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OPTIMAL ERROR ESTIMATES

IN JACOBI-WEIGHTED SOBOLEV SPACES

FOR POLYNOMIAL APPROXIMATIONS ON THE TRIANGLE

HUIYUAN LI AND JIE SHEN

Abstract. Spectral approximations on the triangle by orthogonal polynomi-
als are studied in this paper. Optimal error estimates in weighted semi-norms
for both the L2− and H1

0−orthogonal polynomial projections are established
by using the generalized Koornwinder polynomials and the properties of the
Sturm-Liouville operator on the triangle. These results are then applied to de-
rive error estimates for the spectral-Galerkin method for second- and fourth-
order equations on the triangle. The generalized Koornwinder polynomials
and approximation results developed in this paper will be useful for many
other applications involving spectral and spectral-element approximations in
triangular domains.

1. Introduction

Polynomial approximations on the triangle play an important role for the
spectral-element methods and the hp finite-element methods in complex geometries
[19, 7, 24, 23, 16, 15, 14]. Optimal error estimates for polynomial approximations
were first established for Jacobi polynomials in one dimension [4, 9, 18, 11], and
extended to multi-dimensional rectangular domains by a standard tensor product
argument. However, only limited efforts have been devoted to establishing anal-
ogous results on triangular domains. Braess and Schwab [5] derived sharp error
estimates for the orthogonal approximations on a simplex in the norm defined by
a second-order self-adjoint differential operator under barycentric coordinates, but
their results do not imply the standard Hk−error estimates (k = 1, 2), which are
pivotal to the numerical analysis of spectral methods for PDEs. Schwab [21] (see
also Canuto et al. [6]) derived error estimates in the usual Sobolev space by padding
the triangle into a rectangle and using the standard approximation results. On the
other hand, Guo and Wang [13] obtained some polynomial approximation results on
the triangle in non-uniformly Jacobi-weighted Sobolev spaces by using the warped
product based on the one-dimensional Jacobi approximations. However, their re-
sults are derived under a rather restrictive condition on the numbers of modes
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used in each direction. We should add that a fully tensorial spectral method using
rational functions has been developed in [22].

The purpose of this paper is to establish optimal error estimates in weighted
semi-norms for both the L2− and H1−norms for polynomial approximations on
the triangle

T = {(x, y) : 0 < x, y, x+ y < 1} .(1.1)

These estimates share the same essential characteristics with the one-dimensional
Jacobi approximation results and are directly applicable to spectral methods for
partial differential equations on the triangle.

As in the one-dimensional case, properties of orthogonal polynomials on the tri-
angle play important roles in their analysis and applications. There exist several
families of classical orthogonal polynomials on the triangle T , among which the
monomial basis [25, 10], Appell polynomials [3, 2] and Koornwinder polynomials
[17] are particularly interesting. The monomial basis and Appell polynomials are
bi-orthogonal to each other [8], while the Koornwinder polynomials are fully or-
thogonal, and its simplest family, the so-called Dubiner polynomials [7] have been
used frequently in spectral-element methods (cf. [16]).

We point out that, similar to the classical Jacobi polynomials, which are defined
for indices α, β > −1, the classical orthogonal polynomials on the triangle are
defined for a set of triple real numbers α1, α2, α3 > −1. Recently, Guo, Shen
and Wang [11, 12] introduced generalized Jacobi polynomials for indices α ≤ −1
and/or β ≤ −1. The use of generalized Jacobi polynomials not only simplifies the
numerical analysis for the spectral approximations of differential equations, but also
leads to very efficient numerical algorithms with well-conditioned linear systems.
Therefore, we shall introduce a similar generalization to the orthogonal polynomials
on the triangle.

It is also worthy to note that any families of orthogonal polynomials on the tri-
angle are eigenfunctions of a second-order Sturm-Liouville operator, and it is well
known that for a selfadjoint and positive definite differential operator, the eigen-
functions associated with different eigenvalues are mutually orthogonal. Inspired by
this fact, Owens [20] constructed a Sturm-Liouville operator on T which possesses
distinct eigenvalues, and then derived a family of orthogonal polynomials in [20].
More importantly, the use of the Sturm-Liouville operator usually leads to a direct
and simple way to establish optimal approximation results in the norm induced by
the Sturm-Liouville operator.

Therefore, we shall combine in this paper the two approaches: the Sturm-
Liouville operator and generalized orthogonal polynomials. We shall first extend the
Koornwinder polynomials (extension of the Jacobi polynomials to the triangle T )
to negative integer indices, and then we construct an arbitrarily high-order Sturm-
Liouville differential operator for orthogonal polynomials defined on T . Using this
operator, we define non-uniformly Jacobi-weighted Sobolev spaces and derive op-
timal error estimates for L2− and H1

0−orthogonal approximations. These results
can be directly used in numerical analysis and algorithm design of spectral methods
for partial differential equations on the triangle.

The remainder of the paper is organized as follows. In §2, we recall the definition
and basic approximation results for the generalized Jacobi polynomials, and then
we introduce the Koornwinder polynomials and define the generalized Koornwinder
polynomials on the triangle. The main approximation results are proved in §3.1. As
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examples of applications, we provide in §4 the error estimates and implementation
details for the spectral-Galerkin approximation to the second-order and the fourth-
order partial differential equations. We present some illustrative numerical results
in §5.

2. Koornwinder and generalized Koornwinder polynomials

on the triangle

In this section, we recall the definition of Koornwinder polynomials which are
the extension of the Jacobi polynomials on the triangle and form an orthogonal
basis in weighted Sobolev space. We then extend the definition of Koornwinder
polynomials to indices with negative integers.

2.1. Notation and conventions. We describe below some notation and conven-
tions which will be used throughout the paper.

Let � be a generic positive weight function on a bounded domain Ω, which is
not necessary to be L1(Ω). Denote by (u, v)�,Ω :=

∫
Ω
uv�dΩ the inner product of

L2
�(Ω) whose norm is denoted by ‖ · ‖�,Ω. We use Hm

� (Ω) and Hm
0,�(Ω) to denote

the usual weighted Sobolev spaces, whose norm and semi-norms are denoted by
‖u‖m,�,Ω and |u|m,�,Ω, respectively. In cases where no confusion would arise, �
(if � ≡ 1) and Ω (if Ω = T ) may be dropped from the notation.

Let T be the reference triangle defined by (1.1). For any α = (α1, α2, α3) ∈ R3,
we introduce the following multi-index notation:

|α| = α1 + α2 + α3, α∗ = (α1 + α3, α2 + α3, α1 + α2),(2.1)

and denote

χα := χα(x, y) = xα1yα2(1− x− y)α3 .(2.2)

We define the weighted inner product and the corresponding L2
χα-norm by

(u, v)χα =

∫∫
T

uvχαdxdy, ‖u‖χα =
√
(u, u)χα .(2.3)

Let Z+, N0 and Z− be the collections of the positive integers, the non-negative
integers and the negative integers, respectively. We introduce the index sets

ℵ+ = (−1,∞), ℵ− = Z−, ℵ = ℵ− ∪ ℵ+.(2.4)

For any α = (α1, α2, α3) ∈ ℵ3, we define

α̂i =

{
−αi, αi ∈ ℵ−,

0, αi ∈ ℵ+,
α̂ = (α̂1, α̂2, α̂3).(2.5)

For convenience, we abbreviate the partial differential operators
∂

∂x
and

∂

∂y
to ∂x

and ∂y, respectively. For n = (n1, n2, n3) ∈ N3
0, we define the differential operator

Dn = ∂n1
x ∂n2

y (∂y − ∂x)
n3 .(2.6)

Different from the standard two-dimensional differential operators, we have intro-
duced the third directional derivative ∂y − ∂x in the definition of Dn since this
direction is parallel to the hypotenuse and plays as important a role as the other
two directions (x- and y-directions).

We denote by c a generic positive constant independent of any function and of
any discretization parameters. We use the expression A � B to mean that A ≤ cB.
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Let PN (Ω) be the collection of all the algebraic polynomials on Ω with total
degree no greater than N , i.e.,

PN = PN (T ) =
{
xkyl : k, l ∈ N0, k + l ≤ N

}
.(2.7)

Definition 2.1. We shall say that q ∈ PN is an orthogonal polynomial of degree
N with respect to (·, ·)χα if

(q, p)χα = 0, ∀p ∈ PN−1,

and denote it by q ∈ Rα
N .

2.2. Jacobi and generalized Jacobi polynomials. The classical Jacobi poly-
nomials Jα1,α2

k (ζ), k ≥ 0 with α1, α2 > −1 are mutually orthogonal with respect to
the Jacobi weight function ωα1,α2 := ωα1,α2(ζ) = (1− ζ)α1(1+ ζ)α2 on I = (−1, 1),∫ 1

−1

Jα1,α2
m (ζ)Jα1,α2

n (ζ)ωα1,α2(ζ)dζ = hα1,α2
n δm,n, m, n ≥ 0,(2.8)

where δm,n is the Kronecker delta, and

hα1,α2
n :=

∥∥Jα1,α2
n

∥∥2
ωα1,α2 ,I

=
2α1+α2+1Γ(n+ α1 + 1)Γ(n+ α2 + 1)

(2n+ α1 + α2 + 1)Γ(n+ 1)Γ(n+ α1 + α2 + 1)
.

(2.9)

The classical Jacobi polynomials were originally defined for α1, α2 > −1. Re-
cently Guo, Shen and Wang [11] extended the definition of Jacobi polynomials
to allow α1 and/or α2 to be negative integers. The generalized Jacobi polynomi-
als with negative indices not only simplify the numerical analysis for the spectral
approximations of differential equations, but also lead to very efficient numerical
algorithms [11, 12]. We recall that, given (α1, α2) ∈ ℵ2\ℵ2

+, the generalized Jacobi
polynomials (still denoted by Jα1,α2

n ) for n ≥ n0 := α̂1 + α̂2 can be defined as
follows:

Jα1,α2
n (ζ) =

⎧⎪⎪⎨
⎪⎪⎩

(
ζ−1
2

)−α1
(
ζ+1
2

)−α2J−α1,−α2

n+α1+α2
(ζ), α1 ∈ ℵ−, α2 ∈ ℵ−,

Γ(n+α1+1)Γ(n+α2+1)
Γ(n+1)Γ(n+α1+α2+1)

(
ζ−1
2

)−α1J−α1,α2

n+α1
(ζ), α1 ∈ ℵ−, α2 ∈ ℵ+,

Γ(n+α1+1)Γ(n+α2+1)
Γ(n+1)Γ(n+α1+α2+1)

(
ζ+1
2

)−α2Jα1,−α2

n+α2
(ζ), α1 ∈ ℵ+, α2 ∈ ℵ−,

= cα1,α2
n ωα̂1,α̂2(ζ)Jα1+2α̂1,α2+2α̂2

n−n0
(ζ).

(2.10)

It can be readily checked that (2.8) still holds for any m,n ≥ n0. We also point
out that the generalized Jacobi polynomials defined by (2.10) satisfy most essential
recurrence relations of the classic Jacobi polynomials (cf. [22] and Appendix A).

We now define the orthogonal projection πα1,α2

N : L2
ωα1,α2 (I) �→PN (I)∩L2

ωα1,α2 (I)
by

(πα1,α2

N u− u, v)ωα1,α2 ,I = 0, ∀v ∈ PN (I) ∩ L2
ωα1,α2 (I).(2.11)

Note that for α1, α2 > −1, we have PN (I) ∩ L2
ωα1,α2 (I) = PN (I), while for α1

and/or α2 being negative integers, certain boundary conditions are involved for any
function v ∈ PN (I)∩L2

ωα1,α2 (I). For instance, PN (I)∩L2
ω−1,−1(I) = PN (I)∩H1

0 (I).
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We introduce the Jacobi-weighted Sobolev space B�
α1,α2

(I),

B�
α1,α2

(I) :=
{
u : u is measurable on I and ‖u‖B�

α1,α2 (I)
< ∞

}
,

‖u‖B�
α1,α2 (I)

=
( �∑

k=0

∥∥∂k
ζ u

∥∥2
ωα1+k,α2+k

) 1
2

.

Then the following theorem is a direct extension of the same result for α1, α2 ∈
ℵ+.

Theorem 2.1 (cf. [11]). Let α1, α2 ∈ ℵ. Then for any u ∈ B�
α1,α2

(I) and 0 ≤ l ≤
� ≤ N ,

(2.12) ‖πα1,α2

N u− u‖Bl
α1,α2

(I) � N l−�
∣∣∂�

ζu
∣∣
ωα1+�,α2+� .

We shall introduce below the generalized orthogonal polynomials on the triangle
and derive corresponding approximation results on the triangle similar to the above
theorem.

2.3. Koornwinder and generalized Koornwinder polynomials. Consider the
following one-to-one transformation from the reference square Q = (−1, 1)2 onto
the triangle T ,

x =
1− ξ

2

1− η

2
, y =

1 + ξ

2

1− η

2
(2.13)

with the inverse transform

ζ =
y − x

y + x
, η = 1− 2x− 2y.(2.14)

This collapsed transformation maps polynomials in T to polynomials in Q.
We would like to point out that the transform (2.13) can be related to the one

used in [7, 16] by a rotation

(x, y, 1− x− y) → (y, 1− x− y, x).

The transform (2.13) collapses the edge: η = 1,−1 < ξ < 1, of the rectangle Q into
the vertex (0, 0) instead of (0, 1). Thus, the formulas under the transform (2.13)
are more symmetric with respect to the variables x and y.

For α ∈ ℵ3
+, Koornwinder polynomials are two-variable analogues of Jacobi

polynomials defined through the collapsed transformation (2.13),

J α
l (x, y) = Jα1,α2

l1
(ξ)

(1− η

2

)l1
J2l+α1+α2+1,α3

l2
(η)

= (y + x)l1Jα1,α2

l1

(
y − x

y + x

)
J2l1+α1+α2+1,α3

l2
(1− 2x− 2y), l ∈ N2

0.
(2.15)

By (2.13) and (2.9), we get that

∫∫
T

J α
l (x, y)J α

k (x, y)χαdxdy =
1

4

∫∫
Q

(1− ξ

2

)α1
(1 + ξ

2

)α2
(1− η

2

)l1+k2+α1+α2+1

×
(1 + η

2

)α3

J α1,α2

l1
(ξ)J α1,α2

k1
(ξ)J 2l1+α1+α2+1,α3

l2
(η)J 2k1+α1+α2+1,α3

k2
(η)dξdη

= γα
l δl,k, l, k,∈ N2

0,

(2.16)
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where

γα
l =

Γ(l1 + α1 + 1)Γ(l1 + α2 + 1)Γ(l2 + α3 + 1)Γ(|l|+ l1 + α1 + α2 + 2)

Γ(l1 + 1)Γ(l2 + 1)Γ(l1 + α1 + α2 + 1)Γ(|l|+ l1 + |α|+ 2)

× 1

(2l1 + α1 + α2 + 1)(2|l|+ |α|+ 2)
.

These orthogonal polynomials have been used in developing spectral-element meth-
ods for complex geometry; e.g., the basis functions used in [7, 16] become simply

the basic family J 0,0,0
l1,l2

through another affine transform from T to T .

Since the generalized Jacobi polynomials Jα1,α2

l are well defined for α1 and α2 to
be negative integers, we can still use (2.15) to define the generalized Koornwinder
polynomials J α

l . More precisely, for any α ∈ ℵ3\ℵ3
+, by using the definition of the

generalized Jacobi polynomials, we define

J α
l (x, y) = (y + x)l1Jα1,α2

l1

(
y − x

y + x

)
J2l1+α1+α2+1,α3

l2
(1− 2x− 2y)

= (y + x)l1−α̂1−α̂2Jα1+2α̂1,α2+2α̂2

l1−α̂1−α̂2

(
y − x

y + x

)
J2l1+α1+α2+1,α3+2α̂3

l2−α̂3
(1− 2x− 2y)

× c xα̂1yα̂2(1− x− y)α̂3

= c χα̂(x, y)J α+2α̂
l1−α̂1−α̂2,l2−α̂3

(x, y).

(2.17)

Hence, J α
l is well defined for l ∈ N2

0 with l1 ≥ α̂1 + α̂2 and l2 ≥ α̂3, and it can be
checked that {J α

l }l1≥α̂1+α̂2, l2≥α̂3
are mutually orthogonal in L2

χα(T ) and form a

complete basis for L2
χα(T ).

3. Polynomial approximations on the triangle

In this section, we study the orthogonal polynomial approximations on the tri-
angle T . For this purpose, we consider the eigenproblem of a selfadjoint partial
differential equation for both the classic and the generalized orthogonal polyno-
mials. Then we shall give an optimal error estimate in Jacobi-weighted Sobolev
spaces.

3.1. Sturm-Liouville operator for classical orthogonal polynomials.

Lemma 3.1. Let α ∈ ℵ3
+ and n ∈ N3

0. Then, the differential operator

(−1)|n|χ−αDnχn∗+αDn (n∗ and Dn are defined in (2.1) and (2.6))

is selfadjoint and positive definite with respect to the inner product (·, ·)χα. It maps
Pm into Pm, and Rα

m into Rα
m.

Proof. When applying (−1)|n|χ−αDnχn∗+αDn to a polynomial p, the augment of
the degree of p by multiplying by χn∗+α and then χ−α is compensated by two
differentiations since |n∗| = 2|n|. Thus we deduce that (−1)|n|χ−αDnχn∗+αDn

maps Pm into Pm.
By Leibniz’s rule, we derive that for a sufficiently smooth function g,

Dm
(
χn∗+αg

)
=

m3∑
k3=0

m2∑
k2=0

m1∑
k1=0

(
m1

k1

)(
m2

k2

)(
m3

k3

)(
Dkχn∗+α

)(
Dm−kg

)
.
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Furthermore, it is easy to see that for any α1, α2, α3 > −1,⎧⎪⎨
⎪⎩
Dkχn∗+α(0, y) = 0, if k1 + k3 < n1 + n3,

Dkχn∗+α(x, 0) = 0, if k2 + k3 < n2 + n3,

Dkχn∗+α(x, 1− x) = 0, if k1 + k2 < n1 + n2,

which states that for any α ∈ ℵ3
+ and 0 ≤ mi ≤ ni with i = 1, 2, 3,⎧⎪⎨

⎪⎩
Dm

(
χn∗+αg

)
(0, y) = 0 and Dm

(
χn∗+αg

)
(1− y, y) = 0, if m1 < n1,

Dm
(
χn∗+αg

)
(x, 0) = 0 and Dm

(
χn∗+αg

)
(x, 1− x) = 0, if m2 < n2,

Dm
(
χn∗+αg

)
(0, y) = 0 and Dm

(
χn∗+αg

)
(x, 0) = 0, if m3 < n3.

Therefore no boundary terms occur when performing integration by parts in the
following expression:

(−1)|n|
∫∫

T

Dn(χn∗+αDnf) g dxdy =

∫∫
T

χn∗+α(Dnf) (Dng) dxdy.(3.1)

This implies that the operator (−1)|n|χ−αDnχn∗+αDn is positive definite with re-
spect to the inner product (·, ·)χα . From the symmetry of (3.1) we obtain(

(−1)|n|χ−αDn(χn∗+αDnf), g
)
χα =

(
f, (−1)|n|χ−αDn(χn∗+αDng)

)
χα ,(3.2)

which clearly states that (−1)|n|χ−αDnχn∗+αDn is selfadjoint with respect to (·, ·)χα .

Finally let p ∈ Rα
m and q ∈ Pm−1. Since χ−αDnχn∗+αDnq ∈ Pm−1 and p ∈

P⊥
m−1, we deduce from (3.2) that∫∫

T

q · (χ−αDnχn∗+αDnp) · χα dxdy =

∫∫
T

p · (χ−αDnχn∗+αDnq) · χα dxdy = 0.

Hence, we conclude that (−1)|n|χ−αDnχn∗+αDn maps Rα
m into Rα

m. �

As an analogue of the multinomial theorem [1], we have the following lemma.

Lemma 3.2. Let e1 = (1, 0, 1), e2 = (0, 1, 1) and e3 = (1, 1, 0). Then for any
α ∈ R3,

∑
|n|=�+1

(�+ 1)!

n1!n2!n3!
Dnχn∗+αDn = ∂x

( ∑
|n|=�

�!

n1!n2!n3!
Dnχn∗+α+e1Dn

)
∂x

+ ∂y

( ∑
|n|=�

�!

n1!n2!n3!
Dnχn∗+α+e2Dn

)
∂y

+ (∂y − ∂x)
( ∑
|n|=�

�!

n1!n2!n3!
Dnχn∗+α+e3Dn

)
(∂y−∂x).

(3.3)

Now we define the differential operator

L�
α = (−1)�χ−α

∑
|n|=�

�!

n1!n2!n3!
Dnχn∗+αDn,

which can be regarded as a 2�-th order Sturm-Liouville operator on the triangle.
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Theorem 3.1. Let α ∈ ℵ3
+ and � ∈ Z+. The operator L�

α is selfadjoint and

L�
α p = μ�

m,|α| p for all p ∈ Rα
m,(3.4)

where

μ�
m,|α| =

Γ(m+ 1)

Γ(m− �+ 1)

Γ(m+ �+ |α|+ 2)

Γ(m+ |α|+ 2)
.

Proof. Owing to the linearity of L�
α and Lemma 3.1, it suffices to prove that

L�
αx

kyl = μ�
k+l,|α|x

kyl (mod Pk+l−1), k, l ≥ 0.(3.5)

Now we prove (3.5) by induction. Although the proof for |n| = 1 under the
barycentric coordinates is given in [5], for the sake of completeness, we provide a
brief proof below. In fact, we get by a mechanical calculation that

L1
α(x

kyl) = −χ−α∂x
(
x(1− x− y)χα∂x(x

kyl)
)
− χ−α∂y

(
y(1− x− y)χα∂y(x

kyl)
)

− χ−α(∂y − ∂x)
(
xyχα(∂y − ∂x)(x

kyl)
)

= −kxk−1yl
(
(α1 + k)− (α1 + α3 + k + 1)x− (α1 + k)y

)
− lxkyl−1

(
α2 + l)− (α2 + α3 + l + 1)y − (α2 + l)x

)
− xk−1yl−1

(
l(α2 + l)x2 + k(α1 + k)y2

− (k(α2 + l + 1) + l(k + α1 + 1))xy
)

≡ (k + l)(k + l + 2 + |α|)xkyl (mod Pk+l−1).

Now assume (3.5) holds for |n| = �. Then by a straightforward calculation (mod
Pk+l−1), we have

χ−α
∑
|n|=�

(−1)��!

n1!n2!n3!
Dn∂x

(
x(1− x− y)χn∗+αDn∂x(x

kyl)
)

= kχ−α
∑
|n|=�

(−1)��!

n1!n2!n3!
Dn

(
χn∗+α

(
x(1− x− y)∂x + (n1 + n3 + α1 + 1)(1− x− y)

− (n1 + n2 + α3 + 1)x
)
Dn(xk−1yl)

)
= k(k − 1)χ−α

∑
|n|=�

(−1)��!

n1!n2!n3!
Dn

(
x(1− x− y)χn∗+αDn(xk−2yl)

)

+ k(n1 + n3 + α1 + 1)χ−α
∑
|n|=�

(−1)��!

n1!n2!n3!
Dn

(
χn∗+α(1− x− y)Dn(xk−1yl)

)

− k(n1 + n2 + α3 + 1)χ−α
∑
|n|=�

(−1)��!

n1!n2!n3!
Dn

(
χn∗+αxDn(xk−1yl)

)

≡ k
(
(k − 1)μ�

k+l−2,|α|+2 + (n1 + n3 + α1 + 1)μ�
k+l−1,|α|+1

)
xk−1yl(1− x− y)

− k(n1 + n2 + α3 + 1)μ�
k+l−1,|α|+1x

kyl.
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Similarly,

χ−α
∑
|n|=�

(−1)��!

n1!n2!n3!
Dn

(
∂yy(1− x− y)χn∗+αDn∂y(x

kyl)
)

≡ l
(
(l − 1)μ�

k+l−2,|α|+2 + (n2 + n3 + α2 + 1)μ�
k+l−1,|α|+1

)
xkyl−1(1− x− y)

− l(n1 + n2 + α3 + 1)μ�
k+l−1,|α|+1x

kyl

and

χ−α
∑
|n|=�

(−1)��!

n1!n2!n3!
Dn

(
(∂y − ∂x)xyχ

n∗+αDn(∂y − ∂x)(x
kyl)

)

≡ l
(
(l − 1)μ�

k+l−2,|α|+2 + (n2 + n3 + α2 + 1)μ�
k+l−1,|α|+1

)
xk+1yl−1

+ k
(
(k − 1)μ�

k+l−2,|α|+2 + (n1 + n3 + α1 + 1)μ�
k+l−1,|α|+1

)
xk−1yl+1

−
(
2klμ�

k+l−2,|α|+2 + (k(n2 + n3 + α2 + 1)

+ l(n1 + n3 + α1 + 1))μ�
k+l−1,|α|+1

)
xkyl.

Finally we deduce from the above arguments and Lemma 3.2 that

(−1)�+1χ−α
∑

|n|=�+1

(�+ 1)!

n1!n2!n3!
Dnχn∗+αDnχn

≡ (k + l)
[
(k + l − 1)μ�

k+l−2,|α|+2 + (2�+ |α|+ 3)μ�
k+l−1,|α|+1

]
xkyl

= μ�+1
k+l,|α|x

kyl,

which completes the proof. �

3.2. Sturm-Liouville operator for generalized orthogonal polynomials.
We first define the space of generalized orthogonal polynomials on the triangle
T for any α ∈ ℵ3,

(3.6) Pα
m = Pm ∩ L2

χα(T ) = {J α
l (x, y) : l1 ≥ α̂1 + α̂2, l2 ≥ α̂3, l1 + l2 ≤ m} .

It is obvious that Pα
m = Pm if α ∈ ℵ3

+, and (−1)|n|Dn(χn∗+αDn) maps Pα
m into

Pα
m, noting that any function f ∈ Pα

m will vanish on the corresponding bound-
ary/boundaries if α ∈ ℵ3\ℵ3

+. Thus following the same way as in Lemma 3.1, one

can prove that (−1)|n|Dn(χn∗+αDn) is selfadjoint and positive definite with respect
to χα in Pα

m. This, in return, shows that (−1)|n|Dn(χn∗+αDn) maps Rα
m into Rα

m.
Since {J α

l (x, y)}l1≥α̂1+α̂2, l2≥α̂3
form a basis of L2

χα(T ), we have the following
lemma.

Lemma 3.3. Let α ∈ ℵ3 and n ∈ N3
0. The differential operator

(−1)|n|χ−αDnχn∗+αDn

is selfadjoint and positive definite with respect to the inner product (·, ·)χα. It maps
Pα
m into Pα

m and Rα
m into Rα

m.

By using a similar induction argument as in the proof of Theorem 3.1, but acting
on χl+α̂(x, y) instead of xl1yl2 , we can prove the following result.
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Theorem 3.2. Let α ∈ ℵ3 and � ∈ Z+. The operator L�
α is selfadjoint and

L�
α p = μ�

m,|α| p for all p ∈ Rα
m,(3.7)

where m ≥ |α̂| and μ�
m,α is the same as in Theorem 3.1.

3.3. Polynomial approximations in Jacobi-weighted Sobolev space. For
any M ∈ N0, define the orthogonal projection Pα

M : L2
χα(T ) → Pα

M such that for

any u ∈ L2
χα(T ),

(Pα
Mu− u, v)χα = 0, ∀v ∈ Pα

M .

The main purpose of this subsection is to obtain an optimal error estimate of
the orthogonal projection. We resort to the space decomposition for our purpose.
Note that

Pα
M =

M⊕
m=|α̂|

Rα
m.

We now define the orthogonal projection Rα
m : L2

χα(T ) → Rα
m by

(Rα
mu− u, v)χα = 0, ∀v ∈ Rα

m.

For notational simplicity, we denote um = Rα
mu. Then we have the following

identities:

u =
∑

m≥|α̂|
um, Pα

Mu =
∑

m≤M

um.

For integer � ∈ N0, we define the Jacobi-weight Sobolev space B�
α(T ) and its

corresponding norm and semi-norm,

B�
α(T ) = {u : u is measurable and ‖u‖B�

α
< ∞} ,

‖u‖2B�
α
=

�∑
ρ=0

|u|2Bρ
α
, |u|2Bρ

α
=

∑
|n|=ρ

ρ!

n1!n2!n3!
‖Dnu‖2χn∗+α .

We start with the following useful lemma.

Lemma 3.4. Let n ∈ N3
0, α ∈ ℵ3 and α+n∗ ∈ ℵ3. Then Dn maps Rα

m onto Rα+n∗

m−|n|.

Moreover, the differential operator Dn and the projection operator commute in the
sense that

DnPα
M = Pα+n∗

M−|n|D
n.(3.8)

Proof. It is easy to see from (A.7) that ∂xJ α
l can be expressed as a linear combina-

tion of J α1+1,α2,α3+1
k1,k2

with |k| = |l| − 1, which states that the differential operator

∂x maps Rα
m into R

α1+1,α2,α3+1
m−1 . On the other hand, we get from (A.7) that

J α1+1,α2,α3+1
l1,l2

(x, y) = − 2l1 + α1 + α2 + 3

(l1 + α2 + 1)(|l|+ l1 + α1 + α2 + 3)
∂xJ α1,α2,α3

l1+1,l2
(x, y)

− (l1 + α1 + α2 + 2)(|l|+ l1 + |α|+ 4)

(l1 + α2 + 1)(|l|+ l1 + α1 + α2 + 3)
J α1+1,α2,α3+1
l1+1,l2−1 (x, y).
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Noting that J α1+1,α2,α3+1

|l|− ̂(α3+1)+1, ̂(α3+1)−1
= 0 and (l1 + α2 + 1)(|l|+ l1 + α1 + α2 + 3) > 0

for any l1 ≥ ̂(α1 + 1) + α̂2 and l2 ≥ ̂(α3 + 1), we further get that

J α1+1,α2,α3+1
l1,l2

(x, y) =

l2∑
i= ̂(α3+1)

ci∂xJ α1,α2,α3

|l|−i+1,i (x, y) for certain ci’s.

This shows that ∂x : Rα
m → R

α1+1,α2,α3+1
m−1 is surjective, i.e., ∂xR

α
m = R

α1+1,α2,α3+1
m−1 .

Similar arguments lead to ∂yR
α
m = R

α1,α2+1,α3+1
m−1 and (∂y−∂x)R

α
m = R

α1+1,α2+1,α3

m−1 .

Therefore, we deduce that DnRα
m = Rα+n∗

m−|n|, i.e., D
n maps Rα

m onto Rα+n∗

m−|n|.

Now, for any sufficiently smooth function u,

DnPα
Mu =

M∑
m=|α̂|

DnRα
mu.

On the other hand, for any v ∈ Rα+n∗

m−|n|, there exists v	 ∈ Rα
m such that Dnv	 = v.

Correspondingly,

(DnRα
mu−Dnu, v)χα+n∗ = (DnRα

mu−Dnu,Dnv	)χα+n∗

= (Rα
mu− u, (−1)|n|χ−αDn(χα+n∗Dnv	))χα = 0.

This indicates that DnRα
mu = Rα+n∗

m−|n|D
nu, which in return leads to (3.8). �

The following lemma is an analogue of the results for Fourier series, and it plays
a key role in our error estimates.

Lemma 3.5. Let σ ∈ N0 and α ∈ ℵ3. If u ∈ Bσ
α(T ), then

(3.9) |Dnu|2B�
α+n∗

=
∑

m≥|α̂|
μ�
m−|n|,|α+n∗| ‖D

num‖2χα+n∗ , 0 ≤ � ≤ σ − |n|, n ∈ N3
0.

In particular,

(3.10) |u|2B�
α
=

∑
m≥|α̂|

μ�
m,|α|‖um‖2χα , 0 ≤ � ≤ σ.

Proof. Since (3.10) is just a special case of (3.9) with n = (0, 0, 0), we only need to
prove (3.9). By Theorem 3.2 and Lemma 3.4, we have∣∣Dnu

∣∣2
B�

α+n∗
=

∑
|k|=�

�!

k1!k2!k3!
(Dn+k

∑
m≥|α̂|

um, Dn+k
∑
j≥|α̂|

uj)χn∗+k∗+α

=
∑

m≥|α̂|

∑
j≥|α̂|

∑
|k|=�

�!

k1!k2!k3!
(Dn+kum, Dn+kuj)χn∗+k∗+α

=
∑

m≥|α̂|

∑
j≥|α̂|

(L�
α+n∗ D

num, Dnuj)χα+n∗

=
∑

m≥|α̂|

∑
j≥|α̂|

μ�
m−|n|,|α+n∗| (D

num, Dnuj)χα+n∗

=
∑

m≥|α̂|
μ�
m−|n|,|α+n∗| (D

num, Dnum)χα+n∗ .

This ends the proof. �
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We are now in position to prove one of the main results in this paper.

Theorem 3.3. Let σ ≥ 0 and α ∈ ℵ3. If u ∈ Bσ
α(T ), then

∣∣Dn(Pα
Mu− u)

∣∣
B

�−|n|
α+n∗

≤

√√√√μ
�−|n|
M−|n|+1,|α+n∗|

μ
σ−|n|
M−|n|+1,|α+n∗|

∣∣Dn(Pα
Mu− u)

∣∣
B

σ−|n|
α+n∗

� M�−σ
∣∣Dnu

∣∣
B

σ−|n|
α+n∗

, 0 ≤ |n| ≤ � ≤ σ, n ∈ N3
0.

(3.11)

In particular,

(3.12)
∣∣Pα

Mu− u
∣∣
B�

α
≤

√
μ�
M+1,|α|
μσ
M+1,α

∣∣Pα
Mu− u

∣∣
Bσ

α
� M�−σ|u|Bσ

α
, 0 ≤ � ≤ σ.

Proof. It suffices to prove (3.11). We deduce from (3.10) in Lemma 3.5 that∣∣Dn(Pα
Mu− u)

∣∣2
B

�−|n|
α+n∗

=
∑

m>M

μ
�−|n|
m−|n|,|α+n∗|

∥∥Dnum

∥∥2
χα+n∗

≤
μ
�−|n|
M−|n|+1,|α+n∗|

μ
σ−|n|
M−|n|+1,|α+n∗|

∑
m>M

μ
σ−|n|
m−|n|,|α+n∗|

∥∥Dnum

∥∥2
χα+n∗

=
μ
�−|n|
M−|n|+1,|α+n∗|

μ
σ−|n|
M−|n|+1,|α+n∗|

∣∣Dn(Pα
Mu− u)

∣∣2
B

σ−|n|
α+n∗

,

which gives the first inequality in (3.12). The second inequality is an immediate
consequence of the following two estimates:

μ
�−|n|
M−|n|+1,|α+n∗|

μ
σ−|n|
M−|n|+1,|α+n∗|

=
Γ(M − σ + 2)Γ(M + �+ |α|+ 3)

Γ(M − �+ 2)Γ(M + σ + |α|+ 3)
� M2�−2σ

and ∑
m>M

μ
σ−|n|
m−|n|,|α+n∗|

∥∥Dnum

∥∥2
χα+n∗ ≤

∑
m≥|α̂|

μ
σ−|n|
m−|n|,|α+n∗|

∥∥Dnum

∥∥2
χα+n∗

=
∣∣Dnu

∣∣2
B

σ−|n|
α+n∗

.

This ends the proof. �

Remark 3.1. Braess and Schwab [5] proved an elegant result for the d-dimensional
simplex for α ∈ ℵd

+ by using the properties of the Sturm-Liouville operator. Conse-
quently, their results are expressed in the norms associated with the Sturm-Liouville
operator. Our results here, while restricted to a two-dimensional triangle, are valid
for all α ∈ ℵ3 and are expressed in semi-norms expressed directly by the derivatives.

3.4. Error estimates for the H1
0 -orthogonal projection. We now consider

the H1
0 -orthogonal projection which is essential for the analysis of the Galerkin

approximation of elliptic equations.
Denote X0

M = H1
0 (T ) ∩ PM and define the H1

0 -orthogonal projection Π1,0
M :

H1
0 (T ) → X0

M by

(3.13)
(
∇(Π1,0

M u− u), ∇ϕ
)
= 0, ∀ϕ ∈ X0

M .

Another main result of this paper is the following:
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Theorem 3.4. For any u ∈ H1
0 (T ) ∩Hr(T ) with r ≥ 1,

(3.14)
∥∥Π1,0

M u− u
∥∥
s

� Ms−r|u|B̃r
0,0,0

, s = 0, 1,

where |u|2
B̃1

0,0,0

:= ‖∇u‖2, and for r ≥ 2,

(3.15)
|u|2

B̃r
0,0,0

:= |∂xu|2Br−1
0,0,0

+ |∂yu|2Br−1
0,0,0

+ |∂x∂yu|2Br−2
0,0,1

+ |∂y(∂y − ∂x)u|2Br−2
0,1,0

+ |∂x(∂y − ∂x)u|2Br−2
1,0,0

.

Proof. We first prove (3.14) with s = 1. By the projection theorem,∥∥∇(Π1,0
M u− u)

∥∥ ≤
∥∥∇(ϕ− u)

∥∥, ∀ϕ ∈ X0
M .(3.16)

Taking ϕ = 0, we get that

(3.17)
∥∥∇(Π1,0

M u− u)
∥∥ ≤ ‖∇u‖,

which leads to (3.14) with s = r = 1.
Now let r ≥ 2. For any u ∈ H1

0 (T ) ∩ Hr(T ), one obtains by using the Hardy
inequality (cf. for instance A.14 in [6]) that u ∈ B1

−1,−1,−1(T ). So we write

u =
∑

l1>l2≥1

2(2l1 − 1)(2|l| − 1)

(l1 − 1)(|l|+ l1 − 1)
ûlJ−1,−1,−1

l .

Then by (A.14), we have

∂x(u− P−1,−1,−1
M u) =

∑
|l|≥M+1

2(2l1 − 1)(2|l| − 1)

(l1 − 1)(|l|+ l1 − 1)
ûl∂xJ −1,−1,−1

l

=
∑

|l|≥M+1

ûl

(
(l2 − 1)J 0,0,0

l1,l2−2 − (2l1 − 1)J 0,0,0
l1−1,l2−1 − (|l|+ l1 − 2)J 0,0,0

l1−2,l2

− (|l|+ l1)J 0,0,0
l1,l2−1 − (2l1 − 1)J 0,0,0

l1−1,l2
+ (l2 + 1)J 0,0,0

l1−2,l2+1

)
=

∑
|l|≥M

(
(l2 + 1)ûl1,l2+2 − (2l1 + 1)ûl1+1,l2+1 − (|l|+ l1 + 2)ûl1+2,l2

− (|l|+ l1 + 1)ûl1,l2+1 − (2l1 + 1)ûl1+1,l2 + l2ûl1+2,l2−1

)
J 0,0,0
l

+
∑

|l|=M−1

(
(l2 + 1)ûl1,l2+2 − (2l1 + 1)ûl1+1,l2+1 − (|l|+ l1 + 2)ûl1+2,l2

)
J 0,0,0
l .

(3.18)

On the other hand, one gets from (A.5) that(
∂yJ−1,−1,−1

l

)
(x, y) = (−1)l1

(
∂xJ−1,−1,−1

l

)
(y, x).

Thus we obtain from (3.18) that

∂y(u−P−1,−1,−1
M u)

=
∑

|l|≥M

(
(l2 + 1)ûl1,l2+2 + (2l1 + 1)ûl1+1,l2+1 − (|l|+ l1 + 2)ûl1+2,l2

− (|l|+ l1 + 1)ûl1,l2+1 + (2l1 + 1)ûl1+1,l2 + l2ûl1+2,l2−1

)
J 0,0,0
l

+
∑

|l|=M−1

(
(l2 + 1)ûl1,l2+2 + (2l1 + 1)ûl1+1,l2+1 − (|l|+ l1 + 2)ûl1+2,l2

)
J 0,0,0
l .

(3.19)
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Note that for M = 2, we have u − P−1,−1,−1
M u = u and all the terms within∑

|l|=M−1 in (3.18)-(3.19) vanish.

Next, a direct calculation leads to

(3.20)

∥∥∇(u− P−1,−1,−1
M u)

∥∥2 =
∥∥(∂xu− P 0,0,0

M−1∂xu)
∥∥2 + ∥∥(∂yu− P 0,0,0

M−1∂yu)
∥∥2

+
∑

|l|=M−1

(
(l2 + 1)ûl1,l2+2 − (2l1 + 1)ûl1+1,l2+1

− (|l|+ l1 + 2)ûl1+2,l2

)2∥∥J 0,0,0
l

∥∥2

+
∑

|l|=M−1

(
(l2 + 1)ûl1,l2+2 + (2l1 + 1)ûl1+1,l2+1

− (|l|+ l1 + 2)ûl1+2,l2

)2∥∥J 0,0,0
l

∥∥2

=
∥∥(∂xu− P 0,0,0

M−1∂xu)
∥∥2 + ∥∥(∂yu− P 0,0,0

M−1∂yu)
∥∥2

+
∑

|l|=M−1

2l1 + 1

|l|+ 1
û2
l1+1,l2+1

+
∑

|l|=M−1

1

(2l1 + 1)(|l|+ 1)

(
(l2 + 1)ûl1,l2+2 − (|l|+ l1 + 2)ûl1+2,l2

)2
=

∥∥(∂xu− P 0,0,0
M−1∂xu)

∥∥2 + ∥∥(∂yu− P 0,0,0
M−1∂yu)

∥∥2
+

∑
|l|=M−1

(l2 + 1)(|l|+ l1 + 2)

(2l1 + 1)(|l|+ 1)

(
ûl1,l2+2 − ûl1+2,l2

)2

+
∑

|l|=M−1

( |l|+ l1 + 2

|l|+ 1
û2
l1+2,l2

+
2l1 + 1

|l|+ 1
û2
l1+1,l2+1 −

l2 + 1

|l|+ 1
û2
l1,l2+2

)

=
∥∥(∂xu− P 0,0,0

M−1∂xu)
∥∥2 + ∥∥(∂yu− P 0,0,0

M−1∂yu)
∥∥2

+
∑

|l|=M−1

4l1 + 2

|l|+ 1
û2
l1+1,l2+1

+
∑

|l|=M−1

(l2 + 1)(|l|+ l1 + 2)

(2l1 + 1)(|l|+ 1)

(
ûl1,l2+2 − ûl1+2,l2

)2
.

We now bound the second and the third terms in the last equation.
By using (A.10) and (2.16), we derive that

∥∥∂x(∂y − ∂x)(u− P−1,−1,−1
M u)

∥∥2
χ1,0,0 +

∥∥∂y(∂y − ∂x)(u− P−1,−1,−1
M u)

∥∥2
χ0,1,0

=
(
u− P−1,−1,−1

M u,
(
D1,0,1χ1,0,0D1,0,1 +D0,1,1χ0,1,0D0,1,1

)
(u− P−1,−1,−1

M u)
)

=
∑

|l|≥M+1

l1(l1 − 1)l2(|l|+ l1 − 1)×
∥∥∥ 2(2l1 − 1)(2|l| − 1)

(l1 − 1)(|l|+ l1 − 1)
ûlJ

−1,−1,−1
l

∥∥∥2
χ−1,−1,−1

=
∑

|l|≥M−1

4(2l1 + 1)(2|l|+ 3)û2
l1+1,l2+1 ≥ 2M(2M + 1)

∑
|l|=M−1

4l1 + 2

|l|+ 1
û2
l1+1,l2+1.

(3.21)
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Furthermore, we derive from (A.13) and (2.16) that∥∥∂x∂y(u− P−1,−1,−1
M u)

∥∥2
χ0,0,1

=
∥∥∥ ∑

|l|≥M+1

(2|l| − 1)ûl

(
(|l|+ l1)J 0,0,1

l1,l2−2 − (|l|+ l1 − 2)J 0,0,1
l1−2,l2

)∥∥∥2
χ0,0,1

=
∥∥∥ ∑

|l|≥M−1

(2|l|+ 3)(|l|+ l1 + 2)(ûl1,l2+2 − ûl1+2,l2)J
0,0,1
l1,l2

∥∥∥2
χ0,0,1

=
∑

|l|≥M−1

(l2 + 1)(2|l|+ 3)(|l|+ l1 + 2)

2l1 + 1
(ûl1,l2+2 − ûl1+2,l2)

2

≥M(2M + 1)
∑

|l|=M−1

(l2 + 1)(|l|+ l1 + 2)

(2l1 + 1)(|l|+ 1)

(
ûl1,l2+2 − ûl1+2,l2

)2
.

(3.22)

Combining (3.20)-(3.22) and using Theorem 3.3, we deduce that∥∥∇(u− P−1,−1,−1
M u)

∥∥2 ≤
∥∥(I − P 0,0,0

M−1)∂xu
∥∥2 + ∥∥(I − P 0,0,0

M−1)∂yu
∥∥2

+M−2
(∥∥∂x∂y(u− P−1,−1,−1

M u)
∥∥2
χ0,0,1 +

∥∥∂x(∂y − ∂x)(u− P−1,−1,−1
M u)

∥∥2
χ1,0,0

+ ‖∂y(∂y − ∂x)(u− P−1,−1,−1
M u)‖2χ0,1,0

)
�M2−2r|∂xu|2Br−1

0,0,0
+M2−2r|∂yu|2Br−1

0,0,0
+M2−2r|∂x∂yu|2Br−2

0,0,1

+M2−2r|∂y(∂y − ∂x)u|2Br−2
0,1,0

+M2−2r|∂x(∂y − ∂x)u|2Br−2
1,0,0

= M2−2r|u|2
B̃r

0,0,0
.

Since P−1,−1,−1
M u ∈ X0

M , taking ϕ = P−1,−1,−1
M u in (3.16), we obtain∥∥∇(u−Π0

Mu)
∥∥ ≤

∥∥∇(u− P−1,−1,−1
M u)

∥∥ ≤ M1−r|u|B̃r
0,0,0

,

which is (3.14) with s = 1.
The case with s = 0 can be proved by using a duality argument. Let eM =

Π1,0
M u− u and consider the auxiliary problem:

(3.23) find w ∈ H1
0 (T ) such that

(
∇φ,∇w) = (φ, eM ), ∀φ ∈ H1

0 (T ),

which admits a unique solution w ∈ H1
0 (T ) with the regularity

‖w‖2 � ‖eM‖.

Taking φ = eM in (3.23), we have from (3.13) and (3.14) with s = 1 that

‖eM‖2 = (∇eM ,∇w) = (∇eM ,∇(w −Π1,0
M w))

≤ ‖∇eM‖‖∇(w −Π1,0
M w)‖

� ‖∇eM‖M−1‖w‖2
� M−1‖∇eM‖‖eM‖,

which implies ‖eM‖ � M−1‖∇eM‖. By using (3.14) with s = 1, we finally get the
estimate (3.14) with s = 0. �
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4. Application to second and fourth order equations

4.1. Modified Helmholtz equation. Consider the modified Helmholtz equation:

(4.1) −Δu+ γu = f, in T ; u|∂T = 0, γ ≥ 0.

Given f ∈ H−1(T ), the weak formulation for (4.1) is: find u ∈ H1
0 (T ) such that

(4.2) a(u, v) :=
(
∇u,∇v

)
+ γ(u, v) = (f, v), ∀v ∈ H1

0 (T ).

It is clear that X0
M = P

−1,−1,−1
M . Hence,

X0
M = span

{
φl : l1 ≥ 2, l2 ≥ 1, l1 + l2 ≤ M

}
with

φl(x, y) =
2(2l1 − 1)(2|l| − 1)

(l1 − 1)(|l|+ l1 − 1)
J−1,−1,−1
l (x, y).(4.3)

The spectral-Galerkin approximation for (4.2) is: find uM ∈ X0
M such that

(4.4) a(uM , ϕ) = (f, ϕ), ∀ϕ ∈ X0
M .

Thanks to the Lax-Milgram lemma, (4.2) (resp. (4.4)) admits a unique solution
satisfying

(4.5) ‖∇u‖+ γ‖u‖ � ‖f‖−1 (resp. ‖∇uM‖+ γ‖uM‖ � ‖f‖−1).

Setting

al;k = (φl, φk), bl;k = (∂xφl, ∂xφk) + (∂yφl, ∂yφk),

uM =

M−1∑
l1=2

M−l1∑
l2=1

ûlφl, f̂l = (f, φl),

and

Al1,k1
=

(
al1,l2;k1,k2

)
l1+1≤|l|≤M,k1+1≤|k|≤M

, A =
(
Al1,k1

)
2≤l1,k1≤M−1

,

Bl1,k1
=

(
bl1,l2;k1,k2

)
l1+1≤|l|≤M,k1+1≤|k|≤M

, B =
(
Bl1,k1

)
2≤l1,k1≤M−1

,

ûl1 =
(
ûl1,1, ûl1,2, · · · , ûl1,M−l1

)
, û =

(
û2, û3, · · · , ûM−1

)tr
,

f̂ l1 =
(
f̂l1,1, f̂l1,2, · · · , f̂l1,M−l1

)
, f̂ =

(
f̂2, f̂3, · · · , f̂M−1

)tr
,

the linear system associated with (4.4) becomes

(B + γA)û = f̂ .(4.6)

It is easy to see from (A.14), (A.15) and (A.5) that

al;k = 0, if l1 − k1 �∈
{
0,±2

}
or |k| − |l| �∈

{
0,±1,±2,±3

}
,

bl;k = 0, if l1 − k1 �∈
{
0,±2

}
or |k| − |l| �∈

{
0,±1

}
.

So (B+ γA) is a block penta-diagonal matrix, whose entries are all hepta-diagonal
submatrices (cf. Figure 4.1). Moreover, the system can be split into two block
tri-diagonal linear systems with respect to even/odd l1, k1. The non-zero entries
of the matrices A and B can be determined exactly by using the properties of
J−1,−1,−1
l (x, y) in the Appendix.
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Figure 4.1. Structure of the mass matrix A (left) and the stiff
matrix B (right) with M = 14: nz is the number of non-zero
elements.

Theorem 4.1. Let u and uM be the solutions of (4.2) and (4.4), respectively. If
u ∈ Hr(T ), r ≥ 1, then we have

‖uM − u‖s � Ms−r|u|B̃r
0,0,0

, 0 ≤ s ≤ 1.(4.7)

Proof. One derives from (4.2) and (4.4) that

‖uM − u‖1 � inf
v∈X0

M

‖v − u‖1 .

Then, applying Theorem 3.4 to the above, we obtain (4.7) immediately with μ = 1.
The result for μ = 0 can then be derived by using a standard duality argument as
in the proof of Theorem 3.4. �

4.2. Biharmonic equation. Consider the following biharmonic equation:

(4.8) Δ2u = f, in T ; u|∂T = 0,
∂u

∂Γ

∣∣∣
∂T

= 0.

Given f ∈ H−2(T ), the weak formulation for (4.8): find u ∈ H2
0 (T ) such that

(4.9) (Δu,Δv) = (f, v), ∀v ∈ H2
0 (T ).

The coercivity of the above bilinear form can be directly obtained from the equiv-
alence norm/semi-norm in H2

0 (T ) and the formula∫∫
T

(Δu)2dxdy =

∫∫
T

[ (
∂2
xu

)2
+ 2 (∂x∂yu)

2 +
(
∂2
yu

)2 ]
dxdy.

Thus for any f ∈ H−2(T ), problem (4.8) has a unique solution in H2
0 (T ), which

satisfies

‖u‖2 � ‖f‖−2.(4.10)

Define the approximation space Y 0
M := H2

0 (T ) ∩ PM . Then, we have

Y 0
M = P

−2,−2,−2
M = span

{
ψl : l1 ≥ 4, l2 ≥ 2, l1 + l2 ≤ M

}
(4.11)
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Figure 4.2. Structure of the matrix D (with M = 18): nz is the
number of non-zero elements.

with

ψl(x, y) =
2J−2,−2,−2

l (x, y)

(l1 − 2)(l1 − 3)(|l|+ l1 − 3)(|l|+ l1 − 4)
, l1 ≥ 4, l2 ≥ 2.(4.12)

The spectral-Galerkin approximation to (4.9) is: to find uM ∈ Y 0
M such that

(4.13) (ΔuM ,Δϕ) = (f, ϕ), ∀ϕ ∈ Y 0
M ,

which has a unique solution satisfying (4.10) with uM in place of u.
Setting

dl;k = (Δψl,Δψk), uM =
M−2∑
l1=4

M−l1∑
l2=2

ûlψl, f̂l = (f, ψl),

and

D|l|,|k| =
(
dl;k

)
4≤l1≤|l|−2, 4≤k1≤|k|−2

, D =
(
D|l|,|k|

)
6≤|l|,|k|≤M

,

û|l| =
(
û4,|l|−4, û5,|l|−5, · · · , û|l|−2,2

)
, û =

(
û6, û7, · · · , ûM

)tr
,

f̂ |l| =
(
f̂4,|l|−4, f̂5,|l|−5, · · · , f̂|l|−2,2

)
, f̂ =

(
f̂6, f̂7, · · · , f̂M

)tr
,

the linear system associated with (4.13) becomes

Dû = f̂ .(4.14)

It is easy to see from (A.16) that

dl;k = 0, if l1 − k1 �∈
{
0,±2,±4

}
or |k| − |l| �∈

{
0,±1,±2

}
.

Hence, (B + γA) is a block penta-diagonal matrix, whose entries are all ennea-
diagonal submatrices (cf. Figure 4.2). Moreover, the system can be split into
two block penta-diagonal linear systems with respect to even/odd l1, k1. The non-
zero entries of the matrices D can be exactly determined from the properties of
J−2,−2,−2
l (x, y) in the Appendix.
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We now present the error analysis for the scheme (4.13).

Theorem 4.2. Let u and uM be the solutions of (4.9) and (4.13), respectively. If
∂2
xu ∈ Br−2

0,−2,0(T ) and ∂2
yu ∈ Br−2

−2,0,0(T ) with r ≥ 2, then we have

‖uM − u‖2 � M2−r
( ∣∣∂2

xu
∣∣
Br−2

0,−2,0
+

∣∣∂2
yu

∣∣
Br−2

−2,0,0

)
.(4.15)

Furthermore, if u ∈ Br+1
0,0,0(T ), then

‖uM − u‖s � Ms−r‖u‖Br+1
0,0,0

, 0 ≤ s ≤ 2.(4.16)

Proof. One derives immediately from (4.9) and (4.13) that

‖uM − u‖2 � inf
v∈Y 0

M

|v − u|2.

Then applying (3.11) of Theorem 3.3 with α = (−2,−2,−2), � = 2 to the above,
we obtain that

‖uM − u‖2 � |P−2,−2,−2
M u− u|2

� ‖∂2
x(P

−2,−2,−2
M u− u)‖+ ‖∂2

y(P
−2,−2,−2
M u− u)‖

� M2−r
( ∣∣∂2

xu
∣∣
Br−2

0,−2,0
+

∣∣∂2
yu

∣∣
Br−2

−2,0,0

)
.

Now, for u ∈ Br+1
0,0,0(T ), we have∣∣∂2

xu
∣∣
Br−2

0,−2,0(T )
+

∣∣∂2
yu

∣∣
Br−2

−2,0,0(T )

�
∑

n1+n2+n3=r−2

∥∥∂n1+2
x ∂n2

y (∂y − ∂x)
n3u

∥∥
χn1+n3,n2+n3−2,n1+n2

+
∑

n1+n2+n3=r−2

∥∥∂n1
x ∂n2+2

y (∂y − ∂x)
n3u

∥∥
χn1+n3−2,n2+n3,n1+n2

� |u|Br
0,0,0

+
∥∥∂r

xu
∥∥
χ0,−2,0 +

∥∥∂r
yu

∥∥
χ−2,0,0

(by the Hardy inequality (cf. for instance A.14 in [6])

� |u|Br
0,0,0

+
∥∥∂r

x∂yu
∥∥+

∥∥∂x∂r
yu

∥∥ � ‖u‖Br+1
0,0,0

.

This implies (4.16) for s = 2. The result for s = 0 can then be derived by using
a standard duality argument, and the general case 0 ≤ s ≤ 2 can be concluded by
space interpolation. �

Remark 4.1. We note that the above results are derived using only Theorem 3.3.
While the estimate in (4.15) has optimal convergence rate, it requires that ∂2

xu and
∂2
yu satisfy certain additional boundary conditions due to the weight functions with

negative index in the norm; on the other hand, this requirement is removed in the
estimate (4.16) but the convergence rate becomes suboptimal.

To derive optimal estimates as in Theorem 4.1 for the scheme (4.13), one needs

to study the projection operator P−2,−2,−2
M , as we did in Theorem 3.4 for P−1,−1,−1

M .
However, this process becomes extremely tedious and technical, so we decided not
to perform it.
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5. Numerical results and concluding remarks

To illustrate the convergence behaviors of the spectral-Galerkin method on the
triangle, we report below some numerical results. An important purpose of these
simple tests is to check the correctness of various properties derived in the Appen-
dix which are used in determining the non-zero entries of the stiffness and mass
matrices.

Example 1. We consider the L2-orthogonal projection to the following two func-
tions:

u(x, y) = exp(x+ y) and u(x, y) = cos(x− y).

Since the functions are analytic on T , Theorem 3.3 indicates that the errors will
decay faster than any algebraic order. In Figure 5.1, the maximum errors and L2-
error of the L2 projection are shown. The computation is performed in Maple with
an accuracy of 50 decimal digits.
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Figure 5.1. Maximum pointwise errors (marked by ‘o’) and
L2−errors (marked by ‘�’) of the L2 projection (with α = (0, 0, 0))
against various degrees M. Left: function y = cos(x − y); Right:
function y = exp(x+ y).

Example 2. We consider the modified Helmholtz equation (4.1) with the exact
solution

u(x, y) = xy(ex+y − e).

Example 3. We consider the biharmonic equation (4.8) with the exact solution

u(x, y) = sin2(πx) sin2(πy) sin2(π(1− x− y)).

Computations for Examples 2 and 3 are performed in Matlab and the results
are shown in Figures 5.2 and 5.3, respectively. For all three examples, we observe
super-geometric convergence rates, which are typical for spectral approximations
to analytic functions.
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Figure 5.2. Maximum pointwise errors (marked by ‘�’) and
L2−errors (marked by ‘o’) against various degrees M for Example
2. Left: function γ = 0; Right: function γ = 1.
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Figure 5.3. Maximum pointwise errors (marked by ‘�’) and
L2−errors (marked by ‘o’) against various degrees M for Example
3.

Concluding remarks. We studied in this paper the spectral approximation by or-
thogonal polynomials on the triangle. By introducing the generalized Koornwinder
polynomials and using the properties of the Sturm-Liouville operator on the tri-
angle, we derived optimal error estimates for both the L2− and H1

0−orthogonal
polynomial projections on the triangle. We then applied these results to derive
error estimates for the spectral-Galerkin method for second-order and fourth-order
equations on the triangle.

Furthermore, the generalized Koornwinder polynomials with suitable parameters
serve as natural basis functions for the spectral-Galerkin method and lead to sparse
linear systems that can be efficiently solved.

While we only studied the polynomial approximations on the triangle, it is clear
that the method used here can be generalized to the approximations on the tetra-
hedron. Therefore, the techniques and results developed in this paper will be very
useful for studying spectral and spectral-element approximations of PDEs in trian-
gular domains.
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Appendix A. Properties of the generalized Koornwinder polynomials

Since the generalized Koornwinder polynomials are defined in terms of the gen-
eralized Jacobi polynomials, we will first present some properties of the generalized
Jacobi polynomials.

Lemma A.1. Let α1, α2 ∈ ℵ. Then for any m,n ≥ α̂1 + α̂2,

Jα1,α2
n (ζ) = (−1)nJα2,α1

n (−ζ),(A.1)

(Jα1,α2
m , Jα1,α2

n )ωα1,α2 ,I = hα1,α2
n δm,n,(A.2)

Jα1,α2
n (ζ) =

n∑
k=0

(
n+ α1

n− k

)(
n+ α2

k

)(ζ − 1

2

)k(ζ + 1

2

)n−k

,(A.3)

Jα1,α2
n (ζ) =

n∑
k=0

(
n+ α1

n− k

)(
n+ k + α1 + α2

k

)(ζ − 1

2

)k

,(A.4)

where hα1,α2
n is defined as in (2.9).

Proof. (A.1) is obvious from the definition, while (A.2) is an immediate consequence
of (2.8), (2.9) and (2.10).

We now assume α1 ∈ ℵ−, α2 ∈ ℵ−. Noting that (A.3) is valid for α1 ∈ ℵ+, α2 ∈
ℵ+, we derive that

Jα1,α2
n (ζ) =

(
ζ − 1

2

)−α1
(
ζ + 1

2

)−α2

J−α1,−α2

n+α1+α2
(ζ)

=

n+α1+α2∑
k=0

(
n+ α2

n+ α1 + α2 − k

)(
n+ α1

k

)(
ζ − 1

2

)k−α1
(
ζ + 1

2

)n+α1−k

=

n+α2∑
k=−α1

(
n+ α2

n+ α2 − k

)(
n+ α1

k + α1

)(
ζ − 1

2

)k (
ζ + 1

2

)n−k

=
n∑

k=0

(
n+ α2

k

)(
n+ α1

n− k

)(
ζ − 1

2

)k (
ζ + 1

2

)n−k

.

Similarly, one can prove (A.3) for α1 ∈ ℵ+, α2 ∈ ℵ− and for α1 ∈ ℵ−, α2 ∈ ℵ+.
Using the Chu-Vandermonde sum, one can show that

Jα1,α2
n (ζ) =

n∑
k=0

n−k∑
l=0

(
n+ α1

n− k − l

)(
n+ α2

k

)(
k + l + α1

l

)(
ζ − 1

2

)k+l

=

n∑
j=0

(
n+ α1

n− j

)(
ζ − 1

2

)j j∑
k=0

(
n+ α2

k

)(
j + α1

j − k

)

=

n∑
j=0

(
n+ α1

n− j

)(
n+ j + α1 + α2

j

)(
ζ − 1

2

)j

.

This concludes the proof. �

We now derive some properties of the generalized Koornwinder polynomials.

Lemma A.2. Let α ∈ ℵ3. Then for any l ∈ N2
0 with l1 ≥ α̂1 + α̂2 and l2 ≥ α̂3,

J α
l (x, y) = (−1)l1J α2,α1,α3

l (y, x),(A.5)
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J α
l (x, y) =

l1∑
k1=0

l2∑
k2=0

cαl (k) y
k1(−x− y)l1−k1+k2 ,(A.6)

∂xJ α
l (x, y) = − (l1 + α2)(|l|+ l1 + α1 + α2 + 1)

2l1 + α1 + α2 + 1
J α1+1,α2,α3+1
l1−1,l2

(x, y)

− (l1 + α1 + α2 + 1)(|l|+ l1 + |α|+ 2)

2l1 + α1 + α2 + 1
J α1+1,α2,α3+1
l1,l2−1 (x, y),

(A.7)

∂yJ α
l (x, y) =

(l1 + α1)(|l|+ l1 + α1 + α2 + 1)

2l1 + α1 + α2 + 1
J α1,α2+1,α3+1
l1−1,l2

(x, y)

− (l1 + α1 + α2 + 1)(|l|+ l1 + |α|+ 2)

2l1 + α1 + α2 + 1
J α1,α2+1,α3+1
l1,l2−1 (x, y),

(A.8)

(∂y − ∂x)J α
l (x, y) = (l1 + α1 + α2 + 1)J α1+1,α2+1,α3

l1−1,l2
(x, y),(A.9)

χ−α∂y(∂y − ∂x)
(
χα1+1,α2+2,α3+1∂y(∂y − ∂x)J α

l (x, y)
)

+ χ−α∂x(∂y − ∂x)
(
χα1+2,α2+1,α3+1∂x(∂y − ∂x)J α

l (x, y)
)

= l1(l1 + α1 + α2 + 1)
(
l2(l2 + 2l1 + |α|+ 2)

+ (α3 + 1)(l1 − 1)
)
J α
l (x, y),

(A.10)

where cαl (k) =
(
l1+α2

l1−k1

)(
l1+k1+α1+α2

k1

)(
l2+2l1+α1+α2+1

l2−k2

)(
l2+k2+2l1+α1+α2+α3+1

k2

)
.

Proof. One can readily derive (A.5) from (2.17) and (A.1).
Also from (2.17) and (A.1), we have

J α
l (x, y) = (−y − x)l1Jα2,α1

l1

(
x− y

y + x

)
J2l1+α1+α2+1,α3

l2
(1− 2x− 2y).

Then (A.6) is an immediate consequence of (A.4). By a direct calculation,

(l1−k1+k2)c
α1,α2,α3

l1,l2
(k1, k2) =

(l1+α2)(|l|+l1+α1+α2 + 1)

2l1 + α1 + α2 + 1
cα1+1,α2,α3+1
l1−1,l2

(k1, k2)

+
(l1 + α1 + α2 + 1)(|l|+ l1 + |α|+ 2)

2l1 + α1 + α2 + 1
cα1+1,α2,α3+1
l1,l2−1 (k1, k2 − 1).

Thus we derive (A.7) from (A.6) by comparing coefficients of yk1(−x−y)l1−k1−k2−1

for both the left-hand and right-hand sides. Similar arguments lead to (A.8) and
(A.9).

Under the collapsed transform (2.13),

∂y − ∂x =
4

1− η
∂ξ.

Thus by the definition (2.17) of the generalized Koornwinder polynomials and the
Sturm-Liouville eigenequation for the generalized Jacobi polynomials (cf. A.6 in
[22]), we have

−x−α1y−α2(∂y − ∂x)
(
xα1+1yα2+1(∂y − ∂x)J α

l (x, y)
)

= −ω−α1,−α2(ξ)∂ξ
(
ωα1+1,α2+1(ξ)∂ξJ

α1,α2

l1
(ξ)

)
×

(1− η

2

)l1
J2l1+α1+α2+1,α3

l2
(η)

= l1(l1 + α1 + α2 + 1)Jα1,α2

l1
(ξ)×

(1− η

2

)l1
J2l1+α1+α2+1,α3

l2
(η)

= l1(l1 + α1 + α2 + 1)J α
l (x, y).

(A.11)
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Subtracting (A.11) from (3.7) with � = 1, we get

− χ−α∂y
(
χα1,α2+1,α3+1∂yJ α

l (x, y)
)
− χ−α∂x

(
χα1+1,α2,α3+1∂xJ α

l (x, y)
)

= (l2(|l|+ l1 + |α|+ 2) + l1(α3 + 1))J α
l (x, y).

(A.12)

Thus by (A.9),

χ−α∂y(∂y − ∂x)
(
χα1+1,α2+2,α3+1∂y(∂y − ∂x)J α

l (x, y)
)

+ χ−α∂x(∂y − ∂x)
(
χα1+2,α2+1,α3+1∂x(∂y − ∂x)J α

l (x, y)
)

= (l1 + α1 + α2 + 1)χ−α(∂y − ∂x)
(
∂y

(
χα1+1,α2+2,α3+1∂yJ α1+1,α2+1,α3

l1−1,l2
(x, y)

)
+ ∂x

(
χα1+1,α2+2,α3+1∂xJ α1+1,α2+1,α3

l1−1,l2
(x, y)

))
= −(l1 + α1 + α2 + 1)

(
l2(l2 + 2l1 + |α|+ 2) + (α3 + 1)(l1 − 1)

)
× χ−α(∂y − ∂x)

(
χα1+1,α2+1,α3J α1+1,α2+1,α3

l1−1,l2
(x, y)

)
= l1(l1 + α1 + α2 + 1)

(
l2(l2 + 2l1 + |α|+ 2) + (α3 + 1)(l1 − 1)

)
J α
l (x, y).

This concludes the proof. �

We now derive some useful properties for the two specific families of the gener-
alized Koornwinder polynomials with α = (−1,−1,−1) and α = (−2,−2,−2).

Lemma A.3. For any admissible l ∈ N2
0, the following identities hold:

2(2l1 − 1)

(l1 − 1)(|l|+ l1 − 1)
∂x∂yJ −1,−1,−1

l1,l2
(x, y)

= (|l|+ l1)J 0,0,1
l1,l2−2(x, y)− (|l|+ l1 − 2)J 0,0,1

l1−2,l2
(x, y),

(A.13)

2(2l1 − 1)(2|l| − 1)

(l1 − 1)(|l|+ l1 − 1)
∂xJ −1,−1,−1

l1,l2
(x, y)

= −(|l|+ l1)J 0,0,0
l1,l2−1(x, y)− (2l1 − 1)J 0,0,0

l1−1,l2
(x, y)

+ (l2 + 1)J 0,0,0
l1−2,l2+1(x, y) + (l2 − 1)J 0,0,0

l1,l2−2(x, y)

− (2l1 − 1)J 0,0,0
l1−1,l2−1(x, y)− (|l|+ l1 − 2)J 0,0,0

l1−2,l2
(x, y),

(A.14)

4(2l1 − 1)(2|l| − 1)

(l1 − 1)(|l|+ l1 − 1)
J−1,−1,−1
l1,l2

(x, y)

=
(|l|+ l1)(|l|+ l1 + 1)

|l|(2|l|+ 1)
J 0,0,0
l1,l2

(x, y)− (l2 + 1)(l2 + 2)

|l|(2|l|+ 1)
J 0,0,0
l1−2,l2+2(x, y)

− (|l|+ l1)(|l| − 3l1 − 1)

(2|l|+ 1)(|l| − 1)
J 0,0,0
l1,l2−1(x, y) +

(|l|+ 3l1 − 4)(l2 + 1)

(2|l|+ 1)(|l| − 1)
J 0,0,0
l1−2,l2+1(x, y)

− (l2 − 1)(|l|+ 3l1)

|l|(2|l| − 3)
J 0,0,0
l1,l2−2(x, y) +

(|l|+ l1 − 2)(|l| − 3l1 + 3)

|l|(2|l| − 3)
J 0,0,0
l1−2,l2

(x, y)

+
(l2 − 1)(l2 − 2)

(2|l| − 3)(|l| − 1)
J 0,0,0
l1,l2−3(x, y)−

(|l|+ l1 − 3)(|l|+ l1 − 2)

(2|l| − 3)(|l| − 1)
J 0,0,0
l1−2,l2−1(x, y),

(A.15)
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and
2

(l1 − 2)(l1 − 3)(|l|+ l1 − 3)(|l|+ l1 − 4)
ΔJ −2,−2,−2

l1,l2
(x, y)

=
(|l|+ l1 − 2)(|l|+ l1 − 1)

2(2l1 − 1)(2l1 − 3)(2|l| − 3)(|l| − 2)
J 0,0,0
l1,l2−2(x, y)

− 2(l2 − 2)(|l|+ l1 − 2)

(2|l| − 5)(2|l| − 3)(2l1 − 3)(2l1 − 1)
J 0,0,0
l1,l2−3(x, y)

+
(l2 − 3)(l2 − 2)

2(2l1 − 1)(2l1 − 3)(|l| − 2)(2|l| − 5)
J 0,0,0
l1,l2−4(x, y)

+
3l21 − 9l1 + 2|l| − |l|2 + 3

(2l1 − 5)(2l1 − 1)(2|l| − 3)(|l| − 2)
J 0,0,0
l1−2,l2

(x, y)

+
12l21 − 36l1 + 30− 16|l|+ 4|l|2

(2|l| − 5)(2|l| − 3)(2l1 − 5)(2l1 − 1)
J 0,0,0
l1−2,l2−1(x, y)

+
3l21 − 9l1 − 5− |l|2 + 6|l|

(2l1 − 1)(2l1 − 5)(|l| − 2)(2|l| − 5)
J 0,0,0
l1−2,l2−2(x, y)

+
(l2 + 1)(2 + l2)

2(2l1 − 3)(2l1 − 5)(|l| − 2)(2|l| − 3)
J 0,0,0
l1−4,l2+2(x, y)

− 2(l2 + 1)(|l|+ l1 − 5)

(2|l| − 5)(2|l| − 3)(2l1 − 3)(2l1 − 5)
J 0,0,0
l1−4,l2+1(x, y)

+
(|l|+ l1 − 5)(|l|+ l1 − 6)

2(2l1 − 3)(2l1 − 5)(|l| − 2)(2|l| − 5)
J 0,0,0
l1−4,l2

(x, y).

(A.16)

Proof. The identities (A.13)-(A.16) can be verified by using the expansion (A.6)
and then comparing the coefficients of yk1(−x−y)k2 for both the left-hand and the
right-hand sides. We leave the details to the interested reader. �
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