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Abstract

We discuss the (conjugated) Bubnov–Galerkin and Petrov–Galerkin infinite element (IE) discretizations to Helm-
holtz equation including the use of elements of locally variable order, optimal choice of IE shape functions, calculation
of Echo Area (EA), and automatic hp-adaptivity. The discussion is illustrated with 2D numerical experiments.
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1. Introduction

The idea of coupled finite element (FE)/infinite element (IE) approximations for exterior wave propaga-
tion problems dates back to the pioneering contributions of Bettess, and Bettess and Zienkiewicz, see [5]
and the literature cited therein.

The works of Astley et al. [3], Cremers et al. [8], Givoli [13] and many others recognized the spectral char-
acter of the approximation and pointed to the necessity of multipole expansions. Burnett [7] revolutionized
the approach from the practical point of view, by introducing a new, symmetric unconjugated formulation,
and using prolate and oblate spheroidal elements, we refer to [18] for a recent review on the subject.

Contrary to the concept of Perfectly Matched Layer [4], and other techniques based on Absorbing
Boundary Conditions (ABC�s), the conjugated element of Astley et al. [3], aims at obtaining the solution
in the whole unbounded domain.
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For Laplace equation (coercive problems in general), convergence analysis for coupled FE/IE discreti-
zations reduces to the proof of approximability, see [12]. With the stability granted, the IE discretization in
spherical or ellipsoidal coordinates, can be replaced with techniques better suited for more complex geo-
metries, and adaptivity, see e.g. [6] for the idea of inverted finite elements. The energy (L2 norm of the solu-
tion gradient) is finite which allows for a standard Bubnov–Galerkin discretization. It is perhaps worth
mentioning that, for unbounded domains, L2-integrability of derivatives does not imply the L2-integrability
of the function, solution of the Laplace exterior problem ‘‘lives’’ in a weighted L2 space only.

The Helmholtz equation is dramatically different. The energy of the solution is no longer finite. This is
not a surprise; solution to the Helmholtz equation is the steady-state solution corresponding to a time-har-
monic forcing term and infinite time. For each finite time interval, the energy ‘‘pumped’’ into the system is
finite but, over the infinite time, becomes infinite. This prohibits the use of identical trial and test functions
in the standard Bubnov–Galerkin method, if the energy and mass terms in the variational formulation are
to be Lebesgue integrable. The Petrov–Galerkin formulation of Astley et al. [3] becomes the natural choice.

The unconjugated Bubnov–Galerkin symmetric formulation of Burnett is possible due to the interpre-
tation of the integrals in the Cauchy Principal Value (CPV) sense. However, it appears that the possibility
of using the same idea for the conjugated element has been unexplored.

Convergence analysis for the exterior Helmholtz problem is much more challenging than for the Laplace
equation. Due to the unboundedness of the domain, the compact perturbation argument does not work.
One possibility of analyzing the convergence is to give up on the analysis in the whole exterior domain,
and treat the infinite element as an implicit ABC. The exact Dirichlet-to-Neumann (DtN) operator is then
replaced with its approximate IE counterpart. This was the idea behind the analysis presented in [10] where
sufficient conditions for convergence, expressed in terms of eigenvalues of the approximate DtN operator,
were formulated.1 Those eigenvalues were determined only numerically and, in a strict mathematical sense,
the proof of convergence for the infinite elements remains an open problem.

Spectral discretizations are much more sensitive to conditioning problems, and infinite elements of
higher order are not exception. Conditioning problems have been reported by many authors, see e.g.
[2,16]. Similar problems have been encountered in context of using infinite elements for solving exterior
Maxwell problems and determining Radar Cross Sections (RCS) [19].

This short contribution has been motivated with the idea of the second author who, several years ago,
suggested to employ rational functions generated from the (integrated) Jacobi polynomials for infinite ele-
ment shape functions, as a possible means for overcoming the conditioning problems. The results reported
in this work have been obtained in context of a larger effort aimed at using coupled FE/IE hp discretizations
for determining the far-field patterns represented by Echo Area (EA) in acoustics, and Radar Cross Section
(RCS) in electromagnetics.

In process of putting together a chapter on hp-adaptivity for exterior boundary value problems, the first
author has learned a few extra new (at least for him) facts that (we hope) may be useful to the IE commu-
nity. Those include the following issues:

• The possibility of a Bubnov–Galerkin discretization for the conjugated element.
• The possibility of a simultaneous construction of IE shape functions for both 2D and 3D problems.
• The possibility of varying locally the IE spectral order of approximation.
• The possibility of a direct evaluation of Echo Area from the IE representation, without any costly

postprocessing.
1 Only the case of spherical infinite elements was analyzed.
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All derivations have been done for cylindrical (spherical) truncating surfaces only, and we report here
only two-dimensional calculations.
2. Formulation of the problem

We shall consider the exterior boundary value problem for the Helmholtz equation, representing a class
of acoustical rigid scattering problems.

Let Xint be an open bounded domain in Rn, we set X ¼ Rn � �Xint. Given an incident pressure wave uinc

that satisfies the Helmholtz equation in the whole space
�Duinc � k2uinc ¼ 0 in Rn;
we look for a scattered pressure wave u that satisfies:

• The same Helmholtz equation, but only in the exterior domain
�Du� k2u ¼ 0 in X ¼ Rn � Xint;
• Neumann boundary condition on boundary C = oX = oXint
oðuþ uincÞ
on

¼ 0;
• Sommerfeld radiation condition at infinity
ou
or
þ iku 2 L2ðXÞ:
Here k ¼ x
c > 0 is the wave number with x representing the angular frequency, and c the speed of sound in

the (homogeneous) medium, n is the outward unit vector, and r stands for the radial coordinate correspond-
ing to polar coordinates with the origin at an arbitrary point, typically chosen inside of the interior domain
Xint occupied by the rigid obstacle (scatterer). As the gradient of the pressure is proportional to the velocity
vector, the Neumann boundary condition corresponds to the requirement that the normal component of
the total velocity vector must vanish on the boundary of the rigid obstacle. The sum of the incident and
scattered pressures represents the total pressure wave. In practice, the incident pressure wave corresponds
to a source located away from the obstacle. If the location of the source is far enough, the incident pressure
wave may be assumed in the form of a plane wave (source at infinity)
uincðxÞ ¼ u0e�ike�x;
where u0 is a scaling factor, and unit vector e represents the direction of the incoming incident wave. As the
problem is linear, we can assume u0 = 1. The role of the incident wave is therefore to provide only a driving
Neumann load data on boundary C
ou
on
¼ g :¼ � ouinc

on
: ð2:1Þ
The Sommerfeld radiation condition represents a requirement that the scattered wave must be outgoing to
infinity, and it can be represented in many different but equivalent forms. The form used here has a partic-
ular advantage of being independent of space dimension. Notice that the formula for the plane wave, and
the sign in the Sommerfeld radiation condition correspond to the eixt ansatz in time.
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Of particular interest to us, will be the computation of the monostatic Echo Area (EA) defined as
2 �v re
lim
r!1
juðrx̂Þjra: ð2:2Þ
Here x̂ is a point on the unit sphere (circle) opposite to the direction of the incident wave, e ¼ �x̂, and u is
the corresponding scattered wave. Coefficient
a ¼
1
2

in R2;

1 in R3;

(
ð2:3Þ
reflects the decay rate of the leading term (far-field pattern) of the solution.
3. Infinite element discretization

The idea of coupled finite/infinite elements is illustrated in Fig. 1. The scatterer is surrounded with an
ellipsoidal truncating surface partitioning the exterior domain X into the ‘‘near-field’’ domain Xa in between
the scatterer and the truncating surface, and the remaining ‘‘far-field’’ domain Xa. The near-field domain is
then meshed with finite elements, and the ‘‘far-field’’ domain is discretized with infinite elements, in a fully
conforming way. In practice, the exact geometry of the truncating surface is replaced with its FE isopara-
metric approximation. The infinite elements are aligned with the coordinate lines of the ellipsoidal system of
coordinates. In our discussion, we will restrict ourselves to the simplest case of cylindrical (2D) or spherical
(3D) truncating surface of radius a, only.

3.1. Variational formulation

We will discuss the variational formulation for the ‘‘far-field’’ part of the domain first.
We introduce a larger circle (sphere in 3D) of radius R, and follow the standard derivation of the var-

iational formulation for the truncated far-field domain
XR
a ¼ fx : a < jxj < Rg:
Assuming u; v 2 H 1ðXR
a Þ, we obtain,2
Z

XR
a

f$u$�v� k2u�vgdxþ ik
Z

SR

u�vds ¼
Z

Sa

ou
on

�v dsþ
Z

SR

w�vds; 8v: ð3:4Þ
Here w :¼ ou
or þ iku, according to the Sommerfeld condition, denotes an unknown function, L2-integrable in

Xa, and Sa is the truncating circle or sphere.
We want to pass with R! +1 in (3.4). The L2-integrability of function w implies that the unknown

term involving function w will vanish. The first boundary integral on the right-hand side is independent
of R, so we only need to focus on the two integrals on the left-hand side only.

3.1.1. System of coordinates

We will use a curvilinear system of coordinates, corresponding to an arbitrary parametrization of the
truncating surface. In 2D, we have
xðr; nÞ ¼ rxaðnÞ; r > 1; jxaj ¼ a;
where xa(n) denotes a parametrization of the truncating circle of radius a.
presents the complex conjugate of v.



Fig. 1. FE/IE mesh around a scatterer.
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We have the standard formulas
ox

or
¼ xa ¼ aer; where er :¼ a�1xa;

ox

on
¼ r

dxa

dn
¼ r

dxa

dn

����
����e; where e :¼ ox

on

����
�����1

ox

on
;

$u ¼ 1

a
ou
or

er þ
1

r
ou
on

dxa

dn

����
�����1

e|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
$Sa u

¼ 1

a
ou
or

er þ
1

r
$Sa u;

ð3:5Þ
with $Sa denoting the gradient on the circle Sa.
The corresponding formulas in 3D are slightly more complex. The system of coordinates is defined as
xðr; nbÞ ¼ rxaðnbÞ; b ¼ 1; 2; jxaðnbÞj ¼ a; r > 1; ð3:6Þ
where xa(nb) is a parametrization of the truncating sphere of radius a. The basis vectors are
ab ¼ r
oxa

onb
¼ r

oxa

onb

����
����eb; ar ¼ xa ¼ aer: ð3:7Þ
We assume that the parameters b have been ordered in such a way that er = e1 · e2. The cobasis vectors are
given by
a1 ¼ r�1jac�1
a

oxa

on2

� er

� �
; a1 ¼ �r�1jac�1

a

oxa

on1

� er

� �
; ar ¼ a�1er; ð3:8Þ
where
jaca ¼
oxa

on1

� oxa

on2

� �
� er: ð3:9Þ
Denoting by âb; â
b basis and cobasis vectors on the truncating surface, i.e.
ab ¼ râb; ab ¼ r�1âb; ð3:10Þ

we obtain a formula for the gradient similar to its 2D version (3.5)3
$u ¼ r�1 ou
onb

âb

|fflffl{zfflffl}
$Sa u

þa�1 ou
or

er: ð3:11Þ
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As usual, repeated indices indicate summation.
The sesquilinear form in the variational formulation over domain XR

a is computed as follows:
bðu; vÞ ¼ a�1

Z
Sa

Z q

1

ou
or

o�v
or
� ðkaÞ2u�v

� �
r2a dr dSa þ a

Z
Sa

Z q

1

1

r2
$Sa u$Sa�vr2adr dSa

þ ikq2a

Z
Sa

uðq; �Þ�vðq; �ÞdSa; ð3:12Þ
where qa = R, dSa ¼ j dxa
dn jdn in 2D, and dSa = jaca dn1 dn2 in 3D.

3.1.2. Incorporating the far-field pattern: change of dependent variable
Consistent with the far-field pattern, known from the Atkinson–Wilcox expansion, we shall seek the

solution u in the form
u ¼ e�ikaðr�1Þ

ra
U ; ð3:13Þ
where U is the new unknown, and a is a dimension dependent constant defined in (2.3). An identical sub-
stitution will be used for test functions. The idea is to substitute these representations into the variational
formulation over the truncated far-field domain XR

a , cancel out all Lebesgue non-integrable terms, and then
pass with R!1.

Substituting (3.13) into the second integral in the formula for the sesquilinear form (3.12) yields simply
a
Z

Sa

Z q

1

1

r2
$Sa U$Sa

�V dr dSa; ð3:14Þ
and we need to focus only on the inner integral of the sum of the first and the third term
a�1

Z q

1

ou
or

o�v
or
� ðkaÞ2u�v

� �
r2a dr þ ikq2auðqÞ�vðqÞ; ð3:15Þ
for a particular value of n.
We shall proceed with the substitution (3.13) in three steps.
Step 1: Taking out the oscillating factor. By setting
uðrÞ ¼ e�ikaðr�1ÞUðrÞ; �vðrÞ ¼ eikaðr�1Þ �V ðrÞ;
we obtain
ou
or
¼ oU

or
� ikaU

� �
e�ikaðr�1Þ;

o�v
or
¼ o�V

or
þ ika�V

� �
eikaðr�1Þ:
This leads to the following modification of the integrand (3.15):
a�1

Z q

1

oU
or

o�V
or
þ ika

oU
or

�V � U
o�V
or

� �� �
r2a dr þ ikq2aUðqÞ�V ðqÞ: ð3:16Þ
Notice that the cancellation obtained so far, does not guarantee Lebesgue integrability of all the remaining
terms. With a leading term 1/r for both U and V, the first term in the integrand is integrable but the second
and third are not. In order to avoid introducing new symbols, we shall trade now symbols U, V back for u, v
a�1

Z q

1

ou
or

o�v
or
þ ika

ou
or

�v� u
o�v
or

� �� �
r2a dr þ ikq2auðqÞ�vðqÞ: ð3:17Þ
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Step 2: Taking out the Jacobian. We substitute
u ¼ r�aU ; �v ¼ r�a �V ;

ou
or
¼ oU

or
� a

r
U

� �
r�a;

o�v
or
¼ o�V

or
� a

r
�V

� �
r�a:
This eliminates the Jacobian from the integrand (3.17)
a�1

Z q

1

oU
or
� a

r
U

� �
o�V
or
� a

r
�V

� �
þ ika

oU
or

�V � U
o�V
or

� �� �
dr þ ikUðqÞ�V ðqÞ: ð3:18Þ
Integration by parts of the last term in the integrand leads to
a�1

Z q

1

oU
or
� a

r
U

� �
o�V
or
� a

r
�V

� �
þ 2ika

oU
or

�V
� �

dr þ ikUð1Þ�V ð1Þ: ð3:19Þ
Expanding the first term leads to
a�1

Z q

1

oU
or

o�V
or
� a

r
oU
or

�V � a
r

U
o�V
or
þ a2

r2
U �V þ 2ika

oU
or

�V
� �

dr þ ikUð1Þ�V ð1Þ: ð3:20Þ
Finally, after integrating by parts the third term, we get
a�1

Z q

1

oU
or

o�V
or
þ aða� 1Þ

r2
U �V þ 2ika

oU
or

�V
� �

dr þ aþ ika
a

Uð1Þ�V ð1Þ � a
qa

UðqÞ�V ðqÞ: ð3:21Þ
Upon passing with q!1, we obtain
a�1

Z 1

1

oU
or

o�V
or
þ aða� 1Þ

r2
U �V þ 2ika

oU
or

�V
� �

dr þ aþ ika
a

Uð1Þ�V ð1Þ: ð3:22Þ
Step 3: Change of the independent variable. Our final substitution involves mapping a neighborhood of
infinity into a neighborhood of zero. We substitute
r ¼ 1

x
; dr ¼ � 1

x2
dx;

dU
dr
¼ �x2 dU

dx
: ð3:23Þ
The final formula for the sesquilinear form is

bðu; vÞ ¼
Z

Sa

Z 1

0

a�1 x2 oU
ox

o�V
ox
þ aða� 1ÞU �V � 2ika

oU
ox

�V
� �

þ a$Sa U$Sa
�V

� 	
dxdSa

þ aþ ika
a

Z
Sa

Uð1; �Þ�V ð1; �ÞdSa; ð3:24Þ

where the combined transformation is
uðr; nÞ ¼ e�ikaðr�1Þ

ra
Uðr; nÞ ¼ e�ikaðx�1�1ÞxaUðx; nÞ; ð3:25Þ
with an identical formula for the test functions.
The ultimate variational formulation is obtained by taking the standard variational formulation for the

‘‘near-field’’ domain
Z
Xa
f$u$�v� k2u�vgdx ¼

Z
C

g�vdsþ
Z

Sa

ou
on

�vds; 8v
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and summing it up with (3.4). We obtain the final variational formulation in the standard abstract form:
Find u 2 X such that
bðu; vÞ ¼ lðvÞ; 8v 2 Y ; ð3:26Þ

where X and Y are some appropriate functional spaces, and the sesquilinear and antilinear forms are given
by
bðu; vÞ ¼
Z

Xa
f$u$�v� k2u�vgdx

¼
Z

Sa

Z 1

0

a�1 x2 oU
ox

o�V
ox
þ aða� 1ÞU �V � 2ika

oU
ox

�V
� �

þ a$Sa U$Sa
�V

� 	
dxdSa

þ aþ ika
a

Z
Sa

Uð1; �Þ�V ð1; �ÞdSa;

lðvÞ ¼
Z

C
g�vds:

ð3:27Þ
At this point, the variational formulation is purely formal. Finding the right functional setting for the
case of identical trial and test spaces X = Y, remains an open problem.

3.2. Selecting IE radial shape functions

As usual, shape functions for the infinite elements are constructed by taking tensor products of one-
dimensional radial shape functions of coordinate x (or, equivalently, r) and standard FE shape functions
corresponding to the edge (face in 3D) lying on the truncating circle (sphere)
Uðx; nÞ ¼
X

kl

U klwkðxÞelðnÞ: ð3:28Þ
The corresponding infinite element space of test functions is the tensor product of polynomials of order N

in x and polynomials of order p in n, PN �Pp. Here N is the (radial) order of the infinite element. The con-
struction extends in a standard way to elements of variable order.

There are many possible choices for the IE radial shape functions.

3.2.1. Same trial and test functions (Bubnov–Galerkin)

The leading term (derivative times derivative) in (3.24) suggests the use of integrated Jacobi polynomials
P ð0;2Þn (transformed to interval (0,1))
wjðnÞ ¼
1; j ¼ 0;Z 1

n
P ð0;2Þj�1 ð2t � 1Þdt; j P 1:

8<
: ð3:29Þ
Only the first IE shape functions ‘‘connects’’ with the adjacent finite element, the remaining ones vanish
on the truncating surface and, in terminology of hp methods, they can be classified as IE ‘‘bubbles’’. Shape
functions wj, j P 1, can be normalized to satisfy a desired scaling condition.

The same shape functions are used for the test functions. Recall that Jacobi polynomials P ð0;2Þn are
orthogonal in the weighted L2 inner product
Z 1

�1

ð1þ tÞ2u0v0 dt: ð3:30Þ
After rescaling x = 2t � 1, the corresponding polynomials, defined on the unit interval (0, 1), are orthogo-
nal in the inner product
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Z 1

0

x2u0v0 dx; ð3:31Þ
corresponding to the first term in the sesquilinear form (3.24). The rationale of the choice is that, asymp-
totically in order N, the leading term is most responsible for conditioning problems.

Notice that, except for the choice of the radial shape functions, the representation for the approximate
solution is standard
uðr; nÞ ¼ e�ikaðr�1Þ

ra

X
j

X
l
U jlelðnÞ|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
ujðnÞ

wj

1

r

� �
: ð3:32Þ
The main point is the choice of the same test functions, possible only because of the interpretation of the inte-
grals in the CPV sense. Notice also that the construction is identical for both 2D and 3D problems. The dif-
ference between 2D and 3D is reflected only by different values of coefficient a in formulas (3.25) and (3.24).

We emphasize, however, that even with the same trial and test functions, the corresponding stiffness
matrix is neither hermitian nor complex-symmetric. Consequently, a general complex solver must be used.

3.2.2. Different trial and test functions (Petrov–Galerkin)

If all the integrals are to be interpreted in the Lebesgue sense only, the leading term for the test functions
V(x) must be x2a. In other words, the test functions must be of order 1/r2 in 2D, and order 1/r3 in 3D.
Replacing V with x2aV in (3.24), we obtain a modified formula for the sesquilinear form
bðu; vÞ ¼
Z

Sa

Z 1

0

a�1 x2þ2a oU
ox

o�V
ox
þ aða� 1Þx2aU �V þ ð2ax2a�1 � 2ikaÞx2a oU

ox
�V

� ��

þ ax2a$Sa U$Sa
�V
	

dxdSa þ
aþ ika

a

Z
Sa

Uð1; �Þ�V ð1; �ÞdSa: ð3:33Þ
The leading term suggests now the use of integrated Jacobi polynomials P ð0;3Þn in 2D, and integrated Jacobi
polynomials P ð0;4Þn in 3D. The choice is no longer dimension independent. In 2D, we have
wjðnÞ ¼
1; j ¼ 0;Z 1

n
P ð0;3Þj�1 ð2t � 1Þdt; j P 1:

8<
: ð3:34Þ
Notice that the substitution V: = x2aV is equivalent with the choice of different test shape functions
/jðxÞ ¼ x2awjðxÞ: ð3:35Þ
It is for this reason that we identify it as the Petrov–Galerkin method. With such a choice of test func-
tions, there is no need for the CPV interpretation of the integrals. In terms of spaces, the method is identical
with the element of Astley et al. [3]. We will compare the two methods with simple 2D numerical experi-
ments in the next section.
4. Numerical experiments

4.1. Implementation details

The infinite element was implemented within 2Dhp90, a two-dimensional code supporting automatic hp-
adaptivity for both H1- and H(curl)-conforming hybrid meshes consisting of isoparametric quads and tri-
angles [9]. Shape functions el(n) in (3.28) have to match the FE shape functions used in the code and, in all
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reported experiments, we have used the standard choice—integrated Legendre polynomials. Integration of
infinite element stiffness matrix was done using the standard Gauss–Legendre quadrature, with the number
of integration points equal to p + 1 in the tangential, and N + 1 in the radial directions, where p and N

denote the order of the infinite element in the tangential and the radial directions, respectively.

4.1.1. Automatic hp-adaptivity

We refer to [11] for details on the algorithm executing the automatic hp-adaptivity. Starting with an ini-
tial coarse mesh, we refine the mesh globally in both h and p, and solve the problem on the fine mesh. The
next optimal coarse mesh is obtained then by minimizing the projection-based interpolation error of the fine
grid solution with respect to the coarse grid. More precisely, the optimal coarse mesh is obtained by max-
imizing the rate with which the interpolation error decreases, as the current coarse grid undergoes selective,
local hp-refinements. One of the primary goals of the presented research is to determine whether the strat-
egy can be used for the scattering problems. The mesh optimization is restricted to the near-field (truncated)
domain only, i.e. the infinite elements are treated as an implicit implementation of ABC�s of arbitrary order.

4.1.2. Choice of radial order N

The infinite elements in the initial mesh are assumed to be isotropic, i.e. order N in the radial direction is
set to the corresponding order p of the edge on the truncating circle. We always begin with elements of sec-
ond order.

During the hp-refinements, edges on the truncating circle get p- or h-refined. Every time, the edge is p-
refined, its IE radial order is updated, i.e. N is increased to N + 1. We also increase the IE order when the
edge is h-refined. Therefore, in presence of h-refinements, we encounter infinite elements with radial order N

greater than the FE order p. This reflects the philosophy that any improvement in the approximation prop-
erties on the truncating circle, should be accompanied with the corresponding improvement in the radial
direction as well.

In the presented experiments (due to software related limitations), the IE radial order has been restricted
to N 6 9.

4.2. Calculation of Echo Area

4.2.1. Direct evaluation using the IE solution

The simplest way to evaluate EA is based on using the shape functions (3.28). More precisely, if the
direction x̂ intersects with a finite element edge on the truncating circle, and n̂ is the value of the correspond-
ing parameter, i.e.
xaðn̂Þ
jxaðn̂Þj

¼ x̂;
the Echo Area (2.2) is evaluated by substituting in (3.28) x = 0
X
j;l

U jlejðn̂Þwlð0Þ
�����

�����jxaðn̂Þja: ð4:36Þ
Here, the summation extends over all IE shape functions (d.o.f.) denumerated with the double index (j, l).

4.2.2. Evaluation through postprocessing

We shall limit our discussion to the 2D case. Any function u that satisfies the Helmholtz equation in a
domain exterior to a closed boundary C, along with the Sommerfeld radiation condition, satisfies automat-
ically the Helmholtz representation formula
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uðxÞ ¼
Z

C
� ou

on
ðyÞUðx; yÞ þ uðyÞ oU

on
ðx; yÞ

� 	
dsðyÞ: ð4:37Þ
Here n = n(y) is the unit normal directed to infinity, and U denotes the fundamental solution to the Helm-
holtz operator
Uðx; yÞ ¼ Uðkjx� yjÞ;

where
UðkrÞ ¼ H ð2Þ0 ðkrÞ
4i

: ð4:38Þ
Here H ð2Þ0 denotes the Hankel function of the second type, of order 0. Notice that changing the ansatz in
time to e�ixt, requires switching to the Hankel function of the first type.

Evaluating the normal derivative of the fundamental solution
oU
on
ðx; yÞ ¼ kU0ðkjx� yjÞ nðyÞ � x� y

jx� yj|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
cos by

;

we get
uðxÞ ¼
Z

C
� ou

on
ðyÞUðjx� yjÞ þ kuðyÞU0ðkjx� yjÞ cos by

� 	
dsðyÞ: ð4:39Þ
Using the far-field approximation
jx� yj ¼ jxj � y � x̂;

and the asymptotic formula for the Hankel function and its derivative [1]
UðkrÞ ¼ i

ffiffiffiffiffiffiffi
2

pkr

r
e�ikr; U0ðkrÞ ¼

ffiffiffiffiffiffiffi
2

pkr

r
e�ikr;
we obtain
lim
jxj!1

jxj
1
2juðxÞj ¼ 1

4

ffiffiffiffiffi
2

pk

r Z
C
� ou

on
ðyÞ þ ikuðyÞn � x̂

� 	
eikðy�x̂Þ dsðyÞ

����
����: ð4:40Þ
The integration can take place over any contour surrounding the scatterer. In context of the IE discretiza-
tion, it is natural to integrate over the element edges adjacent to the truncating circle.

4.3. Evaluation of the error

In all reported experiments, the error is computed in the H1-semi-norm, integrated only over the near-
field domain. This is in line with treating the infinite element as an implicit implementation of an ABC only.
Evaluation of the error over the whole exterior domain should be done in a weighted Sobolev norm. Since,
at present, we do not understand the functional setting for the Bubnov–Galerkin case, we shall restrict our-
selves to the near-field domain only and will not claim any convergence over the whole exterior domain.3

The error is reported in percent of the semi-norm of the solution, defined over the same domain. The exact
solution for the cylinder problem is computed using the standard formula involving Hankel functions [14].
For the wedge problem, the unknown solution is replaced with the solution on the hp-refined mesh, see [11].
do report, however, convergence of the Echo Area.
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4.4. Selection of radial shape functions: conditioning

We do not report any extensive experiments related to conditioning. As a simple illustration supporting
the idea of using integrated Jacobi polynomials, we have computed4 only the condition number for the one-
dimensional stiffness matrix corresponding to (3.22) and a = 1, preconditioned with the inverse of the cor-
responding diagonal matrix. More precisely, we have computed
4 Th
condB ¼ k
1
2
maxðB �B

TÞ
k

1
2
minðB�B

TÞ
; ð4:41Þ
where B = (diag A)�1A, with A denoting the complex-valued matrix corresponding to sesquilinear form
(3.22), and a particular choice of shape functions. diagA denotes the diagonal of matrix A, and kmax

and kmin denote the largest and the smallest eigenvalues of the corresponding matrices. Three choices of
radial shape functions were investigated. Along with the integrated Jacobi polynomials discussed earlier,
we have also tried simple monomials, and integrated Legendre polynomials
wjðxÞ ¼
1; j ¼ 0;

xj � 1; j > 1;

�
wjðxÞ ¼

1; j ¼ 0;Z 1

x
Lj�1ðtÞdt; j > 1:

8<
: ð4:42Þ
Results presented in Fig. 2 support the idea of orthogonalizing the leading term in formula (3.22), although
they are a little bit surprizing. For higher values of order N, the integrated Legendre polynomials perform
slightly better than the integrated Jacobi polynomials. Both Legendre and Jacobi polynomials outperform
significantly simple monomials. Preconditioning with the inverse of the diagonal matrix does not eliminate
the effect of scaling of the shape functions. In the reported experiment, the Legendre polynomials were
scaled the standard way: Lj(1) = 1, and the integrated Jacobi polymials were scaled to 1 at x = 0. An opti-
mal scaling may result in an additional improvement in conditioning.

4.5. Scattering of a plane wave on the rigid cylinder: verification of the code

We begin with the standard verification test—scattering of a plane wave by a unit cylinder; for the ana-
lytical solution expressed in terms of a series of Hankel functions, see e.g. [14]. We set the wave number to
k = p, and truncate the infinite domain with a circle of radius a = 3. Fig. 3 displays convergence history for
p-uniform and hp-adaptive refinements, starting with a mesh of 16 quadratic elements. The horizontal axis
corresponds to the number of d.o.f. n displayed on the algebraic scale n1/3, with the vertical axis presenting
the error on the logarithmic scale. A straight line indicates the exponential convergence
error � Cebn1=3

;

predicted by the theory. Notice that the actual numbers displayed on the axes correspond to the quantities
being displayed, i.e. the relative error in percent of the norm of the solution on the vertical axis, and the
number of d.o.f. on the horizontal axis.

As expected, the uniform p refinements deliver exponential convergence, with the adaptive refinements
delivering slightly smaller error but the same rates. Fig. 4 shows the optimal hp mesh, corresponding to an
error of 0.025%. Different colors indicate different (locally changing) order of approximation p ranging
from p = 1 to p = 8 (color scale on the right).

Fig. 5 presents contour lines of the real part of the error function, for a uniform mesh of quartic ele-
ments. The values, indicated by the color scale on the right, range from �0.006 to 0.006. Along with the
e computations were done by Jason Kurtz whose help we gratefully acknowledge.
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Fig. 2. Condition number (4.41) for three different choices of radial shape functions with ka = p.
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Fig. 3. Scattering of a plane wave on a cylinder. Convergence history for p-uniform and hp-adaptive refinements. The horizontal axis
displays number of d.o.f. n plotted on the algebraic scale n1/3, and the vertical axis shows the corresponding relative error (in percent of
the norm of the solution), plotted using the logarithmic scale.
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FE mesh, the graph displays a portion of the infinite elements corresponding to 0.5 < x < 1. The solution in
the IE domain seems to be actually better than in the finite element domain which indicates that lower order
infinite elements would have been sufficient. Finally, for the same mesh of quartic elements (1.5% error),
Fig. 6 presents the monostatic EA corresponding to the range of 180–0� (left to right), displayed in dB
(20 log of the actual value) versus the angle. Both methods for computing EA yield graphically indiscernible



Fig. 4. Scattering of a plane wave on a cylinder. Optimal hp mesh corresponding to 0.025% error. Different colors (shades of grey)
indicate different (locally changing) order of approximation p ranging from p = 1 to p = 8 (color scale on the right). (For interpretation
of the references in color in this figure legend, the reader is referred to the Web version of this article.)
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results (the first three significant digits are identical). The derivatives in formula (4.40) have been averaged
over the adjacent finite and infinite elements. With the derivatives evaluated using only the contributions
from either finite or infinite elements, the corresponding value of EA is less accurate. The slight variations
of the EA for the cylinder, reflect the imperfect approximation of the geometry due to the use of isopara-
metric elements (for exact geometry elements, the EA would have been constant).

4.5.1. Comparison of Bubnov– and Petrov–Galerkin formulations

Both methods deliver practically identical results. The automatically generated hp meshes are identical
and the corresponding convergence graphs are visually indiscernible. Same conclusions apply to the wedge
problem discussed next.

4.6. Scattering of a plane wave on a wedge

The second and final example deals with the resolution of singularities, and its impact on EA computa-
tions. We have divided the cylinder from the previous example into four equal quadrants and kept just one
of them. We set the wave number k = p, i.e. the distance between the truncating boundary and the object is
equal to one wavelength. We start with an example of a typical, automatically obtained hp mesh corre-
sponding to the incident wave coming from the right (angle h = 0), and rather academic error level of
0.1%. Figs. 7 and 8 present the optimal mesh, with three consecutive zooms showing details of the mesh
around the lower corner. Fig. 9 presents convergence history for the problem using either Bubnov– and
Petrov–Galerkin formulations. Similarly to the cylinder problem, the results are visually indiscernible.

4.7. Does the resolution of singularities matter?

We come to the final experiment reflecting the impact of adaptivity on evaluation of EA. Fig. 10 com-
pares EA for the wedge problem evaluated using a uniform mesh of quartic elements and hp-adaptive
meshes. The choice of the uniform meshes reflects the usual practice of selecting a mesh that reproduces



Fig. 5. Scattering of a plane wave on a cylinder. Real part of the error function for a uniform mesh of quartic elements.
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Fig. 6. Scattering of a plane wave on a cylinder. Echo Area in dB vs. direction of the incident wave in degrees, for a uniform mesh of
quartic elements (1.5% error).
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the wave form of the solution (two quartic elements per wavelength) and delivers an error in the range of 3–
4%. The hp meshes were obtained by requesting a 2% error level, at which several levels of hp-refinements
resolve the structure of the singularities in the solution. For each direction of the incoming wave
(h = 180,179, . . . , 0, left to right), the hp-adaptive algorithm was run starting with the optimal mesh for
the previous direction, with the optimization procedure restarted from the initial mesh every 10�.

Except for a slight shift in the EA level, the results are practically identical. Resolution of the singular-
ities seems to have no impact on quality of the EA computations.



Fig. 7. Scattering of a plane wave on a wedge, h = 0. Optimal hp mesh for 0.1% error, with a 10 times zoom on the lower corner.

Fig. 8. Scattering of a plane wave on a wedge, h = 0. Optimal hp mesh for 0.1% error. Zooms on the lower corner with 100 and 1000
magnifications.
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Fig. 9. Scattering of a plane wave on a wedge. Convergence history for adaptive hp refinements using Bubnov– and Petrov–Galerkin
IE formulations. Relative error in percent vs. the number of d.o.f.
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Fig. 10. Scattering of a plane wave on a wedge. Echo Area in dB vs. the direction of the incident wave in degrees, for the uniform mesh
of quartic elements (3–4% error range level) and hp-adaptive mesh (2% error).
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We do mention, however, that for the same error level of roughly 3.5%, and the quality of the corre-
sponding EA, the adaptive algorithm delivers meshes roughly half the size of the uniform meshes.
Fig. 11 presents an example of such a mesh for h = 90�. The optimal distribution of approximation order
p is not uniform. The fact that the algorithm has not selected any h-refinements, indicates that the resolu-
tion of the wave structure of the solution is more important (in terms of the energy error) than a resolution
of the singularities.
Fig. 11. Scattering of a plane wave on a wedge, h = 90�. Optimal hp mesh delivering 3.5% error.
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Fig. 12. Scattering of a plane wave on a cylinder. Error in EA in dB vs. the number of d.o.f.
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4.8. Evaluation of EA

As mentioned earlier, both methods of evaluating the Echo Area, delivered practically identical results
for uniform meshes with energy error level of 4–1%. For non-uniform, adaptive meshes, the difference be-
tween the two methods is slightly more pronounced. Fig. 12 provides a more precise information showing
the evolution of the error in EA for the cylinder in terms of the problem size for the sequence of optimal hp

meshes. The results are plotted using the algebraic and logarithmic scales, with the error reported on dB
scale in percent of the exact value. Comparing with the energy error reported in Fig. 3, we see that indeed
at the level of 2% energy error, the corresponding error in EA (in dB) for both methods drops below 1%
(first two digits correct) which makes again the results graphically indiscernible on the EA graph. Stable
exponential convergence in terms of energy does not translate, however, into a similar exponential conver-
gence in the quantity of interest—the Echo Area.
5. Conclusions

We summarize below the main conclusions of our brief considerations and numerical experiments:

1. Interpreting the integral over the exterior domain defining the sesquilinear form in the CPV sense allows
the use of identical trial and test shape functions (Bubnov–Galerkin method).

2. Building the far-field pattern into the approximate solution ansatz results in almost identical formulas
for the sesquilinear form in both 2D and 3D. The leading term, identical for the two- and three-dimen-
sional formulations, suggests the use of integrated Jacobi polynomials for the IE shape functions.

Based on the two simple 2D numerical examples presented in this note (scattering of a plane wave on a
cylinder, and on a wedge), we can make the following observations:

1. Bubnov– and Petrov–Galerkin (element of Astley et al. [3]) methods deliver essentially identical results.
2. Use of locally variable radial order in IE approximation is possible. Thus, the infinite element can be

used in conjunction with the automatic hp-adaptivity.
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3. The Echo Area (far-field pattern) can be evaluated directly from the IE discretization without a costly
postprocessing based on the Helmholtz representation formula. Again, both Bubnov– and Petrov–
Galerkin formulations yield identical results.

4. Resolution of singularities seems to have little impact on the quality of EA calculations.

We realize that the goal driven, and not the energy-driven adaptivity should be used to resolve efficiently
the Echo Area in acoustics or Radar Cross Sections in electromagnetics (see e.g. [19]). A successful com-
bination of goal-driven adaptivity with the automatic hp-adaptivity, has already been reported in [17,15].
The experiments on running the automatic hp-adaptivity algorithm for coupled FE/IE meshes reported
in this note suggest that a similar strategy will pay off for the EA and RCS computations.

The hp code used in the presented experiments can be downloaded from http://www.ticam.utexas.edu/
%7Eleszek/hp-intro.html.
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