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We construct a numerical scheme based on the scalar auxiliary variable (SAV) approach
in time and the MAC discretization in space for the Cahn—Hilliard—Navier—Stokes phase-
field model, prove its energy stability, and carry out error analysis for the corresponding
Cahn-Hilliard—Stokes model only. The scheme is linear, second-order, unconditionally
energy stable and can be implemented very efficiently. We establish second-order error
estimates both in time and space for phase-field variable, chemical potential, velocity
and pressure in different discrete norms for the Cahn—Hilliard—Stokes phase-field model.
We also provide numerical experiments to verify our theoretical results and demonstrate
the robustness and accuracy of our scheme.
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1. Introduction

Interfacial dynamics in the mixture of different fluids, solids or gas has been one
of the fundamental issues in many fields of science and engineering, particularly in
materials science and fluid dynamics T23828 Iy recent years, the phase-field (i.e.
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diffuse interface) methods, have been successfully used to approximate a variety of
interfacial dynamics. The basic idea for the phase-field methods is that the interface
is represented as a thin transition layer between two phases 223

The phase-field model can be derived from an energy variational approach. Thus,
a crucial goal in algorithm design is to preserve the energy law at the discrete level. A
large number of numerical schemes that have been developed for phase-field models.
Among them, the convex splitting approach™ 1724 and stabilized linearly implicit
approachT2026030 4 re two popular ways to construct unconditionally energy stable
schemes. Unfortunately, the convex splitting approach usually leads to nonlinear
schemes, and the stabilized linearly implicit approach results in additional accuracy
issues and may not be easy to obtain second-order unconditionally energy stable
schemes. Recently, a novel numerical method of invariant energy quadratization
(IEQ) has been proposed #0279 Thig method is a generalization of the method
of Lagrange multipliers or of auxiliary variable. The IEQ approach is remarkable
as it permits us to construct linear and second-order unconditionally energy sta-
ble schemes for a large class of gradient flows. However, it leads to coupled sys-
tems with time-dependent variable coefficients. The scalar auxiliary variable (SAV)
approach™®1 inherits advantages of the IEQ approach but leads to decoupled sys-
tems with constant coefficients so it is both accurate and very efficient.

As for the Cahn-HilliardNavier-Stokes phase-field models, Shen and Yang?122
constructed several efficient time discretization schemes for two-phase incompress-
ible flows with different densities and viscosities, established discrete energy laws
but no error estimates were derived. Second order in time numerical scheme based
on the convex-splitting for the Cahn—Hilliard equation and pressure-projection for
the Navier-Stokes equation has been constructed by Han and Wang ™ With regards
to the numerical analysis, Feng et al. proposed and analyzed some semi-discrete
and fully discrete finite element schemes with the abstract convergence by making
use of the discrete energy law. Grin™ proved an abstract convergence result of
a fully discrete scheme for a diffuse interface models for two-phase incompressible
fluids. Diegel et al. developed a fully discrete mixed finite element convex-splitting
scheme for the Cahn—Hilliard—Darcy—Stokes system. The time discretization used
is a first-order implicit Euler. They proved unconditional energy stability and error
estimates for the phase-field variable, chemical potential and velocity. No conver-
gence rate for pressure was demonstrated in their work.

The work presented in this paper for the Cahn—Hilliard—Navier—Stokes phase-
field model is unique in the following aspects. First, we construct fully discrete
linear, second-order (in space and time), unconditionally energy stable scheme for
the Cahn—Hilliard—Navier—Stokes phase-field model. Furthermore, the scheme can
be very efficiently implemented. Second, we carry out a rigorous error analysis to
derive second-order error estimates both in time and space for phase-field variable,
chemical potential, velocity and pressure in different discrete norms for the Cahn—
Hilliard—Stokes phase-field model. We believe that this is the first such result for any
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fully discrete linear schemes for Cahn—Hilliard—Stokes or Cahn—Hilliard—Navier—
Stokes models without assuming a uniform Lipschitz condition on the nonlinear
potential.

The paper is organized as follows. In Sec. 2, we describe the problem and present
some notations. In Sec. 3, we present the fully discrete SAV-MAC schemes and
prove their stability. In Sec. 4, we carry out error estimates for the fully discrete
SAV-MAC scheme for the Cahn—Hilliard—Stokes system. In Sec. 5, we present some
numerical experiments to verify the accuracy of the proposed numerical schemes.

2. The Problem Description and Notations

We consider the following incompressible Cahn—Hilliard—Navier—Stokes phase-field
modef37:

99

E:MAu—u-ngS in Q x J, (2.1a)
1= —AA¢+ \F'(¢) in Qx J, (2.1b)
%—?—F’yu-Vu—uAu—i—Vp:MV(é in QxJ, (2.1¢)
V.ou=0 inQxJ (2.1d)

do  Op _
8—n_8n_0, u=0 on 0N x J, (2.1e)

where F(¢) = ﬁ(l — ¢?)%, M > 0 is the mobility constant, v > 0 is the fluid
viscosity. A > 0 is the mixing coefficient, 2 is a bounded domain and J = (0, 7.
The unknowns are the velocity u, the pressure p, the phase function ¢ and the
chemical potential u. It models the dynamics of the mixture of two-incompressible
fluids with the same density, which is set to be pg = 1 for simplicity. v is an addi-
tional parameter that we added to distinguish the Cahn-Hilliard-Navier—Stokes
model (7 = 1) and the Cahn-Hilliard-Stokes model (y = 0). When the viscosity
v is not sufficient small, the Cahn—Hilliard—Stokes model can be used as a good
approximation to the Cahn-Hilliard—Navier—Stokes model.

Taking the inner products of (ZIa)) with yu, (ZI0) with ‘Z—f, ([ZId) with u respec-
tively, we obtain the following energy dissipation law:

O p|Vul? — v vul, (2.2

where E(¢,u) = [,{2[ul* + A(3|V4|? + F(¢))} is the total energy.
We now introduce some standard notations. Let L™ (£2) be the standard Banach

space with norm
1/m
ol = ( / |v|7”dﬂ) |
Q



Math. Models Methods Appl. Sci. 2020.30:2263-2297. Downloaded from www.worldscientific.com
by PURDUE UNIVERSITY on 11/30/20. Re-use and distribution is strictly not permitted, except for Open Access articles.

2266 X. Li €& J. Shen

For simplicity, let
(1.9) = (-9 = | faic

denote the L2(£2) inner product, [|v]jos = ||v]|1(q). And W} () be the standard
Sobolev space
WE®) = {9+ lgllwe < oo},

where
1/p

Hg||W§(Q) = Z ||Da9|‘ip(g) . (2.3)
la|<k
Throughout the paper, we use C, with or without subscript, to denote a posi-
tive constant, independent of discretization parameters, which could have different
values at different places.

3. The SAV Schemes and Their Stability

In this section, we first reformulate the phase-field system into an equivalent system
with an additional scalar auxiliary variable (SAV). Then, we construct semi-discrete
and fully discrete SAV schemes, and prove that they are unconditionally energy
stable.

3.1. The SAV reformulation

We introduce a scalar auxiliary variable r(t) = \/E1(¢) + 0 with any § > 0, and
reformulate the system (2] as:

g—f:MAu—u-ng in Qx J, (3.1a)
r
T VAV, ED S — )| in Q x J, (3.1b)
Ev(¢) +6

1 / , .
rp=— | F dx in Qx J, 3.1c
6= ACETE (0) ¢+ (3.1c)
%—?—i—’yu-Vu—uAu—i—Vp:uV(b in Qx J, (3.1d)

V-u=0 in Qx J, (3.1e)

where E1(¢) = [, F(¢)dx. It is clear that with r(0) = \/E1(¢[i=0) + 9, the above
system is equivalent to (2I)). Taking the inner products of [BJIa) with p, (B1D)
with g—f, BId) with 2X\r and BId) with u, respectively, we obtain the following
energy dissipation law:
dE(¢,u,7)
dt

where E(¢,u,r) = [, 2{|u> + A\|V¢|?}dx + Ar? is the total energy.

= —M|Vul* - v|[Vul?, (3-2)
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3.2. The semi-discrete SAV/CN scheme
Set At =T/N, t" =nAt, for n < N, and define

n_ fn _ fn—l fn+l/2 _ fn + fn—‘—l.

[dt f] At ) 2
Then, a second-order SAV scheme based on Crank—Nicolson is:
Q" —on _ n+1/2 nt1/2 o int1/2
—Ar MAp u Vo , (3.3a)

rn+1/2

2 = CAAGTY2 4 ) F'(¢m+1/2), (3.3b)

By (¢nt1/2) 46

n+l _ ,.n 1 ~ nt+l _ gn
r N o _ / F/(¢n+1/2)%dx7 (3.3¢)
2/ By (¢nt1/2) 4§ 79
n+1 n
: At— - + a2 yut 2y Au 2
+vpn+1/2 _ Mn+1/2vq~5n+1/2’ (3.3(1)
v .outl/2? — o, (3.3¢)
where w"+1/2 — (3u™ — u"~1)/2 and ¢§n+1/2 = (3¢" — ¢"1)/2. We also set
u ! =u’

Theorem 3.1. The scheme [B3)) is unconditionally energy stable in the sense that
E™N(§,u,r) — E™(, u,r) = = MAHVE 2|2 — vAr| Va2
where

. 1
E"N (g, u,r) = / U P AV T 2 da 4 A,
Q

Proof. The proof is quite straightforward. Taking the inner products of (3.3al)
n—+1 n

with pn+s, B30) with L2 B3d) with 2Ar"*+1/2 and @3d) with um+1/2

respectively, we obtain immediately the desired result. O

Remark 3.1.

e The above scheme is second order in time and linear, but it is weakly coupled.
The above stability result indicates that this weakly coupled system is positive
definite.

o If u"tY/2 in [@3a@) is replaced by an explicit second-order extrapolation,
(¢t untt pntl) can be obtained from (B.3a))-([B3d) efficiently by solving decou-
pled elliptic systems with constant coefficients (Ref. I8). Once p™*! is known,
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we can solve (u"*! pntl) from ([B3d)-([@B3d) which is essentially a generalized
Stokes problem that can be solved efficiently with a MAC scheme (see below).
e We can use the decoupled scheme with explicit treatment of u”*'/? in [(3a) as

a preconditioner for the weakly coupled scheme.

3.3. Spacial discretization by finite differences

To fix the idea, we consider Q = (Liy, Lyz) % (Liy, Lry). Three-dimensional rectan-

gular domains can be dealt similarly.
The two-dimensional domain € is partitioned by €, x €, where

Qp : Liz=20<21<--<2n,-1<2TN, = Lypg,
QuiLy=y0<y1 < - <yn,~1 <Yn, = Lpy.
For simplicity, we also use the following notations:
T_172 =20 = Liz, TN, 4172 = TN, = Lya,
Y-1/2 = Yo = Ly, yn,+1/2 = YN, = Lry.

For possible integers 7,7, 0 <i < N, 0 < j < Ny, define

Tit1/2 = %4—2&7 hi+1/2 =Tiy1 —x;, h= mgx hi+1/27
h; = Tit1/2 —Ti—1/2 = W7
Yjr1/2 = % Kjivi2 =yjn —y;, k= mgka/z?
ki =yji1/2 —Yj—1/2 = W7

Qi+1/2,j+1/2 = (ﬂfi,ﬂfi—i-l) X (ijyj-O-l)'
It is clear that

:h1/2’ b :thug

ki k: _ kny—1y2
2 NI 2 - bl N, — .

h
0 2 v 2

) kO

For a function f(x,y), let fi, denote f(x;,yn) where | may take values i, i 4+ 1/2
for integer i, and m may take values j, j+ 1/2 for integer j. For discrete functions

with values at proper nodal-points, define

i+1,m — Ji,m f,, _f,,
eflesrppm = T Tim gy = Swe Z R
hi+1/2 k’j+1
fivsj2m — fivi/2.m L= f
[Datf]i+1,7n = / +1/2, s [dyf]l,j+1/2 = M

hit1 jt1/2

(3.5)
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For functions f and g, define some discrete {? inner products and norms as follows:

Ny—1Ny—1
(f,9)em = Z Z hiv1y2kivi2fivi2,541/29i41/2,541)2, (3.6)
=0 j=0
N, N,—1
(fs9)er, = > hik;fi;gi, (3.7)
=0 j=1
No—1 N,
(f9)er, = hik; fi j9ij, (3.8)
i=1 j=0
HlezQ,f = (f7f)l2,57 €:M7 Trv Ty (39)

Further define discrete [ inner products and norms as follows:

No—1Ny—1

Z Z hikj+1/2fi,j+1/29i,j+1/27 (3'10)

i=1 j=0

(f7 9)12,T,M

N,—1N,—1

(f,9)emr = Z Z hiv1y2kifiv12.59i41)2.5 (3.11)

i=0 j=1

||f||122,T,M = (f, Nerms ||f||122,M,T =(fi e (3.12)

For vector-valued functions u = (u1, usg), it is clear that

No—1N,—1
Idaurlfe pr = D D higaypkiorjeldetin vz jiiyel’, (3.13)
i=0 =0
—1 Ny
Dyl 7, = Z Zhikj|DyU1,i,j|27 (3.14)
i—1 j—0

and || dyus|;2 ar, |[Dzuzli2,r, can be represented similarly. Finally, define the dis-
crete H'-norm and discrete {2-norm of a vectored-valued function u,

||D11H2 = ||dmu1||l22,M + ||DyU1H122,Ty + ”DaiuQle?,Tz + ||dyu2||l22,M~ (3.15)
[ullf = Nuallfe roar + w2l a (3.16)

For simplicity, we only consider the case that for all h;j 15 = h, kji 12 =k, ie.
uniform meshes are used both in x and y-directions.
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Denote by {zZ",W" R U", P"}N the approximations to {¢™,u™,r",

n=1»
u”, p"}N_, |, respectively, with the boundary conditions
[DIZ]g,jJrl/Q = [Dzzmz,jﬂ/z =0, 0<j<N,—1,
[DyZ]?H/Q,o = [DyZ]?+1/2,Ny =0, 0<i< Ny -1,
[DoWIG 4172 = [DaWIN, ji12=0, 0<j <Ny —1,
[DyW 1100 = [DyWliijon, =0, 0<i <Ny —1,

(3.17)
Uloj+1/2 = UiN, j+172 = 0, 0<j<N,—1,
Ul'io=Ulin, =0, 0<i<N,,
Usio.s = Usn. =0, 0<j <Ny,
2i+1/2,0 = Uzir12.n, =0, 0<i< N, —1,
and initial conditions
Zi0+1/2,j+1/2 = ¢?+1/2,j+1/27 0<i<N,—1, 0<j<N,—1,
Uﬁi,j+1/2 = u(l),i,j+1/27 0<i< N, 0<j5< N, (3.18)

Ug,i+1/2,j = Ug,¢+1/2,j7 0<i< N, 0<7<N,,
where ¢°, u’ are given initial conditions, respectively.
Then, the fully discrete SAV/CN scheme based on the MAC discretization is as

follows:

[d: 2"+ = M[d, DWW + dy, D,W]|" /2 — PYPEIUD,Z + Uy Dy Z]" /2,

(3.19a)
n+1/2 n41/2 Rr1/2 1(7n+1/2
1474 = \dyDyZ + dyD, 7 +A - F'(Z ),
EM(Zn+1/2) 46
(3.19b)
1 -
[d;R]" ! = (F'(Z"TY2) dy 272 o, (3.19¢)

2 /E{l(ZnJrl/Z) + K}

AU+ S0 D (PO + Pide(Uh01) + PL(PLU2D,U2)

+dy (PYULPETL)" Y2 — D, (d, U Y2 — vd, (D, U )" H2 (3.194)
4 [D$P]n+1/2 — f])lfv[/’n—‘rl/Q[l)mZ]’n,—i-l/Q7
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[d: U] + P (PLULD,Us) + do (TP Us) + Ua D, (PLUS)

+ Pg(dy(U2U2))]n+l/2 - VDy(dyU2)n+1/2 - Vdr(DmU2)n+1/2
+ [D, P2 = prwwntl/2[p, Z]n 2, (3.19¢)
[d U™ Y2 4 [d,Us]" 2 = 0, (3.19f)

where Pf and P} are linear interpolation operators in the z and y directions,
respectively, and H"t1/2 = SH™ — LH""! for any sequence {H"}.
It is easy to verify that the following discrete integration-by-part formulae hold.

Lemma 3.1. ([Ref. 25]) Let {Vi;jyi/2} {V2it1/25 and {qiit1/2,541/2}
{92,i41/2,541/2} be discrete functions with Vi 172 = ViN, j+172 = Va,it1/20 =
Vaiv1/2,n, = 0, with proper integers i and j. Then, there holds

(D2q1, Vi)zrr = —(q1,daV1)i2 ar,
(3.20)
(Dyq2, Va)iz mer = —(q2,dyVa)i2 a1

Theorem 3.2. The scheme [B19a) -BI9) is unconditionally energy stable in the
sense that

E"Y(Z, U, R) — E™(Z, U, R) = —MAt|DW" /2|4 — vAt| DU /2|2,
where DH = (D H,DyH) for any discrete scalar or vector function H, and

n 1 1 n n
B2, UR) = 511+ (51027 + ().

Proof. Multiplying (319a]) by M/ii+11/22j+1/2hk, and making summation on ¢, for

0<i<N,—1,0<j5 <N, —1, we have
(de 2" WYY 5 = M(d, D,WTY2 4 d, D, W2 wntt/2y,
— (PYPEULDLZ + UsDy Z)" Y2 Wit/2), 0 (3.21)

Taking note of Lemma B the first term on the right-hand side of (B21]) can be
transformed into the following

M(d,D,W"tY2 4 d,D,Wrt/2 wntt/2),
= —M || DWW 2|7 g py = MIDyW™ 22

= —M|DW" /2|2, (3.22)
Multiplying (3190) by dtZZ:rll/zAjH/?hh and making summation on %, j for 0 <
1< Ny;—1,0<j <Ny —1, we have
(de 2™ WYY 1 = N dp Do Z™Y2 4 dy Dy 27 Y2 d, 20 2y

Rn+1/2 ~
+A - (F'(Z"Y2), dy 2" )2 ar (3.23)
E{L(ZnJrl/Z) +5
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Recalling Lemma Bl the first term on the right-hand side of [B23)) can be
estimated by:
~Mdy Dy Z"Y? 4 d, D, Z" Y2 d, 27y

= \(D,Z"+Y/2, Dy Z" )2 g + NDyZ" 2 dy Dy Z" 2 ap

WDzl — D27

.24
2At (3.24)
Multiplying Eq. (319d) by (R"! + R") leads to

(Rn+1)2 _ (Rn)Q Rn+1/2

= = (F'(Z" YY), dy 2" ) . (3.25)
E{”(Z"'H/Q) 145
Combining (3:25) with (2I))-324) gives that
ZB? = (B2 D2 — D2
At 2At (3.26)
= —M|[DW™ /2|2, — (PYPRULD Z + Us Dy Z" /2 WH2) 0 .

At

Multiplying (B.19d) by Uﬁ;}ﬁmhh and making summation on ,j for 1 < i <

Ny, —1,0<j5 <N, —1, we have
(d; U”H Un+1/2)l2,T,M ((Un+1/2 L(PEU n+1/2) Un+1/2)l2,T,]V]
+ (P}fdg;(Un_‘—l/QUn_‘—l/Q)?U1n+1/2)l2,T,M
(Ph(PhUnH/zD Un+1/2) Uf+1/2)l2,T,M
+ (dy (PRUTH PR ), Ul e g ) + wda UL R g
+UID, U g, — (P2, d U )
= (PRwn /2D, Zn 12, U{l+1/2)l2,T,M~ (3.27)
Thanks to Lemma 3.1l we have
(Uf+l/2 (,Ph n+1/2) Un+l/2)l2,T,]w
(,PhUn—i-l/Q w(U—lrL+1/2U17L+1/2))lz "
—(PEd (O PUT 2 U g (3.28)
The fifth term on the left-hand side of (B27]) can be estimated as follows:
(d, (P}?Un+1/2px n+1/2) U1n+1/2)l2 .
(,PigiUn+1/2,])g;Un+l/27D Un+1/2)l2,M

= —(PY(PEUy 2D, U ), U7 ) . (3.29)
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Multiplying @I3d) by U ;}1//22,jhkv and making summation on 4,j for 0 < i <

N;—1,1<j <N, —1, we can obtain

(U3 U ) p + % ((Pﬁ(Pﬁf]{LHﬂDmU;H/Q% U™ ) v
+ (@ (PR PR ), U e
+ (032D, (PYUS Y2, U )
HPY Ay (U525 2)), U3 Py g ) + vy U3
+ VDU R = (P2, d U2 oy

= (PIZLIWnH/QDyZnHﬂv U2n+1/2)l2,M,T- (3.30)
Similar to the estimates of (328) and ([B:29]), we have
(PE(PYTL 2D, U5 Y2, U3 4 2) e
+(do(PLUT TP PEUs ), Us ) 2 i = 0, (3.31)
and
(O3 2D, (PLU; %), U e
+ (PR U3 PO ), U ) = 0 (3.32)
Combining B27)-(332) and recalling (3.191) lead to

U2 — U
2At

+ VHDUH2 _ (zphVv’n—‘,-l/Q-Da:Z?’L—O—l/Q7 U{L+1/2)12,T,M

+ (Phwn+l/2Dy2n+l/27 U;H—l/Q)l?,M,T'
(3.33)
Taking note of (320)), we have
(B2 (R D2 — D27

At 2At
Un+1 2 ur 2
.l ”gN 070 V| DU|* = —M|DW" 2|5 <0,  (3.34)
which implies the desired result. O

4. Error Estimates

In this section, we carry out an error analysis for the full discrete scheme (B19al)—
B19f) with v = 0, i.e. for the Cahn-Hilliard-Stokes system. The analysis for the
case of v = 1, i.e. for the Cahn-Hilliard—Navier—Stokes system, will be extremely
technical as it requires a high order upwind method to deal with the nonlinear
convection term.
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4.1. An auxiliary problem

We consider first an auxiliary problem which will be used in the sequel.
Let (¢, u,u,p) be the solution of Cahn-Hilliard—Stokes system, and set g =
1V — 2. For each time step n, we rewrite (ZId)-(@2Id) with v =0 as

—vAu" + Vp" =g" in Q x J, (4.1a)
Vou'=0 inQxJ (4.1b)

and consider its approximation by the MAC scheme: For each n = 1,..., N, let
{07 108 AU 10} and { P 5 51y 5} such that

4,072 _ 02 Dy(’jn+1/2 B Dyﬁnﬂ/z
—V — UV

1,i+1/2,5+1/2 1,i—1/2,j4+1/2 1,i,+1 1,0,
hi kjt1/2
+ D, P =gty 1<i< N —1,0<j <N, — 1, (4.2)
“Sn—41/2 “Sn—41/2 n+1/2 Sn+1/2
_VDasUl,i+1/,j - Da:Ul,i,j/ B deUQ,i+1/2,j+1/2 —dyUs i 1725-1)2
hiv1/2 k;
+ D, P =gy, 0<i <N, 1,1 < <N, —1, (4.3)
“Sn+1/2 “Sn+1/2 . .
AU i+ Uy =0, 0<i <N, —1,0<G<Ny—1,  (4.4)

where the boundary and initial approximations are same as Eqs. (B17) and BI8]).

Inspired by Ref. 6] we extend the work in Rui and Lil8 to the above approxi-
mation. By following closely the same arguments as in Ref. [16], we can prove the
following

Lemma 4.1. Assuming that w € W2 (J; W2 ()%, p € W3 (J;W3,(Q)), we have
the following results:

e (U7 — w2 ar + dy (U3 + = w2, 0r < O(A + B2 + k), (4.5)

e = w2 oar + e (U5 = uh ™) iz arr < O(AE + 12 + k), (4.6)

TP — a2 g + 1054 = w2 00 < O(AE + % + &), (4.7)

Dy (U — w2y < O(AE + B2 + k%/2), (4.8)

Do (U3 — w1 |2r, < O(AE + B2 4 k), (4.9)
N 1/2

(Z At||(Z — p)l1/2||122,M> < O(A# + h? + k?). (4.10)
=1

4.2. Discrete LBB condition

In order to carry out error analysis, we need the discrete LBB condition.
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Here we use the same notation and results as Rui and Li. [16, Lemma 3.3] Let
b(v,q) = —/Q qdivvdx, v eV, qgeW,
where
V=H(Q) x H}(Q), W= {q € L*(Q): /qux = O} .

Then, we construct the finite-dimensional subspaces of W and V by introducing
three different partitions 7y, 7,1, 7,2 of Q. The original partition &, x d, is denoted
by Tn (see Fig[l). The partition 7, is generated by connecting all the midpoints of
the vertical sides of €2;11/2 j11/2 and extending the resulting mesh to the boundary
I'. Similarly, for all ;1 /2 j+1/2 € Th, we connect all the midpoints of the horizontal
sides of €41/ j11/2 and extend the resulting mesh to the boundary T, then the
third partition is obtained which is denoted by 7T;”.

Corresponding to the quadrangulation 7}, define W), a subspace of W,

Wi, = {qh . qn|T = constant, VT € Ty, and/ qdx = 0} .
Q
Furthermore, let V), be a subspace of V such that Vj, = S} x S?, where

Sh={9€ COQ): gl € QuT), VT € T, and glo =0}, 1=1,2,

and @; denotes the space of all polynomials of degree < 1 with respect to each of
the two variables z and .
Then, we introduce the bilinear forms

bu(Vh, qn) = — Z a1y, (divvy)dx, vy, € Vi, qn € W,
Qiv1/2,541/2€Th Qit1/2.5+1/2

where
I, : ¢© (ﬁi+1/2,j+1/2) — Qo(it1/2,j4+1/2), such that

(Hh¢)i+1/2,j+1/2 = ©ir1/2,5+1/2> ¥V Qit1/2,5+1/2 € Th-

(a) (b) (c)
Fig. 1. Partitions: (a) Tp, (b) T;}, (c) T;2.
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Then, we have the following result:

Lemma 4.2. There is a constant B > 0, independent of h and k such that

bl 19
sup DO ) 5 gy Van € Wi (4.11)

v €Vp ”DvhH

4.3. A first error estimate with a L*° bound assumption

We shall first derive an error estimate assuming that there exists two positive
constant C, and C* such that

1Z2"[loo < Cs, (4.12a)
[DZ"[o < C™. (4.12b)

Later we shall verify this assumption using an induction process.
We define the operator I, : V — V,, such that

(V- -Iyv,w) = (V- -v,w) Yw € Wy, (4.13)

with approximation propertiesIEI

v —=Tnvl| < Cllviiwg@)h (4.14)
IV (v = L) < CIV - Vil by (4.15)

where i = max{h, k}.
Besides, by the definition of I, v and the midpoint rule of integration, the L*>°
norm of the projection is obtained by

IV = Livlloe < ClIvliwz @b (4.16)

Furthermore from Durdn® we have the following estimates which is necessary
for the derivative and analysis of our numerical scheme:

v —Ivl;2 < Ch?. (4.17)

For simplicity, we set

Lemma 4.3. Suppose that the hypotheses [EIZ) hold, and ¢ € W3 (J; W2 (Q)),
poe LW (), w e WiL(We(Q)?, p € WiL(J;WL(Q), then the
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approzimate errors of discrete phase function and chemical potential satisfy

M m
H€m+1||l2,M Y Z AtHez—H/Q”lQ?,JW + A (et
n=0

A M -
+ EHDGZLJFZLHZQQ + I Z AtHDez_H/QHlQQ

m—+1
<C > At||Depll + CZ At||ent1/2|2,
n=0 n=0
m—+1 m—+1
+C Y AtleplB s +C Y At(er)?
n=0 n=0
+C(At* +h* + Y, m<N, (4.18)

where the positive constant C' is independent of h, k and At.

Proof. Denote

0 0
5.(6) = Dat 52, ,(0) = Dyo— 50,
ou o

0z(p) = Dap — 9z’ by(n) = Dyp — a_y

Subtracting BIal) from 3I9al), we obtain

n+1/2
[dt6¢]1+1/2 j+1/2 = M[dI(Dreu + 02 (1)) + dy(Dyeﬂ + 5y(ﬂ))]ij1//2,j+1/2

— PYPEIULD,Z + Us Dy Z)7 2

+1/2,j4+1/2
n+1/2 n+1/2
T s ir1y2 Vig1)a.41)2
n+1/2 n+1/2
T 1254172 T Taiviya 1120 (4.19)
where
n+1/2 0¢ n+1/2
Ty ii)2,41)2 = ot |i+1/2,j+1/2 [dt¢]z+1/2 j+1/2
< Cllllwa (i1 () AL, (4.20)
n+1/2
n+1/2 aM op n+1/2
T2 Ji+1/2,5+1/2 T =M |:d a +dy ay:| 1/2.41/2 - MAp Hit1)2,5+1/2

< CM (P + K| pll o (7w (o)) - (4.21)
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Subtracting (.10 from (B.I9D) leads to

n+1/2 n+1/2
euj+/1/2 ]+1/2 )‘[dI(D$€¢ + 5I(¢)) + dy(Dye¢ + 5y(¢))]ij1//2’j+1/2
RH1/2 Sn+1/2
+A ~ FI(Zi+1/2,j+1/2)
E{L(Zn+1/2) + K}

rrt1/2 /o nt1/2
7 F (¢i+1/2,j+1/2)
Ey(¢nt1/2) + 6
n+1/2
ATy 12,541 /2 (4.22)
where
8¢ ¢ n+1/2
T2 A {dm +d }
3,i+1/2,5+1/2 i+1/2,5+1/2 Or yay i+1/2.541/2
< C(I* + E*)|| Il Lo (gswa (@))- (4.23)
Subtracting Eq. (8Id) from Eq. (319d) gives that
1 _
dyentt = = (F'(Z"2),dy 2" )2
2 /E{z(zn—o—l/Q) + 46
/ Fl(¢mH1/2)gn 2% 4 702 (4.24)
2 /E1 ¢n+1/2
where
T:+1/2 = 7“?_‘—1/2 - dt’f'n+1 < CHT”W;(J)At? (425)
Multiplying Eq. (@139) by ez,ﬁ—/lg/lj +1/2hk, and making summation on i, j for 0 <

1< N;—1, 0<j< Ny, —1, we have

n+1l n+1/2
(deey ™ ey, /)12,1\/1

- M (da:(Dweu, +5w(ﬂ))n+1/2 +dy(Dyeu, +5y(u))n+l/27ez+l/2)l2 y

— (PYPE[ULDoZ + U Dy Z)" /2 — /2 wgnt1/2 entl/2), o

+ (T1n+1/27ez+1/2)l2 yan (Tn+1/2 n+1/2)l2’]w. (4.26)

Recalling Lemma[3T] the first term on the right-hand side of (£20]) can be estimated
as follows:

M (dw(Daseu + 80 ()" dy(Dyey + 5y(M>)n+1/27 €Z+1/2)lz M

=M ((D$eu + 5w(ﬂ))n+1/27 DI62+1/2>12 .M

- M ((Dyeu + 8y ()", DyeZH/Q)lz VT
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= —M|Del V2|13 — M (6, (1)" 2, Daelt /%) 2 1 s

- M(éy(ﬂ)n+1/27 Dyez+1/2)l2,N1,T-
(4.27)

With the aid of Cauchy—Schwarz inequality, the last two terms on the right-hand
side of (LZ1) can be transformed into:

_M(5w(ﬂ)n+l/27 Dmez+1/2)l2,N],T - M(5y(M)n+1/27 Dyez+1/2)l2,T,M
< TIP3+ Ol iy, o (4 + ) (428)
The second term on the right-hand side of [@28]) can be transformed into
—(PYPEULDLZ + Uy Dy Z" /2 — a2 . g gt/ entl/2),
= —(PYPEU\DyZ + Uy D, Z]" /2
— PYPEULDLZ + Us Dy Z)" 12, ent1/2), 4,
— (PYPE[UIDLZ + Us D, Z)"+1/?
— PYPrur Dy Z + up Dy Z)" 2 ent2) 0
— (PYPE[ur Dy Z + up Dy Z)" /2 — /2 g gntl/2 enth/2), 3 (4.29)

Then, taking note of the definition of interpolations Pj* and P} , the first term on
the right-hand side of (£29) can be bounded by

—(PYPE[ULD,Z + Uy D,y Z)" Y2 — PYPE[U D, Z 4 Us D, Z)" /2, ent/2) 2 o
< CIDZ|2 1t 2% + Cller ™2 (1% - (4.30)
l m 12,.M

Similarly noting Lemma [£J] the second term on the right-hand side of (£29) can
be estimated by

— (PYPE[UIDLZ + Us Dy Z)" /% — PYPE[uy Dy Z + us Dy Z)" /2, ent1/2) 0
< CIDZ|ZEL 2% + Cllent 2% (4.31)
< Cllept 2Ry + C(AE + h* + K.

Supposing that ¢ € W2°°(.J; L°°()), the last term on the right-hand side of ([29)
can be estimated by

— (PYPiu1De Z 4+ up Dy Z)" T2 —ant1/2 /2 entl/2y,
< OH€Z+1/2||122,M + C|\D€$||122,M + CHD€Z_1H122,M (4.32)

+ Oz (,no= () At
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Multiplying Eq. (£22) by dtegjil/zjﬂ/zhkv and making summation on i,j for
0<i<N,—1,0<j <N, —1, we have

(ez+1/27 dteg+1)127M

= —A(da(Dyeg + ()" /2 + dy(Dyey + 6,(0))" /2, deel )2 g

n+1/2 ~
+ A R~ F(Zn+1/2)
ENZrH1/2) 46 (4.33)

,,,n+1/2

E\(¢"17?) 16

F’(as"““),dtefl)

12,M
F AT del e

Similar to the estimate of Eq. (324), the first term on the right-hand side of
Eq. (33)) can be transformed into the following:

~M(de(Dreg +6:(0))" > + dy(Dyeg + 0,(¢)" /2, drely ™ )2
= N(Dael 2, deDoel )z mar + MDyel ™2 deDyel )z ar
+A(02(0)" Y2, de Doy %)

n 4.34
+ A8y ()" 12, dtDye(z,Jrl/z)l?J%T (4.34)

N /\||D€Z+1H12z — [[Deg|?.
2A¢t
+ MGy ()2, dtDy€Z+l/2)l27]W7T~
The second term on the right-hand side of Eq. [@33]) can be rewritten as follows:

+ A(82(0)" Y2, de Doy ™) s

n+1/2 n+1/2
R / Zn+l/2) T / F/(¢n+l/2) dt6n+1

JER(Zn+1/2) 1 VE(¢"t2) + 6 Y
12,M

_ )\rn+1/2 F/(Zn+1/2) F/(q;n+l/2) 7dt6n+l
h n+1/2 h(Ain+1/2
P e,
+ )\rn+1/2 F/(Q;n_‘—l/Q) F/(¢n+1/2) 7dt ZJrl
JEr@mm s VREEREST )
+ /\e:}—o—l/Q F/(Zn+1/2) dten+1

h(7n+1/2
ENZ )+6 2 ar
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Taking note of (£I9]), the first term on the right-hand side of ([@33]) can be trans-
formed into the following:

7n+1/2 Tn41/2
T e WY e W
Eh(Zn+1/2 h(jn+1/2
VENEZrtU2) 16 (B G 12) 4 o
F’ Zn+1/2 F’ In+1/2
= MArn+1/2 h( +1/2) h(¢ +1/2) ydo(Daey + 8 ()" H1/2
VENZ \/E (gn+1/2) 16 o
J ol Zn+1/2 ' in+1/2
+ MArnt1/2 - (~ ) - ” (? ) ydy(Dyep + 0y ()72
\/El (Zn+1/2) +§ \/E1 (pnt1/2) +4 12,M
r(on+1/2 r(an+1/2 N N
— Apnt1/2 £ (~Z ) — r (225 ) ,PrlUi Do Z + U2DyZ]n+l/2
\/E?(Zn+1/2)+6 \/E{l(¢n+l/2)+6
n+1/2 n+1/2
=W e VO /
12,M
7n+1/2 Tn+1/2
4 opntl/2 F'(znt / ) F/(¢p™F / ) ,TITL+1/2+TTL+1/2 ) (436)
Eh Z'n+1/2 h(in+1/2
v/ 5\ Bl 45 .

Similar to the estimates in Ref. [I4] and using the Cauchy—Schwartz inequality, we
can deduce that

F Zn+1/2 F’ Tn+1/2
Moapn1/2 (~ ) (275 )  do (Daep + 80 ()" +1/2
VENGT ) 10 [ 1o .
Do F'(Zn+1/2 Dy F'(¢nt1/2
= —M)\T"+l/2 ~( ) — ~(¢ ) 7(DIE€M + 51(#))n+1/2
VEHZ 2 45 (BN G 2) 46 s
M n+1/2 n n—
< G IDaei 2 1 g+ Ol o () (el + e ™ 1 0p)
+CIITH%,OO(J)(HDEEZH%Q’T’A[ + HDIEZ_IH%Q’T’A[)
+ClEll oo (g,wa oy (B + K. (4.37)

Similarly, we can obtain
F/(Zn+1/2) F/(Q;n—o—l/Q)
\/Eh Zn+1/2 \/Eh ¢n+1/2)

Mgt/ dy(Dyeu + 6y ()" 12

12,M

M
< =
)

1Dyeys 218 arz + ClirllZ o) Ul ar + e~ 1 ar)
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+ Cllrl Lo oy 1Dy €3 s, vey N arr)

+ C||ﬂ||2LOO(J;W§O(Q))(h4 + k‘4).

(4.38)
Then Eq. [@30]) can be estimated by:
)\rn+1/2 F/(Zn+1/2) F/(q;n+l/2) dt i
\/Eh Zn+l/2 \/Eh ¢n+1/2) .
< M IDent 1202 + Clrll oy (e 2 + e 2 112) (439)
=% M l CANIAEN Y ¢ NzM

+Clrll o=y (IDeg 7 + [Deg ™" [) + CIDZ, et/ 7

+ Clil T s ) (B + EY) + Cllolfvs (7,100 () AL
Similar to the estimates of (£30]), the second term on the right-hand side of (£:35])
can be controlled by:
F/(Q;n—o—l/Q) F/(¢n+1/2) i

Ap7HL/2 — ,dy ey
\/E{L(q;’rLJrl/Q) 16 VE (¢"+12) 6

2,M
M n n n—

< S IDE 2|2 + CIDER o+ CIDEG ™ I oy (4.40)
+ CIDZIL @S2I + Ul (. ap A

+ CUlel 2w ) F 181170 oz @)) (B* + K.
Multiplying Eq. @24 by A(e?*! + e7) leads to

nb1\2 _ (o2 nt1/2 -
Zerm)? = () er (F'(Z"HY2),d 2" )2
At > ’
Eh(Zn+1/2) 4 §
n+1/2 (441)
F’(¢"“/Q>¢?“/2dx

+ ATf“/Q : (ef“ +em).
Then similar to the estimates in Ref. [14], we have
GG
At
/2

<A . (F/(Z™Y2) dyel )z g + AT 2 (e84 4 el
E{"b(ZnJrl/Z) +5

A
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+C(eM2)? + Clillyy (gip o) (ledlle ar + leg™ 1% a0)

+ ol (gowz () (B + EY).
(4.42)

Combining the above equations and using Cauchy—Schwarz inequality leads to

)’ = (ep)? | JDeg 7 — 1Dl
At 2At

M

Bl

Al + M| Dem+/2|2

< S IDep 2% + Clle 21l ar + Cllrlige gy (el ar + lleg ™ I ar)

+ CIIDZ( e 2% + Cll7ll 7 (. (IDeR 172 + [Del " [I72)

— N0, (o)™ 12, dtDweg+1/2)l2,T,M — A(6y ()", dtDyeg+1/2)l2,Jw,T

F TR deel ) 0+ AT (0 )

+C(ef ™2 4+ Ol (7,10 () (€7 nr + llel ™ M7 ar)

+ CUllve (rawz ) + 1l 7 (giwe ) (R + &)
+Clolfva (g o AL (4.43)

Taking note of that

k

Zm Fradig™) = = 30 AU g+ (g + (0 (44

n=0 n=1

Using the above equation and multiplying Eq. ([£Z3]) by A¢, summing over n from
1 to m result in

A M &
Ae 1) + §HD€Z‘“II% t5 Z At||Dej 27,

n=0
m—+1 M k+1
<C Y AIDEG|E + 5> Atler 2k
n=0 n=0
m+1 m+1 (445)
+C Z Atl|enti2)2 4 ¢ Z AtlleR 1. as
n=0
m—+1

+C Z At(e?)? + CllolITys (rwr.oo gy At

+ C(||¢H%/v;o(1;wgo(ﬂ)) + HMH%oo(];vv;lo(n)))(h4 + K.

To proceed to the following error estimate, we should consider the second term

on the right-hand side of ([@43]). Multiplying (£19) by 6231/12/2,j+1/2hk7 and making
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summation on 4, j for 0 <i < N, —1, 0 < j < N, — 1, we have
+1/2
(dthH 6; / )iz M

= M (ds(Daeyt 02()" /2 + dy (Dye, + 0, ()72, e ) )
' 4.46

— (Pu[UrDoZ + Us Dy Z)" /2 — a4 1/2 g ntd/2 en 2y,

(@2 e e g (TR e e

The first term on the right-hand side of (@40]) can be bounded by

M (dI(Dwe,, + 0. ()" Y2 + dy (Dye, + 6, ()2, eZH/z)lg .

- _M ( DI 5z n+1/27Dr ”+1/2>
(Dacy+8:(10) )

B n+1/2 n+1/2
M ((Dyeu + 0y(1)) » Dye )12,M,T

< M (12, d(Daey + 802 4 dy Dy + 5,02 |

n 4.47
+ et 2% + Cpel 2 (4.47)

CUlillF oo (rows ) + 18170 (rws ) (B* + &)

M -1
< ——IIeZH/QHfaM +C(ef 4 ef)? + Clllep e ar + e 1 ar)

n n+1/2
+ —||De U212+ CIDe 23 + Ol ows @ (B + KY)

+ C(HMHL@O(J;WgO(Q)) + ||¢HL°<>(J;W§O(Q)))(h4 + kY.
The second term on the right-hand side of [@40]) can be estimated by
_ (Ph[UlDwZ + UszZ]TL+l/2 — qnti/2 .V¢n+1/27 GZH/Q)P,M
< CIDZ|% g™ 2|l + CIDeg e ar + ClIDel ™ |17 s (4.48)
+Ollef 2 o+ OO + Rt + kY.

Combining (£40]) with (£47) and ([@48)), multiplying by 2At, and summing over n
from 1 to m give that

m

||€m+1||12,M +M Z AtHezﬂ/z”%z,M
n=0

<CZAt ntl) +02At||eg+1|\l2M+CZAt||~”+1/2H%

n=0
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k k
M n
T ST ADe 22 + 0 ADel 2
n=0 n=0

+ Cllpllis (rwa @) + 10T rowa @) (B + 5

+ Cllols (5,10 AL"
(4.49)

Combining (£45]) with the above equation leads to

m
leg i a + 5 ZAt||€Z+1/2Hl22,M+)‘(6T+1)2

A M &
+ S IDeg I + - D At|Dep 2
n=0

mtl b1/2)2 (4.50)
<CZAt||De¢le+CZAtH IR

n=0 n=0

m—+1 m+1

+C Y Atfeplfa +C D At(e))?

n=0 n=0

+ C(At* + h* + k). O

Lemma 4.4. Suppose that the hypotheses ([@EI2) hold, and ¢ €
W2 WL(Q), € LX(J; WL (Q)), uwe WL WL ()2, p € WL WL(Q),
then for the case of Stokes equation, the approximate errors of discrete velocity and
pressure satisfy

e + 1 DeyH1? + Z At[e 2
n=0
s s 4.51
<O A2 0+ O Al oy
n=0 n=0
+CO(A* +r* + k), m<N,
where the positive constant C' is independent of h, k and At.
Proof. Subtracting (2) from B.I9d)) for the case of Stokes equation with v = 0,

we can obtain
d,é ~n+41/2 42

doan ) Cu,1,i+1/2,j+1/2 2Cu1,i—1/2,j+1/2
t€ u,l,4,j+1/2 h1
n+1/2 ~n+1/2
Dyeu,l,i,jJrl — PyCuiy 4 D,e /\n+1/2

kji1/2
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a¢n+1/2

n+1/2 n+1/2 n+1/2
=P, J+1/2[D Z]l G122~ Higr1ge 8_xi,j+1/2

Out ny1)2

ot i,5+1/2 [dtUl]

i j+1/2
(4.52)

For a discrete function {vf; .., ,} such that v, ;. »loe = 0, multiplying ([E52)
by times v{‘in/Qhk and make summation for 4,5 with ¢ = 1,..., N, — 1, j =
0,...,N, — 1, and recalling Lemma Bl lead to

~n+1 ,n ~n+1/2 n
(dteu,l ;v v+ V(dreu}l s AV )iz

~n+1/2 n ~n4+1/2 n
+ v(Dye eu1 s Dyvy )l%Ty - (ep / y AV )iz 1

_ w120 Similj2 | at12 09" TR
= (PnW [D.Z] —H 7#11 )12,T,M

o n+1/2 N
+ (L — d U op : (4.53)

ot
12,17,M
Similarly in the y direction, we have

+1/2

(dteu 0 ) v + v(dyey L dyvy )2 p

~n+1/2 n ~n+1/2 n
+ v(Dge €u,2 Drv2)l27Tz - (ep / ady%)ﬂ,M

- 0 n+1/2
_ (Phwn+1/2[Dyz]n+l/2 _ Mn+1/2 ¢8 71);)
Yy 12,M,T

aun+1/2
- (27 d U3 08 : (4.54)
ot 12,M, T

Adding (53) and ([E54) results in
~n n ~n n ~n+1/2 n
(dteuﬁl, v )M+ (dteutl, vy )iz mr + V(dy 6;{ / A7 )iz M
+ V(DyATil/Q DoY)z 1, + v(dye MH/Q s dyvg )iz 0

1/2
+ V(DJZE / s Dpvy )iz, — (52+1/2,de1 + dyvy )iz m

- o n+1/2
_ (rphwn+l/2[Da:Z]n+l/2 _ un+l/2 (ba 7’0?)
x 12,7,M

~ 8¢n+1/2
4 (Phwn—‘rl/Q[Dyz]n—i-l/Q _ un+1/27,1}§1)
12,M, T

dy
ou n+1/2
s (7 D
ot 12,7,M

o n+1/2
+ (uQT d,Up 1, op . (4.55)
12,M,T
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Recalling the definition of the interpolation operator P, and assuming that (Z12H)

holds, the first term on the right-hand side of (£X55) can be transformed into the
following:

n+1/2
(PhW"H/Q[DmZ]"H/Q B ‘un+1/28¢ / 71}711)
O 12,17,M

= (PRW" 2 — Py V2D, 212 07 )2 o
+ (Prp™™2 = g2 [D 212 00 )12 1o
+ (Nn+l/2([DwZ]n+l/2 o &45;7;1/2)71}?)[2’7:”]
< Cllet 2% a + Cllegll ar + Cllel ™ B ar
+ %nv?nl%jM +O(AF + b+ k), (4.56)

Similarly the second term on the right-hand side of (£55) can be estimated by

~ B n+1/2
(Phwn+1/2[Dyz]n+l/2 o Mn+1/2 ¢8 v72’b>
Y 12,M,T

< Cllep™ 2% ar + Cllel ar + Cllel 1
1
+ Z”Ug”l%,kl,T + C(At* + h* + kY. (4.57)

Taking note of Lemma ] and using Cauchy—Schwarz inequality, the last two terms
on the right-hand side of (58] can be controlled by

8 n+1/2 8 n+1/2
_ dtUn+17'Un + Un+17 n
( 8t 12, T,M 8t 12,M, T

1
< Z|\v"||l22 + C(At* + h* + k). (4.58)

Using Lemma and the discrete Poincaré inequality, we can obtain

+1/2
B2 s < sup G+ e
’ o vevy ||DVH
< C(ldeeg i llez,rnr + Nldey 2 lliz a7 + Nl doe I Y

1/2 1/2 1/2
D P e g + Iy Pl a + I\Dﬂé/ .z, )
+ CH@ZH/Q”P,M + Clleglliz, v + C||€Z_1Hl2,M

+O(At* + h? + k). (4.59)
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~ Sn+1
Setting vy, .\ /o = dteu Lig41/20 V2ir1/2, = €5 10 0 [#5H) leads to
[Degt!|? — [IDegl?
2At

_ n+1/2 71n+1/2 n+1/2 a¢n+1/2 +1
= (PnW [D.Z] —p “or dien )iz

||dtm+1||12 M T Hdtéﬁ—glnl?,M,T +v

n+1/2
+ («Phwn+1/2[DyZ]n+l/2 _ ‘un+1/2 a¢ / .d gn—; )
12,M,T

Ay
n+1/2
i <8u1 —dtU1 n+1 dtﬂn—i-l)

ot
12.7.M
o n+1/2
+ (uQT 4O dieny)! . (4.60)
12,M,T

Noting ([E56)—(Z5]), we have

et — ey
2t

< Cllep™ 2 s + Cllegll ar + Clieg o s

||dtm+1||12 M T ||dt€ﬁzl||12,M,T +v

(4.61)
—Hdth”lz M T ||dt€?151||l2,A1,T
+ C(At* + h* + k).
Multiplying (LG by 2At, and summing over n from 1 to m result in
Z At([deen iz + dien b IR )
+ D — D 2
(4.62)

<C Z Atllep ™2 ||E \ + C Z Atllegll ar

n=0

+ C(At* + h* + k).

Since e” 5 and e” then we can obtain

ATL
w,1,0,j+1/2 — u,l,Nz,j+1/ u,2,i+1/2,0 = €u,2,i+1/2,N,°
the follovvlng discrete Poincaré inequality.

m m
[e5t I < CIDEgH 1P < O Atllep™ 2[Ry + C Y Atlleg |l a (4.63)
n=0 n=0

+ C(At* + h* + kY.
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Recalling (£59]), we have

m m m
DA < C Y Atlep Ay +C Y At
n=0

n=0 n=0 464)
+ C(At* + At + kY,
which leads to the desired result [@51]). O

4.4. Verification of the hypotheses [I12) and the main results
In this section, we derive the final results.
Lemma 4.5. Suppose that ¢ € WL (J;WL(Q)) N W3 (J;WL(Q)),

)
Lo WA(Q), and w € Wo(LWEQ)2, p e WELWEQ) and
C(h + k), then the hypotheses [EI2)) holds.

o)
At <

Proof. The proof of ([{IZa) is essentially identical with the estimates in Ref. [T4l
Thus, we only provide a detail proof for (Z12H]) below.

Step 1. (Definition of C*): Using the scheme (3I9a)(3191) for n = 0, Lemmas [£3]
and £4] and the inverse assumption, we can get the approximation DZ' and the
following property:

IDZY|o = |DZ' = 1,D¢' o + [1nD¢! — D! [loc + [ D' ||
< Ch'DZ' = 1,D¢' |2 + [[1,D¢" — D¢'||c + Do ||
< Ch7(|Dej iz + [[1,D¢! — Dg'[|12) + [1, D" — Do || + | Do oo
< Ch YA + h?) + |Do | < C,

where i and At are selected such that A~ *A¢? is sufficiently small.
Thus, define the positive constant C* independent of A and At such that

C* > max{|[DZ"{|oc, 2| DG (t)|o }-

Step 2. (Induction): By the definition of C*, it is trivial that hypothesis (.12h)
holds true for [ = 1. Supposing that [|[DZ!~!|. < C* holds true for an integer
l=1,...,N —1, by Lemmas 3] and 4] with m = [, we have that

IDeL |2 < C(h? + At?).
Next we prove that |[DZ!||, < C* holds true. Since
IDZ'|oc = [DZ' — 1;D¢'||c + [1:D¢' — Dg'[|oc + | D'
< Ch~(|IDeg 2 + [1:D' — D' |12)
+ ”IhD¢l - D(bl”oo + ||D¢ZHOO

< C1h YA + h2) + | DG | oo

(4.65)
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Let At < Cyh and a positive constant h1 be small enough to satisfy

Ci(1+C3hy < 02 .
Then for h € (0, h1], Eq. (@B3) can be bounded by
IDZ oo < CLA™H(AE + 1) + DS || o

A (4.66)
< Ci(1+C5)n

Then, the proof of induction hypothesis (Z.12h) ends. O

Recalling (£63), we can transform ([@I8)) into the following:

[ m—H||l2 Mt Z AtHenH/zHﬂ T At h?

s m M & N
+ S IDeg i + = D At[Dep 2
n=0
m—+1
4.67
<C Z At|Dej + CZ At||Dert1/2)12 (4.67)

m+1 m—+1

+C At|el]lBa +C D Atfe

n=0 n=0
+C(At* +h* +EkY), m <N,

Multiplying (A67) and (@EI) by 4C and M, respectively, and using Gronwall’s
inequality, we can deduce that

m
leg M7 ar + D Atllep 27 o + (e )2
n=0

+ | Del % + Z At Dep 2% + [lep %
0 (4.68)

+ [DEg | + Z Atllep 2
n=0
< O(At* +h* + k%), m<N.
Thus, we have

127 = ¢ s gy + [DZ7H = DG+ Rt

m 1/2
+ (Z At|DW /2 Du"+l/2|?2>

n=0



Math. Models Methods Appl. Sci. 2020.30:2263-2297. Downloaded from www.worldscientific.com
by PURDUE UNIVERSITY on 11/30/20. Re-use and distribution is strictly not permitted, except for Open Access articles.

SAV-MAC scheme for the Cahn—Hilliard—Navier—Stokes phase-field model 2291

m 1/2
+ (Z At||Wn+l/2 _ Nn+1/2||122,M>

n=0
< C(lIgllwr rwa @) + il Lo wa @) (B> + ?)
+ Cllllws (rwa () At
(4.69)
Recalling Lemma [£I] we can obtain that
e (U = i) iz, a1 + |dy (U™ = ug?) |20 < O(AE + B + k%), (4.70)

" 1/2
107" = uf iz 7 00 + U3 — u3'lliz e + (Z Atl|(P —P)ll/QI?z,M>
=1 (4.71)

< O(A#? + h? + k?),
| Dy (U™ — w27, < O(AE + B + E3/2), (4.72)

D2 (U3 — ug) iz 1, < O(AE + h3/? + k). (4.73)
Combing the above results together, we finally obtain our main results:

Theorem 4.1. Suppose that ¢ € WL(J;WL(Q) N W (L, WL(Q),pn €
L®(J;WE(Q), and uw € W3 (J;WL(Q)2, p € W3 (J;W2(Q)) and At <
C(h+k), then for the Cahn—Hilliard—Stokes system, there exists a positive constant
C independent of h, k and At such that

127 = ™ 2 ag + |1 D2 = D™ 2[R —

m 1/2
+ (Z At DW/2 Du"“”ll?z)

n=0

m 1/2 (4.74)
+ (Z AtHWn—H/Q _Mn+1/2|l227M>

n=0

< Clollwe, (1w @) + ||N||L°°(J;Wo40(ﬂ)))(h2 + k%)

+ Clldllwe (rwr @)At?,  m < N,

[de (UT™ = wi) iz, 1 + [y (U™ — ug?)li2,

(4.75)
<O(A +hr2+ K%, m<N,

m 1/2
U™ —u™|2 + At||(P —p) 1213
| e (4.76)

=1

<O(At2 +h*+ k%), m<N,
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Dy (U™ —u) |27, < O(AE + B2 +K%%),  m <N, (4.77)

| DL (UF — uf))|iz.7, < OAE? + 132+ k%), m<N. (4.78)

5. Numerical Experiments

In this section, we provide some 2D numerical experiments to gauge the SAV/CN-
FD method developed in the previous sections.
We transform (22)) as

1 1 8 1 B> +28
E<¢>>=/Q{§|u|2+A(5|V¢|2+@¢2+p<¢2—1—ﬁ>2— 1 )}d"’

(5.1)

where /3 is a positive number to be chosen. To apply our scheme (B.19a)—(3.191)
to the system (21I), we drop the constant in the free energy and specify E;(¢) =

1
1= / (¢? — 1 — B)?dx, and modify ([BI9D) into
€ Ja
Wn+1/2 — \d.D.7Z d.D Zn+1/2 )\ﬁZn—i-l/Q
i+1/2,541/2 = —AldeDaZ + dy D, ]i+1/2,j+1/2+6_2 i+1/2,j+1/2
Rn+1/2 —n (52)
F A F"(Z]]'/?).

E{L(Z’n—‘rl/Q)

Then, we can obtain

0
F(6) = G5 = 500" = 1-9). (53)

For simplicity, we define

1 = glloez = max {49~ g™l

m 1/2
If = gll22 = (Z At | e —g"”Hi) :
n=0

o — n+1l _ .n+1
IR = rlloc = max (R =1},

where ¢ = %7 1 and X is the corresponding discrete L? norm. In the following

simulations, we choose 2 = (0,1) x (0,1), 5 =5 and v = 1.

5.1. Convergence rates of the SAV-MAC scheme for the
Cahn—Hilliard—Navier—Stokes phase field model

In this Example 1, we take T = 0.1, At = 1E —4, A = 0.1, v = 0.1, €2 = 0.1,
M = 0.001, and the initial solution ¢g = cos(wz) cos(my), ui(x,y) = —a?(x—1)%(y—
1)(2y — 1)y/128 and us(z,y) = —u1(y, x). We measure Cauchy error to get around
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Table 1. Errors and convergence rates of the phase function and
auxiliary scalar function for Example 1.

h lezlloo,2 Rate |lepzllco,2 Rate |[ler|lc  Rate

1/10 3.09E-3 — 1.37E-2 — 2.69E-5 —
1/20 7.74E-4 2.00 3.43E-3 1.99 6.76E-6  1.99
1/40 1.93E-4 2.00 8.60E-4 2.00 1.69E-6  2.00
1/80  4.84E-5 2.00 2.15E-4 2.00  4.23E-7  2.00

Table 2.  Errors and convergence rates of the chemical potential
and velocity for Example 1.

h llewll2,2 Rate |lepwl2,2 Rate [leulloo,2 Rate

1/10  1.59E-3 — 1.57E-2 — 1.67E-4 —
1/20  4.01E-4 1.98 4.09E-3 1.94 3.67E-5 2.19
1/40 1.01E-4 2.00 1.03E-3 1.99 8.88E-6 2.05
1/80  2.51E-5 2.00 2.59E-4 2.00 2.20E-6 2.01

Table 3. Errors and convergence rates of the velocity and pressure for

Example 1.

h lea, v, llc,2 Rate [lep,u,llec,2  Rate |lepllz,2 Rate
1/10 9.14E-4 — 1.54E-3 — 1.06E-3 —
1/20 2.05E-4 2.16 4.28E-4 1.85 2.63E-4 2.01
1/40 4.99E-5 2.04 1.36E-4 1.66  6.56E-5  2.00
1/80 1.24E-5 2.01 4.56E-5 1.57  1.64E-5  2.00

the fact that we do not have possession of exact solution. Specifically, the error
between two different grid spacings h and £ is calculated by |lec|| = [|¢h — G2 ll-

The numerical results are listed in Tables IH3] and give solid supporting evi-
dence for the expected second-order convergence of the SAV/CN-FD scheme for
the Cahn—Hilliard—Navier—Stokes phase-field model, which are consistent with the
error estimates in Theorem Bl Here we only present the results for u; since the
results for uy are similar to wu;.

5.2. The dynamics of a square shape fluid

In this Example 2, the evolution of a square shaped fluid bubble is simulated by
using the following parameters:

e=0.01, v=1 AX=0.01, M =0.002, iL=1/1007 At =1F — 3.

The initial velocity and pressure are set to zero. The initial phase function is chosen
to be a rectangular bubble, i.e. ¢ = 1 inside the bubble and ¢ = —1 outside the
bubble. Snapshots of the phase evolution at time ¢ = 0,5, 6, 8, 10, respectively, are
presented in Fig. Pl As we can see, the rectangular bubble deforms into a circular
bubble due to the surface tension.
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H E EE E

Fig. 2. Snapshots of the phase function in example 2 at t = 0, 5, 6, 8, 10, respectively.

5.3. Buoyancy-driven flow

In this Example 3, as the test of buoyancy-driven flow, we consider the case of a
single bubble rising in a rectangular box. Similar to Ref. 5, we modify the Navier—
Stokes Eq. (ZId) as follows:

Ju
EJru-VuququVp:y,V(ber, (5.4)
where b is a buoyancy term that depends on the mass density p. We assume that
the mass density depends on ¢, and the following Boussinesq type approximation
is applied:
where ¢ is a constant (usually the average value of ¢), and x is a constant. In this
example, the numerical and physical parameters are given as follows:

h=1/100, At =5E —4, M = 0.01,

e=0.01, v=1, A =0.001,

b0 = —0.05, y = 40.

u
R |

X X

Fig. 3. Snapshots of the phase function in Example 3 at ¢t = 0.5,1,4,4.1,4.2, 5, respectively.
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The initial condition for the phase function is chosen to be a circular bubble that
centered at (%7 %)7 and the initial data for the velocity is taken as u® = 0. Snapshots
of the phase evolution at time ¢t = 0.5,1,4,4.1,4.2, 5, respectively, are presented in
Fig. Bl It starts as a circular bubble near the bottom of the domain. The density
of the bubble is lighter than the density of the surrounding fluid. As expected, the
bubble rises, reaching an elliptical shape, and then deforms as it approaches the

upper boundary.

6. Conclusion

We developed a second-order fully discrete SAV-MAC scheme for the Cahn-—
Hilliard—Navier—Stokes phase-field model, and proved that it is unconditionally
energy stable. We also carried out a rigorous error analysis for the Cahn—Hilliard—
Stokes system and derived second-order error estimates both in time and space for
phase-field variable, chemical potential, velocity and pressure in different discrete
norms.

The SAV-MAC scheme, with an explicit treatment of the convective term in the
phase equation, is extremely efficient as it leads to, at each time step, a sequence
of Poisson type equations that can be solved by using fast Fourier transforms. We
provided several numerical results to demonstrate the robustness and accuracy of
the SAV-MAC scheme for the Cahn-Hilliard—Navier—Stokes phase-field model.

We only carried out an error analysis for the Cahn—Hilliard—Stokes system. To
derive corresponding error estimates for the Cahn—Hilliard—Navier—Stokes system,
one needs to use new discretizing techniques such as a high order upwind method
to deal with the nonlinear term. This will be a subject of future research.
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