2

∫ b

a
|êN |2w′′ dr

= −‖ê′
N‖2

w + b − a

2

(|êN(a)|2 + |êN(b)|2
) − ‖êN‖2;

−Re(r2êN , wê′′
N) = ‖rê′

N‖2
w + 1

2
|êN |2(r2w)′

∣∣b
a
− 1

2

∫ b

a
|êN |2(r2w)′′ dr

= ‖rê′
N‖2

w − b − a

2

(
a2|êN(a)|2 + b2|êN(b)|2

) − 1

2

∫ b

a
|êN |2(r2w)′′ dr,

and further by the Cauchy–Schwartz inequality,

|(ẽN , wê′′
N)| ≤

∫ b

a
|(wẽN)

′||ê′
N | dr ≤ 1

2
‖ê′

N‖2 + 1

2
‖(wẽN)

′‖2 ≤ 1

2
‖ê′

N‖2 + c
(‖ẽN‖2 + ‖ẽ′

N‖2
)
;

|(r2ẽN , wê′′
N)| ≤

∫ b

a
|(r2wẽN)

′||ê′
N | dr ≤ 1

2
‖ê′

N‖2 + 1

2
‖(r2wẽN)

′‖2 ≤ 1

2
‖ê′

N‖2 + c
(‖ẽN‖2 + ‖ẽ′

N‖2
)
.

Thus, we obtain from (4.21) and the above estimates that

‖rê′′
N‖2

w � (βl + k2)
(‖êN‖2

H1(I)
+ ‖ẽN‖2

H1(I)

)
. (4.22)

Recall that êN = uN
2 − π 1

N u2, ẽN = u2 − π 1
N u2 and eu2

N = ẽN − êN , so we derive from Lemma 4.3 and
Lemma 4.5 that

‖r(eu2
N )

′′‖2
w � ‖r(ẽN)

′′‖2
w + (βl + k2)

(‖eu2
N ‖2

H1(I)
+ ‖ẽN‖2

H1(I)

)
� ‖(u2 − π 1

N u2)
′′‖2 + (βl + k2)(

√
βl + k2N−1)2N−2s|u2|2

Xs+1(I)
. (4.23)

To estimate ‖(u2 − π 1
N u2)

′′‖2, we need to use the orthogonal projection π 2
N : H2(I) → PN , and recall

its approximation result (cf. Shen et al., 2011, Chapter 4): for any v ∈ X
s(I),

‖π 2
N v − v‖Hμ(I) � Nμ−s|v|Xs(I) μ = 0, 1, 2, s ≥ 2. (4.24)

Applying the inverse inequality (cf. Shen et al., 2011, Theorem 3.33) and the above approximation result,
we obtain

‖(π 1
N v − π 2

N v)′′‖ � N2‖(π 1
N v − π 2

N v)′‖ � N3−s|v|Xs(I) s ≥ 2.

Therefore, we have

‖(π 1
N v − v)′′‖ ≤ ‖(π 1

N v − π 2
N v)′′‖ + ‖(v − π 2

N v)′′‖ � N3−s|v|Xs(I). (4.25)
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From (4.23) and (4.25), we have

‖(eu2
N )

′′‖2
w �

{
N4 + (βl + k2)(

√
βl + k2N−1)2

}
N−2s|u2|2

Xs+1(I)
. (4.26)

Now, we are ready to estimate T1 in (4.18). Using Lemma 4.5, we obtain

‖rLl(e
u2
lm)‖2

w � ‖(eu2
lm)

′′‖2
w + β2

l ‖eu2
lm‖2 �

{
N4 + (βl + k2)(

√
βl + k2N−1)2

}
N−2s|um

2,l|2Xs+1(I)
. (4.27)

Therefore, we derive from Lemma 4.3, (4.27) and (4.15),

T1 �
L∑

l=1

l∑
|m|=0

βl

(√
βl + k2N−1

)2
N2−2s|um

1,l|2Xs(I)

+
L∑

l=1

l∑
|m|=0

{
N4 + (βl + k2)(

√
βl + k2N−1)2

}
N−2s|um

2,l|2Xs+1(I)

�
{
N2 + (1 + k2N−2)(L + k2N−1)2

}
N2−2s

∥∥Ea,b
∥∥2

L2(S;Hs
� (I))

. (4.28)

A combination of (4.18), (4.20) and (4.28) leads to the desired estimate. �

5. Perturbed scatterers through TFE

We consider a perturbed scatterer enclosed by

D = {
(r, θ ,φ) : 0 < r < a + g(θ ,φ), θ ∈ [0,π ], φ ∈ [0, 2π)

}
for some a > 0 and given g. Let us choose the radius b
b > maxθ ,φ{a + g(θ ,φ)} and consider the Maxwell equations (1.1) and (1.2) in the domain Ω̂ =
{a + g(θ ,φ) < r < b}. An effective approach to deal with scattering problems in general domains with
moderately large wave numbers is the so-called TFE (David & Fernando, 2004). It has been successfully
applied to various situations, including in particular acoustic scattering problems in two dimensions
(Nicholls & Shen, 2006) and three dimensions (Fang et al., 2007).

In our recent work (Ma et al., 2015), we applied the TFE approach to the Maxwell equations (1.1)
and (1.2) in Ω̂ . We outline below the essential steps of this approach and refer to Ma et al. (2015) for
more details.

• The first step is to transform the general domain Ω̂ = {a + g < r < b} to the spherical shell
Ω = {a < r ′ < b} in (1.1) with the change of variables:

r ′ = (b − a)r − b g(θ ,φ)

b − a − g(θ ,φ)
θ ′ = θ , φ′ = φ. (5.1)

With this change of variable, the Maxwell equations (1.1) and (1.2) in Ω̂ is transformed to a Maxwell
equation inΩ , which can still be written in the form (1.1) and (1.2) with the understanding that all new
terms (induced by the transform) are included in Fa,b and h (cf. Ma et al., 2015, (3.6)). With a slight
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abuse of notation, we shall still use r to denote r ′ and the same notations to denote the transformed
functions.

• The second step is to assume g(θ ,φ) = εf (θ ,φ) and for clarity, we denote the electric field and the
data by Eεf , Fεf and hεf , respectively. We expand them in ε-power series:

Eεf (r, θ ,φ) =
∞∑

n=0

Ea,b
n (r, θ ,φ)εn, Fεf (r, θ ,φ) =

∞∑
n=0

Fa,b
n (r, θ ,φ)εn,

hεf
(θ ,φ) =

∞∑
n=0

hn(θ ,φ)εn. (5.2)

One can then derive a recursion formula for Ea,b
n (for n ≥ 0):

∇ × ∇ × Ea,b
n − k2Ea,b

n = Fa,b
n + Ga,b

n , in Ω; (5.3)

Ea,b
n × er = 0 at r = a; (5.4)

(∇ × Ea,b
n )× er − ikTb

[
(Ea,b

n )S)
] = hn + gn at r = b, (5.5)

where Ga,b
n and gn are given by explicit recurrence formulae in Ma et al. (2015, Appendix B).

• The third step is to obtain the approximation EL
n,N (in the form of (4.1)) to Ea,b

n (for 0 ≤ n ≤ M) by
solving the above Maxwell equations (5.3)–(5.5) in the spherical shellΩ using the decoupled method
presented in Section 4. Then, we define our approximation to Eεf by

EL,M
N (r, θ ,φ) =

M∑
n=0

EL
n,N(r, θ ,φ) εn. (5.6)

Next, we shall use the general convergence theory developed in Nicholls & Shen (2009) to give an
error estimate for Eεf − EL,M

N . Using essentially the same argument as in the proof of Nicholls & Shen
(2009, Theorem 5.5) for the Helmholtz equation, we can prove the following bounds.

Proposition 5.1 Let Fa,b
n ∈ (Hs−2(Ω))3, f ∈ Hs(S) and hn ∈ (Hs−3/2(S))2 for an integer s ≥ 2. Then,

the expansion (5.2) converges strongly, i.e., there exists C1, C2 > 0 such that

‖Ea,b
n ‖(Hs(Ω))3 ≤ C1

(‖Fa,b
n ‖(Hs−2(Ω))3 + ‖hn‖(Hs−3/2(S))2

)
Bn, for some B > C2‖ f ‖Hs(S). (5.7)

On the other hand, it can be shown that the space with the norm in (4.1) satisfies Ht(S; Hs
�(I)) ⊆

(Hs+t(Ω))3. Therefore, with the above result and Theorems 4.6–4.7 at our disposal, we can then apply
Theorem 2.1 in Nicholls & Shen (2009) to obtain the following estimates.

Theorem 5.2 Let Eεf be the solution of the Maxwell equations in Ω̂ and EL,M
N be its approximation

defined in (5.6). Then, under the condition of Proposition 5.1 and Theorems 4.6–4.7, we have

‖Eεf − EL,M
N ‖Ω̂ � (Bε)M+1 + {

(1 + k−1N)(L + k2N−1)N−s + L−s
}
(‖Fεf ‖(Hs−2(Ω̂))3 + ‖hεf ‖(Hs(S))2),
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and

‖∇ × (Eεf − EL,M
N )‖w,Ω̂ � (Bε)M+1 + {(

N + (1 + kN−1)(L + k2N−1)
)
N1−s

+ L1−s
}(‖Fεf ‖(Hs−2(Ω̂))3 + ‖hεf ‖(Hs(S))2

)
,

for any B > C2‖ f ‖Hs(S), where C2 is the constant in Proposition 5.1.

6. Concluding remarks

We summarize below the major contributions of this article.
Firstly, we considered the Maxwell equations in a spherical shell.

• We reduced the Maxwell system into two sequences of decoupled one-dimensional problems by using
divergence-free VSH. This reduction not only led to a more efficient spectral-Galerkin algorithm, but
also greatly simplified its analysis.

• We derived wavenumber explicit bounds for the (continuous) Maxwell system with (exact) TBCs,
and wavenumber explicit error estimates for its spectral-Galerkin approximation.

• We derived optimal wavenumber explicit a priori bounds and error estimates for the Helmholtz
equation, which improved the results in Shen & Wang (2007).

Then, we applied the TFE approach (David & Fernando, 2004) to deal with general scatterers. By using
the general framework developed in Nicholls & Shen (2009), we derived rigorous wavenumber explicit
error estimates for the complete algorithm for the ε-perturbed variant. To the best of our knowledge, these
are the first estimates for time-harmonic Maxwell equations with exact TBCs.
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Appendix A. Properties of VSH

We adopt the notation and normalization of SPH in Nédélec (2001). Let (r, θ ,φ) (with θ ∈ [0,π ] and
φ ∈ [0, 2π)) be the spherical coordinates. Then the (right-handed) orthonormal coordinate basis consists
of {er , eθ , eφ}. Denote by ∇S and ΔS the tangent gradient operator and the Laplace–Beltrami operator on
S (the unit spherical surface). We denote by {Y m

l (θ ,φ)} the (scalar) SPH that are eigenfunctions of ΔS,
and form an orthonormal basis of L2(S).

We use the family of VSH:
{
Y m

l er , ∇SY m
l , Tm

l = ∇SY m
l × er

}
in Swarztrauber & Spotz (2000) (also

see Morse & Feshbach, 1953). They are mutually orthogonal in L2(S) (for vector fields) and normalized
such that

〈
Tm

l , Tm
l

〉
S

= l(l + 1),
〈∇SY m

l , ∇SY m
l

〉
S

= l(l + 1),
〈
Y m

l er , Y m
l er

〉
S

= 1. (A.1)
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We have

Tm
l × er = −∇SY m

l , ∇SY m
l × er = Tm

l , Y m
l er × er = 0. (A.2)

Define the differential operators:

d±
l = d

dr
± l

r
, Ll = d2

dr2
+ 2

r

d

dr
− l(l + 1)

r2
, ∂̂r = d

dr
+ 1

r
. (A.3)

Let f be a scalar function of r. The following properties can be derived from Hill (1954):

div
(
f Tm

l

) = 0, Δ
(
f Tm

l

) = Ll(f )Tm
l , ∇ × (

f Tm
l

) = ∂̂r f ∇SY m
l + l(l + 1)

f

r
Y m

l er , (A.4)

∇ × (
f ∇SY m

l

) = −∂̂r f Tm
l , ∇ × (

fY m
l er

) = f

r
Tm

l . (A.5)

Moreover, we have

div
(
f ∇SY m

l

) = l(l + 1)

2l + 1

(
d−

l−1 − d+
l+2

)
f Y m

l = −l(l + 1)
f

r
Y m

l , (A.6)

div
(
fY m

l er

) = 1

2l + 1

(
ld−

l−1 + (l + 1)d+
l+2

)
f Y m

l =
(

d

dr
+ 2

r

)
f Y m

l . (A.7)

Appendix B. Proof of Theorem 2.2

Case (i) ρ = ν/κ ∈ (0, θ0). Set secβ = κ/ν = ρ−1, i.e., cosβ = ρ with 0 < β < π/2. One verifies

sin β =
√

1 − ρ2, tan β =
√

1 − ρ2

ρ
, cot β = ρ√

1 − ρ2
, 0 < ρ < θ0 < 1. (B.1)

Recall the formulas (cf. Abramowitz & Stegun, 1964, (9.3.15–9.3.20))

Jν(ν secβ) =
√

2

πν tan β

(
L1 cosψ + M1 sinψ

)
, Yν(ν secβ) =

√
2

πν tan β

(
L1 sinψ − M1 cosψ

)
,

J ′
ν(ν secβ) = −

√
sin 2β

πν

(
L2 sinψ + M2 cosψ

)
, Y ′

ν(ν secβ) =
√

sin 2β

πν

(
L2 cosψ − M2 sinψ

)
,

where ψ = ν(tan β − β)− 1/4, and Li = Li(ν,β), Mi = Mi(ν,β), i = 1, 2 are given in Abramowitz &
Stegun (1964, pp. 366–367). Inserting them into (2.3) leads to

Re(Tl,κ) = − 1

2κ
− sin β

L1M2 + L2M1

L2
1 + M2

1

, Im(Tl,κ) = ρ tan β

L2
1 + M2

1

. (B.2)
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We find it suffices to take the leading term of Li, Mi, i = 1, 2 in Abramowitz & Stegun (1964, pp. 366–367),
that is,

L1 ∼ 1, L2 ∼ 1, M1 ∼ 3 cot β + 5 cot3 β

24ν
, M2 ∼ 9 cot β + 7 cot3 β

24ν
. (B.3)

By a direct calculation and using (B.1), we obtain

sin β
(
L1M2 + L2M1

) ∼ sin β
cot β + cot3 β

2ν
= 1

2κ

1

1 − ρ2
, (B.4)

and

M2
1 ∼ 3 + 5ρ2

192(1 − ρ2)2

1

κ2
,

1

L2
1 + M2

1

∼ 1 − M2
1 = 1 + O(κ−2). (B.5)

Then we obtain (2.14) from (B.2) and the above.

Cases (ii)–(iii) ρ = ν/κ ∈ [θ0,ϑ1] ∪ (ϑ1,ϑ2). We adopt the asymptotic formulas (Abramowitz &
Stegun, 1964, (9.3.23–9.3.28)):

Jν(ν + z 3
√
ν) ∼

(
2

ν

) 1
3

Ai(− 3
√

2z)+ O(ν−1), Yν(ν + z 3
√
ν) ∼ −

(
2

ν

) 1
3

Bi(− 3
√

2z)+ O(ν−1),

J ′
ν(ν + z 3

√
ν) ∼ −

(
2

ν

) 2
3

Ai′(− 3
√

2z)+ O(ν− 4
3 ), Y ′

ν(ν + z 3
√
ν) ∼

(
2

ν

) 2
3

Bi′(− 3
√

2z)+ O(ν− 4
3 ),

(B.6)

where Ai(t) and Bi(t) are Airy functions of the first and second kinds, respectively. Set

t = − 3
√

2 z, κ = ν + z 3
√
ν (i.e., z = (κ − ν)/ 3

√
ν ). (B.7)

We obtain from (B.6) and (2.3) that

Re(Tl,κ) ∼ − 1

2κ
−
(

2

ν

)1/3

TR(t), Im(Tl,κ) ∼ 2

πκ

(ν
2

)2/3
TI(t), (B.8)

where

TR(t) = Ai(t)Ai′(t)+ Bi(t)Bi′(t)
Ai2(t)+ Bi2(t)

, TI(t) = 1

Ai2(t)+ Bi2(t)
. (B.9)

Note that the Airy functions have different asymptotic behaviours for t ≤ −1 and −1 < t < 1 (see,
e.g., Abramowitz & Stegun, 1964; Zhang & Jin, 1996). We therefore solve the equations: t = − 3

√
2 z =

− 3
√

2(κ − ν)/ 3
√
ν = ∓1, that is,

ν + 2− 1
3 ν

1
3 − κ = 0, ν − 2− 1

3 ν
1
3 − κ = 0. (B.10)
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Both are cubic equations in ν
1
3 with only one real root each. We find the real root of the first equation is

κ ϑ1, whereas that of the second one is κ ϑ2, where ϑ1 and ϑ2 are given in (2.8).

(a) For ρ ∈ [θ0,ϑ1] (note: t = − 3
√

2z ≤ −1), we recall the asymptotic formulas (see Abramowitz &
Stegun, 1964, (10.4.60))

Ai(t) ∼ 1
4
√−π 2t

(
sin ξ − 5

72η
cos ξ

)
, Ai′(t) ∼ − 4

√
− t

π 2

(
cos ξ − 7

72η
sin ξ

)
,

Bi(t) ∼ 1
4
√−π 2t

(
cos ξ + 5

72η
sin ξ

)
, Bi′(t) ∼ 4

√
− t

π 2

(
sin ξ + 7

72η
cos ξ

)
, (B.11)

where

ξ = η + π

4
, η = 2

3
(−t)3/2 = 2

3

( 3
√

2z
)3/2

.

Thus, a direct calculation leads to

Ai(t)Ai′(t)+ Bi(t)Bi′(t) ∼ 1

6πη
= 1

4π
(−t)−3/2,

Ai2(t)+ Bi2(t) ∼ 1

π
√−t

(
1 +

(
5

72η

)2
)

= 1

π
√−t

+ O((−t)−7/2). (B.12)

Inserting them into (B.9), we obtain

TR(t) ∼ − 1

4t
= 1

4 3
√

2

3
√
ν

κ − ν
, TI(t) ∼ π

√−t

1 + O((−t)−3)
∼ 21/6π

(
κ − ν

ν1/3

)1/2

. (B.13)

We derive from (B.8) that

Re(Tl,κ) ∼ − 1

2κ
− 1

4(κ − ν)
, Im(Tl,κ) ∼ ν

κ

√
2
(κ
ν

− 1
)

. (B.14)

This yields (2.15).

(b) For ρ ∈ (ϑ1,ϑ2) (note: |t| = 3
√

2|z| < 1), we approximate TR(t) and TI(t) in (B.9) by their Taylor
expansions at t = 0, which requires to evaluate Ai(m)(0) and Bi(m)(0) for m ≥ 1. Recall that the Airy
functions satisfy the Airy equation: w′′(t)− tw(t) = 0, t ∈ R, and some special values are

Ai(0) = 1

3
2
3Γ ( 2

3 )
, Ai′(0) = − 1

3
1
3Γ ( 1

3 )
, Bi(0) = 1

3
1
6Γ ( 2

3 )
, Bi′(0) = 3

1
6

Γ ( 1
3 )

. (B.15)

With these and some tedious calculation, we can obtain

TR(t) = TR(0)+ T ′
R(0)t + T ′′

R(0)

2
t2 + O(t3), TI(t) = TI(0)+ T ′

I (0)t + T ′′
I (0)

2
t2 + O(t3),
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with

c1 = TR(0) = 3
1
3

2

Γ ( 2
3 )

Γ ( 1
3 )

≈ 0.3645, T ′
R(0) = 2c2

1, T ′′
R(0) = 1 − 16c3

1,

TI(0) = 3
4
3

4

(
Γ

(
2

3

))2

= √
3πc1, T ′

I (0) = −2
√

3πc2
1, T ′′

I (0) = 0.

Noting that t = − 3
√

2(κ − ν)/ 3
√
ν, Thus, we derive from (B.8)–(B.9) that

Re(Tl,κ) ∼ − 3

√
2

ν

(
c1 + 2c2

1t + 1

2

(
1 − 16c3

1

)
t2

)
− 1

2κ
, (B.16)

Im(Tl,κ) ∼ 2
1
3
√

3c1
ν2/3

κ

(
1 − 2c1t

)
, where t = − 3

√
2
κ − ν

3
√
ν

. (B.17)

Hence, we obtain the desired estimates for this case.

Case (iv) ρ = ν/κ ∈ [ϑ2, ∞). Set sech α = ρ−1, i.e., cosh α = ρ with α > 0. One verifies

sinh α =
√
ρ2 − 1, tanh α =

√
ρ2 − 1

ρ
, Ψ = α − tanh α > 0. (B.18)

Recall the asymptotic formulas (Abramowitz & Stegun, 1964, (9.3.7–9.3.8)):

Jν(ν sech α) ∼ e−νΨ
√

2πν tanh α

{
1 + O(ν−1)

}
; Yν(ν sech α) ∼ − eνΨ√

π/2 ν tanh α

{
1 + O(ν−1)

}
. (B.19)

Note that by (B.18),

Ψ (ρ) = arccosh ρ −
√

1 − ρ−2 = ln(ρ +
√
ρ2 − 1)−

√
ρ2 − 1

ρ
ρ > 1, (B.20)

which is monotonically increasing with respect to ρ. By (2.10), we have

Ψ (ϑ2) ∼ ln(1 + τ +
√

2τ + τ 2)−
√

2τ + τ 2

1 + τ
∼ τ +

√
2τ + τ 2 −

√
2τ + τ 2

1 + τ

= τ + τ

√
2τ + τ 2

1 + τ
∼ τ , where τ = 1

3
√

2 κ2/3
. (B.21)

Thus, we observe from (B.19) that in the range of interest, Jν , J ′
ν decay exponentially, whereas Yν , Y ′

ν

grow exponentially. By (2.3) and (B.19),

Im(Tl,κ) = 2

πκ

1

J2
ν (κ)+ Y 2

ν (κ)
∼ 4ν

κ
tanh α

e−2νΨ

4 + e−4νΨ
∼
√
ρ2 − 1 e−2νΨ , (B.22)
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which leads to the estimate of the imaginary part in (2.18). As Im(Tl,κ) decays exponentially with respect
to l. We derive from (2.4) that

Re(Tl,κ) = l

κ
− Yν+1(κ)

Yν(κ)
− Im(Tl,κ)

Jν(κ)

Yν(κ)
∼ l

κ
− Yν+1(κ)

Yν(κ)
. (B.23)

To obtain better estimate, we resort to the asymptotic approximation of the ratio (cf. Kiefer & Weiss,
1972):

Yν+1(κ)

Yν(κ)
= 1 + √

1 − ρ−2

ρ−1

{
1 − 1 − √

1 − ρ−2

2(1 − ρ−2)

1

ν
+ O

(
1

ν2

)}
, (B.24)

which is valid for ν > κ and κ ∼ ν. In fact, as shown in Kiefer & Weiss (1972), it is derived from
the formula (B.19) with more terms. Inserting (B.24) into (B.23) leads to the estimate of the real part in
(2.18).

Appendix C. Proof of Theorem 3.6

Case (i) ρ = ν/κ ∈ (0, θ0). By (3.43) and (2.14),

Re(Sl,κ) ∼ ρ2

2κ

1 − ρ2

(1 − ρ2)3 + κ−2ρ4
∼ ρ2

2κ

1

(1 − ρ2)2
, Im(Sl,κ) ∼ (1 − ρ2)2

√
1 − ρ2

(1 − ρ2)3 + 4κ−2ρ4
∼ 1√

1 − ρ2
.

This leads to (3.46).

Case (ii) ρ = ν/κ ∈ [θ0,ϑ1]. By (3.43) and (2.15),

Re(Sl,κ) ∼ 1

2κ

(
1 + 1

2(1 − ρ)

)(
1

4κ2

(
1 + 1

2(1 − ρ)

)2

+ 2ρ(1 − ρ)

)−1

∼ 1

4ρ(1 − ρ)κ

(
1 + 1

2(1 − ρ)

)

and

Im(Sl,κ) ∼
√

2ρ(1 − ρ)
1

4κ2 (1 + 1
2(1−ρ) )

2 + 2ρ(1 − ρ)
∼ 1√

2ρ(1 − ρ)
,

so (3.47) follows.
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Case (iii) ρ = ν/κ ∈ (ϑ1,ϑ2). By (3.43) and (2.16),

Re(Sl,κ) ∼
3
√

2/ν
(
c1 + 2c2

1t + 1
2

(
1 − 16c3

1

)
t2
) − 1/(2κ)(

3
√

2/ν
(
c1 + 2c2

1t + 1
2

(
1 − 16c3

1

)
t2
) − 1/(2κ)

)2 + (
3
√

2/ν
√

3c1ρ(1 − 2c1t)
)2

∼ 1

c1

(ν
2

)1/3 1 + 2c1t + c2t2

(1 + 2c1t + c2t2)2 + 3ρ2(1 − 2c1t)2
∼ 1

c1

(ν
2

)1/3 1 + 2c1t + c2t2

(1 + 2c1t + c2t2)2 + 3(1 − 2c1t)2

= 1

4c1

(ν
2

)1/3 1 + 2c1t + c2t2

1 − 2c1t + (4c2
1 + c2/2)t2 + c1c2t3 + c2

2t4/4
,

where c2 = (1 − 16c3
1)/(2c1) ≈ 0.3088. In the above, we dropped the term −1/(2κ), and used ρ ≈ 1.

Similarly, we can derive

Im(Sl,κ) ∼
√

3

4c1

(ν
2

)1/3 1 − 2c1t

1 − 2c1t + (4c2
1 + c2/2)t2 + c1c2t3 + c2

2t4/4
.

Thus, we obtain (3.48).

Case (iv) ρ = ν/κ ∈ [ϑ2, ∞). Noticing from (2.18) that Im(Tl,κ) is exponentially small in this range,
we obtain from (3.43) and (2.18) that

Re(Sl,κ) ∼
(√

ρ2 − 1 − 1

2κ

(
1 + 1

ρ2 − 1

))−1

= 1√
ρ2 − 1

(
1 − 1

2κ
√
ρ2 − 1

(
1 + 1

ρ2 − 1

))−1

∼ 1√
ρ2 − 1

(
1 + 1

2κ
√
ρ2 − 1

(
1 + 1

ρ2 − 1

))
and Im(Sl,κ)

∼ e−2νΨ√
ρ2 − 1

(
1 − 1

2κ
√
ρ2 − 1

(
1 + 1

ρ2 − 1

))−2

∼ e−2νΨ√
ρ2 − 1

(
1 + 1

κ
√
ρ2 − 1

(
1 + 1

ρ2 − 1

))
,

where we used (1 − y)−1 ∼ 1 + y, (1 − y)−2 ∼ 1 + 2y for y ∼ 0. This ends the proof.
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