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Abstract. We construct and analyze first- and second-order implicit-explicit schemes based on
the scalar auxiliary variable approach for the magneto-hydrodynamic equations. These schemes are
linear, only require solving a sequence of linear differential equations with constant coefficients at
each time step, and are unconditionally energy stable. We derive rigorous error estimates for the
velocity, pressure, and magnetic field of the first-order scheme in the two-dimensional case without
any condition on the time step. Numerical examples are presented to validate the proposed schemes.
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1. Introduction. We consider in this paper numerical approximation of the
following magneto-hydrodynamic (MHD) equations [18]:

(1.1a) aa—?+(u~V)u—yAu+Vp—a(V><b)><b:0 in Q xJ,
(1.1b) g—?anVx(be)Jer(bxu):O in Q x J,
(1.1c) V-u=0,V-b=0 inQxJ,

with boundary and initial conditions
u=0, b-n=0, nx(Vxb)=0 ondQxJ,
u(x,0) = u’(x), b(x,0)=b"%V) inQ,

where Q is an open bounded domain in R? (d = 2,3) with a sufficiently smooth
boundary 99, n is the unit outward normal of the domain Q, J = (0,77, and (u, p, b)
represent, respectively, the unknown velocity, pressure, and magnetic field. The pa-
rameters v and 7 are kinematic viscosity and magnetic diffusivity, respectively, and
a = 1/(4rpp) with p as the magnetic permeability and p as the fluid density.

The MHD system is used to describe the interaction between a viscous, incom-
pressible, electrically conducting fluid and an external magnetic field. When a con-
ducting fluid is placed in an existing magnetic field, the fluid motion produces electric
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currents which in turn create forces on the fluid and change the magnetic field itself.
It has been widely used in many science and engineering applications, such as liquid
metal cooling for nuclear reactors, sustained plasma confinement for controlled ther-
monuclear fusion, etc. [8, 6. The mathematical theory of MHD equations can be
found in [18].

Numerical approximation of the MHD equations is challenging, as it involves
delicate nonlinear coupling between the velocity and magnetic field in addition to the
difficulties associated with the Navier—Stokes equations and Maxwell equations. There
exists a large literature devoted to constructing compatible spatial discretization for
the MHD equations; see [28, 2, 17, 7, 4] and related references. In this paper, we are
only concerned with time discretization, which can be coupled with any well developed
compatible spatial discretization.

The MHD equations (1.1) are energy dissipative. More precisely, taking the inner
products of (1.1a) and (1.1b) with u and ab, respectively, summing up the results, we
find that the nonlinear terms do not contribute to the energy and that the following
energy dissipation law holds:

(12) S B(ub) = |Vl |V x bl with Eub)= L u?+ 3[b|>
It is thus desirable to construct numerical schemes which satisfy a discrete energy
dissipation law.

Most existing work use fully implicit or semi-implicit treatments for the nonlinear
terms so that the effects of nonlinear coupling can cancel each other and a discrete
energy dissipation law can be derived. However, one needs to solve a nonlinear sys-
tem or a coupled linear system with time dependent coefficients at each time step.
For examples, Armero and Simo developed in [1] energy dissipative schemes for an
abstract evolution equation with applications to the incompressible MHD equations;
Tone [25] considered an implicit Euler scheme for the two-dimensional MHD equations
and established a uniform H? stability; Layton, Tran, and Trenchea constructed in
[12] two partitioned methods for uncoupling evolutionary MHD flows; Hiptmair et al.
[11] developed a fully divergence-free finite element method for MHD equations with
a semi-implicit treatment of the nonlinear terms; Zhang, Yang, and Bi [30] proposed
a second-order linear backward difference formula scheme with an extrapolated treat-
ment for the nonlinear terms and proved its unconditionally stability and convergence
(cf. also [29]); and most recently, Li, Wang, and Xu [13] proposed a fully discrete
linearized H' conforming Lagrange finite element method and derived the conver-
gence based on the regularity of the initial conditions and source terms without extra
assumptions on the regularity of the solution. To alleviate the cost of solving fully
coupled systems at each time step, Badia et al. [3] developed an operator splitting
algorithm by a stabilized finite element formulation based on projections; Choi and
Shen [5] constructed several efficient splitting schemes based on the standard and ro-
tational pressure-correction schemes with a semi-implicit treatment of the nonlinear
terms for the MHD equations.

From a computational point of view, it is desirable for a numerical scheme to treat
the nonlinear term explicitly while still being energy dissipative so that one only needs
to solve simple linear equations with constant coefficients at each time step. However,
with a direct explicit treatment of the nonlinear terms, their energy contribution no
longer vanishes, so it becomes very difficult to derive a uniform bound for the numer-
ical solution. Liu and Pego [16] constructed a first-order scheme with fully explicit
treatment of the nonlinear terms and showed that its numerical solution is bounded
with the time step sufficiently small, but their scheme is not shown to be energy dis-
sipative. The recently proposed scalar auxiliary variable (SAV) approach [21, 20, 22]
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provides a general approach to construct linear, decoupled unconditionally energy
stable schemes for gradient flows. The approach has been extended to Navier—Stokes
equations in [15]. However, the scheme in [15] requires solving a nonlinear algebraic
equation whose well posedness is not guaranteed. We introduced in [14] a different
SAV approach which leads to purely linear and unconditionally stable schemes for the
Navier—Stokes equations, and we proved corresponding error estimates.

The aim of this work is to extend the approach proposed in [14] to the MHD
equations which are much more complicated with nonlinear couplings between the
velocity and magnetic fields. Our main contributions are twofold:

e We construct first- and second-order implicit-explicit (IMEX) SAV schemes
for the MHD equations and show that they are unconditionally energy stable.
These schemes only require solving a sequence of differential equations with
constant coefficients at each time step, so they are very efficient and easy to
implement.
e We establish rigorous error estimates for the first-order scheme in the two-
dimensional case without any condition on the time step.
Compared to the Navier—Stokes equations or Maxwell’s equations, the error analysis
for the MHD equations is much more involved due to the nonlinear coupling terms.
Our error analysis uses essentially the unconditional and uniform bounds of the nu-
merical solution that we derive for our SAV schemes. To the best of our knowledge,
this is the first rigorous error analysis for any scheme with fully explicit treatment of
nonlinear terms for the MHD equations.

To simplify the presentation, we mainly concentrate on the time discretization
where lies the main novelty of the paper. One can of course couple the time discretiza-
tion schemes constructed in this paper with any compatible spatial discretization to
obtain a fully discrete scheme and obtain corresponding stability results following es-
sentially the same procedure as presented in this paper. Such an example is provided
in section 4.

The paper is organized as follows. In section 2, we construct our IMEX SAV
schemes and prove their stability. In section 3, we carry out a rigorous error analysis
for the first-order IMEX SAV scheme in the two-dimensional case. We present some
numerical experiments to validate our schemes in section 4 and conclude with a few
remarks in section 5.

2. The SAV schemes and their energy stability. In this section, we con-
struct first- and second-order IMEX schemes based on the SAV approach for the
MHD equations and show that they are unconditionally energy stable. We introduce
an (SAV),

(2.1) alt) = eexp (—;)

where € > 0 is a parameter, and expand the system (1.1) as follows:

ou q(t) —
(2.2) E—uAu—i—Vp—i—@(qu—a(be)><b)—0,
db q(t) B
(2.3) E+an(be)+mVx(bxu)_O,
(2.4) V-u=0, V-b=0,
dq 1 1
a = _TC]‘F @((U-Vu,u)
(2.5) —a((Vxb)xb,u)+a(Vx(bxu),b)).
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Since the sum of the nonlinear terms in (2.5) is zero, (2.5) is equivalent to the time
derivative of (2.1). Hence, with ¢(0) = ¢, the exact solution of (2.5) is given by (2.1),
so (2.2)—(2.4) is exactly the same as (1.1). Therefore, the above system is equivalent
to the original system. Note that we have, in addition to the original energy law (1.2),
an additional energy law:

1d 2 2 2\ 2 2 1
(26) 55l +albl +1a) = vVl — an| ¥ < b|* -

lql.

Since |q|? < €2, the modified energy is an O(e?) approximation of the original energy
(1.2). Note that, unlike in the original SAV approach, where the SAV r(¢) is related
to the nonlinear part of the free energy, here the SAV ¢(t) is purely artificial, but
it allows us to construct unconditionally energy stable schemes, with respect to the
modified energy in (2.6), with fully explicit treatment of the nonlinear terms.

2.1. The IMEX SAV schemes. We choose ¢ = At and set

gn+1 _an

At =T/N, t" = nAt, dyg" ™ = Az I forn < N.

Scheme I (first-order): Find (u"t!,p"t! ¢"t1 b"™!) by solving

qn+1
q tn+1)

(2.7)  du"tt —vAu"T 4 Vp Tt = (a(V xb") x b" —u" - Vu"),

(
qn+1

n+1 n+1
(2.8)  dib"! 4V x (V x b + oSy

V x (b" x u™) =0,

(29) V.-u"tlt=0, V-.b"!=0,

(210) u”+1|59 =0, anrl : n\@Q = 0, n x (V X bn+1)|aQ = 0,
1 1

d n+1 - _ n+1
" T T g

(2.11) ((u” . Vun,unJrl) — a((v X b") % bn,un+1) + a(v % (bn « un),bn+1)),

The above scheme is linear but coupled. We describe below how to implement it

efficiently.
n+1
We denote S"t! = qut,l) and set
(2.12) bt = b + g by
(2.13) u"tt = uptt sttt
(214) pn+1 — p71L+1 + Sn+1p’g+1.

Plugging (2.12)(2.14) into the scheme (2.7)-(2.10), we find that u?** pr*! (i =
1,2) satisfy

n+1 _n

(2.15) % = vAut! - vpr

n+1
(2.16) “Zt Fu” - Vu" = vAult — Vpi 4 a(V x b") x b,
(2.17) Voultt =0, utlpg =0, i=1,2.
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Next we determine b]'™ (i = 1,2) from

bn+1 N
(2.18) A PV R (Vx b} =0,
n+1
(2.19) Zt + 7V x (Vxby™) 4V x (b x u") =0,

(2.20) \V-b'™ =0, b njgo =0, nx (Vxb ) |gg=0, i=1,2.
Once u"™, pr™t bt (i =1,2) are known, we derive from (2.11) that

<T+At

(2.21)

1 1 1
n+1y n+l _
o) )S At

q(tnt1h) {1y Al
where
A= (- Vutufth) —a (V0 b") x b ui ) 4 a (Vx (b" x u™), byt |

i = 1,2. Next, we show that Ay < 0 so that S™*! can be uniquely determined from
(2.21). Taklng the inner product of (2.16) with uj** leads to

||11 +1||2 n ..n+l n+1/12 n n _.n+l
2 (u" - Vut u ) = = Vas 2 4+ a((V x b)) x b, upth).

(2.22) N

Taking the inner product of (2.19) with abj™*, we have

n+1 2
2.23) P2 - 1= 4 v x B2 4+ a(V x (b x u™), b3+ = 0.
Therefore,
(2.24)
Ay =(u" - Vu™, @5™) —a ((Vx b") x b", us™) + a (V x (b™ x u™),by ™)
a2 n o512 n
- Tt_V”vqu”z_ Tt_o‘””VszH”2 <0.

Finally, we can obtain u™*', p»*1 and b"** from (2.12)-(2.14). Hence, the scheme
is uniquely solvable.

In summary, at each time step, we only need to solve two generalized Stokes
equations in (2.15)—(2.17) and two elliptic equations (2.18)—(2.20) with constant co-
efficients plus a linear algebraic equation (2.21). Hence, the scheme is very efficient.

Scheme II (second-order): Find (u™t!,p"t!, ¢t b" ™) by solving

Bt —dut T e \

2At
n+1 T n T n
(225) = ﬁ(a(v X b +1) x b o att. Vﬁn+1),
3bn+1 _ 4bn + bTL—l il
SA7 +1nV x (Vxb")
n+1
4q prtl o ontly
(226) +WV X (b X u ) = 0,
(2.27) V-u'tl =0, V-b"t =0,
(2.28) u"toe =0, " njgg =0, nx (Vxb")se =0,
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3" AT L 1
2A¢ T a0
a((V x (" x amt1), b 1) — a((V x b" 1) x b"H! urtl)
(2.29) +@ - vartt unth]

where v = 2v™® — v~ for any function v. For n = 0, we can compute (u', p!, ¢,
b') by the first-order scheme described above.

The second-order scheme (2.25)—(2.29) can be shown to admit an unique solution
and can be implemented the same way as the first-order scheme (2.7)—(2.11).

2.2. Energy stability. We show below that the first- and second-order SAV
schemes (2.7)—(2.11) and (2.25)—(2.29) are unconditionally energy stable. We shall
use || - || and (-, -) to denote the norm and inner product in L?(2) and (-,-) to denote
the inner product in L%(99).

THEOREM 2.1. The scheme (2.7)—(2.11) is uniquely solvable and is uncondition-
ally stable in the sense that
(2.30)

1
Entl — B" < —vAH| VU — naAt|V x b2 - TAt\q"HF VAL, n >0,
where
B = SR SR 4 Sl
2 2 2
Proof. The unique solvability is already established in the previous subsection, so

we only need to prove (2.30).
Taking the inner product of (2.7) with Atu™*! and using the identity

(2.31) (a—b,a) = 5ol ~ b +]a ~ bP),

we have

ya ||un+1||22f Ju + ”unH; | + v At Va2 + Ag(Vpr T ut )
. = Atq?;:l) ((V xb™) x b", u"*!) —u" . Vu",u"*)).

Taking the inner product of (2.8) with aAtb™*!, we find

GPTHE b b — b

5 5 + naAt||V x b" T2

(2.33) g . R
+aAtq(t"+1) (Vx (" xu™),b"™) =0.
Multiplying (2.11) by ¢"*t!At leads to
L e VA +1 2 1
M . .n At n+1,2
5 +35la ¢"|" + 7 Atlg"
n+1

@34 Aty (0 Fu, w ) —a((V b7 < b

+a(V x (b" x u™),b"*h)).
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Then summing up (2.32) with (2.33)—(2.34) results in
[ 12— Ju[* + al[b" 2 — alb" | + |¢"** —|g" [
+ ‘qn+1 _ qn|2 + Hun+1 _ un||2 + an-‘rl _ bn||2

) 2
< —20At|[Vu % — 2naAt|V x b2 - TAt‘qn—HlQ’

which implies the desired result. ]

We observe that the discrete energy dissipation law (2.30) is an approximation of
the continuous energy dissipation law (2.6) with the modified energy being a second-
order approximation of the original energy.

THEOREM 2.2. The scheme (2.25)—(2.29) is uniquely solvable and unconditionally
stable in the sense that
(2.35)

1
E" _EM < At (V||Vu"+1||2 + 0|V x "% + T|q"+1|2> VAt, n >0,
where
n 1 n Ty mn
B =2 ([ + ol + )

1
+ Z(||2un+1 o un||2 +a”2bn+1 o bn||2 + |2qn+1 o qn|2).

(2.36)

Proof. The unique solvability can be established exactly as for the first-order
scheme. Next, we prove the energy stability.
Taking the inner product of (2.25) with 4Atu™*! and using the identity

(2.37) 2(3a — 4b + ¢,a) = |a|® 4+ |2a — b|* — |b]* — [2b — ¢|* + |a — 2b + ¢|?,

we have
(2.38)
a2 + 20" — [ — [u”? = 20" — 0" TP 4 [u" = 2u” 4 u P

+ AvAt| Va2 4+ 4A(Vpn T u )

n+1 . .
= 4At (qthrl) (a((v «b +1) «b +1’un+1) _ (l—ln+1 X Vﬁ7l+1,un+1)) )
q

Taking the inner product of (2.26) with 4aAtb™ ! leads to

(2.39)

a(|[b™FH? + [[2b™ T — b2 — |b™||2 — ||2b™ — b 4 b — 2b™ + b H||?)
AnaAt|V x b2 4+ 4aAt ¢! vV x (6" x ant), bt = 0

+ 4naAt||V x |* + 4o () x ( xu" ), =0.

Multiplying (2.29) by 4Atq"™ ! leads to
(2.40)
"+ 1207 = P = 1P 120 — TP+ T = 20+ P

4/t n+1
== T\QNHP + 4At%((ﬁn+l -V)urtt, un+1)
n+1 _ B ~
— 404At% (((V X bn+1) X bn+1’uﬂ+1) o (v « (bn+1 « ﬁn+1),b"+1)> )

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 05/20/22 to 128.210.107.25 . Redistribution subject to SIAM license or copyright; see https.//epubs.siam.org/terms-privacy

IMEX SAV SCHEMES FOR THE MHD EQUATIONS 1033

Then summing up (2.38) with (2.39)—(2.40) results in

[l P2 20— u”? + a2 + af2b™ T b7

+ |qn+1|2 + |2qn+1 _ qn|2 + ||un+1 —ou" +un71H2 —|—O¢an+l —9p™ _|_bn—1||2
4A¢L
g = 2" "+ SR A TP 4 40 AtV x b2
<[u™? + 20" — a2 4 o b"[P + afl2b” — b 4 g P + 29" — ¢,

which implies the desired result. ]

Note that the discrete energy defined in (2.36) is a second-order approximation
of the continuous energy defined in (2.6), and (2.35) is an approximation of the con-
tinuous energy dissipation law (2.6).

2.3. A fully discrete scheme and its energy stability. The IMEX SAV
schemes can be easily coupled with any compatible spatial discretization. For ex-
ample, let X, C Hy(Q), M, C L(Q), and W), € HL(Q) be a set of compatible
approximation spaces for the velocity, pressure, and magnetic field; a fully discrete
first-order IMEX SAV scheme is as follows: (uZ“,pZ“, bZ'H) in (Xp, Mp, W},) and
qZ“ € R such that

n+1

(deay ™, va) +v(Vup T vy) — (L V vs) = O‘q(qfnu) ((V x'b) x by, va)
n+1
(2.41) qutf;m)(u;; VUl v) Vv, € X,
(2.42) (V-upth &) =0 V&, € My,
(debi ™ w) +n(V x bV x wy) + (V- btV wy,)
n+1
(2.43) +qE]tf;,+1) (V x (b x ul),wp) =0 Ywy, € Wy,
1 1
A" =~
((uf - Vai, up™) — a((V x by) x by, uptt)
(2.44) +a(V x (b} x up),bpth).

A second-order fully discrete IMEX SAV scheme can be constructed similarly.

Following the same procedure as in the proof of Theorem 2.1, namely, setting

vy = uZ“, & = pZ“, Wy = abZ“ in (2.41)—(2.43), respectively, and taking the

inner product of (2.44) with qZH, we can obtain the following stability result.

THEOREM 2.3. The scheme (2.41)—(2.44) is unconditionally stable in the sense
that

1
B B < Va2 — a7 B2 4 9B — A
for all A't, n >0, where
1 « 1
B = 2 SR Sl

3. Error analysis. In this section, we carry out a rigorous error analysis for
Scheme I (2.7)—(2.11) in the two-dimensional case. Due to some technical difficulties,
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we shall only consider € = 1, although numerical results presented in the next section
show that essentially the same numerical results are obtained with e = 1 and ¢ = At.
For the sake of clarity and simplicity, we only consider Scheme I, although a similar
analysis can be carried out for Scheme II, but the process is much more tedious. We
emphasize that while both schemes can be used in the three-dimensional case, the
error analysis cannot be easily extended to the three-dimensional case due to some
technical issues.

3.1. Preliminaries. We describe below some notations and results which will
be frequently used in the analysis. We use C, with or without subscript, to denote a
positive constant, which could have different values at different places.

We use the standard notations L?(€2), H*(Q), and HE(Q) to denote the usual
Sobolev spaces. The norm corresponding to H*(2) will be denoted simply by || - ||
The vector functions and vector spaces will be indicated by boldface type.

We define

1@ = {pe 2@ [ aao=of.

H"(Q) = (H*(9))¢, Hy(Q) = {v e H'(Q): v]pe =0},
H.(Q) = {ve H(Q): v-n|ysg = 0},

V={veH;):V-v=0}
H={ve(Ll}(N)?*:V-v=0, v-n|pq = 0}.

The following formulae are essential and useful for our analysis:

(3.1) (VXV)xv= (v-V)v—%V|v|2,
(3.2) vx(wxz)=(v-z)w— (v W)z,
(3.3) Vx(vxw)=(w-V)v— (v - V)w+(V-w)v— (V-v)w,
(34) (vxw)xz-q=(vxw) (zxq)=—(vxw) (qxz),

(3.5) /(VXV)-de:/V~(V><W)dX+/ (n x v) - wds.
Q Q 2Q
Define the Stokes operator
Au=—PAu Yuc D(A)=H*(Q)NV,

where P is the orthogonal projector in L?(€2) onto H and the Stokes operator A is
an unbounded positive self-adjoint closed operator in H with domain D(A). We then
derive from the above and the Poincaré inequality that [24, 10]

(36) IV <ellAdvl, [AV] < allAv] Vve D(4) = HAQ) NV
and
(3.7) vl < il Vvl V v e Hy(Q), [[Vv] <eillAv]| Vv e D(A).
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We recall the following inequalities that will be used in what follows [7, 27]:

(3.8) IV x vlio < eal|Vvllo, V- vlo < er|[Vvllo V v e H (),
(3.9) IV % V]2 + IV - V|3 > erl|[v]? ¥ v € HL(S),

and the following well-known inequalities which are valid with d = 2 [16]:
(3.10) IVlizs < erlvligIvl? v v e HY(9),

(3.11) Ve~ < ellvii?[vIs ¥ v e H2(9),

where ¢ is a positive constant depending only on §2.
Next we define the trilinear form b(-,-,-) by

b(u,v,w) = /ﬂ(u -V)v - wdx.

We can easily obtain that the trilinear form b(-, -, -) is a skew-symmetric with respect
to its last two arguments, i.e.,

(3.12) b(u,v,w) = —b(u,w,v) YuecH, v,weH (Q),
and
(3.13) b(u,v,v) =0 YucH, veH' (Q).

By using a combination of integration by parts, Holder’s inequality, and Sobolev
inequalities [23, 19, 9], we have that for d < 4,

collufla[[ v [lwls,
col|ulla[[v[{wll,
(3.14) b(u,v,w) < ¢ cafull2||vi[s]wl],
collully[[v]l2]wl],
collullfivilzflwilx

and that for d = 2, we have
1/2 1/2
eallully? a2 v 2 v 2w,
(3.15) b(w, v, w) < ¢ eoflully?[lul /2| Av] 2 V]2 w],

caf| Aul['2[[u|V2 v 1 [lwl,

where co is a positive constant depending only on €.
We will frequently use the following discrete version of the Gronwall lemma.

LEMMA 3.1. Let ag, by, ¢, di, Vi, Atk be nonnegative real numbers such that
(3.16)  apy1 — ag + bpy1Atpyr + crp1Atpr1 — Aty < apdp Aty + Yer1 Atk
for all0 <k <m. Then

m+41 m m+1
(3.17)  @ms1 + Z b Aty < exp (Z dkAtk> {ao + (bo + co) Aty + Z 'ykAtk} .

k=0 k=0 k=1
Finally, we may drop the dependence on « if no confusion can arise. In particular,
we set

{ 6g+1 —prtl b(tn+1)7 eﬁJrl — gt _ u(tn+1),

e;L+1 _ pn+1 —p(tn+l), €Z+1 — qn+1 _ q(tn—i-l).
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3.2. Error estimates for the velocity and magnetic field. In this sub-
section, we derive the following error estimates for the velocity u and magnetic
field b.

THEOREM 3.2. Let d = 2. Assuming
we H2(0,T; H () (| H'(0,T; B () (| L= (0,T; H*(Q))

and b € H?*0,T; H *(Q) N HY(0,T; H*(Q)) N L>(0,T; H*(Y)), for the scheme
(2.7)~(2.11), we have

m
lew M I + leg 1P + e 1P +vae Y |[Ver ™|
n=0

m m m
ALY Vet P+ ALY lept Y flentt —enl
n=0 n=0

n=0

) et —ep P+ lentt —epP < C(AH? VO<n< N-1,
n=0 n=0

where C' is a positive constant independent of At.

The proof of the above theorem will be carried out with a sequence of lemmas
below.

We start first with the following uniform bounds which are a direct consequence
of the energy stability in Theorem 2.1.

LEMMA 3.3. Let (u"*', p"t1, ¢"t1 ") be the solution of (2.7)-(2.11); then
we have

(3.18) ™ 2+ [ 4+ g P <k VO<m <N -1

and

(3.19) ALY T uHE+ AL (BT < ke VO<m <N -1,
n=0 n=0

where the constants k; (i = 1,2) are independent of At.
Next, we derive a first bound for the velocity errors.

LEMMA 3.4. Under the assumptions of Theorem 3.2, we have

(3.20)
lew™ 1 —llewll® |, llew™ = eul® YIGenti2
2At 2At 2

tn+1
<exp ( T ) e;“Ll (a((V x b") x b",eﬁ“) — (u"™- Vu",eﬁ“))

+ C(llu(t™)[13 + a3 + Nl el
+C(lleg I + 1613 lep 11

tn+1

+Ct [ (fwlf + .y + B VO <0< N1,
tTL

where C' is a positive constant independent of At.
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Proof. Let R be the truncation error defined by

Au(t"tt) u("t) —u(t") 1 0%u
3.21 ntl _ = n ) —
(3.21) R o = N /t (t" — t) = dt.

Subtracting (2.2) at t"*! from (2.7), we obtain

(3.22)
dee™ — vAen T 4 VeZ‘H = Rﬁ“

tn+1
+exp< T )(q(t”“)u(t"“)'Vu(t”H) ¢"tu™ - vu")

t’n+1
+ aexp ( T > (¢"TH(V x b") x b" — q(t"TH)(V x b(t"T1)) x b(t"T1)).
Taking the inner product of (3.22) with e?*! we obtain
(3.23)
lea ™ 1 = llegl® | leqt' — el n+1)2 n+l _n+l ntl n+1
el B S Vet 4 (Ve et = (R ent)
t’n+1
+exp ( 7 > (g™ Hu" ) - Va" ) — ¢"lu" - vu”, el tt)
thrl
+ aexp < 7 ) (¢"TH(V x b") x b" — q(t"t1)(V x b(t"T1)) x b(t" 1), elt!) .

For the first term on the right-hand side of (3.23), we have

tn+1

(3.24) (R, i) < 22 [V 4+ Cat / uaeel |2y dt.

For the second term on the right-hand side of (3.23), we have
(3.25)
t”+1
exp ( 7 ) (q(t7z+1)u(tn+1) . Vu(tn—i-l) q7z+1 n vun n+1)

= ((u(™*) —u™) - Vu("t),eptt) + (u" - V(") — u"),eptt)

—ex E n+1 v n+1
p T 6‘1 ( u” )

Using the Cauchy—Schwarz inequality, Lemma 3.3, and (3.14), the first term on the
right-hand side of (3.25) can be bounded by

((u(tn—i-l) _ un) . Vu(t”"'l)7 €ﬁ+1)

(3.26) < eo(1 4 cp)[[u™™) —a"||la(@ ) |2 Ver™ |

gntl

v n n n n
< 761Vea™ 1P + Cllu@lEles]” + Cllu +1)II%At/ e [ dt.

tn

Using (3.14) and (3.15), the second term on the right-hand side of (3.25) can be
estimated as follows:
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(3.27)
(un X V(u(tn—H) _ un>7 eﬁ'H)
= (u" - V(ut™) —u(t"),eq™) — (e Veg,eq™) — (u(t") - Vey, e ™)
n41

t
<es(1+ )| Ve I (fJu ] / widt]lz + [leglflu(E)ll2)
t’VL

1/2 1/2
+ea(L+c)llen] V2 lenlly 2 enl 2 len 1 ? [ Verty |
¢t

v n n n n
<7alVertI? + Clla(™)IE + el + CAt/ e |3dt.

tn

For the last term on the right-hand side of (3.23), we have

thrl
exp < T ) (q’”l(v x b") x b" — q(t"+1)(v X b(t"+1)) X b(t"+1),eﬁ+1)

(3.28) = exp <tn;) et ((V xb") x b eqtt)
+ ((V x (b" = b(t" 1)) x b", eg*!)
+ ((V x b)) x (b™ — b(t"+1)), ent1) .

The second term on the right-hand side of (3.28) can be transformed into

((Vx (b" =b(t"*))) x b", eg™)
(3.29) =((V xep) xep,ent™) + ((V x ef) x b(t"),epth)
+ ((V x (b(t") = b(t"1))) x b™, ent1).

Using the identity (3.1), the first term on the right-hand side of (3.29) can be bounded
by

1
(7 % ) x e, ei™) = (e - Dep,ent?) = 5 (VIepl en™)

n ni /2 n nil/2 n
(3.30) < ClleplIM?lep Il lep Y2 leplly | went?|

v
< 76IVea™ I + Clleg i les]*.

Using (3.2), (3.4), and integration by parts (3.5), the second term on the right-hand
side of (3.29) can be controlled by

(3.31)
(V xep) x b(t"),ept) = — (el x b(t"),V x e}.)

=— (V x (e xb(t")),ep) — (n x (el x b(t")), ep)
= ((ex™ - V)b(t"), ep) — ((b(t") - V)en ™, efy)

v
SEIIVSQHII2 +Cb(t™) 13l ]I,
where we use the identity

Vx(vxw)=(w-V)v—(v-V)wVYv,weH.
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Using Lemma 3.3 and (3.14), the last term on the right-hand side of (3.29) can be
estimated by

(7 (b(") = b(E"+1))) x b )
(3.32) e . ¢+l ,
< IVt bt Ear [ b

For the last term on the right-hand side of (3.28), we have
((Vx b)) x (b" = (")), e ™)
(3.33) n+1)2 n+1 2 o 2
< 16W6 I+ ClbE )3l +0Af/ [[be[|"dt.

Finally, combining (3.23) with (3.25)—(3.33) leads to the desired result. 0

We derive below a bound for the errors of the magnetic field.

LEMMA 3.5. Under the assumptions of Theorem 3.2, we have

ey ™12 = llep I llep™ — ep + Tent |2
2A¢ 20t 207
G n+1 mn n+1
< —exp - (Vx (b" xu"),ept™)
(3.34) + C(lu(t™ I3 + e D) lep ]I

tn+1
+C(llenll + B len]* + CAt/t e |3t

tn+1

+CAt/ (1be))® + ||bee||*)dt Y 0<n <N -1,
tTL

where C' is a positive constant independent of At.
Proof. Let Rg“ be the truncation error defined by

n+1 n+1y n gntt 2
(3.35) Ry — ab%t ) _btt )At b(t") _ Ait/ (”ft)%dt
Subtracting (2.3) at t"™! from (2.8) and using
(3.36) V x (Vxb") = —Ab" ™! 4 V(V.b" ),
we obtain

tn+1
7 ) q(thrl)v % (b(tn+1) % u(thrl))

dieptt — nAep ™ =exp (
(3.37)

tn+1 n+1 b" n Rn+1
—exp (5 )4q Vx (b"xu")+Ri.

Taking the inner product of (3.37) with ep*!, we obtain

len 1 = llepll® | llen* —epl® [Vert |2
2At 2At b
tn-‘rl
(3.38) =exp ( T ) q(tn-H) (v « (b(tn+1) ~ u(tn-i—l)),eg-i-l)
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The first two terms on the right-hand side of (3.38) can be recast as

n+1
exp ( T ) (q(t"“)v X (b(t"'H) X u(t"+1)) —¢""'V x (b" x u”),eﬁ“)

=(Vx [(b(t"T1) —b™) x u(t”“)],eﬁ“)
+ (V x [b" x (u(t"t1) — u”)],eﬁ“)

—ex tn+1 n+1 v bn n n+1
P )€ (Vx (b" xu"),ept).

(3.39)

By using (3.11), (3.8), and integration by parts (3.5), we have

(3.40)
(Vx[(b(™1) = b") x u(t™*1)], ep ™) = ((b(t"*!) = b") x u(t™+!),V x eft)

77 n n n n
<IVer™ P + Cllu@ e |* + Cllu +1)H§At/t [be||*dt.

Thanks to (3.10) and (3.8), we have

(Vx[b" x (u(t"™") —u™)], ep™)
= (" x (u(t™™) —u"),V x eﬁ*l)
= (ep x (u(t"t) —u(t"),V x ep ™) — (ef x e, V x epth)
+ (b(" ) x (u(t™*!) —u"), V x epth)
Tivept2 nN2 en |2 n1y (12172
<-llVe + Clle 4{|€y 1+ Clb(t e
) Dvei 2 + Clleplbaledlhe + ClbEDIEles]

tn+1 tn+1

L Cllep At / lwlZdt + C b+ At / g P
tW,

U
<5 IVe ™% + Clieglillep ] + Cllleqlit + IbE I3 g

gt gt

L ClepPat / lwilZdt + Cb(+) At / g P,
tn tn

For the last term on the right-hand side of (3.38), we have

tn+1

(3.42) Ry et < gnveg“n? - cm/ [y dt.

tn

Combining (3.38) with (3.39)—(3.42) leads to the desired result.
In the next lemma, we derive a bound for the errors with respect to g.

LEMMA 3.6. Under the assumptions of Theorem 3.2, we have

(3.43)
n+1‘2

|€q ;7,|2 |en+l _ eg,|2

—|€ "

2A¢t 2A¢t

tn+1 n+1 n n n+l
<exp 7)€ (u" - Vu',enth)

1 n
+ ﬁ‘eq+l|2

q
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tn+1
_ aexp( 7 ) n+1 ((V > bn) ~ bn,ez-‘rl)

t'nl+1 n T n n n n
Faep (T ) et (7 (07 ) ) Clu Rl
t’n,+1
CIeRI + I + [ IR +0ae [ an P
tn,

tn+1

+0At/ (w2 + 16]2)dt VY O<n<N-—1,
tn

where C' is a positive constant independent of At.

Proof. Subtracting (2.5) from (2.11) leads to

S
eq eq + len+1 — Rl
At T 1

n+1
+ exp (tT ) (un . vun7un+1) _ (u(tn+1) . Vu(tn—"_l),u(t""—l)))

(
n+1
(3.44) —aexp (t 7 ) (((Vxb") x b", u")
—((V x b(t"™)) x b(t" ™), u(t"™)))
+ aexp (tn;:l ((V x (b™ x u"),b" )

—(V x (b(t"™1) > u(t"*)), b(t" ")) ,

where

tn+1 2

(3.45) RZ+1:dQ(tn+1) q(t" ™) —q(t) _ 1 / @ — 0P

d At At ot2

Multiplying both sides of (3.44) by el yields

‘eg+1|2 _ |e’:17,|2 |€n+1 _ n|2
2At 2At
t’n+1
+ exp ( T > e"“(( -Vu" u”“) - (u(t"“) . Vu(t"“), u(t”“)))

1
f|€;l+1 |2 — RZIHle;Hrl

(3.46) — aexp < et (((V x b™) x b, um*)
—((Vxb t”“) x b(t"F1), (t"“)))
+aexp ( ) a " x u"),b" )
—(V x (b(t"™*1) x u( t”“)) (t”“))) :
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We bound the right-hand side of the above as follows:

tn+1

1
n+1l _n+1 n+1|2 2
(347) Rq eq S ﬁkq ‘ +CAt /tn ||qtt” dt.

The second term on the right-hand side of (3.46) can be estimated as

n+1
exp <t ) entl ((u” SVut, u" ) — (u(th) - va(e"th, u(t"*l)))

thrl n+1 n+1
=exp €q ( -Vu", )

n+1
+ exp < T > €Z+1 (un V(" — u(thrl))’ u(thrl))

n+1
+ exp <t;> e?“ ((un _ u(tn+1)) . Vu(tn+l),u(tn+1)) .

Thanks to (3.14) and Lemma 3.3, we bound the second term on the right-hand side
of (3.48) by

T
(3.49) < Clla® [l ut™ ) —u(t™) — egllo/lut™ ) [2leg ™|

exp (tnﬂ) et (u” - V(" — u(t"th), u )

tn+1

< Sl P+ ORIl + e Bas [ o

The third term on the right-hand side of (3.48) can be bounded by

n+1
em(ﬂi)ﬁ“«whﬂwmwwvwwHLMWH»

(3.50) < Cllu@™*h) —u™ [l ) 1 a2 eg |
1 e

< orle et 4 Cllen? +C’At/ (| ||?dt.

The second to last term on the right-hand side of (3.46) can be recast as
(3.51)
tn+1
—aexp ( T ) el (VxDb") x b™ u"th) — ((V x b(t" ™)) x b(t"*l),u(t"“)))

n+1
= aexp (tT ) 2V x (bt = b™)) x ", u(t"™™))

n+1
+ aexp( ) 2L (((V x (")) x (b(t"Fh) — b™),u(t" ™))

—aexp(

) (W xb™) x b, el ).
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Thanks to (3.14) and (3.15) and using the similar procedure in (3.31), the first term
on the right-hand side of (3.51) can be estimated by

(3.52)
n+1
aexp (tT ) n+1 ((v % ( (tn—i-l) _ bn) % bn,u(tn+1))

— —qexp (tn;> MLV x (u(t™) x b™), b(t") — b™)

thrl
=aexp < T ) eg‘+1 ((u(™ ) - V)b", b(t"*!) — b")

t’rLJrl
— aexp <T> e;l+1 ((b” . V)U(tn+1),b(tn+1) _ b")
tn+1

<arlen ™ B+ CIIRIRIE + Cllu = BB IPAL [ byl

For the second term on the right-hand side of (3.51), we have

n+1

aexp (U ) e (7 xb0m) ¢ (b7~ b7). e )

(3.53) 1 -
<o len ™ CIE R 2+ e e [ bl

Using (3.10) and (3.8) and integration by parts (3.5), the last term on the right-hand
side of (3.46) can be bounded by

(3.54)
tn+1 n+1 n n+1 n+1 n+1 n+1
aexp( T ) ((V x (b™ x u™),b") — (V x (b(t"™!) x u(t"*)),b(t")))

n+1
<avexp (T ) e (75 (0 = b)) x w),bien )

n+1
+ aexp ( T ) ntl (V x (b(t" ) x (u" — u(t"+1))),b(t7l+1))
+ aexp (tn;l) 2V x (b™ x u™),ep )

12T

tn+1

+Cllu™ 2l + Clleg]* + Cllb(t"“)l\iAt/ (eI + fJue*)t
tTI,

tn+1 n+1 n n+1 1 n+12
<aexp T (Vx (b" xu"),ep®™) + —ler ™|

Finally, combining (3.48)—(3.54) in (3.46) leads to the desired result. 0
Now we are in the position to prove Theorem 3.2 by using Lemmas 3.4-3.6.

Proof of Theorem 3.2. Multiplying both sides of (3.34) by « and summing up
this inequality with (3.20) and (3.43) lead to
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(3.55)
leg ™ 1* — lleql? n
2At 2A¢t
+ aHeﬁJrl - eﬁHz + @HvenJrlHZ + |6171L+1|2 B |eg|2 |€Z+1 — 63|2
2At 2 b 2At 2At
<C(IbEH3 + lealDllexl + Cllel + [P llen ]
gt

+ OBt [ (B el + e
tn

leg™" — eql? b % = llepll?

ey,
2At

+ SIVert? +a

2

1 n
+ ﬁ|€q+1|

tn+1

s [ (bl ol
tn

Multiplying (3.55) by 2At and summing over n, n = 0, 1,...,m, thanks to the stability
results in (3.19), we can apply the discrete Gronwall lemma (Lemma 3.1) to get

m
Bt + e I + e 12 + vAt S Vet

n=0
m m m
Enar Y Ve 4 ArY et 4 Y et - el
n=0 n=0 n=0
3.56 - -
( ) JFZHGLL-H*6g||2+2|62+1*62|2
n=0 n=0

<C(|[ullfro.7,m2(0y) + 10llF20 181 0)) + ||uH%°°(O,T;H2(Q)))(At)2
+ C(HbH%{l(O,T;HQ(Q)) + ”bH%ﬂ(O,T;H*lQ)))(At)Q

+ O 0 1.12(00) + Nallzr2o,7)) (AL,

which concludes the proof of Theorem 3.2. ]

3.3. Error estimates for the pressure. With the error estimates for the ve-
locity and magnetic fields established above, we can establish the following error
estimate for the pressure.

THEOREM 3.7. Assuming
we H?(0,7; LX(Q)) [ H'(0.T; H () [ L™(0,T; H(Q),
be H*(0,T; L*(Q) N H' (0, T; H(2)) N L>(0, T; HX(2)), and p € C((0, T}; L§(9)),
for the first-order scheme (2.7)~(2.11), we have

(3.57) ALY lert 132y r < C(AL? VO<m< N -1
n=0

where C' is a positive constant independent of At.
The proof of the above result can be carried out using a rather standard procedure
as presented in [14], albeit a very technical one, so we provide it in the appendix.

4. Numerical experiments. In this section we provide some numerical ex-
periments to validate the SAV schemes developed in the previous sections. In our
simulation, we use (Ps, P, P>) finite elements to approximate velocity, pressure, and
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magnetic field, respectively. Note that the (P, P;) finite elements for velocity and
pressure satisfy the inf-sup conditions so that one can easily show that the fully dis-
crete scheme (2.41)—(2.44) coupled with (Ps, Py, P») finite elements are well posed and
can be solved following the procedure described in section 2.

4.1. Accuracy test for the SAV schemes. In the first example, we set 2 =
(0,1) x (0,1), » =0.01, n = 0.01, a = 1,7 = 1. The right-hand side of the equations
is computed according to the analytic solution given below:

up(z,y,t) = Thksin?(rz) sin(ry) cos(t),
us(z,y,t) = —wksin(rz) sin? (7y) cos(t),
Pl y,t) = k(e — 1/2)(y — 1/2) cos(t)/10,
b1 (z,y,t) = ksin(mx) cos(my) cos(t),
ba(z,y,t) = —k cos(mx) sin(my) cos(t),

where k£ = 0.01. To test the time accuracy, we choose h = 0.005 so that the spatial
discretization error is negligible compared to the time discretization error for the time
steps used in this experiment.

We first set ¢ = At and list the numerical results for this example with first- and
second-order schemes in Tables 4.1-4.4. We observe that the results for the first-order
scheme (2.7)—(2.11) are consistent with the error estimates in Theorems 3.2 and 3.7,
while second-order convergence rates for the velocity, pressure, and magnetic field
were observed for the second-order scheme (2.25)—(2.29). We then set ¢ = 1 and
observe that the errors for u and b are exactly the same (up to the digits shown in
the tables) as with e = At, while there is a slight difference at the second or third
digit shown in the tables for the pressure error.

4.2. Driven cavity flow. In this example, we consider the following driven
cavity flow problem. We set Q@ = (—-1,1) x (-1,1), n = 1, « = 1, At = 0.001,
h = 1/40. The boundary conditions are

TABLE 4.1
Errors and convergence rates with the first-order scheme (2.7)—(2.11).

At lup, —ull1 Order [lup, — ullo Order llpr, — pllo Order
1/2 8.26E-3 — 1.34E-3 — 2.52E-5 —
1/4 3.96E-3 1.06 7.16E-4 0.91 1.13E-5 1.16
1/8 1.93E-3 1.04 3.70E-4 0.95 5.34E-6 1.08
1/16 9.52E-4 1.04 1.89E-4 0.97 2.59E-6 1.04
1/32 4.72E-4 1.01 9.51E-5 0.99 1.27E-6 1.03
1/64 2.35E-4 1.01 4.78E-5 0.99 6.32E-7 1.01
TABLE 4.2

Errors and convergence rates with the first-order scheme (2.7)-(2.11).

At |[br, — b1 Order [[by, — b2 Order
1/2 4.52E-3 — 1.22E-3 —
1/4 2.10E-3 1.11 6.39E-4 0.94
1/8 1.00E-3 1.07 3.27E-4 0.97
1/16 4.89E-4 1.04 1.65E-4 0.98
1/32 2.41E-4 1.02 8.31E-5 0.99
1/64 1.20E-4 1.01 4.17E-5 1.00

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 05/20/22 to 128.210.107.25 . Redistribution subject to SIAM license or copyright; see https.//epubs.siam.org/terms-privacy

1046 XIAOLI LI, WEILONG WANG, AND JIE SHEN

TABLE 4.3
Errors and convergence rates with the second-order scheme (2.25)-(2.29).

At lup, — a1 Order [lup, — ull2 Order llpn, — pll2 Order
1/2 6.43E-3 — 8.84E-4 — 1.83E-5 —
1/4 1.99E-3 1.70 2.32E-4 1.93 5.09E-6 1.85
1/8 5.49E-4 1.85 5.35E-5 2.12 1.36E-6 1.90
1/16 1.44E-4 1.93 1.26E-5 2.09 3.51E-7 1.95
1/32 3.70E-5 1.96 3.05E-6 2.04 8.89E-8 1.98
1/64 1.03E-5 1.85 7.52E-7 2.02 2.24E-8 1.99
TABLE 4.4

Errors and convergence rates with the second-order scheme (2.25)-(2.29).

At Tbn — bl Order Tbn — b2 Order
1/2 3.54E-3 — 8.38E-4 —
1/4 1.06E-3 1.74 2.30E-4 1.87
1/8 2.90E-4 1.88 5.57E-5 2.05
1/16 7.54E-5 1.94 1.35E-5 2.04
1/32 1.92E-5 1.97 3.32E-6 2.02
1/64 4.88E-6 1.98 8.23E-7 2.01

u=(0,0) onz==1and y=-1,
(4.1) u=(1,0) ony=1,

nxb=mnxby on 9,
where by = (1,0). The streamlines of the velocity, the isolines of pressure, and the
vectors of the magnetic field at steady state with v = 0.001 using the second-order
SAV scheme (2.25)—(2.29) with e = 1 and € = At are shown in Figure4.1 and are
consistent with the numerical results in [26]. We observe that, due to the influence of
the magnetic field, steady states of the velocity streamlines for the MHD equations

are very different from that of the Navier—Stokes equations with the same viscosity.
Note that essentially the same results are obtained with e = 1 and € = At.

=1 bladk ine e—di dotted line =t dotted Tine
=1 solid line

it b .
.’/D%m " i — / "1 02 “}\'”rg%
> of A > of {9::;:

05

[

F1G. 4.1. p = 0.001: (a) the streamlines of velocity, (b) the isolines of pressure, (c) the vectors
of the magnetic field.

5. Concluding remarks. We constructed first- and second-order discretization
schemes in time based on the SAV approach for the MHD equations. The nonlinear
terms are treated explicitly in our schemes, so they only require solving a sequence
of linear differential equations with constant coefficients at each time step. Thus, the
schemes are efficient and easy to implement.

Despite the fact that the nonlinear terms are treated explicitly, we proved that
our schemes are unconditionally energy stable. This is made possible by introducing
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a purely artificial SAV, ¢(t), which enables cancellation of the nonlinear contribu-
tions to the energy as in the continuous case, leading to the unconditional energy
stability.

By using the unconditional energy stability which leads to uniform bounds on
the numerical solution, we derived rigorous error estimates for the velocity, pressure,
and magnetic field of the first-order scheme in the two-dimensional case without any
condition on the time step. This appears to be the first unconditional error estimate
of any scheme with fully explicit treatment of the nonlinear terms for the MHD
equations. We believe that the error estimates can also be established for the second-
order scheme in the two-dimensional case, although the process will surely be much
more tedious. However, it appears that the error estimates cannot be easily extended
to the three-dimensional case, as our proof uses essentially some inequalities which
are only valid in the two-dimensional case.

Appendix A. Proof of Theorem 3.7. In order to prove Theorem 3.7, we need
to first establish an estimate on ||d;en ||
Thanks to Theorem 3.2, we have

(AL e+ e 2+ At Y (It 2 + Vet |2) < C(an?,
n=0
which implies that
(A.2)
fa < € (A0 4+ Ju@ 1)), ™ < C (A2 + b))

Taking the inner product of (3.22) with Ael ™! + d;el ™!, we obtain

(A.3)
n+1(12 _ n|2
(14 VA VA et 4 ofac 2
tn+1
= exp < T ) (g™ Hu@E™ ) - va@™th) — ¢"ttu - vu”, Aeptt + diett)
t’rLJrl
+ aexp ( = > (¢"TH(V x b") x b™ — q(¢"T1)(V x b(t"*1)) x b(t"™1),

Aelt + dyel ™) + (R, Aelt ™ + dyell ™).

For the first term on the right-hand side of (A.3), we have

t’n,+1
exp ( T ) (g™ Hu@" ) - va@"th) — ¢"lu" - va, Aeptt + diell ™)

t’n+1
(A.4) = —exp ( T ) e;”rl ((u" SV)u", Ael Tt 4 dteﬁﬂ)

+ ((u(™™) —u™) - Va@" ), Aepltt + diel ™)
+ (0" V(") —u”), Ael T + dpel ™)

Thanks to (3.15) and (A.2), the first term on the right-hand side of (A.4) can be
bounded by
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tn+1
—exp (T>ef;+1 (u" - Vu", Aeptt + dyep ™)

tn+1
= —exp ( T ) eZ’H (u" - Vep, Aeptt + diel ™)

tn+1

— exp (T) e;”rl (0™ - Vu(t"), Aept + dyep ™)

<Cle [ V27w 2|2 Ac 2 Ak + due |
+ Cleg  Hl[u™ 1 a3 Aeg™ + dey™ |

(A.5)

<ol 2 + 2 A + 2 el

+C(At+ ||u(t”)|| Dllenl® + CAL + [[u(™)[IF)]eg ™ .
The second term on the right-hand side of (A.4) can be estimated by
(u(E™*h) —u™) - Vu(t" ), Aep™ + deel ™)
<Ollu(t™™) —u" [ Ju@)ll2[[Aeg™ + deei |
1 e v m
(A-6) <gglldeea™ P + 1At * + Cllegl?

tn+1

+WMWWﬁm/ e
tn

Using (3.15) and (A.2), the last term on the right-hand side of (A.4) can be controlled

by

(A7)
(u" - V(u("t) —u"), Ael ™ + dpep ™)

=(u"- V(") —u(t")), Aeptt + dieli ™)
— (u” Ve, Aen 4 dteﬁJrl)
<Cllu"||of[u(™) — u(t") 2] Aei ! + deeg ™|

nnl/2y..n1/2 n n n n
+cwu/nunﬂm%W®wP”M%“+m%“u

ul

L lldeertt)? + 51 | Aei 2 4+ C(AL+ [l )|3) s
tn+1

+ ZIACIP + Cat+ [u) DA [ e

tn

712

For the second term on the right-hand side of (A.3), we have

tn+1
aexp ( 7 > (¢"TH(V x b™) x b" — q(t"t1)(V x b(t"T1)) x b(t"*1),
Ae :LlJrl +dt63+1)
(AS) =aexp ( ) n+1 V % bn) % bn Aen—i—l +d en-i-l)

a ((V x (b™ =b(t"))) x b", Aep ™! + dyel ™)
a ((V x b)) x (b" = b(t"™)), Aep™ + dpelt?) .
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Thanks to (3.11) and and (A.2), the first term on the right-hand side of (A.8) can be

bounded by

tn-‘,—l
aexp ( T )e;”’l ((Vxb") x b", Ael ™ + dyept)

=aexp <tn;) er™t ((V x b") x e, Aep™ + dep ™)
n+1
T
<CV x b"|[leplly llenlly [ Aent + dient|
+ﬂﬂ“mVxHWWWWMMﬂ“+%£“H

+ aexp ( ) PHL((V x b™) x b(t"), Ael ™ + dpel™)

nt1)2 Aem 112 £ T Aen 2
< gl 2 + 2 Ae 1 + Dach]
+C(At+ bt [Dllepll; + C(At + [Ib(")[F)]eg ™.

The last two terms on the right-hand side of (A.8) can be estimated by

a((Vx(b b(t" 1)) x b™, Ael ™! + dyel )
o ((V x b)) x (b" = b("H1)), Aei*! + dyei™)
ﬂm%+bwv—ww“mwwww%WWMﬁ“+@ﬂ“n
+ C|lep + b(t") — b(tn+1)||1Hb(tn)HQHAeﬁJrl + dt@ﬁ+1||

(4.10) L OV % bE )| b7 — bEH) [ AetH + dyent |

1 v n
< |ld n+1|2 A n+1(2 ZIAen 2
tn+1

+C||eﬁ||?+CHb(t”+1)||§At/ b [ d.

tn

For the last term on the right-hand side of (A.3), we have
(A.11)

tn+1

n n n 1 n n
(R, Aeg™ + dyei™) < S lldee™ | + ||A€ +1\\2+CA15/ || dt.

Combining (A.3) with (A.4)—(A.11), we have
(A.12)

(14 )T — Ve

20t
U AV "
< JlAek]® + ZllAeE]® + C(AL + () [D)llei]T + C(AL + [IbE)[D)lles T

+C(At+ )] + [bE™)I)leq™ I

1 3v
+ gl + T AP

tn+1

+cml’ (gl + e ]2 + [bel|2)dt

Next we shall balance the first term on the right-hand side of (A.12) by using the

error equation (3.37) for magnetic field. We proceed as follows.
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Taking the inner product of (3.37) with —Aep ™ + dyep ', we obtain

IVep ™12 — I Vep?
2At

n+1
—oxp (S ) ) (7 (b s u(e ), A+ diey )

(1+m) + e T + nll Aep

(A.13)

tn+1
— exp ( T ) "V x (b" x u™), —Aeptt 4 dtegﬂ)

+ R — A+ dyep .

The first two terms on the right-hand side of (A.13) can be recast as

thrl
exp (T)q(t"“) (V x (b(™™1) x u(t™™)), —Aep™ + diep ™)

t’rLJrl
— exp <T> "V x (b x u™), —Aept! + dyep )

(A14) — (v x [(b(tn—i-l) _ bn) % (tn+1)] —Angrl 4 dtenJrl)

+(V x [b" x (ut"t?) —u™)], —Aep ™ + dep ™)

t’rLJrl
— exp <T> mH(V x (b x u™), —Aept! 4 dyep ™)

Noting (3.3) and (3.14), the first term on the right-hand side of (A.14) can be bounded
by

(VX[(b<tn+l) _ bn) (tn-l—lﬂ _Angrl 4 dt€g+1)
<C|b("+) b”H a2l deepy™ — Aep |
]' n n n
(A.15) <glldeen 2+ IIAe 2+ Cllep 12

tn+1

+Clla AL [ b
;

For the second term on the right-hand side of (A.14), we have

(Vx[b" x (u(t"™) —u™)], —Aep™ + dyep™t)
=(V x [ef x (u(t"™") —u™)], —Aept" + dyep ™)
+ (V% [b(t") x (u(t"™) — u™)], —Aeft + dyeptt)
<Cllegll? leplly a1ty — | || deep ™™ — Aept|

A.16 n n n n n
(4.16) Ol ot — u | drelt — Akt

§§||dt€g+1”2 + 173||A€?,+1||2 + gllAeﬁll2 +Cllepll;

tn+1

T Cb(m) 2At / g2,
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Thanks to (3.3) and (3.14), the last term on the right-hand side of (A.14) can be

tn+1
—exp <T>eg+1 (Vx (b" xu"),—Aep™ + dpep™)

tn-}-l
= —exp ( T ) TV x (e x u™), —Aept! + dpep )

t"“) +1 1 1
— exp (VX xu™), —Aep T + dep "
e (5 ) et (9 e ), - )

n 1/2 1/2). n n n
<Cleg [lleplly 2 lleplls a1 |diept — Aep |
+ Cleg b [l2lu"[[1lldeey ™ — Aepg™|
<l + Ll AGH 2 + LA
+ C(AL+ [[u(t™) D) lep]l + C(AL+ [lu(t™)[)leg™*.
For the last term on the right-hand side of (A.13), we have
(A.18)

tn+1

1
(Rg-i-l AenJrl +d enJrl) < g”dt n+1||2 HAenJrIHZ +CAt/ ”bttHth-
t’!L

Combining (A.13) with (A.14)-(A.18), we obtain

Ve I1? — [IVepl®
2At
(A.19) IIA%II2 +C(At+ [[u@)D)llen ]l + C(AL + uE)[D)leg

1 3
(1+7) + 5 Idsep 7 + At 2

tn+1

L OA / ([ell? + b2 + [bur]|2)dt

Summing up (A.19) with (A.12) leads to

[Vertl? — [IVeql?
20t
Ve ™12 — [IVep?
2At
77 n v n n n
(A.20) <GlAegl? + 1 Aei]* + C(AL + [fa@E)Dles]T

+C(At+ u)If + [bEM)I) (lepllT + leg )

tn+1

+ CAt/t (lell3 + l[aeel® + eI + [[bec )t

1 3v
(1+v) plldeei ™ P+ Tl Aci 2

]‘ n 3 n
+(1+7) + 5 lldieg 2 4+ SlAaeg P

Multiplying (A.20) by 2At and summing over n, n = 0,2,...,m, and applying the
discrete Gronwall lemma (Lemma 3.1), we obtain

m

(A.21) [Vemt12 + At Z | drentt]|? 4 vAt Z | Aentt|?
n=0
+[[Vep ™ + At Z dee ™ |1* + nAt Z | Aep 2
n=0

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 05/20/22 to 128.210.107.25 . Redistribution subject to SIAM license or copyright; see https.//epubs.siam.org/terms-privacy

1052 XIAOLI LI, WEILONG WANG, AND JIE SHEN

<C(At+ [lat™) T + b)) At Y (ledF + lleq )

n=0
+CALY  |er P+ C(A).
n=0

Combining the above estimate with Theorem 3.2, we obtain

m m
ALY [lded™ P + Ve TP+ vAL Y [[Aep P + ([ Vet
(A.22) = oo
+ ALY (ldiep ™ P+ nAL > |Aep TP < C(AH.
n=0

n=0

We are now in position to prove the pressure estimate. Taking the inner product
of (3.22) with v € Hj(Q), we obtain

(A.23)
(Veph,v) = —(diei ™, v) + v(Aep™, v) + (R, v)

n+1
+exp (t T > (g™ (™) - V)u™t) — ¢"(u" - V)u",v)

t71,+1
+ aexp ( T

) (¢"TH(V x b") x b" — q(t"T1)(V x b(t"*1)) x b(t"™),v) .

We bound below the terms on the right-hand side of the above equation. The first
two terms can be handled by (A.23). The third term can be handled similarly as in
(3.24). For the fourth term, we derive from (3.25)(3.27) that, for all v € Hg (1),

(A.24)
thrl
exp < ) (a" (") - V)uE"h) — ¢" (" V)u", v)

T
n+1 enJrl
=D () ) V) v) - — (D))
exp(— T ) exp(— T )
q(tn—::le (un . v(u(tn—H) _ un)7 V)
exp(—7)

g1
<C(llexl + II/ wdt]y + leg )V

t’VL
For the last term on the right-hand side of (A.23), we derive from (3.28)—(3.33) that
tn+1
aexp (T) ("TH(V x b") x b" — q(t"t1)(V x b(t"*1)) x b(t"™), v)

tn+1
= aexp (T) el ((V xb™) x b, epth)

(A.25) +a (V % (bn _ b(tn+1)) % bn’ eﬁH)
+a ((Vxb(t" ™) x (b" —b(t"t1)),ent!)

SC(HeﬁHlJrIIb"HH/t bdt|1 + leg IV
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Finally thanks to Theorem 3.2, (A.22), and (A.24)—(A.25), we derive from (A.23) and

that

The

14]
(15]
[16]

(17]

(Vertt v)
leptHlr2@ym < sup  —E——
b 7 veH)(Q) Vv

Atz ||6Z+1||%2(Q)/R < C’Atz (Hdteﬁ+1”2 + ||Veﬁ+1||2

n=0 n=0
t'm,+1
Hlewll + llep i + leg ™) +C(At)2/0 b, 2dt
g+t t
+C(Af)2/t0 (hwelf + fuee|21)dt < C(AL)2.

proof of Theorem 3.7 is complete.
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