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Abstract We consider in this paper numerical approximations of two-phase incompress-
ible flows with different densities and viscosities. We present a variational derivation for a
thermodynamically consistent phase-field model that admits an energy law. Two decoupled
time discretization schemes for the coupled nonlinear phase-field model are constructed and
shown to be energy stable. Numerical experiments are carried out to validate the model and
the schemes for problems with large density and viscosity ratios.
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1 Introduction

The interfacial dynamics about immiscible and incompressible two-phase flows have attracted
much attention for more than a century. In recent years, the diffuse interface approaches, or
sometimes called phase field models, whose origin can be traced back to [39] and [49], have
been used extensively with much successes and become one of the major tools to study a
variety of interfacial phenomena (cf. [5,24,26,30,31,54] and the recent reviews [27,46]).
A particular advantage of these phase-field approaches is that they can often be derived
from an energy-based variational formalism (energetic variational approaches), while usu-
ally leading to well-posed nonlinear coupled systems that satisfy thermodynamics-consistent
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energy dissipation laws. This makes it possible to carry out mathematical analysis and design
numerical schemes which satisfy a corresponding discrete energy dissipation law (cf., for
instance, [8,18,29]). It is a remarkably fact that the numerical schemes which do not respect
the energy dissipation laws may be “overloaded” with an excessive amount of numerical dissi-
pation near singularities, which in turn lead to large numerical errors, particularly for long time
integration [13,19,48,51,52]. For the dynamical solutions of coarse-graining (macroscopic)
process described by the Allen–Cahn and Cahn–Hilliard equations in typical phase-field
models that undergo rapid changes and physical singularities at the interface, it is especially
desirable to design numerical schemes that preserve the energy dissipation law at the discrete
level.

One of the main challenges in the phase field models is how to describe the dynamics of the
mixture of two fluids with different densities and viscosities. However, most of the analysis
and simulation of the phase-field models for two-phase flows have been restricted to the cases
with matched density or with small density ratios for which the Boussinesq approximation,
where the variable density is replaced by a background constant density value while an
external gravitational force is added to model the effect of density difference, can be used
(cf. for instance [30]). While the phase-field model with Boussinesq approximation leads
to a well-posed dissipative system, their physical validity is based on the assumption that
the density ratio between the two phases is relatively small. Hence, they can not be used
for two-phase flows with large density ratios. Thus, for the cases with large density ratios,
we need to derive physically consistent phase-field models which are also mathematically
well-posed.

The challenges and complexities of problems involving the mixtures of different materials
lie in their nature of multiscale and sometimes multiphysics. It is the competitions and cou-
plings between these effects which determine the overall properties of the mixtures. A main
difficulty in dealing with non-matching densities can be seen in the basic macroscopic (con-
tinuum) mass conservation ρt +div(ρu) = 0 and (macroscopic) incompressibility divu = 0.
As the density ρ is an macroscopic quantity, it may be different with the direct average from
microscopic descriptions, such as from the phase fields. For instance, the mixtures of two
incompressible fluids may not be incompressible, for we have to take into consideration of
the interaction between two different particles. Various approaches have been proposed in
the literature. Traditionally, they can be classified into two categories: incompressible or
quasi-incompressible. In the former approach, the volume averaged velocity is assumed to
be incompressible everywhere, including the interfacial region. In the latter approach, on the
other hand, the mass averaged velocity is assumed to satisfy the mass conservation instead
of incompressibility, leading to a slightly compressible mixture inside the interfacial region.
In [31], the authors derived a quasi-incompressible phase model which allows the mixture
to be slightly compressible inside the interface, see also [1]; a similar quasi-incompressible
model, which admits an energy law, was proposed recently in [47]. On the other hand,
incompressible phase-field models were derived in [9] and [14], however, these models do
not seem to admit an dissipative energy law; In [44] and [43], the authors derived incom-
pressible phase-field models, which admit an dissipative energy law, with Allen–Cahn [44]
and Cahn–Hilliard [43] dynamics for the cases of variable density and viscosity, but the
models were derived with an ad-hoc adjustment, which is mathematically consistent but not
frame invariant, on the convection term. In [2], the authors derived a thermodynamically
consistent, which admits an energy law but not frame invariant, diffuse interface models for
incompressible two-phase flows with different densities. Then, they derived in [3] another
diffuse interface model which is thermodynamically consistent, frame invariant and admits
an energy law. We want to point out, although all these models are modeling similar problems
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of mixtures of two different incompressible fluids, each one of them, including the current
model, does have its range of validation and limitations. In particular, all of them can be
considered as an approximation to the sharp interface model.

The first objective of this paper is to rederive the thermodynamically consistent phase-field
model in [2] from an energetic variational point of view.1 The second objective is to design
some efficient and accurate numerical schemes for the model which decouple the solution
of velocity, pressure, and phase functions. It is particularly challenging to design effective,
energy stable numerical schemes for this system due to the numerous nonlinear couplings.
We shall combine several approaches which have proved efficient for the phase equations and
for the Navier–Stokes equations, namely, the convex splitting (cf. [13,17,51]) for the phase
equations and projection-type approaches [21,23,36,50] for the Navier–Stokes equations. We
shall construct two decoupled time discretization schemes which satisfy a discrete energy
law and which lead to, at each time step, a nonlinear elliptic system for the phase function,
and a linear elliptic equation for the velocity and pressure respectively. We would like to
point out that they appear to be the first schemes which decouple the computations of phase
function, velocity and pressure, while still preserving the discrete energy law. In a subsequent
paper [45], the technique developed here was used to derive efficient numerical schemes for
the model in [3].

The third objective is to validate this model and the proposed numerical schemes through
careful numerical simulations, including the dynamics of an air bubble rising in water, a
particularly challenging situation where the density ratio is close to 1,000 and the viscosity
ratio is close to 70.

The rest of the paper is organized as follows. In the next section, we describe the phase-
field model. In Sect. 3, we provide a detailed energetic derivation for the new model. Then, in
Sect. 4, we construct several efficient numerical schemes and prove their stability. In Sect. 5,
we provide some numerical evidences to validate the new model and the proposed numerical
schemes, and summarize our contributions.

2 A Cahn–Hilliard Phase-Field Model with Variable Density and Viscosity

We consider a mixture of two immiscible, incompressible fluids in a confined domain �
with densities ρ1, ρ2 and viscosities μ1, μ2, respectively. As usual, we introduce a phase
function (macroscopic labeling function) φ such that

φ(x, t) =
{

1 fluid 1,

−1 fluid 2,
(2.1)

with a thin, smooth transition region of width O(η). The (equilibrium) configurations and
patterns of this mixing layer, in the neighborhood of the level set �t = {x : φ(x, t) = 0},
is determined by the microscopic interactions between fluid molecules. For the isotropic
interactions, the classical self consistent mean field theory (SCMFT) in statistical physics [11]
yields the following Ginzburg–Landau type of Helmholtz free energy functional:

W (φ,∇φ) =
∫
�

λ

(
1

2
|∇φ|2 + F(φ)

)
dx, (2.2)

1 After we derived the model independently, we learned that the identical model was already derived in [2].
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where the first term contributes to the hydro-philic type (tendency of mixing) of interactions
between the materials and the second part, the double well bulk energy F(φ) = 1

4η2 (φ
2 −1)2,

represents the hydro-phobic type (tendency of separation) of interactions. As the conse-
quence of the competition between the two types of interactions, the equilibrium configura-
tion will include a diffusive interface with thickness proportional to the parameter η (cf., for
instance, [54]); and, as η approaches zero, we expect to recover the sharp interface separating
the two different materials.

The hydrodynamics of this mixture can be viewed as an isothermal system governed by
the energetic variational approaches for general dissipative systems. The combinations of the
First Law of Thermodynamics and the Second Law of Thermodynamics gives:

d

dt
E total = −�, (2.3)

where E total is the sum of kinetic energy and the total Helmholtz free energy, and � is
the entropy production (energy dissipation rate in this case). All the physical ingredients,
assumptions, as well as limitations of the system are included in the expressions of the total
energy functional and the dissipation functional, and the kinematic (transport) relation of the
variables employed in the system.

The hydrodynamics of the mixtures, by nature, is a multiscale problem. The competition
of the macroscopic flow properties and the microstructures due to the molecular interactions
gives all the intriguing and complicated behaviors of the systems. In fact, the choices of the
variables and also the specific physics, in terms of the energetic functionals, demonstrated
the specific physical situations or applications in consideration.

In this paper, we are interested in the overall macroscopic flow properties, which self-
consistently take into account the microscopic properties of the mixtures. For this purpose,
we consider the system with the following total energy:

E(φ,∇φ) =
∫
�

(
ρ(φ)

1

2
|u|2 + λ(

1

2
|∇φ|2 + F(φ))

)
dx . (2.4)

It is clear that the first term is the macroscopic kinetic energy. The second part, the coarse
grained internal energy, includes the competition between the hydro-philic and hydro-phobic
interactions between two different ingredients. The constant λ represents the competition
between the kinetic energy and the total internal energy, and can be directly related to the
commonly known surface tension constant [54].

The dynamics of the phase function include both the macroscopic kinematic transport
relation and also the long-time microscopic dissipations: φ by the following Cahn–Hilliard
gradient flow (cf. [5,10,24,26,30,31]):

φt + (u · ∇)φ = −M�w,

w := δE

δφ
= λ (�φ − f (φ))− ρ′(φ) |u|2

2
,

(2.5)

where w is the so called chemical potential and M is a mobility constant related to the
relaxation time scale, and f (φ) = F ′(φ). The right-hand side of the equation for φ is the
coarse grained form of the microscopic dissipation (general diffusion) relation.

The momentum equation (macroscopic force balance) for the whole system takes the
usual form:

ρ (ut + (u · ∇)u) = ∇ · τ, (2.6)
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where the total stress τ = μD(u) − pI + τe with D(u) = ∇u + ∇uT and τe is the extra
elastic stress induced by the microscopic internal energy. It will be shown in the next section,
by a unified energetic variational approach, that the momentum equation becomes:

ρ(ut + (u · ∇)u) = ∇ · (μD(u)− pI − λ∇φ ⊗ ∇φ) , (2.7)

where p includes both the hydrostatic pressure due to the incompressibility and also the
contributions from the induced stress.

In the above, ρ and μ are slave variables of φ, which can be defined, for example, as

ρ(φ) = 1 + φ

2
ρ1 + 1 − φ

2
ρ2, μ(φ) = 1 + φ

2
μ1 + 1 − φ

2
μ2. (2.8)

Without loss of generalities, we consider the boundary conditions

u|∂� = 0,
∂φ

∂n
|∂� = 0,

∂w

∂n
|∂� = 0. (2.9)

The Cahn–Hilliard phase equation (2.5) and the momentum equations (2.7) with the boundary
condition (2.9), together with the incompressibility constraint

∇ · u = 0, (2.10)

form a closed system for the particular set of variables of our choice for this study,
(u, p, φ,w), and with the auxiliary variable ρ and μ given by (2.8).

Direct computation shows that, even in cases of ρ1 �= ρ2, the Cahn–Hilliard phase-field
system (2.5)–(2.7)–(2.10) still admits the following energy law:

d

dt

∫
�

(
1

2
ρ(φ)|u|2 + λ

2
|∇φ|2 + λF(φ)

)
dx = −

∫
�

(μ
2

|D(u)|2 + M |∇w|2
)

dx .

(2.11)

While the left-hand side includes all the physics we want to discuss in this system, the
macroscopic hydrodynamics and the microscopic mixing, the right-hand side represents
dissipation mechanisms from both scales. The viscosity term, the first term on the right-hand
side, represents the macroscopic dissipation, and the second term stands for the microscopic
internal damping during the mixing.

3 The Energetic Variational Derivation of the System

The complicated mechanical and rheological properties of the coupled system derived in the
last section can be attributed to the competitions and couplings between different parts of the
total energy functionals (in this case, the kinetic energy and the free energy) and different
parts of the dissipation (the viscosity and the internal dissipation of the microstructure). One
issue we want to point out is the kinematic assumptions involved in the system.

The energy dissipation law (2.11) is consistent with the second law of thermodynamics.
Since we only consider the isothermal situation here, the total dissipation in the right hand
side of (2.11) is equal to the total entropy production. The left-hand side is the total energy,
which is the sum of kinetic energy plus the (Helmholtz) free energy.

In order to obtain the force balance equations from the general dissipation law (2.3), we
employ the Least Action Principle (LAP) for the Hamiltonian part of the system and the
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Maximum Dissipation Principle (MDP) for the dissipative part. Formally, LAP just states
the fact that force multiplies distance is equal to the work, i.e.,

δE = force × δx, (3.1)

where x is the position, δ is the variation (derivative) in general senses. This procedure will
give the Hamiltonian part of the system and the conservative forces [4,6]. On the other hand,
MDP, by Onsager and Rayleigh [33,34,38], yields the dissipative forces of the system:

δ
1

2
� = force × δẋ . (3.2)

Here the factor 1
2 is consistent with the choice of quadratic form of the “rates”, which in turn

describes the linear response theory for long-time near equilibrium dynamics [28].
As we discussed before, the system (2.5)–(2.7)–(2.10) is a multi-scale/multi-physics sys-

tem. The hydrodynamic equation (2.7) describes the macroscopic (continuum) force balance,
while the dynamic equation (2.5) for the phase field φ describes the evolution of microstruc-
tures due to the mixing of two materials.

Let us start with the Eq. (2.5). Here we introduce the free energy functional, which is
the consequences of various coarse graining process, such as the self-consistent mean field
theory (SCMFT): ∫

�

λ

(
1

2
|∇φ|2 + F(φ)

)
dx . (3.3)

Energetically, this “mixing” energy determines the equilibrium configuration of the mixing.
The presence of the gradient term gives rise the spatial microstructures.

In order to describe the effect of the macroscopic flow field u(x, t) to the microstructure,
we introduce the kinematic transport relation:

D

Dt
φ(x, t) = φt + u · ∇φ = 0. (3.4)

This relation can also be interpreted as the immiscibility of the mixing, which is independent
to the energetic descriptions of the system. This kinematic assumption on φ demonstrates
the nature of φ being a label function, satisfying

φ(x(X, t), t) = φ0(X), (3.5)

where, as usual, X and x represent the Lagrangian and Eulerian coordinates, respectively,
and x(X, t) is the flow map such that xt (X, t) = u(x(X, t), t), x(X, 0) = X . Hereafter, the
spatial derivation without sub-index represents derivative with respect to Eulerian coordinates
x , while the derivatives with respect to the Lagrangian coordinates X will be marked out
specifically.

We want to point out that, in order to describe the deformation or evolution of config-
urations or patterns, one needs to introduce the deformation tensor F = ∂x

∂X . The usual
(macroscopic) incompressible condition

∇ · u = 0, (3.6)

is the direct consequence of the constraint det(F) = 1 and the algebraic identity δdet(F) =
det(F) tr(F−1δ f ).

For constant mobility M , the Cahn–Hilliard dynamics (2.5) can be viewed as a relaxation
approximation to (3.4), formally by letting M approaches zero. On the other hand, from
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the energy dissipation law (2.11), the second term in the right hand side represents the
microscopic internal dissipation. From there, one can derive the Cahn–Hilliard dynamics, as
a general diffusion mechanism, represents the long-time, near equilibrium behavior for the
microscopic time scale. It can also be regarded as the microscopic relaxation (in time) of the
microstructures, hence the microscopic force balance.

Now, we want to derive the macroscopic force balance equation (2.7). To this end, we start
with the reversible part of the system. From the total energy of the left-hand side of (2.11), we
can define the action function, after the Legendre transformation [7], in terms of the volume
preserved flow map x(X, t):

A(x) =
∫ ∫ (

1

2
ρ(φ)|u|2 − λ

2
|∇φ|2 − λF(φ)

)
dxdt

=
∫ ∫ (

1

2
ρ(φ0)|xt |2 − λ

2
|F−1∇Xφ0(X)|2 − λF(φ0)

)
d Xdt. (3.7)

The first equality is obtained by taking the Legendre transform of the total energy functional
with respect to u, which gives the negative sign between the kinetic energy and the free energy.
The second equality is derived from the volume preserving constraint (incompressibility, i.e.,
det(F) = 1) of the flow map and the kinematic assumption of φ in (3.4) [the transport part
of (2.5)].

Suppose there is a one-parameter family of these flow map xε(X, t), with x0(X, t) = x ,
and d

dε xε(X, t)|ε=0 = y(X, t). From the volume preserving constraint det ∂xε
∂X = 1, it is easy

to show that, if ỹ(x(X, t), t) = y(X, t), one can derive from the algebraic identity of the
derivatives of the determinants that:

∇ · ỹ = 0.

Taking the variation of A(x)with respect to these volume preserving flow map for arbitrary
given divergence free ỹ, we arrive at the variational (weak) form:∫ ∫ (

ρ(φ0(X))(xt , yt )− λ
(
F−1∇Xφ0(X),−F−1∇X yF−1∇Xφ0(X)

))
d Xdt

=
∫ ∫

(−ρ(φ0(X))(xtt , y)− λ(F−1∇Xφ0(X),−F−1∇X yF−1∇Xφ0(X))) d Xdt

=
∫ ∫

−(ρ(φ)(ut + u · ∇u, ỹ)+ λ (∇φ,∇ ỹ∇φ)) dxdt. (3.8)

Integrating by part and using the fact that ỹ is divergence free, we obtain the macroscopic
reversible part of (2.7):

ρ(φ)(ut + (u · ∇)u) = −p1 I − λ∇φ ⊗ ∇φ, (3.9)

where p1 is the Lagrangian multiplier for the constraint on the volume preserving flow map
x(X, t), i.e., ∇ · ỹ = 0.

We want to point out that, while for the case of equal density, we have

ρ(φ) (ut + u · ∇u) = (ρ(φ)u)t + u · ∇ (ρ(φ)u) ,
but this is no longer true when the densities are not the same, as in our situation. Hence we
will need to take the weak form as in (3.8).

Since the macroscopic dissipation in the system is attributed to the viscosity term:∫
�

μ

2
|D(u)|2 dx,
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by taking the derivative of the corresponding term in the dissipation with respect to u
(Onsager’s Maximum Dissipation Principle), we obtain the dissipative part of the (2.7):

0 = ∇ · (μD(u)− p2 I ) , (3.10)

where p2 is the Lagrangian multiplier for the incompressibility constraint ∇ · u = 0.
The final Eq. (2.7), the total force balance equation, is just the sum of the two parts.

Hence, the total pressure is p = p1 + p2, both represent the Lagrangian multiplier of the
incompressibility, one is from the Lagrangian description and the other from the Eulerian
formulation.

4 Energy Stable Time Discretizations and their Stability Analysis

In this section, we design some time discretizations of the new phase-field model (2.5)–(2.7)–
(2.10) introduced in the last section. The goal is to construct time discretization schemes
which satisfy a discrete energy dissipation law that is similar to the continuous energy law
of (2.11), and are easy to implement in practice.

Let us first reformulate (2.5) and (2.7) into some equivalent forms which are more con-
venient for numerical approximation. By using the following identities

∇ · (∇φ ⊗ ∇φ) = �φ∇φ + 1

2
∇|∇φ|2, (4.1)

∇ p + λ∇ · (∇φ ⊗ ∇φ) = ∇(p + 1

2
λ|∇φ|2 + λF(φ)+ φw)− φ∇w + 1

2
ρ′(φ)|u|2∇φ.

(4.2)

and denoting the modified pressure as p̃ = p + 1
2λ|∇φ|2 + λF(φ + φw) (still denote it by

p for simplicity), the system (2.5)–(2.7)–(2.10) can be rewritten as follows:

φt + ∇ · (uφ)+ M�w = 0, (4.3a)

w + 1

2
ρ′(φ)|u|2 − λ (�φ − f (φ)) = 0, (4.3b)

ρ(φ) (ut + (u · ∇)u)− ∇ · μ(φ)D(u)+ ∇ p − φ∇w + 1

2
ρ′(φ)|u|2∇φ = 0, (4.3c)

∇ · u = 0, (4.3d)

where ρ(φ) and μ(φ) are given by (2.8), and the boundary conditions for (φ,w, u) are given
in (2.9).

The above coupled nonlinear system presents formidable challenges for algorithm design,
analysis and implementation that we will address in this paper. In this section, we will design
numerical algorithms which admit a discrete energy dissipation law and overcome three main
difficulties associated with this coupled nonlinear system that are described as follows.

• The coupling between the phase function, chemical potential and the velocity. It appears
very difficult to decouple the computation of φ andw from the velocity u while the simple
explicit treatment in the convection term of (4.3a) will not lead to any energy dissipation
law.

• The pressure solver with large density ratio. A common strategy to decouple the compu-
tation of the pressure from velocity is to use a projection type scheme as in the case for
Navier–Stokes equations (cf., for instance, a recent review in [23]). However, In the usual
projection type schemes, the subsystem to determine a pressure approximation if often an
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elliptic equation with 1
ρ

as variable coefficient, making it difficult to solve when the den-
sity ratio is large. The additional difficulty is that it is not easy to construct a second-order
scheme based on a pressure-correction formulation (cf. [22]). Thus, we will consider a
pressure stabilized formulation to avoid solving a pressure elliptic equation with density
as a variable coefficient.

• The stiffness associated with the interfacial width η. To alleviate the difficulty associated
with the stiffness caused by the thin interfacial width, we can introduce a stabilizing term
in the phase equation as in [42–44,53]. An alternative way adopted in this paper is to
use the idea of convex splitting that was first introduced by Eyre [17]. Recently, the idea
has been applied to various gradient flow [13,51], which serves as inspirations for the
numerical schemes we present below.

We will first construct numerical schemes based on a gauge-Uzawa formulation [15,32,
36,43]. These schemes require solving an elliptic equation for pressure with the variable
coefficient 1

ρ
. Then, we will construct numerical schemes based on a pressure-stabilized

formulation [21,23,37,41] which only require solving a Poisson equation for pressure.
We assume that we can split F(φ) as Fc(φ)− Fe(φ) with both Fc and Fe being convex,

i.e., F ′′
c (φ), F ′′

e (φ) ≥ 0. For example, we can take Fc(φ) = φ4 and Fe(φ) = 2φ2 − 1. In
what follows, we denote

f (φ) = F ′(φ), fc(φ) = F ′
c(φ), fe(φ) = F ′

e(φ).

Without loss of generality, we assume 0 < ρ1 ≤ ρ2 and 0 < μ1 ≤ μ2.

4.1 Schemes Based on a Gauge-Uzawa Formulation

We construct a first-order gauge-Uzawa scheme for the phase-field model (4.3) as follows.
Given initial conditions φ0, w0, s0 = 0, u0, we compute (φn+1, wn+1, ũn+1, un+1, sn+1)

for n ≥ 0 by⎧⎪⎪⎨
⎪⎪⎩

1
δt (φ

n+1 − φn)+ ∇ ·
((

un + δt φ
n∇wn+1

ρ(φn+1)

)
φn

)
+ M�wn+1 = 0,

wn+1 + 1
2ρ

′(φn+1)|un |2 − λ
(
�φn+1 − fc(φ

n+1)+ fe(φ
n)

) = 0,

∂nφ
n+1|∂� = 0, ∂nw

n+1|∂� = 0;
(4.4a)

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ρ(φn+1) ũn+1−un

δt + ρ(φn+1)(ũn+1 · ∇)ũn+1 + 1
2ρ(φ

n+1)
(∇ · ũn+1

)
ũn+1

−∇ · μ(φn)D(ũn+1)+ μmin∇sn − φn∇wn+1

+ 1
2ρ

′(φn+1)|ũn+1|2∇φn+1 = 0,

ũn+1|∂� = 0;

(4.4b)

⎧⎨
⎩−∇ ·

(
1

ρ(φn+1)
∇ψn+1

)
= ∇ · ũn+1,

∂nψ
n+1|∂� = 0;

(4.4c)

{
un+1 = ũn+1 + 1

ρ(φn+1)
∇ψn+1,

sn+1 = sn − ∇ · ũn+1;
(4.4d)

with

ρ(φ) = (φ + 1)2ρ1/4 + (φ − 1)2ρ2/4, μ(φ) = (φ + 1)2μ1/4 + (φ − 1)2μ2/4, (4.4e)

and μmin = minμ(φ) > 0.
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Several remarks are in order.

Remark 4.1 An additional stabilizing term, ρ(φn+1) un

2 ∇ · ũn+1, is added in (4.4b). This
term does not bring any inconsistency to the governing PDE system (4.3c) because the term
ρ u

2 ∇ · u vanishes in the PDE level from the incompressibility.

Remark 4.2 The computations of (φn+1, wn+1), ũn+1, ψn+1 and (un+1, sn+1) are totally
decoupled! We believe, to the best of our knowledge, that this is the first scheme for two-
phase flows which is both totally decoupled and unconditionally stable (see below).

Remark 4.3 Note that a first order term, δt φ
n∇wn+1

ρ(φn+1)
, is added to the convective velocity un

in (4.4a). Hence, the above scheme is formally a first-order approximation to the system (4.3).

Remark 4.4 Sinceφ should take the values ±1 except at the interfacial region, so if we ignore
the mass conservation for the mixture inside the interfacial region, the form of ρ(φ) andμ(φ)
can be quite flexible. We choose to define ρ in (4.4e) (resp. μ) as the parabolic average of ρ1

and ρ2 (resp. μ1 and μ2) which satisfies

ρ′′(φ) > 0 and ρmin = minφ∈Rρ(φ) > 0. (4.5)

Remark 4.5 In the above scheme, sn is the so called gauge variable, and a proper pressure
approximation is (cf. [36]):

pn+1 = −ψ
n+1

δt
+ μminsn+1. (4.6)

We also derive from (4.4c)–(4.4d) that divun+1 = 0.

Remark 4.6 Given the data at the n-th level, (4.4a) is an quasilinear elliptic system. Note
that the special choice of the “average” for ρ(φ) in (4.4e) prevents (4.4a) from developing
singularity. Thus, the existence of a solution to this system follows from the standard ellip-
tic theories (see for instance the standard references in [16,20]). We will outline the main
arguments here for the readers’ convenience.

We will use the Hölder spaces here. Similar arguments can also be extended to other
functional spaces, such as Hilbert–Soblev spaces.

Assuming {φn, wn} ∈ C1,α for some 0 < α < 1, we will apply the Leray–Schauder
fixed point theorem to the system (4.4a). Consider the following system with a parameter
σ ∈ [0, 1]:⎧⎪⎪⎨

⎪⎪⎩
σ

{
1
δt (φ − φn)+ ∇ ·

((
un + δt φ

n∇w
ρ(φ)

)
φn

)
− Mw

}
+ M(1 +�)wn+1 = 0,

σ
{
w + 1

2ρ
′(φ)|un |2 − λ(− fc(φ)+ fe(φ

n))+ λφ
} − λ(1 +�)φn+1 = 0,

∂nφ
n+1|∂� = 0, ∂nw

n+1|∂� = 0.

(4.7)

For any fixed σ ∈ [0, 1], the above system defines an operator Tσ (φ,w) = (φn+1, wn+1) :
C1,α × C1,α → C1,α × C1,α . One can readily check that this operator possess the following
properties:

• For σ = 0, the system only has an unique solution φn+1 = wn+1 = 0.
• For any fixed σ , and arbitrary φ,w ∈ C1,α , from the Schauder estimates of linear elliptic

equations (see for instance, Theorem 2.40 in [16] for a more general statement), one can
show that the solution of (4.7) φn+1, wn+1 ∈ C2,α , which is compactly embedded in C1,α

[25]. Hence, Tσ is a compact operator.
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• Thanks to the a-priori Holder estimates for quasilinear elliptic equations [20], one can
show that all fixed points of Tσ are uniformly bounded in C1,α × C1,α .

With these properties, the Leray–Schauder fixed point theorem [20] asserts that the operator
Tσ with σ = 1) possess a fixed point (φn+1, wn+1), which is a solution of the original system
(4.4a).

Remark 4.7 The Eq. (4.4b) is also an quasilinear elliptic system. By using a similar argument
as above, one can also show that there exists at least one solution for (4.4b).

Theorem 4.1 Solutions to the scheme (4.4) satisfy the following discrete energy law for any
δt > 0:

1

2
‖σ n+1un+1‖2 + λ

(
1

2
‖∇φn+1‖2 + (F(φn+1), 1)

)

+ 1

2
μminδt‖sn+1‖2 + δt

(
M‖∇wn+1‖2 + 1

2
μmin‖∇ũn+1‖2

)

+ 1

2
‖ 1

σ n+1 ∇ψn+1‖2

≤ 1

2
‖σ nun‖2 + λ

(
1

2
‖∇φn‖2 + (F(φn), 1)

)
+ 1

2
μminδt‖sn‖2,

where σ n+1 = √
ρ(φn+1).

Proof Let us denote

un
� = un + δt

φn∇wn+1

ρ(φn+1)
. (4.8)

We first take the inner product of (4.4b) with 2δt ũn+1. For the nonlinear terms, we have(
1

2
ρ′(φn+1)|ũn+1|2∇φn+1, ũn+1

)

+
(
ρ(φn+1)ũn+1 · ∇ũn+1 + 1

2
(∇ · ũn+1)ρ(φn+1)ũn+1, ũn+1

)

=
(

ũn+1,∇(ρ(φn+1)
|ũn+1|2

2
)

)
+ 1

2
((∇ · ũn+1)ρ(φn+1)ũn+1, ũn+1) = 0.

Hence, noticing that

ρ(φn+1)
ũn+1 − un

δt
− φn∇wn+1 = ρ(φn+1)

ũn+1 − un
�

δt
,

using the identity

(a − b, 2a) = |a|2 − |b|2 + |a − b|2, (4.9)

and (4.9), we obtain

‖σ n+1ũn+1‖2 − ‖σ n+1un
�‖2 + ‖σ n+1 (

ũn+1 − un
�

) ‖2

+ δt‖√μn D
(
ũn+1) ‖2 + 2μminδt

(∇sn, ũn+1) = 0. (4.10)
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Using (4.4d) and the fact that divun+1 = 0, we derive(
σ n+1un+1, σ n+1un+1) = (

ρ(φn+1)un+1, un+1)
=

(
ρ(φn+1)

(
ũn+1 + 1

ρ(φn+1)
∇ψn+1

)
, un+1

)
= (

ρ(φn+1)ũn+1, un+1)
=

(
ρ(φn+1)ũn+1, ũn+1 + 1

ρ(φn+1)
∇ψn+1

)

= ‖σ n+1ũn+1‖2 +
(

un+1 − 1

ρ(φn+1)
∇ψn+1,∇ψn+1

)

= ‖σ n+1ũn+1‖2 − ‖ 1

σ n+1 ∇ψn+1‖2, (4.11)

and

2μminδt
(∇sn, ũn+1) = 2μminδt

(
sn,−∇ · ũn+1) = 2μminδt

(
sn, sn+1 − sn)

= μminδt
(‖sn+1‖2 − ‖sn‖2 − ‖sn+1 − sn‖2)

= μminδt
(‖sn+1‖2 − ‖sn‖2) − μminδt‖∇ · ũn+1‖2. (4.12)

It is easy to check by integration by parts that

‖D(u)‖2 = ‖∇u‖2 + ‖∇ · u‖2, ∀u ∈ H1
0 (�)

d . (4.13)

From μmin ≤ μn , we obtain

μmin‖∇ · ũn+1‖2 + μmin‖∇ũn+1‖2 = ‖√μmin D(ũn+1)‖2 ≤ ‖√μn D
(
ũn+1) ‖2.

(4.14)

Combining the above inequalities, we arrive at

‖σ n+1un+1‖2 − ‖σ n+1un
�‖2 + ‖ 1

σ n+1 ∇ψn+1‖2 + ‖σ n+1(ũn+1 − un
�)‖2

+μminδt (‖sn+1‖2 − ‖sn‖2)+ μminδt‖∇ũn+1‖2 ≤ 0. (4.15)

From (4.8), we have

ρ(φn+1)
un
� − un

δt
= φn∇wn+1. (4.16)

By taking the inner product of (4.16) with 2δtun
� , we obtain

‖σ n+1un
�‖2 − ‖σ n+1un‖2 + ‖σ n+1(un

� − un)‖2 = 2δt
(
φn∇wn+1, un

�

)
. (4.17)

Next, taking the inner product of the first equation of (4.4a) with −2δtwn+1, we obtain

− 2(φn+1 − φn, wn+1)− 2δt (
(∇ · (un

�φ
n), wn+1) + 2Mδt‖∇wn+1‖2 = 0. (4.18)

By integration by parts, we have

− (
(∇ · (un

�φ
n), wn+1) = (

φn∇wn+1, un
�

)
. (4.19)

On the other hand, we derive from Taylor expansion that

ρ(φn+1)− ρ(φn) = ρ′(φn+1)(φn+1 − φn)− 1

2
(ρ′′(ξn)(φn+1 − φn), φn+1 − φn).

(4.20)
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Next, by taking the inner product of the second equation in (4.4a) with 2(φn+1 − φn), after
using the above relation and the fact that ρ′′(ξn) > 0 (cf. (4.5)), we obtain

2(wn+1, φn+1 − φn)+ ‖σ n+1un‖2 − ‖σ nun‖2

+ λ (‖∇φn+1‖2 − ‖∇φn‖2 + ‖∇φn+1 − ∇φn‖2)
+ 2λ

(
fc(φ

n+1)− fe(φ
n), φn+1 − φn) ≤ 0. (4.21)

In order to deal with the nonlinear terms, we obtain the following identities by Taylor expan-
sion,

fc(φ
n+1)(φn+1 − φn) = Fc(φ

n+1)− Fc(φ
n)+ F ′′

c (ξ)(φ
n+1 − φn)2,

fe(φ
n)(φn+1 − φn) = Fe(φ

n+1)− Fe(φ
n)− F ′′

e (ζ )(φ
n+1 − φn)2. (4.22)

Subtracting the second identity from the first one, we find

( fc(φ
n+1)− fe(φ

n),
(
φn+1 − φn)

)
= (

F(φn+1)− F(φn), 1
) + (

F ′′
c (ξ)+ F ′′

e (ζ )
) ‖φn+1 − φn)‖2

≥ (
F(φn+1)− F(φn), 1

)
. (4.23)

Finally, by combining (4.9), (4.15), (4.17),(4.18), (4.21) and (4.23), we arrive at

‖σ n+1un+1‖2 − ‖σ nun‖2 + ‖σ n+1(ũn+1 − un
�)‖2 + ‖σ n+1(un

� − un)‖2

+μminδt (‖sn+1‖2 − ‖sn‖2)+ μminδt‖∇ũn+1‖2 + ‖ 1

σ n+1 ∇ψn+1‖2

+ 2Mδt‖∇wn+1‖2 + λ(‖∇φn+1‖2 − ‖∇φn‖2 + ‖∇φn+1 − ∇φn‖2)

+ 2λ
(
F(φn+1)− F(φn), 1

) ≤ 0.

We can then conclude from the above inequality. �
Remark 4.8 As noted before, a first-order stabilizing term, −δt wn+1∇φn

ρ(φn+1)
, is added to the

convective velocity un in (4.4a). This term can not be replaced by a second-order stabilizing
term while maintaining the unconditional stability. However, one may construct efficient
decoupled linear schemes at the expense of unconditional stability. For example, a formally
second-order, decoupled linear scheme is as follows:

For the sake of simplicity, we shall denote, for any sequence {ak}, a∗,k+1 = 2ak − ak−1.⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

3φn+1−4φn+φn−1

2δt + ∇ · (u∗,n+1φ∗,n+1)+ M�wn+1 = 0,

wn+1 + 1
2ρ

′(φ∗,n+1)|u∗,n+1|2 + 1
η2 (φ

n+1 − 2φn + φn−1)

+λ(−�φn+1 + 2 f (φn)− f (φn−1)) = 0,

∂nφ
n+1|∂� = 0, ∂nw

n+1|∂� = 0;

(4.24a)

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ρ(φn+1) 3ũn+1−4un+un−1

2δt + ρ(φn+1)(u∗,n+1 · ∇)u∗,n+1

−∇ · μ(φn+1)D(ũ∗,n+1)+ ∇ pn + μmin∇sn

−φ∗,n+1∇wn+1 + 1
2ρ

′(φn+1)|u∗,n+1|2∇φ∗,n+1 = 0,

ũn+1|∂� = 0;

(4.24b)

{−∇ · ( 1
ρ(φn+1)

∇ψn+1) = ∇ · ũn+1

∂nψ
n+1|∂� = 0;

(4.24c)
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⎧⎪⎪⎨
⎪⎪⎩

un+1 = ũn+1 + 1
ρ(φn+1)

∇ψn+1,

sn+1 = sn − ∇ · ũn+1,

pn+1 = pn − 3
2δtψ

n+1 + μminsn+1,

(4.24d)

with ρ(φ) and μ(φ) defined in (4.4e) and μmin = minμ(φn+1) > 0.
The above scheme is much easier to implement than the scheme (4.4). More precisely, at

each time step, it involves a coupled linear system with constant coefficients for (φn+1, wn+1),
and an elliptic equation for ũn+1 and ψn+1, respectively.

4.2 Schemes Based on a Pressure-Stabilization Formulation

We observe that for problems with large density ratios, the elliptic equation (4.4c) for pressure
maybe difficult and time consuming (often consuming more than 90 % of the total cost) to
solve compared with a Poisson equation. Therefore, we will design a pressure-stabilized
formulation which only requires solving a Poisson equation for the pressure [23,44].

Therefore, we now construct schemes based on the pressure-stabilization formulation (cf.,
for instance, [21,35,37,41]), namely, the divergence free condition is replaced by

∇ · u − ε�pt = 0, (4.25)

where ε is a small parameter.
Inspired by the schemes presented in [23,43], the first order pressure-stabilization scheme

is given as follows.
Given initial conditions φ0, p0 = 0, u0, we update (φn+1, un+1, pn+1) for n ≥ 0 by⎧⎪⎪⎪⎨

⎪⎪⎪⎩
1
δt (φ

n+1 − φn)+
(

un + δt φ
n∇wn+1

ρ(φn+1)

)
· ∇φn + M�wn+1 = 0,

wn+1 + 1
2ρ

′(φn+1)|un |2 − λ
(
�φn+1 − fc(φ

n+1)+ fe(φ
n)

) = 0,

∂nφ
n+1|∂� = 0, ∂nw

n+1|∂� = 0;
(4.26a)

⎧⎪⎪⎨
⎪⎪⎩
ρ(φn+1) un+1−un

δt + ρ(φn+1)
(
un+1 · ∇)

un+1 + 1
2ρ(φ

n+1)(∇ · un+1)un+1

−∇ · μ(φn)D(un+1)+ ∇(2pn − pn−1)− φn∇wn+1 + 1
2ρ

′(φn+1)|un+1|2∇φn+1 = 0,

ũn+1|∂�=0;
(4.26b){

�(pn+1 − pn) = ρ̄
δt ∇ · un+1,

∂n pn+1|∂� = 0;
(4.26c)

with ρ(φ), μ(φ) as defined in (4.4e) and ρ̄ = 1
2 minρ(φn+1) > 0.

Several remarks are in order.

Remark 4.9 The stabilizing term ρ(φn+1) un+1

2 ∇ · un+1, formerly with order O(δt2) in the
discrete level thanks to (4.26c), that vanishes in the PDE level from the incompressibility, is
added in (4.26b).

Remark 4.10 As for the scheme (4.4), the above scheme consists of three decoupled steps
for (φn+1, wn+1), un+1 and pn+1 − pn , respectively. The main difference between the two
schemes is that a Poisson equation for (pn+1 − pn) in the above scheme replaces the ellip-
tic equation (4.4c) in the scheme (4.4). Hence, the above scheme is computationally more
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efficient. However, the velocity approximation un+1 is no longer divergence free as in the
scheme (4.4).

Remark 4.11 In (4.26), the system (4.26a) and (4.26b) are nonlinear. One can show, as in
Remark 4.6, that this system admits at least one solution.

Theorem 4.2 Solutions to the scheme (4.26) satisfy the following discrete energy law:

1

2
‖σ n+1un+1‖2 + λ

(
1

2
‖∇φn+1‖2 + (F(φn+1), 1)

)

+ δt2

2ρ1
‖∇ pn+1‖2 + δt

(
M‖∇wn+1‖2 + 1

2
‖√μ(φn)D(un+1)‖2

)

≤ 1

2
‖σ nun‖2 + λ

(
1

2
‖∇φn‖2 + (F(φn), 1)

)
+ δt2

2ρ1
‖∇ pn‖2.

Proof We still denote

un
� = un + δt

φn∇wn+1

ρ(φn+1)
. (4.27)

By taking the inner product of (4.26b) with 2δtun+1, we obtain

‖σ n+1un+1‖2 − ‖σ nun
�‖2 + ‖σ n+1(un+1 − un

�)‖2 + δt‖√μn D(un+1)‖2

+ 2δt
(

pn+1 − 2pn + pn−1,∇ · un+1) − 2δt (pn+1,∇ · un+1)

+
(
ρ(φn+1)(un+1 · ∇)un+1 + ρ(φn+1)

un+1

2
∇ · un+1

+ 1

2
ρ′(φn+1)|un+1|2∇φn+1, 2δtun+1

)
= 0. (4.28)

For the three nonlinear terms in (4.28), we have(
ρ(φn+1)(un+1 · ∇)un+1 + ρ(φn+1)

un+1

2
∇ · un+1 + 1

2
ρ′(φn+1)|un+1|2∇φn+1, un+1

)

=
(

un+1,∇(ρ(φn+1)
|un+1|2

2
)

)
+

(
ρ(φn+1)

|un+1|2
2

,∇ · un+1
)

= 0. (4.29)

By taking the inner product of (4.26c) with 2δt2

ρ̄
(pn+1 −2pn + pn−1) and with − 2δt2

ρ̄
pn+1

separately, we derive

−δt
2

ρ̄

(‖∇(pn+1 − pn)‖2 − ‖∇(pn − pn−1)‖2 + ‖∇ (
pn+1 − 2pn + pn−1) ‖2)

= 2δt
(∇ · un+1, pn+1 − 2pn + pn−1) , (4.30)

and

δt2

ρ̄
(‖∇ pn+1‖2 − ‖∇ pn‖2 + ‖∇(pn+1 − pn)‖2) = −2δt

(∇ · un+1, pn+1) . (4.31)

After adding the above two equalities together, we find

2δt (pn+1 − 2pn + pn−1,∇ · un+1)− 2δt (pn+1,∇ · un+1)

= δt2

ρ̄
(‖∇ pn+1‖2−‖∇ pn‖2)+ δt

2

ρ̄
‖∇(pn − pn−1)‖2− δt

2

ρ̄
‖∇(pn+1−2pn + pn−1)‖2.

(4.32)
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Taking the difference of (4.26c) at step n + 1 and step n, we can derive

δt2

ρ̄
‖∇(pn+1 − 2pn + pn−1)‖2 ≤ ρ̄‖un+1 − un‖2 ≤ 1

2
‖σ n+1(un+1 − un)‖2. (4.33)

Combining the above inequalities together, we obtain

‖σ n+1un+1‖2 − ‖σ n+1un
�‖2 + ‖σ n+1(un+1 − un

�)‖2

− 1

2
‖σ n+1(un+1 − un)‖2 + δt‖√μn D(un+1)‖2

+ δt2

ρ̄
(‖∇ pn+1‖2 − ‖∇ pn‖2)+ δt2

ρ̄
‖∇(pn+1 − pn)‖2 ≤ 0. (4.34)

As in the proof of Theorem 4.1, we still have (4.16), then by taking the inner product with
un
� , the equality (4.17) is still valid.

‖σ n+1un
�‖2 −‖σ n+1un‖2 + ‖σ n+1(un

� − un)‖2 = 2δt
(
φn∇wn+1, un

�

)
(4.35)

The scheme of (4.26a) is exactly same as scheme (4.4a). By taking the inner product of the
first equation in (4.26a) with −2δtwn+1, of the second equation in (4.26a) with 2(φn+1−φn),
we obtain

− 2
(
φn+1 − φn, wn+1) − 2δt

(∇ · (
un
�φ

n)
, wn+1) + 2Mδt‖∇wn+1‖2 = 0. (4.36)

and

2(wn+1, φn+1 − φn)+ ‖σ n+1un‖2 − ‖σ nun‖2

+ λ (‖∇φn+1‖2 − ‖∇φn‖2 + ‖∇φn+1 − ∇φn‖2) + 2λ
(
F(φn+1)− F(φn), 1

) ≤ 0.

(4.37)

Using the inequality

‖σ n+1(un+1 − un
�)‖2 + ‖σ n+1(un

� − un)‖2 ≥ 1

2
‖σ n+1(un+1 − un)‖2, (4.38)

and combining the (4.34), (4.35), (4.36), (4.37) and (4.38), we finally obtain

‖σ n+1un+1‖2 − ‖σ nun‖2 + δt‖√μn D(un+1)‖2

+ δt2

ρ̄

(‖∇ pn+1‖2 − ‖∇ pn‖2 + ‖∇(pn+1 − pn)‖2)
+ 2Mδt‖∇wn+1‖2 + λ

(‖∇φn+1‖2 − ‖∇φn‖2 + ‖∇φn+1 − ∇φn‖2)
+ 2λ

(
F(φn+1)− F(φn), 1

) ≤ 0, (4.39)

which implies the desired result. �

Remark 4.12 As for the gauge-Uzawa schemes, we can also construct decoupled, linear and
second-order version of the scheme (4.26), at the expense of unconditional stability. An
example of such scheme is given below.

As before, we still denote, for any sequence {ak}, a∗,k+1 = 2ak − ak−1. Then, a second-
order, semi-implicit version of (4.26) reads:
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⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

3φn+1−4φn+φn−1

2δt + ∇ · (u∗,n+1φ∗,n+1)+ M�wn+1 = 0,

wn+1 + 1
2ρ

′(φ∗,n+1)|u∗,n+1|2 + 1
η2 (φ

n+1 − 2φn + φn−1)

+λ(−�φn+1 + 2 f (φn)− f (φn−1)) = 0,

∂nφ
n+1|∂� = 0, ∂nw

n+1|∂� = 0;

(4.40a)

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ρ(φn+1)
2δt (3un+1 − 4un + un−1)+ ρ(φn+1)(u∗,n+1 · ∇)u∗,n+1

−∇ · μ(φn+1)D(un+1)+ ∇(pn + 4
3ψ

n − 1
3ψ

n−1)

−φ∗,n+1∇wn+1 + 1
2ρ

′(φn+1)|u∗,n+1|2∇φ∗,n+1 = 0,

un+1|∂� = 0;

(4.40b)

⎧⎪⎪⎨
⎪⎪⎩
�ψn+1 = 3ρ̄

2δt ∇ · un+1,

∂nψ
n+1|∂� = 0,

pn+1 = pn + ψn+1 − μ(φn+1)∇ · un+1,

(4.40c)

with ρ(φ), μ(φ) as defined in (4.4e) and ρ̄ = 1
2 min ρ(φn+1) > 0.

5 Numerical Results and Discussions

We present in this section some numerical experiments using the schemes constructed in the
last section.

Let us first describe briefly our spatial discretization which is based on the Legendre–
Galerkin method [40]. We use the inf-sup stable (PN , PN−2) pair for the velocity and pressure
(or the gauge or pseudo-pressure), and PN for the phase function φ and the chemical potential
w. From the stability proof of last section, the authors believed that there will be straight
forward to derive the energy stability for the full discrete scheme, in the spatial discretization
in the format of Finite element method or spectral method.

In the scheme (4.4) [resp. (4.26)], we need to solve the nonlinear system (4.4a) [reps.
(4.26) which is identical to (4.4a)]. We used the following simple fixed point iteration based
on (4.7): Setting φn+1

0 = φn and wn+1
0 = wn , for k = 0, 1, . . ., find φn+1

k+1 and wn+1
k+1 by

solving ⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1
δt

(
φn+1

k+1 − φn
)

+
(

un + δt
φn∇wn

k+1

ρ(φn+1
k )

)
· ∇φn + M�wn+1

k+1 = 0,

wn+1
k+1 + 1

2ρ
′(φn+1

k )|un |2 − λ
(
− fc(φ

n+1
k )+ fe(φ

n)
)

− λ�φn+1
k+1 = 0,

∂nφ
n+1
k+1 |∂� = 0, ∂nw

n+1
k+1 |∂� = 0.

(5.1)

This is a coupled second-order system with constant coefficients which can be efficiently
solved (cf. [12]). For the examples presented below, the above approach worked reasonably
well since the time steps we used were sufficiently small due to the accuracy constraint. In
general, a Newton type iterative scheme will be more effective.

For the elliptic equations for the velocity in both schemes and for the pressure in the
scheme (4.4), we used a preconditioned conjugate gradient (PCG) method with a suitable
constant-coefficient problem as a preconditioner. These constant coefficient problems were
solved by using the fast spectral-Galerkin method [12,40].
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5.1 Example 1: A Lighter Bubble Rising in a Heavier Medium

We consider the situation where a lighter bubble (with density ρ1 and dynamic viscosity
μmin) initially inside a heavier medium (with density ρ2 and dynamic viscosity μ2) confined
in a rectangular domain � = (0, d)× (0, 3

2 d).
The equations are non-dimensionalized using the following scaled variables:

t̃ = t

t0
, ρ̃ = ρ

ρ0
, x̃ = x

d0
, ũ = u

u0
, (5.2)

where

t0 = √
d/g, d0 = d; u0 = √

dg, ρ0 = min(ρ1, ρ2). (5.3)

The dimensionless form of (4.3) with an extra gravitational force ρg in the momentum
equation, after omitting the˜from the notation, is:

φt + (u · ∇) φ + M�w = 0, (5.4a)

w + 1

2
ρ′(φ)|u|2 − λ

(
�φ − φ(φ2 − 1)

η2

)
= 0, (5.4b)

ρ (ut + (u · ∇)u)− ∇ · (μ∇u)+ ∇ p + (w + 1

2
ρ′(φ)|u|2)∇φ = ρg, (5.4c)

∇ · u = 0, (5.4d)

with

ρ(φ) = ρ̃1 − ρ̃2

2
φ + ρ̃1 + ρ̃2

2
, μ(φ) = μ̃min − μ̃2

2
φ + μ̃min + μ̃2

2
.

In the above, ρ̃1 = ρ1/ρ0, ρ̃2 = ρ2/ρ0, μ̃min = μmin/(ρ0d3/2g1/2),Qμ2 = μ2/(ρ0d3/2g1/2).
We set the initial velocity to be zero and initial phase function given by

φ(x, t = 0) = −tanh

(
r − 1

4 d

η0

)
, (5.5)

where r is the distance from the center of the bubble to the point and η0 is the diffusive
interfacial width.

In the first example, we set ρ0 = 1, ρ1 = 10 and g = (10, 0)t , μ = 1, λ = 0.05, γ =
2 × 10−6 and η0 = η = 0.02d. In Fig. 1, we plot the interface contour of {φ : φ(x) = 0}
at several different times obtained by using both the scheme (4.4) and (4.26). We use a grid
size of 2572 and a time step size of δt = 0.001. No visual difference is observed indicating
that (1) the two schemes capture well the dynamics of the bubble evolution, and (2) the new
phase-field model is robust as the two very different numerical schemes produce identical
results. Furthermore, these results are qualitatively consistent with the results presented in
[43] where an ad-hoc but consistent term was added to ensure the stability.

5.2 Example 2: An Air Bubble Rising in Water

The second example we consider is an air bubble rising in water. The physical parameters
are ρ1 = 1.161 and ρ2 = 995.65 with μmin = 0.0000186, μ2 = 0.0007977. We set
d = 0.005, g = 9.8, λ = 0.05, γ = 2 × 10−8 and η0 = η = 0.02d. We use a grid size
of 2572 and time step size of δt = 0.0001. In Fig. 2, we plot a comparison of the level sets
{φ : φ = 0} by the two proposed schemes at different snapshots. We observe that the two
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Fig. 1 Example 1: Snapshots of interfaces contours of φ at t = 0, 5, 10, 15, 20, 25 using (4.4) (Scheme-1)
and (4.26) (scheme-2)

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5
Scheme−1
Scheme−2

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5
Scheme−1
Scheme−2

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5
Scheme−1
Scheme−2

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5
Scheme−1
Scheme−2

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5
Scheme−1
Scheme−2

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5
Scheme−1
Scheme−2

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5
scheme−1
scheme−2

0.2 0.3 0.4 0.5 0.6 0.7 0.8

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

1.2
Scheme−1
Scheme−2

(a)

Fig. 2 Example 2: snapshots at t = 1, 2, 2.5, 3, 3.5, 4, 7 using schemes (4.4) (Scheme-1) and (4.26)
(Scheme-2).

schemes produce visually identical results. Once again, the results are qualitatively similar
to those in [43].

5.3 Summary

We considered the thermodynamically consistent phase-field model, first presented in [2],
for incompressible and immiscible two-phase flows with different densities and viscosities.
We rederived the model from an energetic variational formulation starting from the first and
second thermodynamic laws.

We constructed two classes of decoupled numerical schemes, one based on a gauge-Uzawa
formulation and the other based on a pressure-stabilization method. The former leads to a
divergence free velocity field but requires solving, at each time step, an elliptic equation for the
pressure with 1

ρ
as coefficients, while the latter leads to a velocity field which is approximately
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divergence free, but only requires solving a Poisson equation for the pressure at each time
step. Both schemes are unconditionally energy stable. To the authors’ best knowledge, these
are the first schemes for phase-field models which lead to decoupled computations of phase
function, velocity and pressure.

We also presented numerical results to validate the model and the proposed schemes.
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